US6012801A - Direct printing method with improved control function - Google Patents
Direct printing method with improved control function Download PDFInfo
- Publication number
- US6012801A US6012801A US08/801,868 US80186897A US6012801A US 6012801 A US6012801 A US 6012801A US 80186897 A US80186897 A US 80186897A US 6012801 A US6012801 A US 6012801A
- Authority
- US
- United States
- Prior art keywords
- deflection
- toner particles
- period
- during
- development
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/22—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
- G03G15/34—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the powder image is formed directly on the recording material, e.g. by using a liquid toner
- G03G15/344—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the powder image is formed directly on the recording material, e.g. by using a liquid toner by selectively transferring the powder to the recording medium, e.g. by using a LED array
- G03G15/346—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 in which the powder image is formed directly on the recording material, e.g. by using a liquid toner by selectively transferring the powder to the recording medium, e.g. by using a LED array by modulating the powder through holes or a slit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/385—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material
- B41J2/41—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing
- B41J2/415—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing by passing charged particles through a hole or a slit
- B41J2/4155—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective supply of electric current or selective application of magnetism to a printing or impression-transfer material for electrostatic printing by passing charged particles through a hole or a slit for direct electrostatic printing [DEP]
Definitions
- the present invention relates to a direct electrostatic printing method, in which a stream of computer generated signals, defining an image information, are converted to a pattern of electrostatic fields on control electrodes arranged on a printhead structure, to selectively permit or restrict the passage of toner particles through the printhead structure and control the deposition of those toner particles in an image configuration onto an image receiving medium.
- DEP printing Another form of electrostatic printing is one that has come to be known as direct electrostatic printing (DEP).
- DEP direct electrostatic printing
- This form of printing differs from the above mentioned xerographic form, in that toner is deposited in image configuration directly onto plain paper.
- the novel feature of DEP printing is to allow simultaneous field imaging and toner transport to produce a visible image on paper directly from computer generated signals, without the need for those signals to be intermediately converted to another form of energy such as light energy, as it is required in electrophotographic printing.
- a DEP printing device has been disclosed in U.S. Pat. No. 3,689,935, issued Sep. 5, 1972 to Pressman et al.
- Pressman et al. disclose a multilayered particle flow modulator comprising a continuous layer of conductive material, a segmented layer of conductive material and a layer of insulating material interposed therebetween.
- An overall applied field projects toner particles through apertures arranged in the modulator whereby the particle stream density is modulated by an internal field applied within each aperture.
- a new concept of direct electrostatic printing was introduced in U.S. Pat. No. 5,036,341, granted to Larson, which is incorporated by reference herein. According to Larson, a uniform electric field is produced between a back electrode and a developer sleeve coated with charged toner particles.
- a printhead structure such as a control electrode matrix, is interposed in the electric field and utilized to produce a pattern of electrostatic fields which, due to control in accordance with an image configuration, selectively open or close passages in the printhead structure, thereby permitting or restricting the transport of toner particles from the developer sleeve toward the back electrode.
- the modulated stream of toner particles allowed to pass through the opened passages impinges upon an image receiving medium, such as paper, interposed between the printhead structure and the back electrode.
- a charged toner particle is held on the developer surface by adhesion forces, which are essentially proportional to Q 2 /d 2 , where d is the distance between the toner particle and the surface of the developer sleeve, and Q is the particle charge.
- the electric force required for releasing a toner particle from the sleeve surface is chosen to be sufficiently high to overcome the adhesion forces.
- toner particles exposed to the electric field through an opened passage are neither simultaneously released from the developer surface nor uniformly accelerated toward the back electrode.
- the time period from when the first particle is released until all released particles are deposited onto the image receiving medium is relatively long.
- Dot deflection control consists in performing several development steps during each print cycle to increase print resolution. For each development step, the symmetry of the electrostatic fields is modified in a specific direction, thereby influencing the transport trajectories of toner particles toward the image receiving medium. That method allows several dots to be printed through each single passage during the same print cycle, each deflection direction corresponding to a new dot location. To enhance the efficiency of dot deflection control, it is particularly essential to decrease the toner jet length (where the toner jet length is the time between the first particle emerging through the aperture and the last particle emerging through the aperture) and to ensure direct transition from a deflection direction to another, without delayed toner deposition.
- the present invention satisfies a need for improved DEP methods by providing high-speed transition from print conditions to non-print conditions and shorter toner transport time.
- the present invention satisfies a need for higher speed DEP printing without delayed toner deposition.
- the present invention further satisfies high speed transition from a deflection direction to another, and thereby improved dot deflection control.
- a DEP method in accordance with the present invention is performed in consecutive print cycles, each of which includes at least one development period t b and at least one recovering period t w subsequent to each development period t b .
- a pattern of variable electrostatic fields is produced during at least a part of each development period (t b ) to selectively permit or restrict the transport of charged toner particles from a particle source toward a back electrode, and an electric field is produced during at least a part of each recovering period (t w ) to repel a part of the transported charged toner particles back toward the particle source.
- a DEP method in accordance with the present invention includes the steps of:
- a particle source a back electrode and a printhead structure positioned therebetween, said printhead structure including an array of control electrodes connected to a control unit;
- variable electric potentials applied to the control electrodes to produce a pattern of electrostatic fields which, due to control in accordance with an image configuration, open or close passages through the printhead structure to selectively permit or restrict the transport of charged particles from the particle source onto the image receiving medium;
- an appropriate amount of toner particles are released from the particle source during a development period t b .
- the development period t b At the end of the development period t b , only a part of the released toner particles have already reached the image receiving medium. Of the remaining released toner articles, those which have already passed the printhead structure are accelerated toward the image receiving medium under influence of the shutter potential. The part of the released toner particles which, at the end of the development period t b , are still located between the particle source and the printhead structure, are repelled back to the particle source under influence of the shutter potential.
- a printhead structure is preferably formed of a substrate layer of electrically insulating material, such as polyimid or the like, having a top surface facing the particle source, a bottom surface facing the image receiving medium and a plurality of apertures arranged through the substrate layer for enabling the passage of toner particles through the printhead structure.
- Said top surface of the substrate layer is overlaid with a printed circuit including the array of control electrodes and arranged such that each aperture is at least partially surrounded by a control electrode.
- All control electrodes are connected to at least one voltage source which supplies a periodic voltage pulse oscillating between at least two voltage levels, such that a first voltage level is applied during each of said development periods t b and a second voltage level (V shutter ) is applied during each of said recovering periods t w .
- Each control electrode is connected to at least one driving unit, such as a conventional IC-driver which supplies variable control potentials having levels comprised in a range between V off and V on , where V off and V on are chosen to be below and above a predetermined threshold level, respectively.
- the threshold level is determined by the force required to overcome the adhesion forces holding toner particles on the particle source.
- the printhead structure further includes at least two sets of deflection electrodes comprised in an additional printed circuit preferably arranged on said bottom surface of the substrate layer.
- Each aperture is at least partially surrounded by first and second deflection electrodes disposed around two opposite segments of the periphery of the aperture.
- the first and second deflection electrodes are similarly disposed in relation to a corresponding aperture and are connected to first and second deflection voltage sources, respectively.
- the first and second deflection voltage sources supply variable deflection potential D1 and D2, respectively, such that the toner transport trajectory is controlled by modulating the potential difference D1-D2.
- the dot size is controlled by modulating the amplitude levels of both deflection potentials D1 and D2, in order to produce converging forces for focusing the toner particle stream passing through the apertures.
- Each pair of deflection electrodes are arranged symmetrically about a central axis of their corresponding aperture whereby the symmetry of the electrostatic fields remains unaltered as long as both deflection potentials D1 and D2 have the same amplitude.
- All deflection electrodes are connected to at least one voltage source which supplies a periodic voltage pulse oscillating between a first voltage level, applied during each of said development periods t b , and a second voltage level (V shutter ), applied during each of said recovering periods t w .
- the shutter voltage level applied to the deflection electrodes may differ in voltage level and timing from the shutter voltage applied to the control electrodes.
- a DEP method is performed in consecutive print cycles each of which includes at least two development periods t b and at least one recovering period t w subsequent to each development period t b , wherein:
- a pattern of variable electrostatic fields is produced during at least a part of each development period (t b ) to selectively permit or restrict the transport of charged toner particles from a particle source toward a back electrode;
- an electric field is produced during at least a part of each recovering period (t w ) to repel a part of the transported charged toner particles back toward the particle source.
- a DEP method includes the steps of:
- variable electric potentials applied to the control electrodes to produce a pattern of electrostatic fields which, due to control in accordance with an image configuration, open or close passages through the printhead structure to selectively permit or restrict the transport of charged particles from the particle source onto the image receiving medium;
- the deflection potential difference is preserved during at least a part of each recovering period t w , until the toner deposition is achieved.
- a first electric field is produced between a shutter potential on the deflection electrodes and the background potential on the back electrode.
- a second electric field is produced between a shutter potential on the control electrodes and the potential of the particle source (preferably 0V).
- the toner particles which, at the end of the development period t b are located between the printhead structure and the back electrode are accelerated toward the image receiving medium under influence of said first electric field.
- the toner particles which, at the end of the development period t b are located between the particle source and the printhead structure are repelled back onto the particle source under influence of said second electric field.
- the present invention also refers to a control function in a direct electrostatic printing method, in which each print cycle includes at least one development period t b and at least one recovering period t w subsequent to each development period t b .
- the variable control potentials are supplied to the control electrodes during at least a part of each development period t b , and have amplitude and pulse width chosen as a function of the intended print density.
- the shutter potential is applied to the control electrodes during at least a part of each recovering period t w .
- the present invention also refers to a direct electrostatic printing device for accomplishing the above method.
- FIG. 1 is a diagram showing the voltages applied to a selected control electrode during a print cycle including a development period t b and a recovering period t w .
- FIG. 2 is a diagram showing control function of FIG. 1 and the resulting particle flow density ⁇ , compared to prior art (dashed line).
- FIG. 3 is a schematic section view of a print zone of a DEP device.
- FIG. 4 is a diagram illustrating the electric potential as a function of the distance from the particle source to the back electrode, referring to the print zone of FIG. 3.
- FIG. 5 is a diagram showing the voltages applied to a selected control electrode during a print cycle, according to another embodiment of the invention.
- FIG. 6 is a schematic section view of a print zone of a DEP device according to another embodiment of the invention, in which the printhead structure includes deflection electrodes.
- FIG. 7 is a schematic view of an aperture, its associated control electrode and deflection electrodes, and the voltages applied thereon.
- FIG. 8a is a diagram showing the control voltages applied to a selected control electrode during a print cycle including three development periods t b and three recovering periods t w , utilizing dot deflection control.
- FIG. 8b is a diagram showing the periodic voltage pulse V applied to all control electrodes and deflection electrodes during a print cycle including three development periods t b and three recovering periods t w , utilizing dot deflection control.
- FIG. 8c is a diagram showing the deflection voltages D1 and D2 applied to first and second sets of deflection electrodes, respectively, utilizing dot deflection control with three different deflection levels.
- FIG. 9 illustrates an exemplary array of apertures surrounded by control electrodes.
- FIG. 1 shows the control potential (V control ) and the periodic voltage pulse (V) applied on a control electrode during a print cycle.
- the print cycle includes one development period t b and one subsequent recovering period t w .
- the control potential (V control ) has an amplitude comprised between a white level V off and a full density level V on .
- the periodic voltage pulse V is switched from a first level to a shutter level (V shutter ).
- FIG. 2 illustrates a print cycle as that shown in FIG. 1 and the resulting particle flow density, i.e., the number of particles passing through the aperture during a print cycle.
- the dashed line in FIG. 2 shows the particle flow density ⁇ as it would have been without applying a shutter potential (prior art).
- the control potential is switched on, particles begin to be released from the particle source and projected through the aperture.
- FIG. 3 is a schematic section view through a print zone in a direct electrostatic printing device.
- the print zone comprises a particle source 1, a back electrode 3 and a printhead structure 2 arranged therebetween.
- the printhead structure 2 is located at a predetermined distance L k from the particle source and at a predetermined distance L i from the back electrode.
- the printhead structure 2 includes a substrate layer 20 of electrically insulating material having a plurality of apertures 21, arranged through the substrate layer 20, each aperture 21 being at least partially surrounded by a control electrode 22.
- the apertures 21 form an array, as illustrated, for example, in FIG. 9.
- An image receiving medium 7 is conveyed between the printhead structure 2 and the back electrode 3.
- a particle source 1 is preferably arranged on a rotating developer sleeve having a substantially cylindrical shape and a rotation axis extending parallel to the printhead structure 2.
- the sleeve surface is coated with a layer of charged toner particles held on the sleeve surface by adhesion forces due to charge interaction with the sleeve material.
- the developer sleeve is preferably made of metallic material even if a flexible, resilient material is preferred for some applications.
- the toner particles are generally non-magnetic particles having negative charge polarity and a narrow charge distribution in the order of about 4 to 10 ⁇ C/g.
- the printhead structure is preferably formed of a thin substrate layer of flexible, non-rigid material, such as polyimid or the like, having dielectrical properties.
- the substrate layer 20 has a top surface facing the particle source and a bottom surface facing the back electrode, and is provided with a plurality of apertures 21 arranged therethrough in one or several rows extending across the print zone.
- Each aperture is at least partially surrounded by a preferably ring-shaped control electrode of conductive material, such as for instance copper, arranged in a printed circuit preferably etched on the top surface of the substrate layer.
- Each control electrode is individually connected to a variable voltage source, such as a conventional IC driver, which, due to control in accordance with the image information, supplies the variable control potentials in order to at least partially open or close the apertures as the dot locations pass beneath the printhead structure. All control electrodes are connected to an additional voltage source which supplies the periodic voltage pulse oscillating from a first potential level applied during each development period t b and a shutter potential level applied during at least a part of each recovering period t w .
- FIG. 4 is a schematic diagram showing the applied electric potential as a function of the distance d from the particle source I to the back electrode 3.
- Line 4 shows the potential function during a development period t b , as the control potential is set on print condition (V on ).
- Line 5 shows the potential function during a development period t b , as the control potential is set in nonprint condition (V off ).
- Line 6 shows the potential function during a recovering period t w , as the shutter potential is applied (V shutter ).
- a negatively charged toner particle located in the region is transported toward the back electrode as long as the print potential V on is applied (line 4) and is repelled back toward the particle source as soon as the potential is switched to the shutter level (line 6).
- a negatively charged toner particle located in the L i -region is accelerated toward the back electrode as the potential is switched from V on (line 4) to V shutter (line 6).
- FIG. 5 shows an alternate embodiment of the invention, in which the shutter potential is applied only during a part of each recovering period t w .
- the printhead structure 2 includes an additional printed circuit preferably arranged on the bottom surface of the substrate layer 20 and comprising at least two different sets of deflection electrodes 23, 24, each of which set is connected to a deflection voltage source (D1, D2).
- a deflection voltage source D1, D2
- D1, D2 deflection voltage source
- the deflection electrodes 23, 24 are disposed in a predetermined configuration such that each aperture 21 is partly surrounded by a pair of deflection electrodes 23, 24 included in different sets. Each pair of deflection electrodes 23, 24 is so disposed around the apertures, that the electrostatic field remains symmetrical about a central axis of the aperture as long as both deflection voltages D1, D2 have the same amplitude.
- a first potential difference (D1 ⁇ D2) is produced, the stream is deflected in a first direction r1.
- D1>D2 the deflection direction is reversed to an opposite direction r2.
- the deflection electrodes have a focusing effect on the toner particle stream passing through the aperture and a predetermined deflection direction is obtained by adjusting the amplitude difference between the deflection voltages.
- the method is performed in consecutive print cycles, each of which includes several, for instance two or three, development periods t b , each development period corresponding to a predetermined deflection direction.
- several dots can be printed through each aperture during one and same print cycle, each dot corresponding to a particular deflection level. That method allows higher print resolution without the need of a larger number of control voltage sources (IC-drivers).
- IC-drivers control voltage sources
- FIG. 8a is a diagram showing the control voltages applied on a control electrodes during a print cycle including three different development periods t b , each of which is associated with a specific deflection level, in order to print three different, transversely aligned, adjacent dots through one and same aperture.
- FIG. 8b shows the periodic voltage pulse.
- the periodic voltage pulse is simultaneously applied on all control electrodes and on all deflection electrodes.
- each control electrode generates an electrostatic field produced by the superposition of the control voltage pulse and the periodic voltage pulse
- each deflection electrode generates a deflection field produced by the superposition of the deflection voltages and the periodic voltage pulse.
- the shutter voltage in FIG. 8b applied to the deflection electrodes may advantageously differ from the shutter voltage in FIG. 5 applied to the control electrodes.
- the deflection electrode shutter voltage may have a different wave shape or a different amplitude than the control electrode shutter voltage, and it may also be delayed with respect to the pulses applied to the control electrodes.
- FIG. 8c shows the deflection voltages applied on two different sets of deflection electrodes (D1, D2).
- D1>D2 a potential difference
- D1>D2 the deflection potentials
- the second development period the deflection potentials have the same amplitude, which results in printing a central located dot.
- the potential difference is reversed (D1 ⁇ D2) in order to obtain a second deflection direction opposed to the first.
- the superposition of the deflection voltages and the periodic pulse produce a shutter potential, while maintaining the deflection potential difference during each recovering period.
- the dot deflection control allows a print resolution of for instance 600 dpi utilizing a 200 dpi printhead structure and performing three deflection steps.
- a print resolution of 600 dpi is also obtained by utilizing a 300 dpi printhead structure performing two deflection steps.
- the number of deflection steps can be increased (for instance four or five) depending on different requirements such as for instance print speed, manufacturing costs or print resolution.
- the periodic voltage pulse is applied only to all deflection electrodes or only to all control electrodes.
- An image receiving medium 7 such as a sheet of plain untreated paper or any other medium suitable for direct printing, is caused to move between the printhead structure 2 and the back electrode 3.
- the image receiving medium may also consist of an intermediate transfer belt onto which toner particles are deposited in image configuration before being applied on paper or other information carrier.
- An intermediate transfer belt may be advantageously utilized in order to ensure a constant distance L i and thereby a uniform deflection length.
- control potentials are supplied to the control electrodes using driving means, such as conventional IC-drivers (push-pull) having typical amplitude variations of about 325V.
- driving means such as conventional IC-drivers (push-pull) having typical amplitude variations of about 325V.
- IC-driver is preferably used to supply control potential in the range of -50V to +275V for V off and V on , respectively.
- the periodic voltage pulse is preferably oscillating between a first level substantially equal to V off (i.e., about -50V) to a shutter potential level in the order of -V on (i.e., about -325V).
- the amplitude of each control potential determines the amount of toner particles allowed to pass through the aperture.
- Each amplitude level comprised between V off and V on corresponds to a specific shade of gray.
- Shades of gray are obtained either by modulating the dot density while maintaining a constant dot size, or by modulating the dot size itself.
- Dot size modulation is obtained by adjusting the levels of both deflection potentials in order to produce variable converging forces on the toner particle stream. Accordingly, the deflection electrodes are utilized to produce repelling forces on toner particles passing through an aperture such that the transported particles are caused to converge toward each other resulting in a focused stream and thereby a smaller dot.
- Gray scale capability is significantly enhanced by modulating those repelling forces in accordance with the desired dot size.
- Gray scale capabilities may also be enhanced by modulating the pulse width of the applied control potentials. For example, the timing of the beginning of the control pulse may be varied. Alternatively, the pulse may be shifted in time so that it begins earlier and no longer ends at the beginning of the shutter pulse.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
Abstract
The present invention relates to a direct electrostatic printing method, in which a stream of computer generated signals, defining an image information, are converted to a pattern of electrostatic fields which selectively permit or restrict the transport of charged toner particles from a particle source toward a back electrode and control the deposition of those charged toner particles in an image configuration onto an image receiving medium. Particularly, the present invention refers to a direct electrostatic printing method performed in consecutive print cycles, each of which includes at least one development period (tb) and at least one recovering period (tw) subsequent to each development period (tb), wherein the pattern of electrostatic fields is produced during at least a part of each development period (tb) to selectively permit or restrict the transport of charged toner particles from a particle source toward a back electrode, and an electric field is produced during at least a part of each recovering period (tw) to repel a part of the transported charged toner particles back toward the particle source.
Description
1. Field of the Invention
The present invention relates to a direct electrostatic printing method, in which a stream of computer generated signals, defining an image information, are converted to a pattern of electrostatic fields on control electrodes arranged on a printhead structure, to selectively permit or restrict the passage of toner particles through the printhead structure and control the deposition of those toner particles in an image configuration onto an image receiving medium.
2. Description of the Related Art
Of the various electrostatic printing techniques, the most familiar and widely utilized is that of xerography wherein latent electrostatic images formed on a charged retentive surface are developed by a suitable toner material to render the images visible, the images being subsequently transferred to plain paper.
Another form of electrostatic printing is one that has come to be known as direct electrostatic printing (DEP). This form of printing differs from the above mentioned xerographic form, in that toner is deposited in image configuration directly onto plain paper. The novel feature of DEP printing is to allow simultaneous field imaging and toner transport to produce a visible image on paper directly from computer generated signals, without the need for those signals to be intermediately converted to another form of energy such as light energy, as it is required in electrophotographic printing.
A DEP printing device has been disclosed in U.S. Pat. No. 3,689,935, issued Sep. 5, 1972 to Pressman et al. Pressman et al. disclose a multilayered particle flow modulator comprising a continuous layer of conductive material, a segmented layer of conductive material and a layer of insulating material interposed therebetween. An overall applied field projects toner particles through apertures arranged in the modulator whereby the particle stream density is modulated by an internal field applied within each aperture.
A new concept of direct electrostatic printing was introduced in U.S. Pat. No. 5,036,341, granted to Larson, which is incorporated by reference herein. According to Larson, a uniform electric field is produced between a back electrode and a developer sleeve coated with charged toner particles. A printhead structure, such as a control electrode matrix, is interposed in the electric field and utilized to produce a pattern of electrostatic fields which, due to control in accordance with an image configuration, selectively open or close passages in the printhead structure, thereby permitting or restricting the transport of toner particles from the developer sleeve toward the back electrode. The modulated stream of toner particles allowed to pass through the opened passages impinges upon an image receiving medium, such as paper, interposed between the printhead structure and the back electrode.
According to the above method, a charged toner particle is held on the developer surface by adhesion forces, which are essentially proportional to Q2 /d2, where d is the distance between the toner particle and the surface of the developer sleeve, and Q is the particle charge. The electric force required for releasing a toner particle from the sleeve surface is chosen to be sufficiently high to overcome the adhesion forces.
However, due to relatively large variations of the adhesion forces, toner particles exposed to the electric field through an opened passage are neither simultaneously released from the developer surface nor uniformly accelerated toward the back electrode. As a result, the time period from when the first particle is released until all released particles are deposited onto the image receiving medium is relatively long.
When a passage is opened during a development period tb, a part of the released toner particles do not reach sufficient momentum to pass through the aperture until after the development period Lb has expired. Those delayed particles will continue to flow through the passage even after closure, and their deposition will be delayed. This in turn may degrade print quality by forming extended, indistinct dots.
That drawback is particularly critical when using dot deflection control. Dot deflection control consists in performing several development steps during each print cycle to increase print resolution. For each development step, the symmetry of the electrostatic fields is modified in a specific direction, thereby influencing the transport trajectories of toner particles toward the image receiving medium. That method allows several dots to be printed through each single passage during the same print cycle, each deflection direction corresponding to a new dot location. To enhance the efficiency of dot deflection control, it is particularly essential to decrease the toner jet length (where the toner jet length is the time between the first particle emerging through the aperture and the last particle emerging through the aperture) and to ensure direct transition from a deflection direction to another, without delayed toner deposition.
Therefore, in order to achieve higher speed printing with improved print uniformity, and in order to improve dot deflection control, there is still a need to improve DEP methods to allow shorter toner transport time and reduce delayed toner deposition.
The present invention satisfies a need for improved DEP methods by providing high-speed transition from print conditions to non-print conditions and shorter toner transport time.
The present invention satisfies a need for higher speed DEP printing without delayed toner deposition.
The present invention further satisfies high speed transition from a deflection direction to another, and thereby improved dot deflection control.
A DEP method in accordance with the present invention is performed in consecutive print cycles, each of which includes at least one development period tb and at least one recovering period tw subsequent to each development period tb.
A pattern of variable electrostatic fields is produced during at least a part of each development period (tb) to selectively permit or restrict the transport of charged toner particles from a particle source toward a back electrode, and an electric field is produced during at least a part of each recovering period (tw) to repel a part of the transported charged toner particles back toward the particle source.
A DEP method in accordance with the present invention includes the steps of:
providing a particle source, a back electrode and a printhead structure positioned therebetween, said printhead structure including an array of control electrodes connected to a control unit;
positioning an image receiving medium between the printhead structure and the back electrode; producing an electric potential difference between the particle source and the back electrode to apply an electric field which enables the transport of charged toner particles from the particle source toward the back electrode;
during each development period tb, applying variable electric potentials to the control electrodes to produce a pattern of electrostatic fields which, due to control in accordance with an image configuration, open or close passages through the printhead structure to selectively permit or restrict the transport of charged particles from the particle source onto the image receiving medium;
and during each recovering period (tw), applying an electric shutter potential to the control electrodes to produce an electric field which repels delayed toner particles back to the particle source.
According to the present invention, an appropriate amount of toner particles are released from the particle source during a development period tb. At the end of the development period tb, only a part of the released toner particles have already reached the image receiving medium. Of the remaining released toner articles, those which have already passed the printhead structure are accelerated toward the image receiving medium under influence of the shutter potential. The part of the released toner particles which, at the end of the development period tb, are still located between the particle source and the printhead structure, are repelled back to the particle source under influence of the shutter potential.
According to the present invention, a printhead structure is preferably formed of a substrate layer of electrically insulating material, such as polyimid or the like, having a top surface facing the particle source, a bottom surface facing the image receiving medium and a plurality of apertures arranged through the substrate layer for enabling the passage of toner particles through the printhead structure. Said top surface of the substrate layer is overlaid with a printed circuit including the array of control electrodes and arranged such that each aperture is at least partially surrounded by a control electrode.
All control electrodes are connected to at least one voltage source which supplies a periodic voltage pulse oscillating between at least two voltage levels, such that a first voltage level is applied during each of said development periods tb and a second voltage level (Vshutter) is applied during each of said recovering periods tw.
Each control electrode is connected to at least one driving unit, such as a conventional IC-driver which supplies variable control potentials having levels comprised in a range between Voff and Von, where Voff and Von are chosen to be below and above a predetermined threshold level, respectively. The threshold level is determined by the force required to overcome the adhesion forces holding toner particles on the particle source.
According to another embodiment of the present invention, the printhead structure further includes at least two sets of deflection electrodes comprised in an additional printed circuit preferably arranged on said bottom surface of the substrate layer. Each aperture is at least partially surrounded by first and second deflection electrodes disposed around two opposite segments of the periphery of the aperture.
The first and second deflection electrodes are similarly disposed in relation to a corresponding aperture and are connected to first and second deflection voltage sources, respectively.
The first and second deflection voltage sources supply variable deflection potential D1 and D2, respectively, such that the toner transport trajectory is controlled by modulating the potential difference D1-D2. The dot size is controlled by modulating the amplitude levels of both deflection potentials D1 and D2, in order to produce converging forces for focusing the toner particle stream passing through the apertures.
Each pair of deflection electrodes are arranged symmetrically about a central axis of their corresponding aperture whereby the symmetry of the electrostatic fields remains unaltered as long as both deflection potentials D1 and D2 have the same amplitude.
All deflection electrodes are connected to at least one voltage source which supplies a periodic voltage pulse oscillating between a first voltage level, applied during each of said development periods tb, and a second voltage level (Vshutter), applied during each of said recovering periods tw. The shutter voltage level applied to the deflection electrodes may differ in voltage level and timing from the shutter voltage applied to the control electrodes.
According to that embodiment, a DEP method is performed in consecutive print cycles each of which includes at least two development periods tb and at least one recovering period tw subsequent to each development period tb, wherein:
a pattern of variable electrostatic fields is produced during at least a part of each development period (tb) to selectively permit or restrict the transport of charged toner particles from a particle source toward a back electrode;
for each development period (tb), a pattern of deflection fields is produced to control the trajectory and the convergence of the transported toner particles; and
an electric field is produced during at least a part of each recovering period (tw) to repel a part of the transported charged toner particles back toward the particle source.
According to that embodiment, a DEP method includes the steps of:
producing an electric potential difference between the particle source and the back electrode to apply an electric field which enables the transport of charged toner particles from the particle source toward the back electrode;
during each development period tb, applying variable electric potentials to the control electrodes to produce a pattern of electrostatic fields which, due to control in accordance with an image configuration, open or close passages through the printhead structure to selectively permit or restrict the transport of charged particles from the particle source onto the image receiving medium;
during at least one development period tb of each print cycle, producing an electric potential difference D1-D2 between two sets of deflection electrodes to modify the symmetry of each of said electrostatic fields, thereby deflecting the trajectory of the transported particles;
during each recovering period (tw), applying an electric shutter potential to each set of deflection electrodes to create an electric field between the deflection electrodes and the back electrodes to accelerate toner particles to the image receiving medium; and
during each recovering period (tw), applying an electric shutter potential to the control electrodes to produce an electric field between the control electrodes and the particle source to repel delayed toner particles back to the particle source.
According to that embodiment, the deflection potential difference is preserved during at least a part of each recovering period tw, until the toner deposition is achieved. After each development period, a first electric field is produced between a shutter potential on the deflection electrodes and the background potential on the back electrode. Simultaneously, a second electric field is produced between a shutter potential on the control electrodes and the potential of the particle source (preferably 0V). The toner particles which, at the end of the development period tb, are located between the printhead structure and the back electrode are accelerated toward the image receiving medium under influence of said first electric field. The toner particles which, at the end of the development period tb, are located between the particle source and the printhead structure are repelled back onto the particle source under influence of said second electric field.
The present invention also refers to a control function in a direct electrostatic printing method, in which each print cycle includes at least one development period tb and at least one recovering period tw subsequent to each development period tb. The variable control potentials are supplied to the control electrodes during at least a part of each development period tb, and have amplitude and pulse width chosen as a function of the intended print density. The shutter potential is applied to the control electrodes during at least a part of each recovering period tw.
The present invention also refers to a direct electrostatic printing device for accomplishing the above method.
The objects, features and advantages of the present invention will become more apparent from the following description when read in conjunction with the accompanying figures in which preferred embodiments of the invention are shown by way of illustrative examples.
Although the examples shown in the accompanying Figures illustrate a method wherein toner particles have negative charge polarity, that method can be performed with particles having positive charge polarity without departing from the scope of the present invention. In that case all potential values will be given the opposite sign.
FIG. 1 is a diagram showing the voltages applied to a selected control electrode during a print cycle including a development period tb and a recovering period tw.
FIG. 2 is a diagram showing control function of FIG. 1 and the resulting particle flow density Φ, compared to prior art (dashed line).
FIG. 3 is a schematic section view of a print zone of a DEP device.
FIG. 4 is a diagram illustrating the electric potential as a function of the distance from the particle source to the back electrode, referring to the print zone of FIG. 3.
FIG. 5 is a diagram showing the voltages applied to a selected control electrode during a print cycle, according to another embodiment of the invention.
FIG. 6 is a schematic section view of a print zone of a DEP device according to another embodiment of the invention, in which the printhead structure includes deflection electrodes.
FIG. 7 is a schematic view of an aperture, its associated control electrode and deflection electrodes, and the voltages applied thereon.
FIG. 8a is a diagram showing the control voltages applied to a selected control electrode during a print cycle including three development periods tb and three recovering periods tw, utilizing dot deflection control.
FIG. 8b is a diagram showing the periodic voltage pulse V applied to all control electrodes and deflection electrodes during a print cycle including three development periods tb and three recovering periods tw, utilizing dot deflection control.
FIG. 8c is a diagram showing the deflection voltages D1 and D2 applied to first and second sets of deflection electrodes, respectively, utilizing dot deflection control with three different deflection levels.
FIG. 9 illustrates an exemplary array of apertures surrounded by control electrodes.
FIG. 1 shows the control potential (Vcontrol) and the periodic voltage pulse (V) applied on a control electrode during a print cycle. According to this example, the print cycle includes one development period tb and one subsequent recovering period tw. The control potential (Vcontrol) has an amplitude comprised between a white level Voff and a full density level Von. The control potential (Vcontrol) has a pulse width which can vary between 0 and the entire development period tb. When the pulse width is shorter than tb, the whole control potential pulse is delayed so that it ends at t=tb. At t=tb, the periodic voltage pulse V is switched from a first level to a shutter level (Vshutter). The shutter potential has the same sign as the charge polarity of the toner particles, thereby applying repelling forces on the toner particles. Those repelling forces are directed away from the control electrodes whereby all toner particles which have already passed the apertures are accelerated toward the back electrode, while toner particles which are still located in the gap between the particle source and the control electrodes at t=tb are reversed toward the particle source.
As a result, the particle flow is cut off almost abruptly at t=tb. FIG. 2 illustrates a print cycle as that shown in FIG. 1 and the resulting particle flow density, i.e., the number of particles passing through the aperture during a print cycle. The dashed line in FIG. 2 shows the particle flow density Φ as it would have been without applying a shutter potential (prior art). At t=0, toner particles are held on the particle source. As soon as the control potential is switched on, particles begin to be released from the particle source and projected through the aperture. The particle flow density Φ is rapidly shut off by applying the shutter potential at t=tb.
FIG. 3 is a schematic section view through a print zone in a direct electrostatic printing device. The print zone comprises a particle source 1, a back electrode 3 and a printhead structure 2 arranged therebetween. The printhead structure 2 is located at a predetermined distance Lk from the particle source and at a predetermined distance Li from the back electrode. The printhead structure 2 includes a substrate layer 20 of electrically insulating material having a plurality of apertures 21, arranged through the substrate layer 20, each aperture 21 being at least partially surrounded by a control electrode 22. The apertures 21 form an array, as illustrated, for example, in FIG. 9. An image receiving medium 7 is conveyed between the printhead structure 2 and the back electrode 3.
A particle source 1 is preferably arranged on a rotating developer sleeve having a substantially cylindrical shape and a rotation axis extending parallel to the printhead structure 2. The sleeve surface is coated with a layer of charged toner particles held on the sleeve surface by adhesion forces due to charge interaction with the sleeve material. The developer sleeve is preferably made of metallic material even if a flexible, resilient material is preferred for some applications. The toner particles are generally non-magnetic particles having negative charge polarity and a narrow charge distribution in the order of about 4 to 10 μC/g. The printhead structure is preferably formed of a thin substrate layer of flexible, non-rigid material, such as polyimid or the like, having dielectrical properties. The substrate layer 20 has a top surface facing the particle source and a bottom surface facing the back electrode, and is provided with a plurality of apertures 21 arranged therethrough in one or several rows extending across the print zone. Each aperture is at least partially surrounded by a preferably ring-shaped control electrode of conductive material, such as for instance copper, arranged in a printed circuit preferably etched on the top surface of the substrate layer. Each control electrode is individually connected to a variable voltage source, such as a conventional IC driver, which, due to control in accordance with the image information, supplies the variable control potentials in order to at least partially open or close the apertures as the dot locations pass beneath the printhead structure. All control electrodes are connected to an additional voltage source which supplies the periodic voltage pulse oscillating from a first potential level applied during each development period tb and a shutter potential level applied during at least a part of each recovering period tw.
FIG. 4 is a schematic diagram showing the applied electric potential as a function of the distance d from the particle source I to the back electrode 3. Line 4 shows the potential function during a development period tb, as the control potential is set on print condition (Von). Line 5 shows the potential function during a development period tb, as the control potential is set in nonprint condition (Voff). Line 6 shows the potential function during a recovering period tw, as the shutter potential is applied (Vshutter). As apparent from FIG. 4, a negatively charged toner particle located in the region is transported toward the back electrode as long as the print potential Von is applied (line 4) and is repelled back toward the particle source as soon as the potential is switched to the shutter level (line 6). At the same time, a negatively charged toner particle located in the Li -region is accelerated toward the back electrode as the potential is switched from Von (line 4) to Vshutter (line 6).
FIG. 5 shows an alternate embodiment of the invention, in which the shutter potential is applied only during a part of each recovering period tw.
According to another embodiment of the present invention, shown in FIG. 6, the printhead structure 2 includes an additional printed circuit preferably arranged on the bottom surface of the substrate layer 20 and comprising at least two different sets of deflection electrodes 23, 24, each of which set is connected to a deflection voltage source (D1, D2). By producing an electric potential difference between both deflection voltage sources (D1, D2), the symmetry of the electrostatic fields produced by the control electrodes 22 is influenced in order to slightly deflect the transport trajectory of the toner particles.
As apparent from FIG. 7, the deflection electrodes 23, 24 are disposed in a predetermined configuration such that each aperture 21 is partly surrounded by a pair of deflection electrodes 23, 24 included in different sets. Each pair of deflection electrodes 23, 24 is so disposed around the apertures, that the electrostatic field remains symmetrical about a central axis of the aperture as long as both deflection voltages D1, D2 have the same amplitude. As a first potential difference (D1<D2) is produced, the stream is deflected in a first direction r1. By reversing the potential difference (D1>D2) the deflection direction is reversed to an opposite direction r2. The deflection electrodes have a focusing effect on the toner particle stream passing through the aperture and a predetermined deflection direction is obtained by adjusting the amplitude difference between the deflection voltages.
In that case, the method is performed in consecutive print cycles, each of which includes several, for instance two or three, development periods tb, each development period corresponding to a predetermined deflection direction. As a result, several dots can be printed through each aperture during one and same print cycle, each dot corresponding to a particular deflection level. That method allows higher print resolution without the need of a larger number of control voltage sources (IC-drivers). When performing dot deflection control, it is an essential requirement to achieve a high speed transition from one deflection direction to another.
The present invention is advantageously carried out in connection with dot deflection control, as apparent from FIG. 8a, 8b, 8c. FIG. 8a is a diagram showing the control voltages applied on a control electrodes during a print cycle including three different development periods tb, each of which is associated with a specific deflection level, in order to print three different, transversely aligned, adjacent dots through one and same aperture.
FIG. 8b shows the periodic voltage pulse. According to a preferred embodiment of the invention, the periodic voltage pulse is simultaneously applied on all control electrodes and on all deflection electrodes. In that case each control electrode generates an electrostatic field produced by the superposition of the control voltage pulse and the periodic voltage pulse, while each deflection electrode generates a deflection field produced by the superposition of the deflection voltages and the periodic voltage pulse. Note that the shutter voltage in FIG. 8b applied to the deflection electrodes may advantageously differ from the shutter voltage in FIG. 5 applied to the control electrodes. For example, the deflection electrode shutter voltage may have a different wave shape or a different amplitude than the control electrode shutter voltage, and it may also be delayed with respect to the pulses applied to the control electrodes.
FIG. 8c shows the deflection voltages applied on two different sets of deflection electrodes (D1, D2). During the first development period, a potential difference D1>D2 is created to deflect the particle stream in a first direction. During the second development period, the deflection potentials have the same amplitude, which results in printing a central located dot. During the third development period, the potential difference is reversed (D1<D2) in order to obtain a second deflection direction opposed to the first. The superposition of the deflection voltages and the periodic pulse produce a shutter potential, while maintaining the deflection potential difference during each recovering period.
Although it is preferred to perform three different deflection steps (for instance left, center, right), the above concept is obviously not limited to three deflection levels. In some application two deflection levels (for instance left, right) are advantageously performed in a similar way. The dot deflection control allows a print resolution of for instance 600 dpi utilizing a 200 dpi printhead structure and performing three deflection steps. A print resolution of 600 dpi is also obtained by utilizing a 300 dpi printhead structure performing two deflection steps. The number of deflection steps can be increased (for instance four or five) depending on different requirements such as for instance print speed, manufacturing costs or print resolution.
According to another embodiments of the invention, the periodic voltage pulse is applied only to all deflection electrodes or only to all control electrodes.
An image receiving medium 7, such as a sheet of plain untreated paper or any other medium suitable for direct printing, is caused to move between the printhead structure 2 and the back electrode 3. The image receiving medium may also consist of an intermediate transfer belt onto which toner particles are deposited in image configuration before being applied on paper or other information carrier. An intermediate transfer belt may be advantageously utilized in order to ensure a constant distance Li and thereby a uniform deflection length.
In a particular embodiment of the invention, the control potentials are supplied to the control electrodes using driving means, such as conventional IC-drivers (push-pull) having typical amplitude variations of about 325V. Such an IC-driver is preferably used to supply control potential in the range of -50V to +275V for Voff and Von, respectively. The periodic voltage pulse is preferably oscillating between a first level substantially equal to Voff (i.e., about -50V) to a shutter potential level in the order of -Von (i.e., about -325V). The amplitude of each control potential determines the amount of toner particles allowed to pass through the aperture. Each amplitude level comprised between Voff and Von corresponds to a specific shade of gray. Shades of gray are obtained either by modulating the dot density while maintaining a constant dot size, or by modulating the dot size itself. Dot size modulation is obtained by adjusting the levels of both deflection potentials in order to produce variable converging forces on the toner particle stream. Accordingly, the deflection electrodes are utilized to produce repelling forces on toner particles passing through an aperture such that the transported particles are caused to converge toward each other resulting in a focused stream and thereby a smaller dot. Gray scale capability is significantly enhanced by modulating those repelling forces in accordance with the desired dot size. Gray scale capabilities may also be enhanced by modulating the pulse width of the applied control potentials. For example, the timing of the beginning of the control pulse may be varied. Alternatively, the pulse may be shifted in time so that it begins earlier and no longer ends at the beginning of the shutter pulse.
From the foregoing it will be recognized that numerous variations and modifications may be effected without departing from the scope of the invention as defined in the appended claims.
Claims (13)
1. A direct electrostatic print unit comprising:
a particle source;
a back electrode;
a background voltage source connected to the back electrode to produce an electric potential difference between the back electrode and the particle source;
a printhead structure positioned between the back electrode and the particle source, comprising:
a substrate layer of electrically insulating material having a top surface facing the particle source and a bottom surface facing the back electrode;
a plurality of apertures arranged through the substrate layer;
a first printed circuit arranged on said top surface of the substrate layer, including a plurality of control electrodes, each of which at least partially surrounds a corresponding aperture;
a plurality of control voltage sources, each of which is connected to a corresponding control electrode to supply variable electric potentials to control the stream of charged toner particles through the corresponding aperture during at least one development period wherein the stream of charged toner particles are transported toward the back electrode;
at least one voltage source connected to the control electrodes to supply a periodic voltage pulse to cut off the stream of charged toner particles after the at least one development period;
a second printed circuit arranged on said bottom surface of the substrate layer, including at least two sets of deflection electrodes;
at least one deflection voltage source connected to each set of deflection electrodes to supply deflection potentials which control the transport trajectory of toner particles; and
at least one voltage source connected to each set of deflection electrodes to supply a periodic voltage pulse to cut off the stream of charged toner particles after said at least one development period.
2. A direct electrostatic printing method performed in consecutive print cycles, each of which includes at least two development periods during which toner particles are selectively transported toward a back electrode and at least one recovering period subsequent to each development period during which toner particles are repelled toward a particle source, the method comprising the steps of:
generating a pattern of variable electrostatic fields during at least a part of each development period to selectively permit or restrict the transport of charged toner particles from a particle source toward a back electrode;
generating a pattern of deflection fields;
applying the pattern of deflection fields to influence the trajectory of the transported charged toner particles; and
generating a second electric field during at least a part of each recovering period to repel a part of the transported charged toner particles back toward the particle source.
3. The method as defined in claim 2, wherein the pattern of variable electrostatic fields and the second electric field are generated by a periodic voltage pulse oscillating from a first amplitude level applied during said at least two development periods, and a second amplitude level, applied during at least a part of said at least one recovering period.
4. The method as defined in claim 2, wherein the pattern of deflection fields is applied during at least one of said at least two development periods.
5. The method as defined in claim 4, wherein the pattern of deflection fields is applied at the same time as the pattern of electrostatic fields.
6. The method as defined in claim 2, wherein the pattern of deflection fields is applied during at least one of said at least two development periods and during at least a part of said at least one recovering period.
7. The method as defined in claim 6, wherein the pattern of deflection fields is applied at the same time as the pattern of electrostatic fields.
8. The method as defined in claim 2, wherein each of said at least two development periods corresponds to a predetermined pattern of deflection fields.
9. The method as defined in claim 2, wherein each of said at least two development periods corresponds to a predetermined pattern of deflection fields, each pattern corresponding to a predetermined trajectory of the transported particles.
10. The method as defined in claim 2, wherein each of said at least two development periods corresponds to a predetermined pattern of deflection fields, each pattern being produced during the corresponding development period and at least a part of said at least one subsequent recovering period.
11. A direct electrostatic printing method performed in consecutive print cycles, each of which includes at least two development periods during which toner particles are selectively transported toward a back electrode and at least one recovering period subsequent to each development period during which toner particles are repelled toward a particle source, said method comprising the steps of:
providing a particle source, a back electrode, and a printhead a structure positioned therebetween, said printhead structure including an array of control electrodes and at least two sets of deflection electrodes;
providing an image receiving medium between the array of control electrodes and the back electrode;
producing an electric potential difference between the particle source and the back electrode to enable the transport of charged toner particles from the particle source toward the image receiving medium;
applying variable electric potentials to the control electrodes during each of at least two development periods to produce a pattern of electrostatic fields which, due to control in accordance with an image configuration, selectively permit or restrict the transport of charged particles from the particle source onto the image receiving medium;
supplying a first variable deflection potential to a first set of deflection electrodes, and a second variable deflection potential to a second set of deflection electrodes;
producing an electric potential difference between the first variable deflection potential and the second variable deflection potential during at least one of said at least two development periods to influence the symmetry of said electrostatic fields, thereby deflecting the transport trajectory of toner particles in a predetermined deflection direction, said method further including the step of:
connecting at least one voltage source to all deflection electrodes to supply a periodic voltage pulse which oscillates between a first potential level, applied during each development period, and a second potential level applied during at least a part of each recovering period, wherein the second potential level of the periodic voltage pulse repels delayed toner particles back toward the particle source.
12. The method as defined in claim 11, wherein each print cycle includes three development periods, and one recovering period subsequent to each development period, wherein:
the transport trajectory of toner particles is deflected in a first direction during a first development period and its subsequent recovering period, forming a first deflected dot on one side of a central dot;
the transport trajectory of toner particles is undeflected during a second development period and its subsequent recovering period forming said central dot; and
the transport trajectory of toner particles is deflected in a second direction during a third development period and its subsequent recovering period forming a second deflected dot on the opposite side of the central dot.
13. The method as defined in claim 11, wherein each print cycle includes two development periods, and one recovering period subsequent to each development period.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/801,868 US6012801A (en) | 1997-02-18 | 1997-02-18 | Direct printing method with improved control function |
JP53644298A JP2001512382A (en) | 1997-02-18 | 1998-02-17 | Direct printing method with improved control function |
PCT/IB1998/000509 WO1998037461A1 (en) | 1997-02-18 | 1998-02-17 | Direct printing method with improved control function |
EP98910903A EP0961955A1 (en) | 1997-02-18 | 1998-02-17 | Direct printing method with improved control function |
US09/409,271 US6176568B1 (en) | 1997-02-18 | 1999-09-30 | Direct printing method with improved control function |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/801,868 US6012801A (en) | 1997-02-18 | 1997-02-18 | Direct printing method with improved control function |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/409,271 Continuation US6176568B1 (en) | 1997-02-18 | 1999-09-30 | Direct printing method with improved control function |
Publications (1)
Publication Number | Publication Date |
---|---|
US6012801A true US6012801A (en) | 2000-01-11 |
Family
ID=25182221
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/801,868 Expired - Fee Related US6012801A (en) | 1997-02-18 | 1997-02-18 | Direct printing method with improved control function |
US09/409,271 Expired - Fee Related US6176568B1 (en) | 1997-02-18 | 1999-09-30 | Direct printing method with improved control function |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/409,271 Expired - Fee Related US6176568B1 (en) | 1997-02-18 | 1999-09-30 | Direct printing method with improved control function |
Country Status (4)
Country | Link |
---|---|
US (2) | US6012801A (en) |
EP (1) | EP0961955A1 (en) |
JP (1) | JP2001512382A (en) |
WO (1) | WO1998037461A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6176568B1 (en) | 1997-02-18 | 2001-01-23 | Array Printers Ab | Direct printing method with improved control function |
US6283583B1 (en) * | 1997-07-28 | 2001-09-04 | Sharp Kabushiki Kaisha | Image forming apparatus having float electrode provided to make uniform electric field |
US6296347B1 (en) * | 1998-08-19 | 2001-10-02 | Minolta Co., Ltd. | Direct electrostatic recording apparatus with modified electrode shape for preventing uneven image density |
US6322199B1 (en) * | 1998-08-19 | 2001-11-27 | Minolta Co., Ltd. | Direct electrostatic printing apparatus with electrode for improved image gradation control |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6793325B2 (en) * | 2000-12-04 | 2004-09-21 | Matsushita Electric Industrial Co., Ltd. | Direct printing apparatus and method |
Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1270856B (en) * | 1965-07-19 | 1968-06-20 | Borg Warner | Electrostatic output printer for data processing with type sequences moved in line direction |
JPS4426333B1 (en) * | 1966-09-27 | 1969-11-05 | ||
US3566786A (en) * | 1965-01-29 | 1971-03-02 | Helmut Taufer | Image producing apparatus |
US3689935A (en) * | 1969-10-06 | 1972-09-05 | Electroprint Inc | Electrostatic line printer |
US3779166A (en) * | 1970-12-28 | 1973-12-18 | Electroprint Inc | Electrostatic printing system and method using ions and toner particles |
US3815145A (en) * | 1972-07-19 | 1974-06-04 | Electroprint Inc | Electrostatic printing system and method using a moving shutter area for selective mechanical and electrical control of charged particles |
DE2653048A1 (en) * | 1976-11-23 | 1978-05-24 | Philips Patentverwaltung | Electrostatic discharge dot printer - has discharge mask arranged between glow discharge electrode and printing paper to define printing area |
JPS5555878A (en) * | 1978-10-19 | 1980-04-24 | Oki Electric Ind Co Ltd | High-speed printer |
JPS5584671A (en) * | 1978-12-22 | 1980-06-26 | Seiko Epson Corp | Ink jet recorder |
JPS5587563A (en) * | 1978-12-27 | 1980-07-02 | Ricoh Co Ltd | Ink jet recording device |
US4263601A (en) * | 1977-10-01 | 1981-04-21 | Canon Kabushiki Kaisha | Image forming process |
US4274100A (en) * | 1978-04-10 | 1981-06-16 | Xerox Corporation | Electrostatic scanning ink jet system |
JPS5689576A (en) * | 1979-12-24 | 1981-07-20 | Oki Electric Ind Co Ltd | Nonimpact serial printer |
US4353080A (en) * | 1978-12-21 | 1982-10-05 | Xerox Corporation | Control system for electrographic stylus writing apparatus |
JPS5844457A (en) * | 1981-09-11 | 1983-03-15 | Canon Inc | Method and device for image recording |
US4382263A (en) * | 1981-04-13 | 1983-05-03 | Xerox Corporation | Method for ink jet printing where the print rate is increased by simultaneous multiline printing |
US4384296A (en) * | 1981-04-24 | 1983-05-17 | Xerox Corporation | Linear ink jet deflection method and apparatus |
US4386358A (en) * | 1981-09-22 | 1983-05-31 | Xerox Corporation | Ink jet printing using electrostatic deflection |
JPS58155967A (en) * | 1982-03-11 | 1983-09-16 | Canon Inc | Forming device for picture image |
US4470056A (en) * | 1981-12-29 | 1984-09-04 | International Business Machines Corporation | Controlling a multi-wire printhead |
US4478510A (en) * | 1981-12-16 | 1984-10-23 | Canon Kabushiki Kaisha | Cleaning device for modulation control means |
US4491855A (en) * | 1981-09-11 | 1985-01-01 | Canon Kabushiki Kaisha | Image recording method and apparatus |
US4491794A (en) * | 1982-10-29 | 1985-01-01 | Gte Automatic Electric Inc. | Hall effect device test circuit |
US4498090A (en) * | 1981-02-18 | 1985-02-05 | Sony Corporation | Electrostatic printing apparatus |
US4511907A (en) * | 1982-10-19 | 1985-04-16 | Nec Corporation | Color ink-jet printer |
US4525727A (en) * | 1982-02-17 | 1985-06-25 | Matsushita Electric Industrial Company, Limited | Electroosmotic ink printer |
GB2108432B (en) | 1981-09-11 | 1986-01-02 | Canon Kk | Electrographic printing |
US4571601A (en) * | 1984-02-03 | 1986-02-18 | Nec Corporation | Ink jet printer having an eccentric head guide shaft for cleaning and sealing nozzle surface |
US4675703A (en) * | 1984-08-20 | 1987-06-23 | Dennison Manufacturing Company | Multi-electrode ion generating system for electrostatic images |
JPS62248662A (en) * | 1986-04-22 | 1987-10-29 | Fuji Xerox Co Ltd | Powder image recording method |
US4717926A (en) * | 1985-11-09 | 1988-01-05 | Minolta Camera Kabushiki Kaisha | Electric field curtain force printer |
US4743926A (en) * | 1986-12-29 | 1988-05-10 | Xerox Corporation | Direct electrostatic printing apparatus and toner/developer delivery system therefor |
US4748453A (en) * | 1987-07-21 | 1988-05-31 | Xerox Corporation | Spot deposition for liquid ink printing |
US4814796A (en) * | 1986-11-03 | 1989-03-21 | Xerox Corporation | Direct electrostatic printing apparatus and toner/developer delivery system therefor |
US4831394A (en) * | 1986-07-30 | 1989-05-16 | Canon Kabushiki Kaisha | Electrode assembly and image recording apparatus using same |
US4837071A (en) * | 1986-11-25 | 1989-06-06 | Ricoh Company, Ltd. | Information display medium |
US4860036A (en) * | 1988-07-29 | 1989-08-22 | Xerox Corporation | Direct electrostatic printer (DEP) and printhead structure therefor |
EP0345024A2 (en) * | 1988-05-31 | 1989-12-06 | Xerox Corporation | Printing apparatus and toner/developer delivery system therefor |
US4903050A (en) * | 1989-07-03 | 1990-02-20 | Xerox Corporation | Toner recovery for DEP cleaning process |
US4912489A (en) * | 1988-12-27 | 1990-03-27 | Xerox Corporation | Direct electrostatic printing apparatus with toner supply-side control electrodes |
EP0377208A2 (en) * | 1988-12-23 | 1990-07-11 | Kabushiki Kaisha Toshiba | Apparatus for generating ions using low signal voltage and apparatus for ion recording using low signal voltage |
EP0389229A2 (en) * | 1989-03-22 | 1990-09-26 | Matsushita Electric Industrial Co., Ltd. | Image forming apparatus |
US5028812A (en) * | 1988-05-13 | 1991-07-02 | Xaar Ltd. | Multiplexer circuit |
US5036341A (en) * | 1987-12-08 | 1991-07-30 | Ove Larsson Production Ab | Method for producing a latent electric charge pattern and a device for performing the method |
US5038159A (en) * | 1989-12-18 | 1991-08-06 | Xerox Corporation | Apertured printhead for direct electrostatic printing |
US5057855A (en) * | 1990-01-12 | 1991-10-15 | Xerox Corporation | Thermal ink jet printhead and control arrangement therefor |
US5072235A (en) * | 1990-06-26 | 1991-12-10 | Xerox Corporation | Method and apparatus for the electronic detection of air inside a thermal inkjet printhead |
US5083137A (en) * | 1991-02-08 | 1992-01-21 | Hewlett-Packard Company | Energy control circuit for a thermal ink-jet printhead |
US5095322A (en) * | 1990-10-11 | 1992-03-10 | Xerox Corporation | Avoidance of DEP wrong sign toner hole clogging by out of phase shield bias |
US5121144A (en) * | 1990-01-03 | 1992-06-09 | Array Printers Ab | Method to eliminate cross coupling between blackness points at printers and a device to perform the method |
US5128695A (en) * | 1990-07-27 | 1992-07-07 | Brother Kogyo Kabushiki Kaisha | Imaging material providing device |
US5148595A (en) * | 1990-04-27 | 1992-09-22 | Synergy Computer Graphics Corporation | Method of making laminated electrostatic printhead |
US5170185A (en) * | 1990-05-30 | 1992-12-08 | Mita Industrial Co., Ltd. | Image forming apparatus |
US5181050A (en) * | 1989-09-21 | 1993-01-19 | Rastergraphics, Inc. | Method of fabricating an integrated thick film electrostatic writing head incorporating in-line-resistors |
US5204696A (en) * | 1991-12-16 | 1993-04-20 | Xerox Corporation | Ceramic printhead for direct electrostatic printing |
US5204697A (en) * | 1990-09-04 | 1993-04-20 | Xerox Corporation | Ionographic functional color printer based on Traveling Cloud Development |
US5214451A (en) * | 1991-12-23 | 1993-05-25 | Xerox Corporation | Toner supply leveling in multiplexed DEP |
US5229794A (en) * | 1990-10-04 | 1993-07-20 | Brother Kogyo Kabushiki Kaisha | Control electrode for passing toner to obtain improved contrast in an image recording apparatus |
US5235354A (en) * | 1989-06-07 | 1993-08-10 | Array Printers Ab | Method for improving the printing quality and repetition accuracy of electrographic printers and a device for accomplishing the method |
US5237346A (en) * | 1992-04-20 | 1993-08-17 | Xerox Corporation | Integrated thin film transistor electrographic writing head |
US5257045A (en) * | 1992-05-26 | 1993-10-26 | Xerox Corporation | Ionographic printing with a focused ion stream |
US5256246A (en) * | 1990-03-05 | 1993-10-26 | Brother Kogyo Kabushiki Kaisha | Method for manufacturing aperture electrode for controlling toner supply operation |
US5270729A (en) * | 1991-06-21 | 1993-12-14 | Xerox Corporation | Ionographic beam positioning and crosstalk correction using grey levels |
US5274401A (en) * | 1990-04-27 | 1993-12-28 | Synergy Computer Graphics Corporation | Electrostatic printhead |
US5307092A (en) * | 1989-09-26 | 1994-04-26 | Array Printers Ab | Image forming device |
US5329307A (en) * | 1991-05-21 | 1994-07-12 | Mita Industrial Co., Ltd. | Image forming apparatus and method of controlling image forming apparatus |
US5374949A (en) * | 1989-11-29 | 1994-12-20 | Kyocera Corporation | Image forming apparatus |
US5386225A (en) * | 1991-01-24 | 1995-01-31 | Brother Kogyo Kabushiki Kaisha | Image recording apparatus for adjusting density of an image on a recording medium |
US5402158A (en) * | 1989-06-07 | 1995-03-28 | Array Printers Ab | Method for improving the printing quality and repetition accuracy of electrographic printers and a device for accomplishing the method |
US5414500A (en) * | 1993-05-20 | 1995-05-09 | Brother Kogyo Kabushiki Kaisha | Image recording apparatus |
EP0660201A2 (en) * | 1993-12-27 | 1995-06-28 | Sharp Kabushiki Kaisha | Image forming apparatus |
US5450115A (en) * | 1994-10-31 | 1995-09-12 | Xerox Corporation | Apparatus for ionographic printing with a focused ion stream |
US5453768A (en) * | 1993-11-01 | 1995-09-26 | Schmidlin; Fred W. | Printing apparatus with toner projection means |
US5473352A (en) * | 1993-06-24 | 1995-12-05 | Brother Kogyo Kabushiki Kaisha | Image forming device having sheet conveyance device |
US5477250A (en) * | 1992-11-13 | 1995-12-19 | Array Printers Ab | Device employing multicolor toner particles for generating multicolor images |
US5477246A (en) * | 1991-07-30 | 1995-12-19 | Canon Kabushiki Kaisha | Ink jet recording apparatus and method |
US5506666A (en) * | 1993-09-01 | 1996-04-09 | Fujitsu Limited | Electrophotographic printing machine having a heat protecting device for the fuser |
US5508723A (en) * | 1992-09-01 | 1996-04-16 | Brother Kogyo Kabushiki Kaisha | Electric field potential control device for an image forming apparatus |
US5515084A (en) * | 1993-05-18 | 1996-05-07 | Array Printers Ab | Method for non-impact printing utilizing a multiplexed matrix of controlled electrode units and device to perform method |
US5526029A (en) * | 1992-11-16 | 1996-06-11 | Array Printers Ab | Method and apparatus for improving transcription quality in electrographical printers |
EP0720072A2 (en) * | 1994-12-27 | 1996-07-03 | Sharp Kabushiki Kaisha | Image forming apparatus |
US5558969A (en) * | 1994-10-03 | 1996-09-24 | Agfa-Gevaert, N.V. | Electro(stato)graphic method using reactive toners |
EP0743572A1 (en) * | 1995-05-15 | 1996-11-20 | Agfa-Gevaert N.V. | A device for direct electrostatic printing (DEP) comprising an intermediate image receiving member |
EP0752317A1 (en) * | 1995-07-06 | 1997-01-08 | Hewlett-Packard Company | Toner projection printer with means to reduce toner spreading |
US5600355A (en) * | 1994-11-04 | 1997-02-04 | Sharp Kabushiki Kaisha | Color image forming apparatus by direct printing method with flying toner |
US5614932A (en) * | 1995-05-16 | 1997-03-25 | Brother Kogyo Kabushiki Kaisha | Image forming apparatus |
EP0764540A2 (en) * | 1995-09-22 | 1997-03-26 | Sharp Kabushiki Kaisha | Toner flight controlling method for an image forming aparatus |
US5617129A (en) * | 1994-10-27 | 1997-04-01 | Xerox Corporation | Ionographic printing with a focused ion stream controllable in two dimensions |
US5625392A (en) * | 1993-03-09 | 1997-04-29 | Brother Kogyo Kabushiki Kaisha | Image forming device having a control electrode for controlling toner flow |
US5640185A (en) * | 1994-03-02 | 1997-06-17 | Brother Kogyo Kabushiki Kaisha | Image recording apparatus having aperture electrode with tension application means and tension increasing means and opposing electrode for applying toner image onto image receiving sheet |
US5650809A (en) * | 1994-03-28 | 1997-07-22 | Brother Kogyo Kabushiki Kaisha | Image recording apparatus having aperture electrode with dummy electrodes for applying toner image onto image receiving sheet |
US5666147A (en) * | 1994-03-08 | 1997-09-09 | Array Printers Ab | Method for dynamically positioning a control electrode array in a direct electrostatic printing device |
US5677717A (en) * | 1993-10-01 | 1997-10-14 | Brother Kogyo Kabushiki Kaisha | Ink ejecting device having a multi-layer protective film for electrodes |
US5708464A (en) * | 1995-11-09 | 1998-01-13 | Agfa-Gevaert N.V. | Device for direct electrostatic printing (DEP) with "previous correction" |
US5774159A (en) * | 1996-09-13 | 1998-06-30 | Array Printers Ab | Direct printing method utilizing continuous deflection and a device for accomplishing the method |
US5805185A (en) * | 1993-12-24 | 1998-09-08 | Brother Kogyo Kabushiki Kaisha | Back electrode control device and method for an image forming apparatus which varies an electric potential applied to the back electrode based on the number of driven aperture electrodes |
US5818480A (en) * | 1995-02-14 | 1998-10-06 | Array Printers Ab | Method and apparatus to control electrodes in a print unit |
US5818490A (en) * | 1996-05-02 | 1998-10-06 | Array Printers Ab | Apparatus and method using variable control signals to improve the print quality of an image recording apparatus |
US5847733A (en) * | 1996-03-22 | 1998-12-08 | Array Printers Ab Publ. | Apparatus and method for increasing the coverage area of a control electrode during direct electrostatic printing |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4307169A (en) | 1977-11-10 | 1981-12-22 | Moore Business Forms, Inc. | Microcapsular electroscopic marking particles |
US4320408A (en) | 1978-10-06 | 1982-03-16 | Fuji Photo Film Co., Ltd. | Method of forming electrostatic image |
US4340893A (en) | 1980-11-05 | 1982-07-20 | Xerox Corporation | Scanning dryer for ink jet printers |
EP0127916B1 (en) | 1983-06-03 | 1987-10-28 | Agfa-Gevaert N.V. | Toner dispensing control |
DE3376890D1 (en) | 1983-11-01 | 1988-07-07 | Agfa-Gevaert Naamloze Vennootschap | |
US4546722A (en) | 1983-12-01 | 1985-10-15 | Olympus Optical Co., Ltd. | Developing apparatus for electrophotographic copying machines |
JPS6432275A (en) | 1987-07-28 | 1989-02-02 | Minolta Camera Kk | Driving method for image forming device |
US5040000A (en) | 1988-05-12 | 1991-08-13 | Canon Kabushiki Kaisha | Ink jet recording apparatus having a space saving ink recovery system |
US5128662A (en) | 1989-10-20 | 1992-07-07 | Failla Stephen J | Collapsibly segmented display screens for computers or the like |
US5049469A (en) | 1989-12-27 | 1991-09-17 | Eastman Kodak Company | Toner image pressure transfer method and toner useful therefor |
US5073785A (en) | 1990-04-30 | 1991-12-17 | Xerox Corporation | Coating processes for an ink jet printhead |
US5193011A (en) | 1990-10-03 | 1993-03-09 | Xerox Corporation | Method and apparatus for producing variable width pulses to produce an image having gray levels |
JPH04152154A (en) | 1990-10-17 | 1992-05-26 | Brother Ind Ltd | toner jet recording device |
US5153093A (en) | 1991-03-18 | 1992-10-06 | Xerox Corporation | Overcoated encapsulated toner compositions and processes thereof |
US5774153A (en) | 1991-11-15 | 1998-06-30 | Heidelberger Druckmaschinen Aktiengesellschaft | Digital precision positioning system |
JPH05158284A (en) | 1991-12-10 | 1993-06-25 | Brother Ind Ltd | Dry process developer |
JPH05177866A (en) | 1992-01-07 | 1993-07-20 | Sharp Corp | Image forming apparatus |
JP2574216Y2 (en) | 1992-02-20 | 1998-06-11 | ブラザー工業株式会社 | Image forming device |
US5287127A (en) | 1992-02-25 | 1994-02-15 | Salmon Peter C | Electrostatic printing apparatus and method |
US5801729A (en) | 1994-09-30 | 1998-09-01 | Brother Kogyo Kabushiki Kaisha | Image forming device with aperture electrode body |
US5523827A (en) | 1994-12-14 | 1996-06-04 | Xerox Corporation | Piezo active donor roll (PAR) for store development |
US5905516A (en) | 1995-04-25 | 1999-05-18 | Brother Kogyo Kabushiki Kaisha | Image forming apparatus having at least one reinforcing member |
US6000786A (en) | 1995-09-19 | 1999-12-14 | Array Printers Publ. Ab | Method and apparatus for using dual print zones to enhance print quality |
EP0790538B1 (en) | 1996-01-19 | 2001-09-19 | Sharp Kabushiki Kaisha | Image forming apparatus |
US5971526A (en) | 1996-04-19 | 1999-10-26 | Array Printers Ab | Method and apparatus for reducing cross coupling and dot deflection in an image recording apparatus |
US5850588A (en) | 1996-07-10 | 1998-12-15 | Ricoh Company, Ltd. | Image forming apparatus having an improved web type cleaning device for a fixing roller |
NL1003680C2 (en) | 1996-07-25 | 1998-01-28 | Oce Tech Bv | Image printing device. |
US5956064A (en) | 1996-10-16 | 1999-09-21 | Array Printers Publ. Ab | Device for enhancing transport of proper polarity toner in direct electrostatic printing |
US5729817A (en) | 1996-10-17 | 1998-03-17 | Accent Color Sciences, Inc. | Accent printer for continuous web material |
US5966152A (en) | 1996-11-27 | 1999-10-12 | Array Printers Ab | Flexible support apparatus for dynamically positioning control units in a printhead structure for direct electrostatic printing |
US5889542A (en) | 1996-11-27 | 1999-03-30 | Array Printers Publ. Ab | Printhead structure for direct electrostatic printing |
US5959648A (en) | 1996-11-27 | 1999-09-28 | Array Printers Ab | Device and a method for positioning an array of control electrodes in a printhead structure for direct electrostatic printing |
US6012801A (en) | 1997-02-18 | 2000-01-11 | Array Printers Ab | Direct printing method with improved control function |
-
1997
- 1997-02-18 US US08/801,868 patent/US6012801A/en not_active Expired - Fee Related
-
1998
- 1998-02-17 EP EP98910903A patent/EP0961955A1/en not_active Ceased
- 1998-02-17 WO PCT/IB1998/000509 patent/WO1998037461A1/en not_active Application Discontinuation
- 1998-02-17 JP JP53644298A patent/JP2001512382A/en active Pending
-
1999
- 1999-09-30 US US09/409,271 patent/US6176568B1/en not_active Expired - Fee Related
Patent Citations (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3566786A (en) * | 1965-01-29 | 1971-03-02 | Helmut Taufer | Image producing apparatus |
DE1270856B (en) * | 1965-07-19 | 1968-06-20 | Borg Warner | Electrostatic output printer for data processing with type sequences moved in line direction |
JPS4426333B1 (en) * | 1966-09-27 | 1969-11-05 | ||
US3689935A (en) * | 1969-10-06 | 1972-09-05 | Electroprint Inc | Electrostatic line printer |
US3779166A (en) * | 1970-12-28 | 1973-12-18 | Electroprint Inc | Electrostatic printing system and method using ions and toner particles |
US3815145A (en) * | 1972-07-19 | 1974-06-04 | Electroprint Inc | Electrostatic printing system and method using a moving shutter area for selective mechanical and electrical control of charged particles |
DE2653048A1 (en) * | 1976-11-23 | 1978-05-24 | Philips Patentverwaltung | Electrostatic discharge dot printer - has discharge mask arranged between glow discharge electrode and printing paper to define printing area |
US4263601A (en) * | 1977-10-01 | 1981-04-21 | Canon Kabushiki Kaisha | Image forming process |
US4274100A (en) * | 1978-04-10 | 1981-06-16 | Xerox Corporation | Electrostatic scanning ink jet system |
JPS5555878A (en) * | 1978-10-19 | 1980-04-24 | Oki Electric Ind Co Ltd | High-speed printer |
US4353080A (en) * | 1978-12-21 | 1982-10-05 | Xerox Corporation | Control system for electrographic stylus writing apparatus |
JPS5584671A (en) * | 1978-12-22 | 1980-06-26 | Seiko Epson Corp | Ink jet recorder |
JPS5587563A (en) * | 1978-12-27 | 1980-07-02 | Ricoh Co Ltd | Ink jet recording device |
JPS5689576A (en) * | 1979-12-24 | 1981-07-20 | Oki Electric Ind Co Ltd | Nonimpact serial printer |
US4498090A (en) * | 1981-02-18 | 1985-02-05 | Sony Corporation | Electrostatic printing apparatus |
US4382263A (en) * | 1981-04-13 | 1983-05-03 | Xerox Corporation | Method for ink jet printing where the print rate is increased by simultaneous multiline printing |
US4384296A (en) * | 1981-04-24 | 1983-05-17 | Xerox Corporation | Linear ink jet deflection method and apparatus |
JPS5844457A (en) * | 1981-09-11 | 1983-03-15 | Canon Inc | Method and device for image recording |
US4491855A (en) * | 1981-09-11 | 1985-01-01 | Canon Kabushiki Kaisha | Image recording method and apparatus |
GB2108432B (en) | 1981-09-11 | 1986-01-02 | Canon Kk | Electrographic printing |
US4386358A (en) * | 1981-09-22 | 1983-05-31 | Xerox Corporation | Ink jet printing using electrostatic deflection |
US4478510A (en) * | 1981-12-16 | 1984-10-23 | Canon Kabushiki Kaisha | Cleaning device for modulation control means |
US4470056A (en) * | 1981-12-29 | 1984-09-04 | International Business Machines Corporation | Controlling a multi-wire printhead |
US4525727A (en) * | 1982-02-17 | 1985-06-25 | Matsushita Electric Industrial Company, Limited | Electroosmotic ink printer |
JPS58155967A (en) * | 1982-03-11 | 1983-09-16 | Canon Inc | Forming device for picture image |
US4511907A (en) * | 1982-10-19 | 1985-04-16 | Nec Corporation | Color ink-jet printer |
US4491794A (en) * | 1982-10-29 | 1985-01-01 | Gte Automatic Electric Inc. | Hall effect device test circuit |
US4571601A (en) * | 1984-02-03 | 1986-02-18 | Nec Corporation | Ink jet printer having an eccentric head guide shaft for cleaning and sealing nozzle surface |
US4675703A (en) * | 1984-08-20 | 1987-06-23 | Dennison Manufacturing Company | Multi-electrode ion generating system for electrostatic images |
US4717926A (en) * | 1985-11-09 | 1988-01-05 | Minolta Camera Kabushiki Kaisha | Electric field curtain force printer |
JPS62248662A (en) * | 1986-04-22 | 1987-10-29 | Fuji Xerox Co Ltd | Powder image recording method |
US4831394A (en) * | 1986-07-30 | 1989-05-16 | Canon Kabushiki Kaisha | Electrode assembly and image recording apparatus using same |
US4814796A (en) * | 1986-11-03 | 1989-03-21 | Xerox Corporation | Direct electrostatic printing apparatus and toner/developer delivery system therefor |
US4837071A (en) * | 1986-11-25 | 1989-06-06 | Ricoh Company, Ltd. | Information display medium |
US4743926A (en) * | 1986-12-29 | 1988-05-10 | Xerox Corporation | Direct electrostatic printing apparatus and toner/developer delivery system therefor |
US4748453A (en) * | 1987-07-21 | 1988-05-31 | Xerox Corporation | Spot deposition for liquid ink printing |
US5036341A (en) * | 1987-12-08 | 1991-07-30 | Ove Larsson Production Ab | Method for producing a latent electric charge pattern and a device for performing the method |
US5028812A (en) * | 1988-05-13 | 1991-07-02 | Xaar Ltd. | Multiplexer circuit |
EP0345024A2 (en) * | 1988-05-31 | 1989-12-06 | Xerox Corporation | Printing apparatus and toner/developer delivery system therefor |
US4860036A (en) * | 1988-07-29 | 1989-08-22 | Xerox Corporation | Direct electrostatic printer (DEP) and printhead structure therefor |
EP0352997A2 (en) * | 1988-07-29 | 1990-01-31 | Xerox Corporation | Direct electrostatic printer (DEP) and printhead structure therefor |
EP0377208A2 (en) * | 1988-12-23 | 1990-07-11 | Kabushiki Kaisha Toshiba | Apparatus for generating ions using low signal voltage and apparatus for ion recording using low signal voltage |
US4912489A (en) * | 1988-12-27 | 1990-03-27 | Xerox Corporation | Direct electrostatic printing apparatus with toner supply-side control electrodes |
EP0389229A2 (en) * | 1989-03-22 | 1990-09-26 | Matsushita Electric Industrial Co., Ltd. | Image forming apparatus |
US5446478A (en) * | 1989-06-07 | 1995-08-29 | Array Printers Ab | Method and device for cleaning an electrode matrix of an electrographic printer |
US5402158A (en) * | 1989-06-07 | 1995-03-28 | Array Printers Ab | Method for improving the printing quality and repetition accuracy of electrographic printers and a device for accomplishing the method |
US5235354A (en) * | 1989-06-07 | 1993-08-10 | Array Printers Ab | Method for improving the printing quality and repetition accuracy of electrographic printers and a device for accomplishing the method |
US4903050A (en) * | 1989-07-03 | 1990-02-20 | Xerox Corporation | Toner recovery for DEP cleaning process |
US5181050A (en) * | 1989-09-21 | 1993-01-19 | Rastergraphics, Inc. | Method of fabricating an integrated thick film electrostatic writing head incorporating in-line-resistors |
US5307092A (en) * | 1989-09-26 | 1994-04-26 | Array Printers Ab | Image forming device |
US5374949A (en) * | 1989-11-29 | 1994-12-20 | Kyocera Corporation | Image forming apparatus |
US5038159A (en) * | 1989-12-18 | 1991-08-06 | Xerox Corporation | Apertured printhead for direct electrostatic printing |
US5121144A (en) * | 1990-01-03 | 1992-06-09 | Array Printers Ab | Method to eliminate cross coupling between blackness points at printers and a device to perform the method |
US5057855A (en) * | 1990-01-12 | 1991-10-15 | Xerox Corporation | Thermal ink jet printhead and control arrangement therefor |
US5256246A (en) * | 1990-03-05 | 1993-10-26 | Brother Kogyo Kabushiki Kaisha | Method for manufacturing aperture electrode for controlling toner supply operation |
US5148595A (en) * | 1990-04-27 | 1992-09-22 | Synergy Computer Graphics Corporation | Method of making laminated electrostatic printhead |
US5274401A (en) * | 1990-04-27 | 1993-12-28 | Synergy Computer Graphics Corporation | Electrostatic printhead |
US5170185A (en) * | 1990-05-30 | 1992-12-08 | Mita Industrial Co., Ltd. | Image forming apparatus |
US5072235A (en) * | 1990-06-26 | 1991-12-10 | Xerox Corporation | Method and apparatus for the electronic detection of air inside a thermal inkjet printhead |
US5128695A (en) * | 1990-07-27 | 1992-07-07 | Brother Kogyo Kabushiki Kaisha | Imaging material providing device |
US5204697A (en) * | 1990-09-04 | 1993-04-20 | Xerox Corporation | Ionographic functional color printer based on Traveling Cloud Development |
US5229794A (en) * | 1990-10-04 | 1993-07-20 | Brother Kogyo Kabushiki Kaisha | Control electrode for passing toner to obtain improved contrast in an image recording apparatus |
US5095322A (en) * | 1990-10-11 | 1992-03-10 | Xerox Corporation | Avoidance of DEP wrong sign toner hole clogging by out of phase shield bias |
US5386225A (en) * | 1991-01-24 | 1995-01-31 | Brother Kogyo Kabushiki Kaisha | Image recording apparatus for adjusting density of an image on a recording medium |
US5083137A (en) * | 1991-02-08 | 1992-01-21 | Hewlett-Packard Company | Energy control circuit for a thermal ink-jet printhead |
US5329307A (en) * | 1991-05-21 | 1994-07-12 | Mita Industrial Co., Ltd. | Image forming apparatus and method of controlling image forming apparatus |
US5270729A (en) * | 1991-06-21 | 1993-12-14 | Xerox Corporation | Ionographic beam positioning and crosstalk correction using grey levels |
US5477246A (en) * | 1991-07-30 | 1995-12-19 | Canon Kabushiki Kaisha | Ink jet recording apparatus and method |
US5204696A (en) * | 1991-12-16 | 1993-04-20 | Xerox Corporation | Ceramic printhead for direct electrostatic printing |
US5214451A (en) * | 1991-12-23 | 1993-05-25 | Xerox Corporation | Toner supply leveling in multiplexed DEP |
US5237346A (en) * | 1992-04-20 | 1993-08-17 | Xerox Corporation | Integrated thin film transistor electrographic writing head |
US5257045A (en) * | 1992-05-26 | 1993-10-26 | Xerox Corporation | Ionographic printing with a focused ion stream |
US5508723A (en) * | 1992-09-01 | 1996-04-16 | Brother Kogyo Kabushiki Kaisha | Electric field potential control device for an image forming apparatus |
US5477250A (en) * | 1992-11-13 | 1995-12-19 | Array Printers Ab | Device employing multicolor toner particles for generating multicolor images |
US5526029A (en) * | 1992-11-16 | 1996-06-11 | Array Printers Ab | Method and apparatus for improving transcription quality in electrographical printers |
US5625392A (en) * | 1993-03-09 | 1997-04-29 | Brother Kogyo Kabushiki Kaisha | Image forming device having a control electrode for controlling toner flow |
US5515084A (en) * | 1993-05-18 | 1996-05-07 | Array Printers Ab | Method for non-impact printing utilizing a multiplexed matrix of controlled electrode units and device to perform method |
US5414500A (en) * | 1993-05-20 | 1995-05-09 | Brother Kogyo Kabushiki Kaisha | Image recording apparatus |
US5473352A (en) * | 1993-06-24 | 1995-12-05 | Brother Kogyo Kabushiki Kaisha | Image forming device having sheet conveyance device |
US5506666A (en) * | 1993-09-01 | 1996-04-09 | Fujitsu Limited | Electrophotographic printing machine having a heat protecting device for the fuser |
US5677717A (en) * | 1993-10-01 | 1997-10-14 | Brother Kogyo Kabushiki Kaisha | Ink ejecting device having a multi-layer protective film for electrodes |
US5453768A (en) * | 1993-11-01 | 1995-09-26 | Schmidlin; Fred W. | Printing apparatus with toner projection means |
US5805185A (en) * | 1993-12-24 | 1998-09-08 | Brother Kogyo Kabushiki Kaisha | Back electrode control device and method for an image forming apparatus which varies an electric potential applied to the back electrode based on the number of driven aperture electrodes |
EP0660201A2 (en) * | 1993-12-27 | 1995-06-28 | Sharp Kabushiki Kaisha | Image forming apparatus |
US5640185A (en) * | 1994-03-02 | 1997-06-17 | Brother Kogyo Kabushiki Kaisha | Image recording apparatus having aperture electrode with tension application means and tension increasing means and opposing electrode for applying toner image onto image receiving sheet |
US5666147A (en) * | 1994-03-08 | 1997-09-09 | Array Printers Ab | Method for dynamically positioning a control electrode array in a direct electrostatic printing device |
US5650809A (en) * | 1994-03-28 | 1997-07-22 | Brother Kogyo Kabushiki Kaisha | Image recording apparatus having aperture electrode with dummy electrodes for applying toner image onto image receiving sheet |
US5558969A (en) * | 1994-10-03 | 1996-09-24 | Agfa-Gevaert, N.V. | Electro(stato)graphic method using reactive toners |
US5617129A (en) * | 1994-10-27 | 1997-04-01 | Xerox Corporation | Ionographic printing with a focused ion stream controllable in two dimensions |
US5450115A (en) * | 1994-10-31 | 1995-09-12 | Xerox Corporation | Apparatus for ionographic printing with a focused ion stream |
US5600355A (en) * | 1994-11-04 | 1997-02-04 | Sharp Kabushiki Kaisha | Color image forming apparatus by direct printing method with flying toner |
EP0720072A2 (en) * | 1994-12-27 | 1996-07-03 | Sharp Kabushiki Kaisha | Image forming apparatus |
US5818480A (en) * | 1995-02-14 | 1998-10-06 | Array Printers Ab | Method and apparatus to control electrodes in a print unit |
EP0743572A1 (en) * | 1995-05-15 | 1996-11-20 | Agfa-Gevaert N.V. | A device for direct electrostatic printing (DEP) comprising an intermediate image receiving member |
US5614932A (en) * | 1995-05-16 | 1997-03-25 | Brother Kogyo Kabushiki Kaisha | Image forming apparatus |
EP0752317A1 (en) * | 1995-07-06 | 1997-01-08 | Hewlett-Packard Company | Toner projection printer with means to reduce toner spreading |
EP0764540A2 (en) * | 1995-09-22 | 1997-03-26 | Sharp Kabushiki Kaisha | Toner flight controlling method for an image forming aparatus |
US5708464A (en) * | 1995-11-09 | 1998-01-13 | Agfa-Gevaert N.V. | Device for direct electrostatic printing (DEP) with "previous correction" |
US5847733A (en) * | 1996-03-22 | 1998-12-08 | Array Printers Ab Publ. | Apparatus and method for increasing the coverage area of a control electrode during direct electrostatic printing |
US5818490A (en) * | 1996-05-02 | 1998-10-06 | Array Printers Ab | Apparatus and method using variable control signals to improve the print quality of an image recording apparatus |
US5774159A (en) * | 1996-09-13 | 1998-06-30 | Array Printers Ab | Direct printing method utilizing continuous deflection and a device for accomplishing the method |
Non-Patent Citations (6)
Title |
---|
"The Best of Both Worlds," Brochure of TonerJet® by Array Printers, The Best of Both Worlds, 1990. |
E. Bassous, et al., "The Fabrication of High Precision Nozzles by the Anisotropic Etching of (100) Silicon", J. Electrochem. Soc.: Solid-State Science and Technology, vol. 125, No. 8, Aug. 1978, pp. 1321-1327. |
E. Bassous, et al., The Fabrication of High Precision Nozzles by the Anisotropic Etching of (100) Silicon , J. Electrochem. Soc.: Solid State Science and Technology , vol. 125, No. 8, Aug. 1978, pp. 1321 1327. * |
Jerome Johnson, "An Etched Circuit Aperture Array for TonerJet® Printing", IS&T's Tenth International Congress on Advances in Non-Impact Printing Technologies, 1994, pp. 311-313. |
Jerome Johnson, An Etched Circuit Aperture Array for TonerJet Printing , IS & T s Tenth International Congress on Advances in Non Impact Printing Technologies , 1994, pp. 311 313. * |
The Best of Both Worlds, Brochure of TonerJet by Array Printers, The Best of Both Worlds , 1990. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6176568B1 (en) | 1997-02-18 | 2001-01-23 | Array Printers Ab | Direct printing method with improved control function |
US6283583B1 (en) * | 1997-07-28 | 2001-09-04 | Sharp Kabushiki Kaisha | Image forming apparatus having float electrode provided to make uniform electric field |
US6296347B1 (en) * | 1998-08-19 | 2001-10-02 | Minolta Co., Ltd. | Direct electrostatic recording apparatus with modified electrode shape for preventing uneven image density |
US6322199B1 (en) * | 1998-08-19 | 2001-11-27 | Minolta Co., Ltd. | Direct electrostatic printing apparatus with electrode for improved image gradation control |
Also Published As
Publication number | Publication date |
---|---|
EP0961955A1 (en) | 1999-12-08 |
US6176568B1 (en) | 2001-01-23 |
JP2001512382A (en) | 2001-08-21 |
WO1998037461A1 (en) | 1998-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5774159A (en) | Direct printing method utilizing continuous deflection and a device for accomplishing the method | |
US5984456A (en) | Direct printing method utilizing dot deflection and a printhead structure for accomplishing the method | |
US5515084A (en) | Method for non-impact printing utilizing a multiplexed matrix of controlled electrode units and device to perform method | |
US5847733A (en) | Apparatus and method for increasing the coverage area of a control electrode during direct electrostatic printing | |
US5453768A (en) | Printing apparatus with toner projection means | |
WO1997035725A9 (en) | Method for improving the printing quality of an image recording apparatus and device for accomplishing the method | |
JPH1069132A (en) | Printing quality improving method of image recorder and the image recorder | |
US6109730A (en) | Direct printing method with improved control function | |
US6012801A (en) | Direct printing method with improved control function | |
US6132029A (en) | Direct printing method with improved control function | |
US5971526A (en) | Method and apparatus for reducing cross coupling and dot deflection in an image recording apparatus | |
WO1998024635A1 (en) | A printhead structure for improved dot size control in direct electrostatic image recording devices | |
EP0963852B1 (en) | A method of printing in a device for direct electrostatic printing comprising a printhead structure with deflection electrodes and a means for electrically controlling said deflection electrodes. | |
US6081283A (en) | Direct electrostatic printing method and apparatus | |
US6017115A (en) | Direct printing method with improved control function | |
EP0963853B1 (en) | A method of printing in a device for direct electrostatic printing method comprising a printhead structure with deflection electrodes and a means for electrically controlling said deflection electrodes | |
EP0983858B1 (en) | A method of printing in a device for direct electrostatic printing comprising a printhead structure with deflection electrodes and a means for electrically controlling said deflection electrodes | |
US6227655B1 (en) | DEP (direct electrostatic printing) device maintaining a constant distance between printhead structure and toner delivery means | |
JPH11208011A (en) | Method and apparatus for forming image | |
US6097410A (en) | Method and apparatus for forming an image on a recording medium wherein ink emission is accurately controlled by varying the surface level of chargeable developer ink | |
WO2002040276A1 (en) | Direct electrostatic printing method and apparatus | |
WO2002024461A1 (en) | Printhead structure and image recording device including such printhead structure | |
WO2001087628A1 (en) | Direct electrostatic printing method and apparatus | |
JP2000062243A (en) | Print head structure and method for printing in direct electrostatic printing apparatus | |
JP2001088341A (en) | Image forming method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ARRAY PRINTERS AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NILSSON, DANIEL;REEL/FRAME:008667/0689 Effective date: 19970805 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20040111 |