US6017738A - Solid phase amplification process - Google Patents
Solid phase amplification process Download PDFInfo
- Publication number
- US6017738A US6017738A US08/761,862 US76186296A US6017738A US 6017738 A US6017738 A US 6017738A US 76186296 A US76186296 A US 76186296A US 6017738 A US6017738 A US 6017738A
- Authority
- US
- United States
- Prior art keywords
- nucleic acid
- primer
- acid sequence
- amplification
- solid phase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000003321 amplification Effects 0.000 title claims abstract description 80
- 238000003199 nucleic acid amplification method Methods 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title claims abstract description 69
- 239000007790 solid phase Substances 0.000 title claims abstract description 55
- 230000008569 process Effects 0.000 title claims abstract description 17
- 150000007523 nucleic acids Chemical group 0.000 claims abstract description 99
- 108091028043 Nucleic acid sequence Proteins 0.000 claims abstract description 45
- 238000001514 detection method Methods 0.000 claims abstract description 38
- 238000003556 assay Methods 0.000 claims abstract description 18
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 16
- 239000000126 substance Substances 0.000 claims abstract 6
- 239000000523 sample Substances 0.000 claims description 23
- 238000003752 polymerase chain reaction Methods 0.000 claims description 22
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 claims description 14
- 238000006073 displacement reaction Methods 0.000 claims description 10
- 239000012071 phase Substances 0.000 claims description 9
- 239000011616 biotin Substances 0.000 claims description 8
- 229960002685 biotin Drugs 0.000 claims description 8
- 208000026350 Inborn Genetic disease Diseases 0.000 claims description 7
- 235000020958 biotin Nutrition 0.000 claims description 7
- 208000016361 genetic disease Diseases 0.000 claims description 7
- 238000002372 labelling Methods 0.000 claims description 5
- 102000004190 Enzymes Human genes 0.000 claims description 4
- 108090000790 Enzymes Proteins 0.000 claims description 4
- 108010066717 Q beta Replicase Proteins 0.000 claims description 3
- 239000000975 dye Substances 0.000 claims description 2
- 239000012488 sample solution Substances 0.000 claims 3
- 238000007834 ligase chain reaction Methods 0.000 claims 2
- 239000006104 solid solution Substances 0.000 claims 2
- 239000003593 chromogenic compound Substances 0.000 claims 1
- 239000013615 primer Substances 0.000 description 70
- 108020004414 DNA Proteins 0.000 description 30
- 102000053602 DNA Human genes 0.000 description 30
- 239000000047 product Substances 0.000 description 25
- 102000039446 nucleic acids Human genes 0.000 description 21
- 108020004707 nucleic acids Proteins 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 19
- 239000000243 solution Substances 0.000 description 14
- 239000007787 solid Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 9
- 201000003883 Cystic fibrosis Diseases 0.000 description 7
- 229910052693 Europium Inorganic materials 0.000 description 7
- 108090000623 proteins and genes Proteins 0.000 description 7
- 229920002477 rna polymer Polymers 0.000 description 7
- 108091093088 Amplicon Proteins 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000002773 nucleotide Substances 0.000 description 6
- 125000003729 nucleotide group Chemical group 0.000 description 6
- 238000011002 quantification Methods 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- 239000007850 fluorescent dye Substances 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 4
- 102100034343 Integrase Human genes 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 241000202934 Mycoplasma pneumoniae Species 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 239000013610 patient sample Substances 0.000 description 4
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 4
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 108020004635 Complementary DNA Proteins 0.000 description 3
- 108010067770 Endopeptidase K Proteins 0.000 description 3
- 206010028980 Neoplasm Diseases 0.000 description 3
- 102000003992 Peroxidases Human genes 0.000 description 3
- RZCIEJXAILMSQK-JXOAFFINSA-N TTP Chemical compound O=C1NC(=O)C(C)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 RZCIEJXAILMSQK-JXOAFFINSA-N 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 3
- HAAZLUGHYHWQIW-KVQBGUIXSA-N dGTP Chemical compound C1=NC=2C(=O)NC(N)=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 HAAZLUGHYHWQIW-KVQBGUIXSA-N 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 229940046166 oligodeoxynucleotide Drugs 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 108040007629 peroxidase activity proteins Proteins 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 241000203022 Acholeplasma laidlawii Species 0.000 description 2
- 108020004491 Antisense DNA Proteins 0.000 description 2
- 108020005544 Antisense RNA Proteins 0.000 description 2
- 108090001008 Avidin Proteins 0.000 description 2
- 102000012605 Cystic Fibrosis Transmembrane Conductance Regulator Human genes 0.000 description 2
- 108010079245 Cystic Fibrosis Transmembrane Conductance Regulator Proteins 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- 101710203526 Integrase Proteins 0.000 description 2
- 102000003960 Ligases Human genes 0.000 description 2
- 108090000364 Ligases Proteins 0.000 description 2
- 241000204031 Mycoplasma Species 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 101710137500 T7 RNA polymerase Proteins 0.000 description 2
- 108010006785 Taq Polymerase Proteins 0.000 description 2
- 208000002903 Thalassemia Diseases 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229940059260 amidate Drugs 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000003816 antisense DNA Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000001351 cycling effect Effects 0.000 description 2
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 2
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- NPUKDXXFDDZOKR-LLVKDONJSA-N etomidate Chemical compound CCOC(=O)C1=CN=CN1[C@H](C)C1=CC=CC=C1 NPUKDXXFDDZOKR-LLVKDONJSA-N 0.000 description 2
- 238000001215 fluorescent labelling Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 125000000467 secondary amino group Chemical class [H]N([*:1])[*:2] 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 208000007056 sickle cell anemia Diseases 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 238000001685 time-resolved fluorescence spectroscopy Methods 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- -1 0.4 mM dNTP's Substances 0.000 description 1
- HNLXNOZHXNSSPN-UHFFFAOYSA-N 2-[2-[2-[2-[2-[2-[2-[4-(2,4,4-trimethylpentan-2-yl)phenoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethanol Chemical compound CC(C)(C)CC(C)(C)C1=CC=C(OCCOCCOCCOCCOCCOCCOCCO)C=C1 HNLXNOZHXNSSPN-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 101100322085 Arabidopsis thaliana CAC3 gene Proteins 0.000 description 1
- 206010003757 Atypical pneumonia Diseases 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 208000032791 BCR-ABL1 positive chronic myelogenous leukemia Diseases 0.000 description 1
- 101150029409 CFTR gene Proteins 0.000 description 1
- 208000010833 Chronic myeloid leukaemia Diseases 0.000 description 1
- 108010028773 Complement C5 Proteins 0.000 description 1
- 108020001019 DNA Primers Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 230000006820 DNA synthesis Effects 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 206010013801 Duchenne Muscular Dystrophy Diseases 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- 208000023105 Huntington disease Diseases 0.000 description 1
- 241000589248 Legionella Species 0.000 description 1
- 208000007764 Legionnaires' Disease Diseases 0.000 description 1
- 208000009625 Lesch-Nyhan syndrome Diseases 0.000 description 1
- 241001430197 Mollicutes Species 0.000 description 1
- 241000544264 Mycoplasma buccale Species 0.000 description 1
- 241000202952 Mycoplasma fermentans Species 0.000 description 1
- 241000204051 Mycoplasma genitalium Species 0.000 description 1
- 241000204048 Mycoplasma hominis Species 0.000 description 1
- 241000202889 Mycoplasma salivarium Species 0.000 description 1
- 208000033761 Myelogenous Chronic BCR-ABL Positive Leukemia Diseases 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 201000011252 Phenylketonuria Diseases 0.000 description 1
- 208000032721 Philadelphia Chromosome Diseases 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 1
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 1
- 238000003559 RNA-seq method Methods 0.000 description 1
- 101100386054 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) CYS3 gene Proteins 0.000 description 1
- 101100514477 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) MSI1 gene Proteins 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 208000022292 Tay-Sachs disease Diseases 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 208000035317 Total hypoxanthine-guanine phosphoribosyl transferase deficiency Diseases 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 239000001166 ammonium sulphate Substances 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000009360 aquaculture Methods 0.000 description 1
- 244000144974 aquaculture Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000005997 bromomethyl group Chemical group 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 230000010460 detection of virus Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007345 electrophilic aromatic substitution reaction Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001917 fluorescence detection Methods 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 238000003898 horticulture Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011901 isothermal amplification Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000007857 nested PCR Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- JCZMXVGQBBATMY-UHFFFAOYSA-N nitro acetate Chemical compound CC(=O)O[N+]([O-])=O JCZMXVGQBBATMY-UHFFFAOYSA-N 0.000 description 1
- 208000003154 papilloma Diseases 0.000 description 1
- 244000045947 parasite Species 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 210000004214 philadelphia chromosome Anatomy 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000020509 sex determination Effects 0.000 description 1
- 101150035983 str1 gene Proteins 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 description 1
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical compound Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6834—Enzymatic or biochemical coupling of nucleic acids to a solid phase
Definitions
- the present invention is generally in the field of methods for the detection of nucleic acid sequences through amplification and hybridization to labelled probes.
- Hybridization methods are widely utilized in testing for the presence of particular nucleic acid sequences, identifying and/or quantifying such sequences. Hybridization occurs when there is sufficient complementarity of two nucleic acid sequences to effect non-covalent binding between the two molecules.
- PCR polymerase chain reaction
- WO89/11546 by Paulsen, et al., describes a method using PCR with DNA primers, one of which is soluble and the other which is bound to superparamagnetic particles, allowing greater ease of separation of the amplified product which facilitates detection. While the nucleic acid is bound to the particle, however, amplification via the beads is still taking place in a soluble phase, ie the beads are suspended in a liquid phase, increasing the time and complexity of the reaction, and requiring equipment for isolation of the superparamagnetic particles.
- AU A-47144/89 by Molecular Diagnostics, Inc. also reports a method for increasing detection of nucleic acids using PCR to amplify sequences, where one or both of the primers are in solution or immobilized or immobilizable, for example, to Sephadex, to facilitate detection.
- the process can be used to yield immobilized target nucleic acid.
- the present invention utilizes the concept of amplification of a target nucleic acid by means of two primers, one of which is directly immobilized onto a sample container surface, and the other which is labelled for ease of detection.
- both primers must be hybridizable with a target nucleic acid sequence.
- the sample is placed in a container with the immobilized nucleic acid primer.
- the target sequence is then amplified using a second labelled primer or labelled polymerase substrate which, on incorporation, allows detection and quantification via the label on the solid phase amplified nucleic acid sequence.
- Examples demonstrate the detection of the gene for cystic fibrosis and a specific type of mycoplasma in patient samples.
- FIG. 1 is a schematic of the PCR (Polymerase Chain Reaction).
- FIG. 2 is a schematic of the LCR (Ligase Chain Rection).
- FIG. 3 is a schematic of the NASBA (Nucleic Acid Sequence Based Amplification). Thin lines, RNA; thick lines, DNA; RT, reverse transcriptase.
- FIG. 4 is a schematic of the SPA method for amplification.
- FIG. 5a is a schematic of the target generation scheme for SDA (Strand Displacement Amplification).
- FIG. 5b is a schematic of automatically entering the SDA reaction cycle.
- FIG. 6 is a schematic of the reaction products of the modified SDA process.
- the assay and method of use described herein have the following elements: a target molecule to be detected in any test or patient sample, a first primer which is immobilized to a solid surface suitable for containment of the patient sample and is hybridizable to the target molecule, a second primer which can be detected using a variety of different methodologies and is hybridizable to the target molecule, and means for amplification of the target sequence via the two primers.
- SPA solid phase amplification
- This method allows detection and identification of virtually any nucleic acid sequence, and thus allows the detection and identification of viruses, microorganisms and parasites, the detection of genetic diseases, either by detection of sequence variations (mutations) which cause or are associated with a disease or are linked (Restriction Fragment Length Polymorphisms or RFLP's) to the disease locus, and sequence variations which are associated with, or cause, cancer, and the detection and identification of nucleic acid sequences for forensic fingerprinting, tissue typing and for taxonomic purposes, namely the identification and speciation of microorganisms, flora and fauna, and for the production of solid phase nucleic acid templates for DNA and RNA sequencing.
- the methodology is also useful for other applications.
- HIV hepatitis viruses
- papilloma a virus that carries a virus
- Point mutations--sickle cell anaemia e.g. Point mutations--sickle cell anaemia, phenylketonuria, Lesch Nyhan syndrome.
- RFLP's Restriction Fragment Length Polymorphisms--Huntington's chorea, thalassaemias, cystic fibrosis.
- RNA ribonucleic acid
- DNA deoxyribonucleic acid
- the primers are synthesized to be complementary to the target molecule. In general these are approximately 15 to 30 nucleotides in length and flank a portion of the target molecule. One hybridizes to the 5' end of a portion of the target molecule, the other to the 3' end of a portion of the target molecule. All appropriate reagents and equipment are commercially available.
- One primer is attached using known methodology, as described below, to a solid phase support.
- the advantages of the system described herein is that the solid support forms or is readily insertable into the container for the patient sample, eliminating the need for separate centrifugation, magnetic collection, filtration or other separation steps, as required by the prior art methods, for example, to separate superparamagnetic beads.
- a preferred material is the microtiter well plates that are commercially available.
- the solid support may be any structure having a surface which can be derivatised with a nucleic acid primer, such that the primer can participate in solid phase nucleic acid amplification.
- the solid support is an immobile solid phase material, for example, the side of a microtiter well or a dip stick.
- Microtitre tray lids with protrusions which fit into microtitre trays, e.g. Fast Elisa dish--Falcon.
- the target nucleic acid molecule is only likely to be present in very small quantities, then it maybe beneficial to carry out an initial liquid phase amplification in the vessel to which the primer is bonded.
- This liquid phase amplification step may involve a small proportion of the first primer or it may involve other primers.
- the SPA process takes over.
- Any method for linking nucleic acid sequences to solid supports may be used.
- any of the following methods are suitable:
- a 5'-phosphorylated oligodeoxynucleotide (e.g. 20 nucleotides long) is reacted with a phosphate activating compound, preferably a water-soluble carbodiimide such as EDC (1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide).
- a phosphate activating compound preferably a water-soluble carbodiimide such as EDC (1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide).
- reaction sequence is as follows:
- nucleic acid amplification Currently known methods of nucleic acid amplification include:
- RT reverse transcriptase
- RNAse H ribonuclease H
- T 7 polymerase T 7 bacteriophage RNA polymerase.
- Steps 1-6 depict the synthesis of a double-stranded cDNA, which is a transcription template for T7 RNA polymerase.
- Complete cDNA synthesis is dependent on the digestion of the RNA in the intermediate RNA-DNA hybrid (step 4) by RNase H. Transcription-competent cDNAs yield antisense RNA copies of the original target (step 7). These transcripts are converted to cDNAs containing double-stranded promoter on one end (steps 7-12).
- cDNAs yield antisense RNAs, which can re-enter the cycle.
- SPA solid phase amplification
- One primer is immobilized to the wall of the plate, and the other is labelled with a fluorescent label. As shown by this diagram, generally 20-30 cycles are needed to amplify sufficient DNA for detection.
- the plate is then washed to remove unincorporated primer 2 and the plate read using a plate fluorimeter. A positive result indicates the presence of the target nucleic acid, a negative result indicates that the target nucleic acid is not present.
- FIG. 5a The target generation scheme for SDA is shown in FIG. 5a.
- This figure depicts the initial steps in an SDA reaction which transform the original target sequence into the amplification cycle depicted in FIG. 5b.
- a target DNA is heat denatured.
- Four primers (B 1 , B 2 , S 1 and S 2 ), present in excess, bind the target strands at positions flanking the sequence to be amplified.
- Primers S 1 and S 2 have HincII recognition sequences (5' GTTGAC) located 5' to the target complementary sequences.
- the four primers are simultaneously extended by exo-klenow using dGTP, dCTP, TTP and dATPS. Extension of BE displaces the S 1 primer extension products, S 1 -ext.
- extension of B 2 displaces S 2 -ext.
- B 2 and S 2 bind to displaced S 1 -ext.
- Bi and S 1 bind to displaced S 2 -ext.
- Extension and displacement reactions on templates S 1 -ext and S 2 -ext produce two fragments with a hemiphosphorothiote HincII at each end and two longer fragments with a hemiphosphorothioate HincII site at just one end.
- HincII nicking and exo - klenow extension/displacement reactions initiate at these four fragments, automatically entering the SDA reaction cycle depicted in FIG. 5b.
- Sense and antisense DNA strands are differentiated by thin and thick lines. HincII recognition sequences are depicted by (thin line-thick line-thin line).
- the SDA reaction cycle is shown in FIG. 5b. These reaction steps continuously cycle during the course of amplification. Present in excess are two SDA primers (S 1 and S 2 ). The 3'-end of S 1 binds to the 3'-end of the displaced target strand T 1 , forming a duplex with 5'-overhangs. Likewise, S 2 binds T 2 . The 5'-overhangs of S 1 and S 2 contain the HincII recognition sequence (5' GTTGAC). Exo - klenow extends the 3'-ends of the duplexes using dGTP, dCTP, TTP and dATPS, which produces hemiphosphorothiote recognition sites on S 1 .TL and S 2 .
- T 2 serve as target for S 1 .
- Sense and antisense DNA strands are differentiated by thin and thick lines.
- Intact and nicked HincII recognition sequences are depicted by (thin line-thick line-thin line) and (thin line-thick line, space, thick line-thin line), respectively.
- the partial HincII recognition sequence 5' GAC and its complement 5' GTC are present at the 5'-and 3'-ends of displaced strands as represented by (thick line-thin line) and (thin line-thick line).
- Primers S 1 and S 2 are chemically prepared to contain HincII recognition sequences which are resistant to cutting by this enzyme, i.e., primers S 1 and S 2 are chemically prepared to contain phosphorothioate nucleotides using known methodology.
- Primer S2 carries a detector tag, introduced during chemical synthesis, for example, a 5'-biotin group or 5'-fluorophore.
- dNTPs Only standard dNTPs are then required for amplification (i.e., dATPS are not be used).
- Primer S1 is covalently bound via the 5'-end to the microtitre well surface.
- the label is then used to detect the bound target molecule.
- biotin would then be detected colorimetrically via avidin-horseradish peroxidase or fluorimetrically via avidin-Europium.
- any suitable method for labelling nucleic acid sequences can be used, e.g., fluorescent labelling, biotin labelling or enzyme labelling.
- the label is introduced into the anchored amplified nucleic acid product either via labelled primer 2 or via labelled nucleotide substrates.
- Exemplary detection systems include:
- Fluorescent primer 2 e.g., fluorescein-primer 2.
- SPA Product fluorescently labelled anchored nucleic acid.
- Detection system fluorescent plate reader or other fluorescence detection system.
- Biotinylated dNTPs e.g. biotinylated dATP.
- SPA product Biotin labelled anchored nucleic acid.
- labels include radiolabels, other enzyme systems, and dyes, as well as nucleotides with altered emission spectra.
- the DNA sequence to be amplified was a portion of the CFTR (cystic fibrosis transmembrane conductance regulator) gene.
- Amplification was by the polymerase chain reaction (PCR).
- the PCR conditions were as follows:
- the SPA product was labelled with biotin, rather than a fluorescent label.
- the AffigelTM bound product was detected by use of Europium labelled avidin and time resolved fluorescence spectroscopy. The results are shown in Table 1.
- AffigelTM-primer 1 is an efficient solid support for SPA for either purified DNA or DNA of 3 mm blood discs.
- the amplification reagents and conditions were as follows:
- Each SPA 50 ⁇ l reaction contained -67 mM Tris HCl pH 8.8 at 25° C., 16.6 mM ammonium sulphate, 0.45% Triton X-100, 200 ⁇ g/ml gelatin, 200 ⁇ M each of dATP, dCTP, dGTP, TTP, 3.0 mM MgCl 2 , 250 ng of 51 biotin primer, 2.5 units Taq polymerase.
- SPA was performed in Costar microtitre wells previously nitrated with acetic anhydride/nitric acid and reduced by tin chloride to give wells which carried amino groups covalently attached to the well walls.
- the normal or ⁇ F 508 primers were covalently linked to amino groups on the well walls via the amidate linkage method.
- Product detection was via avidin-Europium and time resolved fluorescence quantification and colorimetrically by avidin-horseradish peroxidase.
- Table 2 shows signals obtained with the wild type primer immobilized on the wells, following solid phase amplification of different templates. Additionally the signal with genomic DNA was increased to approximately 400,000 counts when 45 cycles were used. Additionally, when some of the solid phase primer was added in solution the signal was greatly increased from genomic DNA as a target.
- mutant ⁇ F 508 primer was immobilized signals obtained were similar to those in the table when ⁇ F 508 DNA was used as a template.
- Solution phase primer 5'-biotinyl-TCA AAA CAA CGA CAC3' corresponds to nucleotides 3863-3877 of the P1 gene.
- Solid phase primer 5'-TTT CAG AAA GTC GAC-3' corresponds to nucleotides 4114-4100 of the P1 gene, 5'-phosphorylated with polynucleotide kinase and ATP.
- the initial denaturation was 7 min at 95° C. and the final extension was 10 min at 72°C.
- the following organisms did not give a positive signal (signals 14,000-47,000): M. buccale, M. fermentans, M. genitalium, M. hominis, M. hyorrhinis, M. salivarium, A. laidlawii A, A. laidlawii B.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
A method for detecting a target nucleic acid sequence comprises: (a) providing a first primer hybridizing to the target nucleic acid sequence, wherein the primer is immobilized on an immobile solid phase support by a direct chemical linkage between the primer and the solid phase support, wherein the solid phase support forms a part of or is insertable into a container for a sample to be tested, (b) providing a second primer hybridizing to the target nucleic acid sequence in the opposite direction, wherein the second primer is labelled with a detectable label, (c) reacting the first and second primers with a sample containing nucleic acid sequences under conditions which allow amplification of the nucleic acid sequences that hybridize to the first and second primers in the container for the sample, and (d) detecting the presence of bound second primer. Alternatively, the label on the second primer can be attached or incorporated either during or after the amplification process. An assay system or kit for use in this method includes a first primer hybridizing to the target nucleic acid sequence, a second primer hybridizing to the target nucleic acid sequence in the opposite direction, and reagents for amplification of the sample containing nucleic acid sequences under conditions which allow amplification of the nucleic acid sequences that hybridize to the first and second primers in the container for the sample, and reagents for detection of the label on the bound second primer.
Description
This is a continuation application of Ser. No. 08/232,070, filed on Apr. 28, 1994, now abandoned, which was filed as PCT/AU92/00587 on Oct. 30, 1992.
The present invention is generally in the field of methods for the detection of nucleic acid sequences through amplification and hybridization to labelled probes.
Hybridization methods are widely utilized in testing for the presence of particular nucleic acid sequences, identifying and/or quantifying such sequences. Hybridization occurs when there is sufficient complementarity of two nucleic acid sequences to effect non-covalent binding between the two molecules.
Various improvements and modifications have been introduced to increase the specificity and sensitivity of the reaction. In particular, polymerase chain reaction (PCR) techniques have been used to amplify the target nucleic acid sequence. In a recent development, two consecutive sets of PCR cycles ("nested PCR") have been used to both amplify and label the target nucleic acid sequence. The labelled sequence is then immobilized on a solid phase carrier, and testing is carried out using a reagent specific to the label. (See D J Kemp, et al., "Colorimetric detection of specific DNA segments amplified by polymerase chain reactions", Proc. Natl. Acad. Sci. USA 86, pp. 2423-2427, 1989).
WO89/11546 by Paulsen, et al., describes a method using PCR with DNA primers, one of which is soluble and the other which is bound to superparamagnetic particles, allowing greater ease of separation of the amplified product which facilitates detection. While the nucleic acid is bound to the particle, however, amplification via the beads is still taking place in a soluble phase, ie the beads are suspended in a liquid phase, increasing the time and complexity of the reaction, and requiring equipment for isolation of the superparamagnetic particles.
AU A-47144/89 by Molecular Diagnostics, Inc. also reports a method for increasing detection of nucleic acids using PCR to amplify sequences, where one or both of the primers are in solution or immobilized or immobilizable, for example, to Sephadex, to facilitate detection. The process can be used to yield immobilized target nucleic acid.
However, prior art methods for amplifying nucleic acid sequences have all suffered from problems associated with carrying out reactions in the liquid, rather than solid, phase. After each step of the reaction, the intermediate product must be isolated, before being reacted in the next step. Isolation steps are cumbersome, time consuming and often involve labile linkage reagents. In addition, no isolation step can be completely successful.
It is therefore an object of the present invention to provide a method which is rapid, simple, and provides an accurate, sensitive means for detecting small amounts of nucleic acid in a test sample.
It is a further object of the present invention to provide an assay which is relatively inexpensive, simple, rapid, and provides an accurate, sensitive means for detecting small amounts of nucleic acid in a test sample in clinical and research laboratories.
The present invention utilizes the concept of amplification of a target nucleic acid by means of two primers, one of which is directly immobilized onto a sample container surface, and the other which is labelled for ease of detection. By definition, both primers must be hybridizable with a target nucleic acid sequence. According to the method for determining the presence of a target nucleic acid sequence in a sample, the sample is placed in a container with the immobilized nucleic acid primer. The target sequence is then amplified using a second labelled primer or labelled polymerase substrate which, on incorporation, allows detection and quantification via the label on the solid phase amplified nucleic acid sequence.
Examples demonstrate the detection of the gene for cystic fibrosis and a specific type of mycoplasma in patient samples.
FIG. 1 is a schematic of the PCR (Polymerase Chain Reaction).
FIG. 2 is a schematic of the LCR (Ligase Chain Rection).
FIG. 3 is a schematic of the NASBA (Nucleic Acid Sequence Based Amplification). Thin lines, RNA; thick lines, DNA; RT, reverse transcriptase.
FIG. 4 is a schematic of the SPA method for amplification.
FIG. 5a is a schematic of the target generation scheme for SDA (Strand Displacement Amplification).
FIG. 5b is a schematic of automatically entering the SDA reaction cycle.
FIG. 6 is a schematic of the reaction products of the modified SDA process.
The assay and method of use described herein have the following elements: a target molecule to be detected in any test or patient sample, a first primer which is immobilized to a solid surface suitable for containment of the patient sample and is hybridizable to the target molecule, a second primer which can be detected using a variety of different methodologies and is hybridizable to the target molecule, and means for amplification of the target sequence via the two primers.
A common problem in laboratories utilizing diagnostic methods based on nucleic acid amplification is the occurrence of false positives. This problem invariably arises due to the contamination of the laboratory with amplified target molecules (amplicons). Of relevance here is the intrinsic high level of amplicon containment offered by solid phase amplification (SPA). SPA requires very little manipulation of solution phase amplicons. Such amplicons are removed from SPA reactions by simple washes and can be readily destroyed. Additionally, the solid phase amplicons offer little or no contamination threat. This level of containment is unmatched by any other amplification process. Thus SPA offers a high degree of amplicon containment.
The Target Molecule
This method allows detection and identification of virtually any nucleic acid sequence, and thus allows the detection and identification of viruses, microorganisms and parasites, the detection of genetic diseases, either by detection of sequence variations (mutations) which cause or are associated with a disease or are linked (Restriction Fragment Length Polymorphisms or RFLP's) to the disease locus, and sequence variations which are associated with, or cause, cancer, and the detection and identification of nucleic acid sequences for forensic fingerprinting, tissue typing and for taxonomic purposes, namely the identification and speciation of microorganisms, flora and fauna, and for the production of solid phase nucleic acid templates for DNA and RNA sequencing. The methodology is also useful for other applications.
The following are a few examples of such applications:
1. Pathogen Detection
Detection of viruses (HIV, hepatitis viruses, papilloma).
Detection of microorganisms (Mycobacteria, Legionella, Mycoplasmas).
(Applications in clinical medicine, veterinary science, aquaculture, horticulture and agriculture).
2. (a) Detection of sequence variations which cause or are associated with a disease or are genetically linked to a disease locus. Examples cover genetic diseases and cancer.
e.g. Point mutations--sickle cell anaemia, phenylketonuria, Lesch Nyhan syndrome.
Small deletions--Cystic fibrosis (ΔF508).
Large deletions--thalassaemias, Duchenne muscular dystrophy.
Sequence reiteration--Fragile X.
RFLP's (Restriction Fragment Length Polymorphisms)--Huntington's chorea, thalassaemias, cystic fibrosis.
(b) Population screening for carriers of serious genetic diseases, where the incidence of carriers is high and the number of mutations is low, e.g., cystic fibrosis, and Tay Sach's disease in Ashkenazi Jews.
3. Cancer--detection of predisposing sequences, e.g., Philadelphia chromosomes in chronic myelogenous leukemia, antibody gene rearrangements, specific deletions; detection and monitoring of treatment, remission and relapse.
4. Tissue typing--determination of HLA genotypes.
5. Forensic applications--e.g., VNTR DNA fingerprinting of individuals and obtaining DNA fingerprints from forensic samples.
6. Maternity and paternity testing.
7. Foetal sex determination
8. Taxonomy--Classification and speciation of organisms.
9. Quality control in agriculture and the food and pharmaceutical industries, e.g., assessment of authenticity of food products.
The assay and method of use described herein are equally applicable to RNA (ribonucleic acid) sequences, as well as DNA (deoxyribonucleic acid) sequences, although it may be necessary to produce a cDNA copy of RNA sequences.
Primers
The primers are synthesized to be complementary to the target molecule. In general these are approximately 15 to 30 nucleotides in length and flank a portion of the target molecule. One hybridizes to the 5' end of a portion of the target molecule, the other to the 3' end of a portion of the target molecule. All appropriate reagents and equipment are commercially available.
Solid Phase Support
One primer is attached using known methodology, as described below, to a solid phase support. The advantages of the system described herein is that the solid support forms or is readily insertable into the container for the patient sample, eliminating the need for separate centrifugation, magnetic collection, filtration or other separation steps, as required by the prior art methods, for example, to separate superparamagnetic beads. A preferred material is the microtiter well plates that are commercially available.
The solid support may be any structure having a surface which can be derivatised with a nucleic acid primer, such that the primer can participate in solid phase nucleic acid amplification. In the preferred embodiment, the solid support is an immobile solid phase material, for example, the side of a microtiter well or a dip stick.
Specific preferred supports include:
1. The inside surface of wells of any microtitre trays, e.g., Covalink trays--Nunc.
2. Microtitre tray lids with protrusions which fit into microtitre trays, e.g. Fast Elisa dish--Falcon.
3. Dipsticks for low volume applications, e.g., suburban and country medical practices.
These all offer the potential for high volume diagnostic applications for solid phase amplification (SPA), especially if isothermal (single temperature) amplification is used.
It is surprising that solid phase amplification of nucleic acids on the surface of a microtiter well produces a significant amount of amplified product due to the inherently less favourable kinetics of solid phase molecular interactions, versus those of the solution phase. The results demonstrate that, despite the slightly slower rate of amplification using a solid phase as compared with solution phase, or with bead-based amplification, which offers a vary large surface area, the system offers a rapid, sensitive, and clinically viable method of nucleic acid amplification.
Although described herein as preferentially involving binding of the first primer to the solid phase before initiation of amplification, in some cases it may be desirable to combine conventional liquid phase amplification techniques with the solid phase amplification (SPA) procedures. For instance, if the target nucleic acid molecule is only likely to be present in very small quantities, then it maybe beneficial to carry out an initial liquid phase amplification in the vessel to which the primer is bonded. This liquid phase amplification step may involve a small proportion of the first primer or it may involve other primers. When the target molecule is amplified to a sufficient level, then the SPA process takes over.
Anchoring of the First Primer to Solid Phase Support
Any method for linking nucleic acid sequences to solid supports may be used. For example, any of the following methods are suitable:
1. Amide linkage of primer to a solid phase ##STR1##
Derivatisation sequence:
(1) The surface bound (solid phase) secondary amine (on walls of wells of CovaLink plates) is reacted with the activated spacer arm.
(2) The solid phase activated spacer arm is reacted with the primary amino group of the synthetic oligodeoxynucleotide, to form the product, which is a solid phase primer (amide linkage), as shown below. ##STR2##
2. Amidate linkage of primer to a solid chase
(a) A 5'-phosphorylated oligodeoxynucleotide (e.g. 20 nucleotides long) is reacted with a phosphate activating compound, preferably a water-soluble carbodiimide such as EDC (1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide). ##STR3##
3. Thioether linkage of primer to a solid chase
The reaction sequence is as follows:
(1) Bromoacetic acid--NHS is reacted with the secondary amino group on the solid support.
(2) The thiol group of the oligodeoxynucleotide is reacted with the bromomethyl group of the intermediate product formed in step (1). ##STR4##
Product solid phase primer (thioether linkage).
4. Introduction of amino groups onto the surface of microtitre tray wells
Plates were nitrated with acetyl nitrate using the method of R. Taylor, "Electrophilic aromatic substitution" p. 269 (J. Wiley and Sons 1990). Reduction was via SnCl2.
Amplification Procedures
Currently known methods of nucleic acid amplification include:
(a) PCR (Polymerase Chain Reaction).
(b) LCR (Ligation Chain Reaction).
(c) NASBA (Nucleic Acid Sequence Based Amplification), using RT/RNAse H/T7 polymerase.
RT=reverse transcriptase.
RNAse H=ribonuclease H
T7 polymerase =T7 bacteriophage RNA polymerase.
(d) Qβ replicase based amplification.
(e) Strand displacement amplification (SDA).
The principles of some of these amplification methods are described below.
PCR (Polymerase Chain Reaction)
Polymerase chain reaction procedures and reagents are commercially available and described in the literature, for example, by R. K. Saiki, et al., "Enzymatic Amplification of β-globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia", Science 230, pp. 1350-1354, 1985. Refer to FIG. 1.
LCR (Ligation Chain Reaction)
The ligation chain reaction is well known and described in the literature, for example, by U. Landegren, et al., "A Ligase-mediated Gene Detection Technique", Science 241, pp. 1077-1080, 1988. Refer to FIG. 2.
NASBA (Nucleic Acid Sequence Based Amplification)
This method is also well established in the literature, as described, for example, by J. Cuatelli, et al., "Isothermal in Vitro Amplification of Nucleic Acids by a Multienzyme Reaction Modelled After Retroviral Replication", Proc. Natl. Acad. Sci. USA 87, pp. 1874-1878, 1990.
The strategy of the NASBA scheme is shown in FIG. 3. The reaction depends on a continuous cycle of reverse transcription and transcription reactions to replicate an RNA target by means of cDNA intermediates. DNA targets can also be amplified. Primers 1 and 2 prime DNA synthesis and Primer 1 encodes the promoter sequence for the T7 RNA polymerase (black boxes). Steps 1-6 depict the synthesis of a double-stranded cDNA, which is a transcription template for T7 RNA polymerase. Complete cDNA synthesis is dependent on the digestion of the RNA in the intermediate RNA-DNA hybrid (step 4) by RNase H. Transcription-competent cDNAs yield antisense RNA copies of the original target (step 7). These transcripts are converted to cDNAs containing double-stranded promoter on one end (steps 7-12).
These cDNAs yield antisense RNAs, which can re-enter the cycle.
__________________________________________________________________________ Two or Can be One more labelled primer primers Double- at non- Can be Requires incorp- incorp- stranded anchored internally temperature orated orated product end labelled cycling __________________________________________________________________________ PCR + + + + + + 2. LCR + + + + + + 3, NASBA + + + + + No RT/T7 42•only* 4. QB +No 5. SDA + + + + + No __________________________________________________________________________ *Big technical advantage.
The process of solid phase amplification (SPA) of a target nucleic acid sequence, using PCR as the method for amplification, is illustrated in FIG. 4.
One primer is immobilized to the wall of the plate, and the other is labelled with a fluorescent label. As shown by this diagram, generally 20-30 cycles are needed to amplify sufficient DNA for detection. The plate is then washed to remove unincorporated primer 2 and the plate read using a plate fluorimeter. A positive result indicates the presence of the target nucleic acid, a negative result indicates that the target nucleic acid is not present.
SDA (Strand Displacement Amplification)
The following scheme is taken directly from G. T. Walker, et al., "Strand displacement amplification--an isothermal, in vitro DNA amplification technique", Nuc. Acid Res. 20, pp. 1691-1696, 1992.
The target generation scheme for SDA is shown in FIG. 5a. This figure depicts the initial steps in an SDA reaction which transform the original target sequence into the amplification cycle depicted in FIG. 5b. A target DNA is heat denatured. Four primers (B1, B2, S1 and S2), present in excess, bind the target strands at positions flanking the sequence to be amplified. Primers S1 and S2 have HincII recognition sequences (5' GTTGAC) located 5' to the target complementary sequences. The four primers are simultaneously extended by exo-klenow using dGTP, dCTP, TTP and dATPS. Extension of BE displaces the S1 primer extension products, S1 -ext. Likewise, extension of B2 displaces S2 -ext. B2 and S2 bind to displaced S1 -ext. Bi and S1 bind to displaced S2 -ext. Extension and displacement reactions on templates S1 -ext and S2 -ext produce two fragments with a hemiphosphorothiote HincII at each end and two longer fragments with a hemiphosphorothioate HincII site at just one end. HincII nicking and exo- klenow extension/displacement reactions initiate at these four fragments, automatically entering the SDA reaction cycle depicted in FIG. 5b. Sense and antisense DNA strands are differentiated by thin and thick lines. HincII recognition sequences are depicted by (thin line-thick line-thin line).
The SDA reaction cycle is shown in FIG. 5b. These reaction steps continuously cycle during the course of amplification. Present in excess are two SDA primers (S1 and S2). The 3'-end of S1 binds to the 3'-end of the displaced target strand T1, forming a duplex with 5'-overhangs. Likewise, S2 binds T2. The 5'-overhangs of S1 and S2 contain the HincII recognition sequence (5' GTTGAC). Exo- klenow extends the 3'-ends of the duplexes using dGTP, dCTP, TTP and dATPS, which produces hemiphosphorothiote recognition sites on S1.TL and S2. T2. HincII nicks the unmodified primer strands of the hemiphosphorothiote recognition sites, leaving intact the modified complementary strands. Exo- klenow extends the 3'-end at the nick on S1.TL and displaces the downstream strand that is equivalent to T2. Likewise, extension at the nick on S2. T2 results in displacement of T1. Nicking and polymerization/displacement steps cycle continuously on S1.T1 and S2. T2 because extension at a nick regenerates a nickable HincII recognition site. Target amplification is exponential because the strands displaced from S1 T1 serve as target for S2 while strands displaced from S2. T2 serve as target for S1. Sense and antisense DNA strands are differentiated by thin and thick lines. Intact and nicked HincII recognition sequences are depicted by (thin line-thick line-thin line) and (thin line-thick line, space, thick line-thin line), respectively. The partial HincII recognition sequence 5' GAC and its complement 5' GTC are present at the 5'-and 3'-ends of displaced strands as represented by (thick line-thin line) and (thin line-thick line).
The following modifications of SDA (see Walker et al., 1992 Nuc. Acid Res 20, 1691-1696) are required to allow implementation of SPA.
These modifications should be read in conjunction with FIG. 5.
1A Primers S1 and S2 are chemically prepared to contain HincII recognition sequences which are resistant to cutting by this enzyme, i.e., primers S1 and S2 are chemically prepared to contain phosphorothioate nucleotides using known methodology.
1B Primer S2 carries a detector tag, introduced during chemical synthesis, for example, a 5'-biotin group or 5'-fluorophore.
2 Only standard dNTPs are then required for amplification (i.e., dATPS are not be used).
With regard to the SPA version of SDA the process proceeds as follows:
(a) Primer S1 is covalently bound via the 5'-end to the microtitre well surface.
(b) Biotinylated primer S2 is free in solution.
(c) SPA-SDA isothermal amplification is followed by a simple wash to yield a final solid phase double stranded product as shown in FIG. 6.
(d) The label is then used to detect the bound target molecule. For example biotin would then be detected colorimetrically via avidin-horseradish peroxidase or fluorimetrically via avidin-Europium.
It is also possible to improve the amount of solid phase product produced by the inclusion of a small quantity of primer S1 in the solution phase to increase the quantity of the target in solution.
Detection Labels
Any suitable method for labelling nucleic acid sequences can be used, e.g., fluorescent labelling, biotin labelling or enzyme labelling. The label is introduced into the anchored amplified nucleic acid product either via labelled primer 2 or via labelled nucleotide substrates.
Exemplary detection systems include:
(a) Fluorescent labelling and detection
Source of fluorescent label:
(i) Fluorescent primer 2, e.g., fluorescein-primer 2.
(ii) Fluorescent derivatives of ribo or deoxyribo-NTPs (substrates for RNA and DNA polymerases, respectively).
SPA Product: fluorescently labelled anchored nucleic acid.
Detection system: fluorescent plate reader or other fluorescence detection system.
(b) Biotin label
(i) Biotinylated primer 2.
(ii) Biotinylated dNTPs, e.g. biotinylated dATP.
SPA product: Biotin labelled anchored nucleic acid.
Detection systems:
(i) Europium labelled avidin, with quantification of Europium by time resolved fluorescence spectroscopy.
(ii) Avidin--horseradish peroxidase, with quantification of the resulting coloured product by spectroscopy (e.g., plate reader).
(iii) Avidin--alkaline phosphatase, with quantification of the resulting coloured or fluorescent product by standard or fluorescent spectroscopy.
Other labels include radiolabels, other enzyme systems, and dyes, as well as nucleotides with altered emission spectra.
The present invention is further demonstrated by reference to the following non-limiting examples.
The DNA sequence to be amplified was a portion of the CFTR (cystic fibrosis transmembrane conductance regulator) gene.
Amplification was by the polymerase chain reaction (PCR).
The PCR conditions were as follows:
10 mM Tris-HCl (pH 8.3 at 25° C.), 2.5 mM MgCl2, 50 mM KCl, 0.1% v/v Triton x 100, 0.04% w/v gelatin, 0.4 mM dNTP's, Primer 2 250 ng, normal human DNA, 0.5 μg (note: dried blood spot on paper diameter 3.0 mm was used for some reactions). Taq polymerase 2.5 units. Cycling conditions: 30 sec 94° C., 60 sec 729° C., 30 sec 55° C., 30 cycles.
In this particular embodiment, the SPA product was labelled with biotin, rather than a fluorescent label.
Detection of SPA Product
The Affigel™ bound product was detected by use of Europium labelled avidin and time resolved fluorescence spectroscopy. The results are shown in Table 1.
TABLE 1 ______________________________________ Results of CFTR gene Test. Affigel- Denatured.sup.(a)Test counts primer 1 Test Control Control (μl) Target Counts Counts Counts ______________________________________ 1 0.5 μg DNA 35,000 6,400 5.5 2 0.5 μg DNA 74,000 3,800 20 5 0.5 μg DNA 550,000 22,000 25 10 0.5 μg DNA 1,300,000 110,000 12 20 0.5 μg DNA 1,400,000 150,000 9 10 3 mm blood disc 60,000 6,000 10 20 3 mm blood disc 42,000 4,800 8.8 10 boiled extract of 112,000 8,000 14 3mm blood disc 20 boiled extract of 180,000 12,000 15 3 mm blood disc Control No DNA 54,000 12,000 4.6 10 Control No DNA 83,000 34,000 2.5 20 ______________________________________ .sup.(a) The SPA product can be treated at pH 9.8 to dissociate the bioti labelled DNA strand from the primer anchored DNA strand.
Conclusion:
5-10 μl of Affigel™-primer 1 is an efficient solid support for SPA for either purified DNA or DNA of 3 mm blood discs.
The amplification reagents and conditions were as follows:
Primers:
Common primer carrying 5'-biotinyl group 5'-biotin-GTT GGC ATG CTT TGA TGA CGC TTC-3'.
Primer for detection of Δ F 508 mutation Δ F 508 5'-(T)10 GGC ACC ATT AAA GAA AAT ATC ATT GG-3'.
Normal primer for detection of normal sequence 5'-phosphate-TTT TTT TTT GGA TCC GGC ACC ATT AAA GAA AAT ATC ATC TT-3'.
Each SPA 50 μl reaction contained -67 mM Tris HCl pH 8.8 at 25° C., 16.6 mM ammonium sulphate, 0.45% Triton X-100, 200 μg/ml gelatin, 200 μM each of dATP, dCTP, dGTP, TTP, 3.0 mM MgCl2, 250 ng of 51 biotin primer, 2.5 units Taq polymerase.
SPA was performed in Costar microtitre wells previously nitrated with acetic anhydride/nitric acid and reduced by tin chloride to give wells which carried amino groups covalently attached to the well walls.
The normal or ΔF 508 primers were covalently linked to amino groups on the well walls via the amidate linkage method. Product detection was via avidin-Europium and time resolved fluorescence quantification and colorimetrically by avidin-horseradish peroxidase.
SPA cycle amplification conditions
1 min 95° C.
1 min 57° C.
1 min 72° C.
Initial denaturation for 7 minutes at 95° C. and final extension for 10 minutes at 72° C.
TABLE 2 ______________________________________ Results ofSPA ΔF 508 Mutation screen. Template TRF Counts Absorbance at 450 nm ______________________________________Wild type 500 bp PCR product 1,000,000 1.8 ΔF 508 500 bp PCR product 10,000 0.2 Wild type genomic DNA 45,000 0.8 ΔF 508 genomic DNA 10,000 0.15 Salmon sperm DNA (sonicated) 10,000 0.15 No template 10,000 0.2 ______________________________________
Table 2 shows signals obtained with the wild type primer immobilized on the wells, following solid phase amplification of different templates. Additionally the signal with genomic DNA was increased to approximately 400,000 counts when 45 cycles were used. Additionally, when some of the solid phase primer was added in solution the signal was greatly increased from genomic DNA as a target.
For example, detection of the normal Cystic Fibrosis gene, addition of normal primer to the solution gave the following results:
2 ng normal primer in solution gave a product signal of 80,000 counts
5 ng normal primer in solution gave a product signal of 1,000,000 counts
10 ng normal primer in solution gave a product signal of 1,200,000 counts
20 ng normal primer in solution gave a product signal of 1,200,000 counts
When the mutant ΔF 508 primer was immobilized signals obtained were similar to those in the table when ΔF 508 DNA was used as a template.
Primers
Solution phase primer 5'-biotinyl-TCA AAA CAA CGA CAC3' corresponds to nucleotides 3863-3877 of the P1 gene.
Solid phase primer 5'-TTT CAG AAA GTC GAC-3' corresponds to nucleotides 4114-4100 of the P1 gene, 5'-phosphorylated with polynucleotide kinase and ATP.
Preparation of DNA from M. Pneumoniae
Various amounts (in colony forming units--CFU) of whole M. pneumoniae cells were added to normal nasopharyngeal aspirate and were collected by centrifugation and the pellet was treated with proteinase K (30 μl, 200 μg/ml proteinase K, 10 mM Tris-HCl pH 8.3) at 37° C. for 1 hour to liberate the DNA, then at 95° C. to inactivate the proteinase K.
SDA reaction mix as for cystic fibrosis ΔF 508 detection except primers were as given above.
Microtitre Plates
Plates derivatized with solid phase primer were prepared as for the cystic fibrosis ΔF 508 detection system.
Amplification Conditions
30 cycles of amplification using
90° C. for 1 min
40° C. for 1 min
60° C. for 3 min
The initial denaturation was 7 min at 95° C. and the final extension was 10 min at 72°C.
TABLE 3 ______________________________________ Product detection was via Avidin-Europium and time resolved fluorescence quantification of Europium M. Pneumoniae CFU Counts ______________________________________ 10.sup.7 593,000 10.sup.6 263,000 10.sup.5 280,000 -- 48,000 ______________________________________
The following organisms did not give a positive signal (signals 14,000-47,000): M. buccale, M. fermentans, M. genitalium, M. hominis, M. hyorrhinis, M. salivarium, A. laidlawii A, A. laidlawii B.
Additionally five patients with confirmed M. pneumoniae infection with greater than 105 CFU/ml of respiratory secretion gave positive signals 121,000-330,000 counts.
The results demonstrate the surprising superiority of the assay where the first primer is immobilized to a solid planar support (Examples 2 and 3), as compared with primer immobilized to beads (Example 1).
Modification and variations of the method and assay of the present invention will be obvious to those skilled in the art from the foregoing detailed description. Such modifications and variations are intended to come within the scope of she following claims.
__________________________________________________________________________ # SEQUENCE LISTING - - - - (1) GENERAL INFORMATION: - - (iii) NUMBER OF SEQUENCES: 5 - - - - (2) INFORMATION FOR SEQ ID NO: 1: - - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base - #s (B) TYPE: nucleic a - #cid (C) STRANDEDNESS: sing - #le (D) TOPOLOGY: linear - - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: - # 1: - - GTT GGC ATG CTT TGA TGA CGC TTC - # - # 24 - - - - (2) INFORMATION FOR SEQ ID NO: 2: - - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base - #s (B) TYPE: nucleic a - #cid (C) STRANDEDNESS: sing - #le (D) TOPOLOGY: linear - - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: - # 2: - - GGC ACC ATT AAA GAA AAT ATC ATT GG - # - # 26 - - - - (2) INFORMATION FOR SEQ ID NO: 3: - - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base - #s (B) TYPE: nucleic a - #cid (C) STRANDEDNESS: sing - #le (D) TOPOLOGY: linear - - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: - # 3: - - TTT TTT TTT GGA TCC GGC ACC ATT AAA GAA AA - #T ATC ATC TT - # 41 - - - - (2) INFORMATION FOR SEQ ID NO: 4: - - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 base - #s (B) TYPE: nucleic a - #cid (C) STRANDEDNESS: sing - #le (D) TOPOLOGY: linear - - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: - # 4: - - TCA AAA CAA CGA CAC - # - # - # 15 - - - - (2) INFORMATION FOR SEQ ID NO: 5: - - (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 base - #s (B) TYPE: nucleic a - #cid (C) STRANDEDNESS: sing - #le (D) TOPOLOGY: linear - - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: - # 5: - - TTT CAG AAA GTC GAC - # - # - # 15 __________________________________________________________________________
Claims (22)
1. A method for detecting a target nucleic acid sequence by a single-stage amplification process conduct ed within a single container, said method comprising:
(a) conducting, within a single container, an amplification process having only a single stage comprising the following steps:
(i) providing a first primer hybridizing to the target nucleic acid sequence, wherein the first primer is immobilized on an immobile solid phase support by a direct chemical linkage between the first primer and the solid phase support, wherein the solid phase support forms a part of or is insertable into a container for a sample to be tested,
(ii) providing a second primer hybridizing to the target nucleic acid sequence in the opposite direction, wherein the second primer is labeled with a detectable label,
(iii) adding an aliquot of the first primer or other primer(s) to a sample solution containing nucleic acid sequences, in the container together with said first primer of step (i) and said second primer, and
(iv) reacting the first, second and other primer(s) with the sample containing nucleic acid sequences under conditions which allow amplification of the nucleic acid sequences that hybridize to the first, second and other primers in the container for the sample, and
(b) within the same container, detecting the presence of bound second primer.
2. The method of claim 1 wherein the container is a microtiter plate well.
3. The method of claim 1 wherein the first primer is immobilized on a solid phase support which is immersible into the container.
4. The method of claim 1 wherein the nucleic acid sequence is amplified by the polymerase chain reaction.
5. The method of claim 1 wherein the nucleic acid sequence is amplified by the nucleic acid sequence based amplification.
6. The method of claim 1 wherein the nucleic acid sequence is amplified by the ligase chain reaction based amplification.
7. The method of claim 1 wherein the nucleic acid sequence is amplified by the Qβ replicase based amplification.
8. The method of claim 1 wherein the nucleic acid sequence is amplified by the strand displacement amplification.
9. The method of claim 1, wherein the nucleic acid sequence is selected from the group consisting of nucleic acid sequences specific to species of organisms, nucleic acid sequences characteristic of a genetic disorder or disease, nucleic acid sequences characteristic of HLA types, nucleic acid sequences which serve to identify an organism, and nucleic acid sequences characteristic of the sex of an organism.
10. The method of claim 1 wherein the label is selected from the group consisting of fluorescent labels, biotin, radiolabels, enzymes specific for chromogenic substrates and dyes.
11. An assay system or kit for detecting a target nucleic acid sequence by a method according to claim 1, said assay system or kit comprising:
a single container for a sample to be tested,
a first primer hybridizing to the target nucleic acid sequence, wherein the first primer is immobilized on an immobile solid phase support by a direct chemical linkage between the primer and the solid phase support,
wherein the solid phase support forms a part of or is insertable into said container for the sample to be tested,
a second primer hybridizing to the target nucleic acid sequence in the opposite direction,
wherein the second primer is labelled with a detectable molecule,
an aliquot of the first primer, unattached to the immobile solid phase support, and
reagents for amplification of the sample containing nucleic acid sequences under conditions which allow amplification of the nucleic acid sequences that hybridize to the first and second primers in the container for the sample, wherein said aliquot modifies the amplification of said target sequence by enabling solid phase and solution phase amplification to take place concurrently, and
reagents for detection of the label on the bound second primer.
12. The assay system or kit of claim 11 wherein the container is a microtiter plate well, further comprising the well plate.
13. The assay system or kit of claim 11 wherein the first primer is immobilized on an immobile solid phase support which is immersible into the container.
14. The assay system or kit of claim 11 wherein the reagents for amplifying the nucleic acid sequence are those for use in the polymerase chain reaction.
15. The assay system or kit of claim 11 wherein the reagents for amplifying the nucleic acid sequence are those for use in the nucleic acid sequence based amplification.
16. The assay system or kit of claim 11 wherein the reagents for amplifying the nucleic acid sequence are those for use in the ligase chain reaction based amplification.
17. The assay system or kit of claim 11 wherein the reagents for amplifying the nucleic acid sequence are those for use in the Qβ replicase based amplification.
18. The assay system or kit of claim 11 wherein the reagents for amplifying the nucleic acid sequence are those for use in the strand displacement amplification process.
19. The assay system or kit of claim 11, wherein the nucleic acid sequence is selected from the group consisting of nucleic acid sequences specific to species of organisms, nucleic acid sequences characteristic of a genetic disorder or disease, nucleic acid sequences characteristic of HLA types, nucleic acid sequences which serve to identify an organism, and nucleic acid sequences characteristic of the sex of an organism.
20. A method for detecting a target nucleic acid sequence by a single-stage amplification process conducted within a single container, said method comprising:
(a) conducting, within a single container, an amplification process having only a single stage comprising the following steps:
(i) providing a first primer hybridizing to the target nucleic acid sequence, wherein the first primer is immobilized on an immobile solid phase support by a direct chemical linkage between the first primer and the solid phase support, wherein the solid phase support forms a part of or is insertable into a container for a sample to be tested,
(ii) providing a second primer hybridizing to the target nucleic acid sequence in the opposite direction,
(iii) adding an aliquot of the first primer or other primer(s) to a sample solution containing nucleic acid sequences, in the container together with said first primer of step (i) and said second primer, and
(iv) reacting the first, second and other primers with the sample containing nucleic acid sequences under conditions which allow amplification of the nucleic acid sequences that hybridize to the first, second and other primers in the container for the sample and, during the amplification process, labelling the second primer by attaching or incorporating a detectable label, and
(b) within the same container, detecting the presence of bound second primer.
21. A method for detecting a target nucleic acid sequence by a single-stage amplification process conducted within a single container, said method comprising:
(a) conducting, within a single container, an amplification process having only a single stage comprising the following steps:
(i) providing a first primer hybridizing to the target nucleic acid sequence, wherein the first primer is immobilized on an immobile solid phase support by a direct chemical linkage between the first primer and the solid phase support, wherein the solid phase support forms a part of or is insertable into a container for a sample to be tested,
(ii) providing a second primer hybridizing to the target nucleic acid sequence in the opposite direction,
(iii) adding an aliquot of the first primer or other primer(s) to a sample solution containing nucleic acid sequences, in the container together with said first primer of step (i) and said second primer, and
(iv) reacting the first, second and other primers with the sample containing nucleic acid sequences under conditions which allow amplification of the nucleic acid sequences that hybridize to the first, second and other primers in the container for the sample, and
(b) within the same container,
(i) after the amplification process, labelling the second primer by attaching or incorporating a detectable label, and
(ii) detecting the presence of bound second primer.
22. An assay system or kit for detecting a target nucleic acid sequence by a method according to claim 1, said assay system or kit comprising:
a single container for a sample to be tested,
a first primer hybridizing to the target nucleic acid sequence, wherein the first primer is immobilized on an immobile solid phase support by a direct chemical linkage between the primer and the solid phase support,
wherein the solid phase support forms a part of or is insertable into said container for the sample to be tested,
a second primer hybridizing to the target nucleic acid sequence in the opposite direction,
wherein the second primer is labelled with a detectable molecule,
amplification means for modifying solid phase amplification which comprises an aliquot of the first primer, unattached to the immobile solid phase support, and
reagents for amplification of the sample containing nucleic acid sequences under conditions which allow amplification of the nucleic acid sequences that hybridize to the first and second primers in the container for the sample, wherein said amplification means enables solid phase and solution phase amplification to take place concurrently, and
reagents for detection of the label on the bound second primer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPK922491 | 1991-11-01 | ||
AUPK9224 | 1991-11-01 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08232070 Continuation | 1994-04-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
US6017738A true US6017738A (en) | 2000-01-25 |
Family
ID=3775791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/761,862 Expired - Fee Related US6017738A (en) | 1991-11-01 | 1996-12-09 | Solid phase amplification process |
Country Status (6)
Country | Link |
---|---|
US (1) | US6017738A (en) |
EP (1) | EP0672173B1 (en) |
BR (1) | BR9206705A (en) |
CA (1) | CA2122450C (en) |
DE (1) | DE69232753T2 (en) |
WO (1) | WO1993009250A1 (en) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6277582B1 (en) * | 2000-07-27 | 2001-08-21 | Becton, Dickinson And Company | Amplification and detection of mycoplasma pneumoniae targeting the P1 gene |
EP1174523A2 (en) * | 2000-07-18 | 2002-01-23 | Government of Republic of Singapore | Method for detecting an HBV-derived nucleic acid target sequence |
US6376191B1 (en) * | 2000-03-22 | 2002-04-23 | Mergen, Ltd. | Microarray-based analysis of polynucleotide sequence variations |
US20020068334A1 (en) * | 1999-04-12 | 2002-06-06 | Nanogen, Inc. /Becton Dickinson Partnership | Multiplex amplification and separation of nucleic acid sequences using ligation-dependant strand displacement amplification and bioelectronic chip technology |
WO2002072879A2 (en) * | 2001-02-09 | 2002-09-19 | Axaron Bioscience Ag | Production and use of random arrangements of clonal nuclear acid islands on a surface |
US6485944B1 (en) * | 1997-10-10 | 2002-11-26 | President And Fellows Of Harvard College | Replica amplification of nucleic acid arrays |
US6500620B2 (en) | 1999-12-29 | 2002-12-31 | Mergen Ltd. | Methods for amplifying and detecting multiple polynucleotides on a solid phase support |
US20030003490A1 (en) * | 2000-02-07 | 2003-01-02 | Illumina, Inc. | Nucleic acid detection methods using universal priming |
US20030049632A1 (en) * | 1999-04-12 | 2003-03-13 | Edman Carl F. | Electronically mediated nucleic acid amplification in NASBA |
US20030104430A1 (en) * | 1999-04-12 | 2003-06-05 | Nerenberg Michael I. | Amplification and separation of nucleic acid sequences using strand displacement amplification and bioelectronic microchip technology |
US20030108900A1 (en) * | 2001-07-12 | 2003-06-12 | Arnold Oliphant | Multiplex nucleic acid reactions |
WO2003054224A2 (en) * | 2001-12-05 | 2003-07-03 | Epigenomics Ag | Method and integrated device for the detection of cytosine methylations |
US20030124594A1 (en) * | 1997-10-10 | 2003-07-03 | President & Fellows Of Harvard College | Replica amplification of nucleic acid arrays |
US20030148288A1 (en) * | 2002-02-01 | 2003-08-07 | Yi-Wei Tang | Colorimetric genetic test for clinically significant TNF polymorphism and methods of use thereof |
US20030165884A1 (en) * | 1999-12-20 | 2003-09-04 | Stemcyte, Inc. | High throughput methods of HLA typing |
US20030170684A1 (en) * | 2000-02-07 | 2003-09-11 | Jian-Bing Fan | Multiplexed methylation detection methods |
US20030211489A1 (en) * | 2000-09-21 | 2003-11-13 | Shen Min-Jui Richard | Multiplex nucleic acid reactions |
US20030219804A1 (en) * | 1999-04-12 | 2003-11-27 | Nanogen, Inc. | Anchored strand displacement amplification on an electronically addressable microchip |
US20040121364A1 (en) * | 2000-02-07 | 2004-06-24 | Mark Chee | Multiplex nucleic acid reactions |
US20040132040A1 (en) * | 2000-11-16 | 2004-07-08 | Hamill Brendan James | Polynucleotide analysis using combinatorial pcr |
US20040214629A1 (en) * | 2003-03-04 | 2004-10-28 | Walker Jay S | Method and apparatus for associating symbols with a state of a gaming device |
US20040259105A1 (en) * | 2002-10-03 | 2004-12-23 | Jian-Bing Fan | Multiplex nucleic acid analysis using archived or fixed samples |
US20050009077A1 (en) * | 2001-06-30 | 2005-01-13 | Enzo Life Sciences Inc., | Composition of matter comprising library of first nucleic acid analyte copies |
US20050100893A1 (en) * | 1999-04-20 | 2005-05-12 | Kevin Gunderson | Detection of nucleic acid reactions on bead arrays |
US20050118578A1 (en) * | 2001-02-06 | 2005-06-02 | Takara Bio Inc. | Amplified nucleic acids and immobilized products thereof |
US20050123975A1 (en) * | 2003-11-19 | 2005-06-09 | Applera Corporation | Methods for determining the degradation state or concentration of nucleic acids |
US20050164207A1 (en) * | 2003-12-19 | 2005-07-28 | Affymetrix, Inc. | Method of oligonucleotide synthesis |
US7250253B1 (en) * | 1999-01-25 | 2007-07-31 | Micronas Gmbh | Immobilization of molecules on surfaces via polymer brushes |
US20070269801A1 (en) * | 2000-02-07 | 2007-11-22 | Jian-Bing Fan | Multiplexed Methylation Detection Methods |
US20070281863A1 (en) * | 2001-06-30 | 2007-12-06 | Enzo Life Sciences, Inc. | Dual polarity analysis of nucleic acids |
WO2008102057A1 (en) * | 2007-02-21 | 2008-08-28 | Valtion Teknillinen Tutkimuskeskus | Method and test kit for determining the amounts of target sequences and nucleotide variations therein |
US7432055B2 (en) | 2004-03-05 | 2008-10-07 | Uchicago Argonne Llc | Dual phase multiplex polymerase chain reaction |
US20090186349A1 (en) * | 1999-04-20 | 2009-07-23 | Illumina, Inc. | Detection of nucleic acid reactions on bead arrays |
US20100076185A1 (en) * | 2008-09-22 | 2010-03-25 | Nils Adey | Selective Processing of Biological Material on a Microarray Substrate |
WO2010100265A1 (en) | 2009-03-06 | 2010-09-10 | Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. | Device and method for producing a replicate or derivative from an array of molecules, and applications thereof |
US9068948B2 (en) | 2002-03-12 | 2015-06-30 | Enzo Life Sciences, Inc. | Processes for detection of nucleic acids |
US9353405B2 (en) | 2002-03-12 | 2016-05-31 | Enzo Life Sciences, Inc. | Optimized real time nucleic acid detection processes |
US10093954B2 (en) | 2011-09-30 | 2018-10-09 | Albert-Ludwigs-Universitaet Freiburg | Method for the spatial arrangement of sample fragments for amplification and immobilization for further derivatizations |
CN114196737A (en) * | 2020-09-18 | 2022-03-18 | 赛纳生物科技(北京)有限公司 | Sequencing method for constant-temperature amplification |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9127415D0 (en) * | 1991-12-24 | 1992-02-19 | Swordfish Int Ltd | Solid support bound detection and diagnostic system |
US6277975B1 (en) | 1992-10-23 | 2001-08-21 | Genetics Institute, Inc. | Fusions of P-selectin ligand protein and polynucleotides encoding same |
DE4301693A1 (en) * | 1993-01-22 | 1994-07-28 | Cytech Biomedical Inc | Amplification methods and methods for the detection of solid phase polynucleotide sequences |
WO1994029484A1 (en) * | 1993-06-09 | 1994-12-22 | Gamera Bioscience Corporation | Magnetic cycle reaction |
US5547861A (en) * | 1994-04-18 | 1996-08-20 | Becton, Dickinson And Company | Detection of nucleic acid amplification |
CA2145719C (en) * | 1994-04-18 | 1998-06-30 | James G. Nadeau | Detection of nucleic acid amplification |
EP0763135B1 (en) * | 1994-05-28 | 2002-07-10 | Tepnel Medical Limited | Producing copies of nucleic acids |
US5686271A (en) * | 1994-06-09 | 1997-11-11 | Gamera Bioscience Corporation | Apparatus for performing magnetic cycle reaction |
US6060288A (en) * | 1994-08-03 | 2000-05-09 | Mosaic Technologies | Method for performing amplification of nucleic acid on supports |
US6090592A (en) * | 1994-08-03 | 2000-07-18 | Mosaic Technologies, Inc. | Method for performing amplification of nucleic acid on supports |
US5641658A (en) * | 1994-08-03 | 1997-06-24 | Mosaic Technologies, Inc. | Method for performing amplification of nucleic acid with two primers bound to a single solid support |
AU705637B2 (en) * | 1994-09-23 | 1999-05-27 | Becton Dickinson & Company | Detection of nucleic acid amplification |
FR2726286B1 (en) | 1994-10-28 | 1997-01-17 | Genset Sa | SOLID PHASE NUCLEIC ACID AMPLIFICATION PROCESS AND REAGENT KIT USEFUL FOR CARRYING OUT SAID PROCESS |
GB9503808D0 (en) * | 1995-02-24 | 1995-04-12 | Univ Nottingham | Detection assay |
DE19526431A1 (en) * | 1995-07-21 | 1997-01-23 | Boehringer Mannheim Gmbh | Method and reagent for the specific determination of mRNA |
FR2737223B1 (en) * | 1995-07-24 | 1997-09-12 | Bio Merieux | METHOD OF AMPLIFYING NUCLEIC ACID SEQUENCES BY MOVEMENT USING CHIMERIC PRIMERS |
GB2308188A (en) * | 1995-12-14 | 1997-06-18 | Tepnel Medical Ltd | Assaying immobilised nucleic acid by primer extension |
US5612473A (en) * | 1996-01-16 | 1997-03-18 | Gull Laboratories | Methods, kits and solutions for preparing sample material for nucleic acid amplification |
US6852487B1 (en) | 1996-02-09 | 2005-02-08 | Cornell Research Foundation, Inc. | Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays |
EP2368897B1 (en) * | 1996-02-09 | 2016-10-19 | Cornell Research Foundation, Inc. | Detection of nucleic acid sequence differences using the ligase detection reaction with addressable arrays |
GB9604267D0 (en) * | 1996-02-29 | 1996-05-01 | Royal Infirmary Of Edinburgh N | Mutation assay |
EP2369007B1 (en) | 1996-05-29 | 2015-07-29 | Cornell Research Foundation, Inc. | Detection of nucleic acid sequence differences using coupled ligase detection and polymerase chain reactions |
US5817463A (en) * | 1996-06-28 | 1998-10-06 | Abbott Laboratories | Nucleic acid primers and probes for detecting Mycoplasma pneumoniae |
ES2563643T3 (en) | 1997-04-01 | 2016-03-15 | Illumina Cambridge Limited | Nucleic acid sequencing method |
US6844158B1 (en) | 1997-12-22 | 2005-01-18 | Hitachi Chemical Co., Ltd. | Direct RT-PCR on oligonucleotide-immobilized PCR microplates |
DE69839572D1 (en) * | 1997-12-22 | 2008-07-10 | Hitachi Chemical Co Ltd | Purification of mRNA on microplates |
DE19811732A1 (en) * | 1998-03-18 | 1999-09-30 | November Ag Molekulare Medizin | Plastic micro-titration plate with biomolecular coating inside cavities, forming part of biomolecule detection kit |
DE19811729C2 (en) * | 1998-03-18 | 2000-05-18 | November Ag Molekulare Medizin | Method and device for detecting a nucleotide sequence |
WO2000029619A2 (en) * | 1998-11-13 | 2000-05-25 | Mosaic Technologies | Multielement analytical device for assay of nucleic acid sequences and uses therefore |
US6309833B1 (en) * | 1999-04-12 | 2001-10-30 | Nanogen/Becton Dickinson Partnership | Multiplex amplification and separation of nucleic acid sequences on a bioelectronic microchip using asymmetric structures |
CA2386791A1 (en) | 1999-10-08 | 2001-04-19 | Protogene Laboratories, Inc. | Method and apparatus for performing large numbers of reactions using array assembly |
US6872552B2 (en) | 2000-02-29 | 2005-03-29 | Burt D. Ensley | Method of reconstituting nucleic acid molecules |
AU2001293366A1 (en) | 2000-04-14 | 2001-10-30 | Cornell Research Foundation, Inc. | Method of designing addressable array for detection of nucleic acid sequence differences using ligase detection reaction |
AUPQ909000A0 (en) * | 2000-07-28 | 2000-08-24 | University Of Sydney, The | A method of detecting microorganisms |
DE50012114D1 (en) | 2000-09-05 | 2006-04-13 | Zeltz Patrick | Method for the specific determination of DNA sequences by means of parallel amplification |
AR031640A1 (en) | 2000-12-08 | 2003-09-24 | Applied Research Systems | ISOTHERMAL AMPLIFICATION OF NUCLEIC ACIDS IN A SOLID SUPPORT |
AT502549B1 (en) | 2005-10-07 | 2007-06-15 | Anagnostics Bioanalysis Gmbh | DEVICE FOR THE ANALYSIS OF LIQUID SAMPLES |
EP2121983A2 (en) | 2007-02-02 | 2009-11-25 | Illumina Cambridge Limited | Methods for indexing samples and sequencing multiple nucleotide templates |
WO2010038042A1 (en) | 2008-10-02 | 2010-04-08 | Illumina Cambridge Ltd. | Nucleic acid sample enrichment for sequencing applications |
US8182994B2 (en) | 2009-09-15 | 2012-05-22 | Illumina Cambridge Limited | Centroid markers for image analysis of high denisty clusters in complex polynucleotide sequencing |
JP6387606B2 (en) * | 2013-11-27 | 2018-09-12 | 東ソー株式会社 | Nucleic acid detection method |
WO2022108634A1 (en) * | 2020-11-23 | 2022-05-27 | Tangen Bioscience Inc. | Method, system and apparatus for detection |
EP3215260B1 (en) | 2014-11-03 | 2020-01-15 | Tangen Biosciences Inc. | Apparatus and method for cell, spore, or virus capture and disruption |
CA2976043A1 (en) | 2015-02-10 | 2016-10-06 | Multerra Bio, Inc. | Apparatuses and methods for detecting molecules and binding energy |
US20180363037A1 (en) * | 2015-12-09 | 2018-12-20 | Life Technologies Corporation | Detection and quantification of nucleic acid molecules associated with a surface |
US11098360B2 (en) | 2016-06-01 | 2021-08-24 | Roche Sequencing Solutions, Inc. | Immuno-PETE |
US9816988B1 (en) | 2016-08-10 | 2017-11-14 | Multerra Bio, Inc. | Apparatuses and methods for detecting molecules and binding energy |
US10444179B2 (en) | 2016-08-10 | 2019-10-15 | Multerra Bio, Inc. | Apparatuses and methods for detecting molecules and binding energy |
WO2019121842A1 (en) * | 2017-12-21 | 2019-06-27 | F. Hoffmann-La Roche Ag | Target enrichment by unidirectional dual probe primer extension |
DE102018103215B3 (en) | 2018-02-13 | 2019-08-14 | Gna Biosolutions Gmbh | Method and device for extracting a nucleic acid from a sample fluid |
CN114196735B (en) * | 2020-09-18 | 2024-07-09 | 赛纳生物科技(北京)有限公司 | Method for isothermal amplification sequencing on chip |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU5329486A (en) * | 1985-02-22 | 1986-08-28 | Molecular Diagnostics, Inc. | Solution-phase dual hybridization assay for detecting polynucleotide sequences |
AU1426988A (en) * | 1987-03-02 | 1988-09-26 | Gen-Probe Incorporated | Purification of nucleic acids and hybrids thereof by polycationic solid supports |
WO1989011546A1 (en) * | 1988-05-24 | 1989-11-30 | Gunnar Paulsen | Dna-analysis method involving gene amplification and magnetic particles |
EP0370694A2 (en) * | 1988-11-21 | 1990-05-30 | Eastman Kodak Company | Diagnostic kit and method using a solid phase capture means for detecting nucleic acids |
WO1990006374A1 (en) * | 1988-12-09 | 1990-06-14 | Amrad Corporation Limited | Amplified dna assay |
AU4714489A (en) * | 1988-12-23 | 1990-06-28 | Molecular Diagnostics, Inc. | Assay of sequences using amplified genes |
WO1990010716A1 (en) * | 1989-03-10 | 1990-09-20 | Gene-Trak Systems | Immobilized oligonucleotide probes and uses therefor |
WO1990011369A1 (en) * | 1989-03-22 | 1990-10-04 | Cemu Bioteknik Ab | Solid phase diagnosis of medical conditions |
AU6329090A (en) * | 1989-09-29 | 1991-04-11 | F. Hoffmann-La Roche Ag | Biotin-labelled dna by polymerase chain reaction and detection thereof |
WO1991014788A1 (en) * | 1990-03-23 | 1991-10-03 | Chiron Corporation | Polynucleotide capture assay employing in vitro amplification |
US5405746A (en) * | 1988-03-23 | 1995-04-11 | Cemu Bioteknik Ab | Method of sequencing DNA |
US5629158A (en) * | 1989-03-22 | 1997-05-13 | Cemu Bitecknik Ab | Solid phase diagnosis of medical conditions |
-
1992
- 1992-10-30 CA CA002122450A patent/CA2122450C/en not_active Expired - Fee Related
- 1992-10-30 EP EP92922138A patent/EP0672173B1/en not_active Expired - Lifetime
- 1992-10-30 WO PCT/AU1992/000587 patent/WO1993009250A1/en active IP Right Grant
- 1992-10-30 BR BR9206705A patent/BR9206705A/en not_active Application Discontinuation
- 1992-10-30 DE DE69232753T patent/DE69232753T2/en not_active Expired - Fee Related
-
1996
- 1996-12-09 US US08/761,862 patent/US6017738A/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU5329486A (en) * | 1985-02-22 | 1986-08-28 | Molecular Diagnostics, Inc. | Solution-phase dual hybridization assay for detecting polynucleotide sequences |
AU1426988A (en) * | 1987-03-02 | 1988-09-26 | Gen-Probe Incorporated | Purification of nucleic acids and hybrids thereof by polycationic solid supports |
US5405746A (en) * | 1988-03-23 | 1995-04-11 | Cemu Bioteknik Ab | Method of sequencing DNA |
WO1989011546A1 (en) * | 1988-05-24 | 1989-11-30 | Gunnar Paulsen | Dna-analysis method involving gene amplification and magnetic particles |
EP0370694A2 (en) * | 1988-11-21 | 1990-05-30 | Eastman Kodak Company | Diagnostic kit and method using a solid phase capture means for detecting nucleic acids |
WO1990006374A1 (en) * | 1988-12-09 | 1990-06-14 | Amrad Corporation Limited | Amplified dna assay |
AU4714489A (en) * | 1988-12-23 | 1990-06-28 | Molecular Diagnostics, Inc. | Assay of sequences using amplified genes |
WO1990010716A1 (en) * | 1989-03-10 | 1990-09-20 | Gene-Trak Systems | Immobilized oligonucleotide probes and uses therefor |
WO1990011369A1 (en) * | 1989-03-22 | 1990-10-04 | Cemu Bioteknik Ab | Solid phase diagnosis of medical conditions |
US5629158A (en) * | 1989-03-22 | 1997-05-13 | Cemu Bitecknik Ab | Solid phase diagnosis of medical conditions |
AU6329090A (en) * | 1989-09-29 | 1991-04-11 | F. Hoffmann-La Roche Ag | Biotin-labelled dna by polymerase chain reaction and detection thereof |
WO1991014788A1 (en) * | 1990-03-23 | 1991-10-03 | Chiron Corporation | Polynucleotide capture assay employing in vitro amplification |
Non-Patent Citations (2)
Title |
---|
Proc. Natl. Acad. Sci. USA, vol. 86, pp. 2423 2427, Apr. 1989, Medical Sciences. * |
Proc. Natl. Acad. Sci. USA, vol. 86, pp. 2423-2427, Apr. 1989, Medical Sciences. |
Cited By (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7785790B1 (en) | 1997-10-10 | 2010-08-31 | President And Fellows Of Harvard College | Replica amplification of nucleic acid arrays |
US20030124594A1 (en) * | 1997-10-10 | 2003-07-03 | President & Fellows Of Harvard College | Replica amplification of nucleic acid arrays |
US6485944B1 (en) * | 1997-10-10 | 2002-11-26 | President And Fellows Of Harvard College | Replica amplification of nucleic acid arrays |
US7250253B1 (en) * | 1999-01-25 | 2007-07-31 | Micronas Gmbh | Immobilization of molecules on surfaces via polymer brushes |
US20030049632A1 (en) * | 1999-04-12 | 2003-03-13 | Edman Carl F. | Electronically mediated nucleic acid amplification in NASBA |
US6864071B2 (en) | 1999-04-12 | 2005-03-08 | Nanogen/Becton Dickinson Partnership | Multiplex amplification and separation of nucleic acid sequences using ligation-dependant strand displacement amplification an bioelectronic chip technology |
US20030219804A1 (en) * | 1999-04-12 | 2003-11-27 | Nanogen, Inc. | Anchored strand displacement amplification on an electronically addressable microchip |
US7070961B2 (en) | 1999-04-12 | 2006-07-04 | Nanogen/Becton Dickinson Partnership | Electronically mediated nucleic acid amplification in NASBA |
US20050136441A1 (en) * | 1999-04-12 | 2005-06-23 | Carrino John J. | Primer extension detection methods on active electronic microarrays |
US20060110754A1 (en) * | 1999-04-12 | 2006-05-25 | Nanogen, Inc. | Amplification and separation of nucleic acid sequences using strand displacement amplification and bioelectronic microchip technology |
US20030104430A1 (en) * | 1999-04-12 | 2003-06-05 | Nerenberg Michael I. | Amplification and separation of nucleic acid sequences using strand displacement amplification and bioelectronic microchip technology |
US20020068334A1 (en) * | 1999-04-12 | 2002-06-06 | Nanogen, Inc. /Becton Dickinson Partnership | Multiplex amplification and separation of nucleic acid sequences using ligation-dependant strand displacement amplification and bioelectronic chip technology |
US20050100893A1 (en) * | 1999-04-20 | 2005-05-12 | Kevin Gunderson | Detection of nucleic acid reactions on bead arrays |
US8486625B2 (en) | 1999-04-20 | 2013-07-16 | Illumina, Inc. | Detection of nucleic acid reactions on bead arrays |
US20090186349A1 (en) * | 1999-04-20 | 2009-07-23 | Illumina, Inc. | Detection of nucleic acid reactions on bead arrays |
US9441267B2 (en) | 1999-04-20 | 2016-09-13 | Illumina, Inc. | Detection of nucleic acid reactions on bead arrays |
US9279148B2 (en) | 1999-04-20 | 2016-03-08 | Illumina, Inc. | Detection of nucleic acid reactions on bead arrays |
US20030165884A1 (en) * | 1999-12-20 | 2003-09-04 | Stemcyte, Inc. | High throughput methods of HLA typing |
US6670124B1 (en) * | 1999-12-20 | 2003-12-30 | Stemcyte, Inc. | High throughput methods of HLA typing |
US6500620B2 (en) | 1999-12-29 | 2002-12-31 | Mergen Ltd. | Methods for amplifying and detecting multiple polynucleotides on a solid phase support |
US10837059B2 (en) | 2000-02-07 | 2020-11-17 | Illumina, Inc. | Multiplex nucleic acid reactions |
US8288103B2 (en) | 2000-02-07 | 2012-10-16 | Illumina, Inc. | Multiplex nucleic acid reactions |
US20070269801A1 (en) * | 2000-02-07 | 2007-11-22 | Jian-Bing Fan | Multiplexed Methylation Detection Methods |
US20100015626A1 (en) * | 2000-02-07 | 2010-01-21 | Illumina, Inc. | Multiplex nucleic acid reactions |
US20100311064A1 (en) * | 2000-02-07 | 2010-12-09 | Illumina, Inc. | Multiplex nucleic acid reactions |
US8003354B2 (en) | 2000-02-07 | 2011-08-23 | Illumina, Inc. | Multiplex nucleic acid reactions |
US9850536B2 (en) | 2000-02-07 | 2017-12-26 | Illumina, Inc. | Multiplex nucleic acid reactions |
US20040121364A1 (en) * | 2000-02-07 | 2004-06-24 | Mark Chee | Multiplex nucleic acid reactions |
US20030170684A1 (en) * | 2000-02-07 | 2003-09-11 | Jian-Bing Fan | Multiplexed methylation detection methods |
US8906626B2 (en) | 2000-02-07 | 2014-12-09 | Illumina, Inc. | Multiplex nucleic acid reactions |
US20030003490A1 (en) * | 2000-02-07 | 2003-01-02 | Illumina, Inc. | Nucleic acid detection methods using universal priming |
US7611869B2 (en) | 2000-02-07 | 2009-11-03 | Illumina, Inc. | Multiplexed methylation detection methods |
US8076063B2 (en) | 2000-02-07 | 2011-12-13 | Illumina, Inc. | Multiplexed methylation detection methods |
US6376191B1 (en) * | 2000-03-22 | 2002-04-23 | Mergen, Ltd. | Microarray-based analysis of polynucleotide sequence variations |
US20030017450A1 (en) * | 2000-07-18 | 2003-01-23 | Oon Chong Jin | Diagnostic assay |
EP1174523A2 (en) * | 2000-07-18 | 2002-01-23 | Government of Republic of Singapore | Method for detecting an HBV-derived nucleic acid target sequence |
US20030077578A1 (en) * | 2000-07-18 | 2003-04-24 | Oon Chong Jin | Diagnostic assay |
EP1174523A3 (en) * | 2000-07-18 | 2003-06-18 | Government of Republic of Singapore | Method for detecting an HBV-derived nucleic acid target sequence |
US20030165817A1 (en) * | 2000-07-18 | 2003-09-04 | Oon Chong Jin | Diagnostic assay |
EP1176215A3 (en) * | 2000-07-27 | 2003-08-06 | Becton Dickinson and Company | Amplification and detection of mycoplasma pneumoniae |
EP1176215A2 (en) * | 2000-07-27 | 2002-01-30 | Becton Dickinson and Company | Amplification and detection of mycoplasma pneumoniae |
US6277582B1 (en) * | 2000-07-27 | 2001-08-21 | Becton, Dickinson And Company | Amplification and detection of mycoplasma pneumoniae targeting the P1 gene |
US7955794B2 (en) | 2000-09-21 | 2011-06-07 | Illumina, Inc. | Multiplex nucleic acid reactions |
US20030211489A1 (en) * | 2000-09-21 | 2003-11-13 | Shen Min-Jui Richard | Multiplex nucleic acid reactions |
US20040132040A1 (en) * | 2000-11-16 | 2004-07-08 | Hamill Brendan James | Polynucleotide analysis using combinatorial pcr |
US20110028340A1 (en) * | 2000-11-16 | 2011-02-03 | Point-2-Point Genomics Limited | Polynucleotide analysis using combinatorial pcr |
US20050118578A1 (en) * | 2001-02-06 | 2005-06-02 | Takara Bio Inc. | Amplified nucleic acids and immobilized products thereof |
WO2002072879A2 (en) * | 2001-02-09 | 2002-09-19 | Axaron Bioscience Ag | Production and use of random arrangements of clonal nuclear acid islands on a surface |
WO2002072879A3 (en) * | 2001-02-09 | 2003-10-02 | Axaron Bioscience Ag | Production and use of random arrangements of clonal nuclear acid islands on a surface |
US7771975B2 (en) | 2001-04-02 | 2010-08-10 | Point-2-Point Genomics Limited | Polynucleotide analysis using combinatorial PCR |
US20090042733A1 (en) * | 2001-06-30 | 2009-02-12 | Enzo Life Sciences, Inc. | Process for detecting or quantifying nucleic acids in a library |
US9234235B2 (en) | 2001-06-30 | 2016-01-12 | Enzo Life Sciences, Inc. | Processes for detecting or quantifying nucleic acids using an array of fixed or immobilized nucleic acids |
US20070281863A1 (en) * | 2001-06-30 | 2007-12-06 | Enzo Life Sciences, Inc. | Dual polarity analysis of nucleic acids |
US9873956B2 (en) * | 2001-06-30 | 2018-01-23 | Enzo Biochem, Inc. | Compositions and processes for analyte detection, quantification and amplification |
US9790621B2 (en) | 2001-06-30 | 2017-10-17 | Enzo Life Sciences, Inc. | Composition of matter comprising library of first nucleic acid analyte copies |
US9777312B2 (en) | 2001-06-30 | 2017-10-03 | Enzo Life Sciences, Inc. | Dual polarity analysis of nucleic acids |
US20060099601A1 (en) * | 2001-06-30 | 2006-05-11 | Enzo Life Sciences, Inc., | Novel compositions and processes for analyte detection, quantification and amplification |
US20060057583A1 (en) * | 2001-06-30 | 2006-03-16 | Elazar Rabbani | Novel compositions and methods for controlling the extendability of various components used in copying or amplification steps |
US9777406B2 (en) * | 2001-06-30 | 2017-10-03 | Enzo Biochem, Inc. | Process for detecting or quantifying nucleic acids in a library |
US20060040271A1 (en) * | 2001-06-30 | 2006-02-23 | Enzo Life Sciences, Inc. | Processes for detecting or quantifying more than one nucleic acid in a library |
US20060040272A1 (en) * | 2001-06-30 | 2006-02-23 | Enzo Life Sciences, Inc., C/O Enzo Biochem, Inc. | Composition comprising library of double stranded nucleic acids |
US9771667B2 (en) | 2001-06-30 | 2017-09-26 | Enzo Life Sciences, Inc. | Arrays comprising chimeric compositions |
US20060014156A1 (en) * | 2001-06-30 | 2006-01-19 | Enzo Life Sciences, Inc. | Nucleic acid detecting or quantifying processes |
US20050214784A1 (en) * | 2001-06-30 | 2005-09-29 | Enzo Life Sciences, Inc. | Processes for detecting or quantifying nucleic acids using an array of fixed or immobilized nucleic acids |
US9765387B2 (en) * | 2001-06-30 | 2017-09-19 | Enzo Biochem, Inc. | Process for detecting or quantifying nucleic acids in a library |
US7807352B2 (en) | 2001-06-30 | 2010-10-05 | Enzo Life Sciences, Inc. | Process for producing two or more copies of nucleic acids in a library, and process for detecting or quantifiying more than one nucleic acid in a library |
US20050202456A1 (en) * | 2001-06-30 | 2005-09-15 | Enzo Life Sciences, Inc., C/O Enzo Biochem, Inc. | Processes for detecting or quantifying analytes of interest |
US9745619B2 (en) * | 2001-06-30 | 2017-08-29 | Enzo Biochem, Inc. | Process for detecting or quantifying nucleic acids in a library |
US20050202455A1 (en) * | 2001-06-30 | 2005-09-15 | Enzo Life Sciences, Inc. | Process for producing two or more copies of nucleic acids in a library, and process for detecting or quantifiying more than one nucleic acid in a library |
US20050170370A1 (en) * | 2001-06-30 | 2005-08-04 | Enzo Life Sciences, Inc., C/O Enzo Biochem, Inc. | Novel compositions and processes for analyte detection, quantification and amplification |
US9650666B2 (en) | 2001-06-30 | 2017-05-16 | Enzo Biochem, Inc. | Processes for detecting or quantifying nucleic acids using an array of fixed or immobilized nucleic acids |
US9637778B2 (en) | 2001-06-30 | 2017-05-02 | Enzo Biochem, Inc. | Processes for detecting or quantifying nucleic acids using an array of fixed or immobilized nucleic acids |
US20050009077A1 (en) * | 2001-06-30 | 2005-01-13 | Enzo Life Sciences Inc., | Composition of matter comprising library of first nucleic acid analyte copies |
US9617584B2 (en) | 2001-06-30 | 2017-04-11 | Enzo Biochem, Inc. | Processes for detecting or quantifying nucleic acids using an array of fixed or immobilized nucleic acids |
US8597888B2 (en) * | 2001-06-30 | 2013-12-03 | Enzo Life Sciences, Inc. | Processes for detecting or quantifying more than one nucleic acid in a library |
US9617585B2 (en) | 2001-06-30 | 2017-04-11 | Enzo Life Sciences, Inc. | Processes for detecting or quantifying more than one nucleic acid in a library |
US9611508B2 (en) | 2001-06-30 | 2017-04-04 | Enzo Life Sciences, Inc. | Processes for detecting or quantifying nucleic acids in a library |
US9057100B2 (en) | 2001-06-30 | 2015-06-16 | Enzo Life Sciences, Inc. | Composition comprising array of nucleic acid primer sets |
US9528146B2 (en) | 2001-06-30 | 2016-12-27 | Enzo Life Sciences, Inc. | Processes for detecting or quantifying more than one nucleic acid in a library |
US9163280B2 (en) * | 2001-06-30 | 2015-10-20 | Enzo Life Sciences, Inc. | Process for detecting or quantifying nucleic acids in a library |
US20150368700A1 (en) * | 2001-06-30 | 2015-12-24 | Enzo Biochem, Inc. | Process for detecting or quantifying nucleic acids in a library |
US20150376688A1 (en) * | 2001-06-30 | 2015-12-31 | Enzo Biochem, Inc. | Process for detecting or quantifying nucleic acids in a library |
US9234234B2 (en) | 2001-06-30 | 2016-01-12 | Enzo Life Sciences, Inc. | Detection and quantification process for more than one nucleic acid in library |
US20060257906A1 (en) * | 2001-06-30 | 2006-11-16 | Enzo Life Sciences, Inc. | Compositions comprising a library of analytes for detection, quantification and analyses |
US20160032372A1 (en) * | 2001-06-30 | 2016-02-04 | Enzo Biochem, Inc. | Novel compositions and processes for analyte detection, quantification and amplification |
US9487821B2 (en) | 2001-06-30 | 2016-11-08 | Enzo Life Sciences, Inc. | Composition comprising library of double stranded nucleic acids |
US9279147B2 (en) | 2001-06-30 | 2016-03-08 | Enzo Life Sciences, Inc. | Processes for detecting or quantifying analytes of interest |
US9434984B2 (en) | 2001-06-30 | 2016-09-06 | Enzo Life Sciences, Inc. | Composition comprising an array which further comprises chimeric compositions |
US9309563B2 (en) | 2001-06-30 | 2016-04-12 | Enzo Life Sciences, Inc. | Compositions and processes for analyte detection, quantification and amplification |
US9428797B2 (en) | 2001-06-30 | 2016-08-30 | Enzo Life Sciences, Inc. | Nucleic acid detecting or quantifying processes |
US20160186246A1 (en) * | 2001-06-30 | 2016-06-30 | Enzo Biochem, Inc. | Process for detecting or quantifying nucleic acids in a library |
US7582420B2 (en) | 2001-07-12 | 2009-09-01 | Illumina, Inc. | Multiplex nucleic acid reactions |
US20030108900A1 (en) * | 2001-07-12 | 2003-06-12 | Arnold Oliphant | Multiplex nucleic acid reactions |
WO2003054224A3 (en) * | 2001-12-05 | 2003-10-30 | Epigenomics Ag | Method and integrated device for the detection of cytosine methylations |
WO2003054224A2 (en) * | 2001-12-05 | 2003-07-03 | Epigenomics Ag | Method and integrated device for the detection of cytosine methylations |
US20030148288A1 (en) * | 2002-02-01 | 2003-08-07 | Yi-Wei Tang | Colorimetric genetic test for clinically significant TNF polymorphism and methods of use thereof |
US9316587B2 (en) | 2002-03-12 | 2016-04-19 | Enzo Life Sciences, Inc. | Processes for quantitative or qualitative detection of single-stranded or double-stranded nucleic acids |
US9261460B2 (en) | 2002-03-12 | 2016-02-16 | Enzo Life Sciences, Inc. | Real-time nucleic acid detection processes and compositions |
US9068948B2 (en) | 2002-03-12 | 2015-06-30 | Enzo Life Sciences, Inc. | Processes for detection of nucleic acids |
US9353405B2 (en) | 2002-03-12 | 2016-05-31 | Enzo Life Sciences, Inc. | Optimized real time nucleic acid detection processes |
US10144957B2 (en) | 2002-03-12 | 2018-12-04 | Enzo Life Sciences, Inc. | Optimized real time nucleic acid detection processes |
US20040259105A1 (en) * | 2002-10-03 | 2004-12-23 | Jian-Bing Fan | Multiplex nucleic acid analysis using archived or fixed samples |
US20040214629A1 (en) * | 2003-03-04 | 2004-10-28 | Walker Jay S | Method and apparatus for associating symbols with a state of a gaming device |
US20050123975A1 (en) * | 2003-11-19 | 2005-06-09 | Applera Corporation | Methods for determining the degradation state or concentration of nucleic acids |
US20100311128A1 (en) * | 2003-12-19 | 2010-12-09 | Affymetrix, Inc. | Method of oligonucleotide synthesis |
US20050164207A1 (en) * | 2003-12-19 | 2005-07-28 | Affymetrix, Inc. | Method of oligonucleotide synthesis |
US7314714B2 (en) * | 2003-12-19 | 2008-01-01 | Affymetrix, Inc. | Method of oligonucleotide synthesis |
US8728767B2 (en) | 2003-12-19 | 2014-05-20 | Affymetrix, Inc. | Method of oligonucleotide synthesis |
US7432055B2 (en) | 2004-03-05 | 2008-10-07 | Uchicago Argonne Llc | Dual phase multiplex polymerase chain reaction |
WO2008102057A1 (en) * | 2007-02-21 | 2008-08-28 | Valtion Teknillinen Tutkimuskeskus | Method and test kit for determining the amounts of target sequences and nucleotide variations therein |
US20100076185A1 (en) * | 2008-09-22 | 2010-03-25 | Nils Adey | Selective Processing of Biological Material on a Microarray Substrate |
WO2010100265A1 (en) | 2009-03-06 | 2010-09-10 | Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. | Device and method for producing a replicate or derivative from an array of molecules, and applications thereof |
US9725758B2 (en) | 2009-03-06 | 2017-08-08 | Albert-Ludwigs-Universitaet Freiburg | Device and method for producing a replicate or derivative from an array of molecules, and applications thereof |
US10093954B2 (en) | 2011-09-30 | 2018-10-09 | Albert-Ludwigs-Universitaet Freiburg | Method for the spatial arrangement of sample fragments for amplification and immobilization for further derivatizations |
CN114196737A (en) * | 2020-09-18 | 2022-03-18 | 赛纳生物科技(北京)有限公司 | Sequencing method for constant-temperature amplification |
Also Published As
Publication number | Publication date |
---|---|
WO1993009250A1 (en) | 1993-05-13 |
EP0672173B1 (en) | 2002-08-28 |
CA2122450C (en) | 2004-07-13 |
BR9206705A (en) | 1995-11-21 |
CA2122450A1 (en) | 1993-05-13 |
DE69232753D1 (en) | 2002-10-02 |
EP0672173A1 (en) | 1995-09-20 |
EP0672173A4 (en) | 1997-06-04 |
DE69232753T2 (en) | 2003-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6017738A (en) | Solid phase amplification process | |
CA2140877C (en) | Amplification and detection process | |
JP2786011B2 (en) | Methods and reagents for determining specific nucleotide variations | |
EP0359789B1 (en) | Amplification and detection of nucleic acid sequences | |
US5834181A (en) | High throughput screening method for sequences or genetic alterations in nucleic acids | |
US6027897A (en) | Promoter-primer mediated nucleic acid amplification | |
AU685903B2 (en) | Detection of nucleic acid amplification | |
US7250252B2 (en) | Amplification based polymorphism detection | |
JP4634608B2 (en) | Method for using different primer concentrations to obtain nucleic acid amplification products | |
US6238866B1 (en) | Detector for nucleic acid typing and methods of using the same | |
US6635418B2 (en) | Assay methods for nucleic acid in a sample | |
WO2002101358A9 (en) | Multiplexed detection methods | |
US20020127575A1 (en) | Partially double-stranded nucleic acids, methods of making, and use thereof | |
US6294326B1 (en) | Analyte detection process using dual labeled probes | |
US20050095606A1 (en) | Partially double-stranded nucleic acids, methods of making, and use thereof | |
AU667846B2 (en) | Solid phase amplification process | |
WO2003020950A2 (en) | Methods and compositions for bi-directional polymorphism detection | |
AU698934B2 (en) | Amplification and detection process | |
AU2001297868A1 (en) | Partially double-stranded nucleic acids, methods of making, and use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DIATECH PTY LTD., AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SOUTH AUSTRALIA, UNIVERSITY OF;WOMEN'S AND CHILDREN'S HOSPITAL (FORMERLY ADELAIDE CHILDREN'S HOSPITAL);REEL/FRAME:010676/0286 Effective date: 19990629 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20120125 |