US5985347A - Cheese processing vat and method - Google Patents
Cheese processing vat and method Download PDFInfo
- Publication number
- US5985347A US5985347A US09/047,708 US4770898A US5985347A US 5985347 A US5985347 A US 5985347A US 4770898 A US4770898 A US 4770898A US 5985347 A US5985347 A US 5985347A
- Authority
- US
- United States
- Prior art keywords
- panels
- vat
- panel
- agitator
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 235000013351 cheese Nutrition 0.000 title claims abstract description 46
- 238000012545 processing Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims description 9
- 238000003756 stirring Methods 0.000 claims description 45
- 238000005520 cutting process Methods 0.000 claims description 43
- 239000005862 Whey Substances 0.000 claims description 14
- 102000007544 Whey Proteins Human genes 0.000 claims description 14
- 108010046377 Whey Proteins Proteins 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 230000001154 acute effect Effects 0.000 claims description 5
- 230000006872 improvement Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims 6
- 239000002994 raw material Substances 0.000 claims 1
- 238000010276 construction Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 235000013305 food Nutrition 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 240000002129 Malva sylvestris Species 0.000 description 3
- 235000006770 Malva sylvestris Nutrition 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000012809 cooling fluid Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 235000021057 semi-liquid food Nutrition 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 235000004213 low-fat Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01J—MANUFACTURE OF DAIRY PRODUCTS
- A01J25/00—Cheese-making
- A01J25/06—Devices for dividing curdled milk
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/05—Stirrers
- B01F27/11—Stirrers characterised by the configuration of the stirrers
- B01F27/13—Openwork frame or cage stirrers not provided for in other groups of this subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F27/00—Mixers with rotary stirring devices in fixed receptacles; Kneaders
- B01F27/60—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
- B01F27/70—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
- B01F27/701—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms comprising two or more shafts, e.g. in consecutive mixing chambers
- B01F27/706—Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms comprising two or more shafts, e.g. in consecutive mixing chambers with all the shafts in the same receptacle
Definitions
- the present invention relates generally to the field of food processing and related food processing equipment and, more particularly, to the processing of semi-liquid food products, such as cheese.
- the cheese processing vat of the present invention and the method by which it operates preferably utilize a closed vessel in which generally cylindrical wall portions are oriented horizontally and enclosed with common end walls, the generally cylindrical wall sections having rotatable agitators which are mounted to sweep a common volume therebetween.
- U.S. Pat. No. 4,108,058 discloses a fully enclosed cheese making vat in the form of a horizontal cylindrical vessel with a single horizontal shaft carrying the combined cutting and stirring paddles.
- the construction of the agitator paddle results in less damage to the food product and, in the case of cheese, results in minimum release of butterfat and cheese fines into the whey.
- a major disadvantage of this design is that the whole contents of the vat tend to rotate during cutting and in effect move away from the knife blades. This, together with a very high velocity gradient between the agitator blades near to the shaft and those on the periphery, makes it very difficult to achieve an evenly cut coagulum and can cause problems of product variability.
- U.S. Pat. No. 4,989,504 describes a fully enclosed cheese making vat in the form of a plurality of horizontally arranged partial cylindrical sections each with a separate shaft-mounted agitator, such that the distance between agitator shafts is greater than the radius of the swept volume created by the rotation of the agitator.
- This arrangement is an improvement over the single shaft horizontal vat with regard to rotation of the vat contents during cutting, but the problem of velocity gradient between the agitator paddle near to the shaft and that at the periphery is only slightly reduced.
- the low agitator speeds that are typically used with this type of cheese vat give rise to very poor agitation adjacent to the agitator shaft and can also cause a significant problem with product congealing around the shaft.
- the vat construction described in the above U.S. Pat. No. 4,989,504 includes an agitator comprising a series of individual paddles attached to the shafts in staggered rows or in a row wrapped spirally around the shafts.
- a resultant problem with this arrangement is the extreme difficulty encountered when entering the vat for maintenance or hand cleaning due to the impossibility of parking the agitator paddles in a position that allows easy and safe movement around the inside of the vat.
- each agitator is disposed centrally within each wall portion, the distance between the axes being smaller than the radius of the swept volume created by rotation of the agitator so that a common portion of the swept volume for each axis intersects and overlaps the swept volume of the adjacent axis.
- the overall agitation pattern is such that the contents of the vat will be induced to rotate in the same direction as the agitator with the contents subjected to significant cross-cutting action and other interactions in the zone where the agitator panels overlap.
- dual agitator horizontal vats of the types described above all utilize agitators which rotate in the same direction, such that one agitator rotates through a common chamber volume between agitators in one direction while the following agitator rotates through that space in the opposite direction. It was assumed that the processing improvements, both in stirring and cutting, provided by the double vertical vat constructions would automatically occur in similar vat constructions which were horizontally oriented.
- Curd motion tends to slow and stop and the curds start to undesirably mat together, unless additional mechanical energy is applied, such as increasing the speed of agitator rotation. Such increased velocity tends to over-agitate the cheese, causing solids loss of cheese particles into the whey. Such action is directly contrary to the desirable goal of keeping the cheese curds in suspension and evenly distributed at the lowest rpm.
- the agitator panel on the side of the vat providing the lift is overworked while the opposite agitator panel is under utilized. This often requires periodic reversal of the agitator to help move the curd to the other side. Such reverse movement is very inefficient because the cutting blades are used rather than the stirring edges and, in addition, the blade cause undesirable additional cutting of the curd and bleeding of whey therefrom.
- Each agitator panel includes a conventional cutting face having a plurality of sharp cutting edges and an opposite stirring face having a plurality of blunt stirring edges.
- a stirring/cutting regime may be selected that is particularly suited to the cheese product being processed.
- the density of the curds versus the whey varies considerably depending on the fat content of the cheese.
- Lower fat cheeses typically have a curd density which is greater than the density of the whey (i.e. a curd density greater than 1.0).
- high fat cheeses (such as blue cheese) will have a curd density less than 1.0.
- High density curds may be better processed by stirring with the agitator panels moving upwardly through the common volume, whereas cheese curds with a density less than 1.0 may be better stirred by a panel mounting in which the stirring faces move downwardly through the common volume.
- Similar strategies may be applied with respect to panel orientation for cutting. In any event, these strategies are unavailable in prior art vats in which the agitator panels are rotated in the same direction.
- agitator panels which comprise a framework of intersecting blades including parallel generally radially extending blades and parallel generally axially extending blades, where the radially and axially extending blades are respectively non-perpendicular.
- the blades are preferably generally flat plates, each including a cutting edge and an opposite stirring edge.
- Selected blades may include deflector plates which extend from the stirring edges of the blades.
- the deflector plates typically include face portions which lie in planes disposed at acute angles with respect to the planes of the blades.
- the axes of rotation of the panels are spaced at a distance less than the radius of the volumes swept by the panels such that a radially outer edge portion of one panel passes during rotation through the common volume into and through the space between a radially inner edge portion of the other panel and the axis of rotation of that other panel.
- one agitator panel is mounted to rotationally trail the other panel by about 90°.
- the panel may be mounted to rotationally trail the other panel by any angle which provided sufficient clearance to avoid agitator collision, up to about 180°.
- the present invention includes a method for processing cheese in a vat of the type having a pair of interconnected generally cylindrical wall portions with horizontally disposed axes, which axes are positioned in parallel horizontally spaced relation, and common opposite end walls which form, with the cylindrical wall portions, an enclosed vat having a generally oval cross-section.
- the method comprises the steps of rotatably mounting an open-framed agitator panel on the axis of each wall portion to sweep a generally cylindrical volume, spacing the axes of rotation of the panels to provide a common volume between said axes; driving the panels in opposite rotational directions and causing the panels to move through said common volume in the same direction; and, causing one of the panels to trail the other during movement through the common volume.
- the preferred method also includes the steps of providing each panel with a cutting face having a plurality of sharp cutting edges and an opposite stirring face having a plurality of blunt stirring edges; and mounting the panels to present the respective stirring faces in one direction of movement through said common volume and to present the respective cutting faces in the opposite direction of movement through said common volume.
- FIG. 1 is an end elevation of a cheese processing vat of a type which may be used in practicing the present invention with a portion of one end wall broken away to show the agitator panels mounted and rotationally oriented in accordance with the prior art.
- FIG. 2 is a horizontal sectional view through the processing vat shown in FIG. 1 and showing the agitator panels mounted and rotationally oriented in accordance with a preferred embodiment of the present invention.
- FIGS. 3-5 are end elevation views similar to FIG. 1, but showing the agitator panel orientation and rotation in various positions in accordance with the present invention.
- the food processing vat 10 of a type which may be used with the present invention is shown in FIGS. 1 and 2.
- the vat is completely enclosed and is formed from a pair of curved wall portions 11 which are positioned with their longitudinal axes 12 disposed generally horizontally and in parallel horizontally spaced relation.
- the axial ends of the wall portions 11 are interconnected and enclosed by flat opposite end walls 13 and the surfaces of the wall portions 11 are interconnected with generally tangentially disposed upper and lower walls 14 and 15, respectively.
- the vat 10 has a generally oval cross section when viewed in a plane perpendicular to the axes 12.
- each of the curved wall portions 11 is constructed of a pair of interconnected and oppositely extending frustoconical surface portions 16.
- the frustoconical surface portions are interconnected along a central circular apex 17 which lies in a plane perpendicular to the axes 12 and defines the region of maximum vat radius with respect to each of the axes 12.
- the upper wall 14 and lower wall 15 each comprise a pair of oppositely sloping planar wall portions 18 interconnected along abutting edges to form central linear ridges 20 interconnecting the circular apices 17 at the top and bottom of the vat.
- the wall portions 18 also preferably slope in the direction of the central linear ridge 20 to form central lateral ridges 21.
- This construction is particularly useful for the lower wall 15 where a central apex 22, formed at the intersection of the lower central linear ridge 20 and the lateral ridges 21, provides a convenient position for a drain outlet 23.
- the vat is mounted on a supporting frame 24 with the central drain outlet 23 establishing the lowermost point of the vat.
- the supporting frame 24 includes a side frame member 25 which supports a drive mechanism 26 for the vat, as will be described hereinafter.
- a pair of agitator panels 27 are rotatably mounted within the vat 10, each panel 27 having its rotational axis coincident with a horizontal axis 12 of one of the compound frustoconical wall portions 11.
- Each of the panels 27 is constructed of an open framework of intersecting blades comprising generally flat plates.
- the blades include a number of parallel generally outwardly extending blades 31 and a number of parallel generally longitudinally extending blades 32 which are preferably arranged such that the blades 31 and 32 are respectively non-perpendicular.
- the framework of intersecting blades comprises primarily a plurality of frame segments of parallelogram shape.
- the generally radially extending blades 31 are arranged in a pair of radial blade groups 34 with one of the groups positioned on each side of a central vertical plane perpendicular to the panel axis 12.
- the radially extending blades 31 of each blade group 34 are set at an acute angle to the vertical central plane and are mutually divergent in a radially outward direction.
- the generally axially extending blades 32 include an outermost blade 35 which comprises the radially outer edge of the agitator panel 27 and an innermost blade 36 which comprises the radially inner edge of the panel.
- a number of intermediate axially extending blades 37 are generally equally spaced between and parallel to the outermost and innermost blades 35 and 36.
- the rotating agitator panel 27 is constructed to sweep in closely spaced relation to the frustoconical surface portions 16 of the vat, and also to provide an intersecting overlap in the common volume 39 between axes 12 which is swept by the rotating agitator panels.
- the outermost and innermost blades 35 and 36 respectively, have a shallow V shape each of which defines a central blade apex 38 which points radially outwardly, allowing the outermost blade 35 to conform closely to the shape of the interior of the frustoconical surface portions 16 of the vat.
- Each agitator panel 27 includes a pair of radial support arms 40 by which the panel is mounted for rotation.
- One end of one of the support arms includes a first hub 41 rotatably supported by a bearing 42 on one of the end walls 13.
- the end of the other support arm 40 includes a second hub 43 which is rotatably supported to turn in a rotary seal in the other end wall 13 and is also attached to a stub shaft 45 extending from a right angle gear box 46 forming part of the drive mechanism 26.
- the opposite outer ends of the support arms 40 are secured to the opposite ends of the outermost blade 35.
- the rotational axes 12 of the agitator panels 27 are spaced horizontally at a distance which is less than the radius of rotation (or the radius of the volume swept) by the panels as they rotate. Therefore, to prevent contact between the rotating panels, the innermost blade 36 is spaced radially from the axis of panel rotation by an amount sufficient to accommodate an overlap in the respective volumes swept by each panel as it rotates beyond the axis of the adjacent panel. As a result, the radially outer edge portion of one panel, defined by the position of the outermost blade 35, will pass during rotation through the space between the innermost blade 36 and rotational axis 12 of the other panel.
- the agitator panel blades 27 are constructed to provide a cutting function when the panels are rotated in one direction and a stirring function when the panels are rotated in the opposite direction.
- each of the blades has a sharp cutting edge 47 on one side of the panel, which cutting edges are preferably coplanar, and a blunt stirring edge 48 on the other side of the panel, which stirring edges may be coplanar, but are not necessarily.
- each radial support arm 40 includes integral deflector plates 50 each of which includes a face portion 51 bent out of the plane of the blade on which it is formed and disposed at an acute angle with respect thereto.
- the deflector plates 50 extend from the stirring edge face of the agitator panel 27 and the free edges thereof are blunt in the same manner as the stirring edges 48.
- a pair of inner deflector plates 52 are also provided on shortened radial blades 53 mounted near the intersections of the radial support arms 40 and the opposite ends of the innermost blade 36.
- FIG. 1 shows the mounting and rotational orientation of the agitator panels 27 in accordance with prior art teaching.
- the panels are mounted to rotate in the same direction as are rotationally oriented in the same position.
- the stirring faces 48 lead as the panels are rotated together in the clockwise direction. It is this mode of operation which tends to cause the curd to be moved toward the left-hand cylindrical section 11 slow from its generally clockwise rotational movement and pile up. The result is that the curd will tend to undesirably mat and, to prevent matting, the rotational speed of the agitator panels must be increased or the rotational direction reversed, both of which are undesirable.
- the agitator panel orientation and rotation strategy of the present invention have been found to permit operation of the cheese vat in the stirring mode in a manner which meets the desirable goal of keeping the cheese particles in suspension and evenly distributed throughout the vat at the lowest rotational speed.
- the key to such improved operation is believed to lie in the unique interaction of the counterrotating agitator panels 27 as they rotate in succession through the common volume of the vat between the rotational axes 12 of the panels. Referring particularly to FIGS.
- the agitator panels 27 are rotationally oriented in a manner different from the rotational orientation of the panels in the prior art as shown in FIG. 1 where the panels are identically oriented and rotate in the same direction.
- counterrotation of the agitator panels, reverse positioning of the cutting and stirring faces of one panel with respect to the other, and the offset in the relative rotational positions of the panels all serve to distinguish the construction and operation of the subject vat from the prior art and effectively overcome the operational deficiencies in the prior art discussed above.
- the agitator panels 27 are mounted to present their stirring faces 48 to lead, as the panels rotate upwardly in close succession through the common volume 39.
- the agitator panels 27 utilize an open framework construction and, because the rotational axes 12 of the panels 27 are spaced horizontally at a distance which is less than the radius of rotation a (the radius of the volume swept), as described in detail above, care must be taken in the rotational mounting of the panels to avoid collision as they counterrotate. In particular, one panel must be set to rotationally lag behind the other, as may best be seen in FIGS. 4 and 5. In FIG. 4 it may be seen that the right hand agitator panel 27 passes through a common volume 39 with a rotational lead over the left-hand agitator by about 87°.
- the deflector plates 50 trail when the agitator panels 27 are being rotated in the cutting direction. Although the movement of the deflector plates through the mass of curds and whey is quite smooth in the cutting direction, the angled offset face portions 51 nevertheless contact the coagulated mass and provide beneficial movement of the mass in both the radial and axial directions. This enhanced movement is particularly important to eliminate tracking of the cutting blades 30 through essentially the same cuts in succeeding revolutions. If tracking occurs, the mass will tend to be cut into narrow slivers instead of the larger and more desirable cubical masses. When rotation of the agitator panels is reversed for stirring, the deflector plates 50 also provide the same dual direction flow in both radial and axial directions to better enhance the uniformity of the cut mass.
- the cheese is also typically heated during stirring and the unique angled orientation of the deflector plates assists greatly in removing the warmer mass from the heated side walls of the vat and replacing it with cooler mass from the interior.
- Substantially the entire vat may be enclosed by an outer wall 54 which defines, with the generally cylindrical wall portions 11, the end walls 13 and the lower wall 15, a heating and cooling jacket 55.
- the upper wall 14 is not enclosed by the outer wall 54 and this unjacketed area is generally above the level of the liquid and semi-liquid materials being processed.
- the heating and cooling jacket 55 may be supplied with a cooling fluid, hot water or steam and, by substantially enclosing the entire vat in the heating and cooling jacket 55, combined with the unique radial and axial flow induced by the angled deflector plates 50, most effective and efficient cooking of the cheese mass or other temperature control may be attained.
- the jacket portions adjacent the end walls 13 may be separated from the jacket portions surrounding the generally cylindrical wall portions, so they may be separately supplied with heating or cooling fluid to provide even greater selectivity in the control of temperature.
- the drive mechanism 26 includes an electric motor 56 driving a reducer 57 which, in turn, is coupled to the right angle gear boxes 46 for the stub shafts 45.
- the drive mechanism 26 may be operated to provide a reciprocal or oscillating agitator panel movement to enhance intermediate draw-off of whey during the processing.
- the agitator panels may be driven to oscillate through acute angles below the horizontal just sufficient to prevent the mass from matting while surface liquid is drawn off.
- a strainer apparatus 58 may be operatively attached to the upper wall 14 of the vat to be lowered below the upper level 60 of the whey, while the agitator panels 27 are stationary or are being oscillated in the lower portion of the vat, to permit whey to be drawn off while excluding solids.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Husbandry (AREA)
- Environmental Sciences (AREA)
- Dairy Products (AREA)
- Food-Manufacturing Devices (AREA)
Abstract
Description
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/047,708 US5985347A (en) | 1998-03-25 | 1998-03-25 | Cheese processing vat and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/047,708 US5985347A (en) | 1998-03-25 | 1998-03-25 | Cheese processing vat and method |
Publications (1)
Publication Number | Publication Date |
---|---|
US5985347A true US5985347A (en) | 1999-11-16 |
Family
ID=21950488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/047,708 Expired - Lifetime US5985347A (en) | 1998-03-25 | 1998-03-25 | Cheese processing vat and method |
Country Status (1)
Country | Link |
---|---|
US (1) | US5985347A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6458393B1 (en) * | 1999-01-27 | 2002-10-01 | Kraft Foods, Inc. | Cottage cheese having porous curd |
US6468570B1 (en) | 2001-09-14 | 2002-10-22 | Kraft Foods Holdings, Inc. | Methods and apparatus for making precise weight cheese products |
US6482460B1 (en) * | 2002-01-11 | 2002-11-19 | Hosokawa Bepex Corporation | Method and apparatus for processing cottage cheese |
US20030200873A1 (en) * | 2002-04-24 | 2003-10-30 | Joseph Abler | Vortex cheese processing apparatus and method |
US20110045131A1 (en) * | 2006-09-01 | 2011-02-24 | Relco Unisystems Corporation | Process and system for cooking cheese with a substantially invariable energy transfer |
US8783637B2 (en) | 2010-04-19 | 2014-07-22 | Cheese & Whey Systems, Inc. | Temporary shaft support system |
US8820224B2 (en) | 2010-04-19 | 2014-09-02 | Cheese & Whey Systems, Inc. | Food processing vat with heat exchangers |
US9055730B2 (en) | 2010-04-19 | 2015-06-16 | Cheese & Whey Systems, Inc. | Food processing vat with zoned temperature control |
US9073019B2 (en) | 2010-04-19 | 2015-07-07 | Cheese & Whey Systems, Inc. | Blade arrangement for a food processing vat |
WO2017085211A1 (en) | 2015-11-20 | 2017-05-26 | Tetra Laval Holdings & Finance S.A. | Apparatus for producing a food product |
US20170181444A1 (en) * | 2015-12-28 | 2017-06-29 | Tetra Laval Holdings & Finance S.A. | Apparatus for producing a food product |
US10519415B2 (en) | 2013-12-10 | 2019-12-31 | Abec, Inc. | Attachment device for single use containers |
US11623200B2 (en) | 2017-10-03 | 2023-04-11 | Abec, Inc. | Reactor systems |
US12064639B2 (en) | 2018-03-22 | 2024-08-20 | Greatbatch Ltd. | Electrical connection for an AIMD utilizing an anisotropic conductive layer |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3858855A (en) * | 1972-11-17 | 1975-01-07 | Dec Int | Food processing vat |
US3988011A (en) * | 1975-09-18 | 1976-10-26 | Kusel Equipment Company | Food processing apparatus |
US4108058A (en) * | 1975-04-18 | 1978-08-22 | Alfa-Laval Ab | Cheese-making apparatus |
US4206880A (en) * | 1978-05-23 | 1980-06-10 | Mauri Brother & Thomson (N.Z.) Limited | Food processing apparatus |
US4938424A (en) * | 1989-08-08 | 1990-07-03 | Damrow Company, Inc. | Food processing vat |
US4989504A (en) * | 1988-11-09 | 1991-02-05 | Sherping Systems, Inc. | Food processing vat |
US5178060A (en) * | 1991-11-14 | 1993-01-12 | Damrow Company | Food processing vat with contoured bottom and mated agitator blade |
US5513559A (en) * | 1995-05-18 | 1996-05-07 | Damrow Company | Food processing vat |
-
1998
- 1998-03-25 US US09/047,708 patent/US5985347A/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3858855A (en) * | 1972-11-17 | 1975-01-07 | Dec Int | Food processing vat |
US4108058A (en) * | 1975-04-18 | 1978-08-22 | Alfa-Laval Ab | Cheese-making apparatus |
US3988011A (en) * | 1975-09-18 | 1976-10-26 | Kusel Equipment Company | Food processing apparatus |
US4206880A (en) * | 1978-05-23 | 1980-06-10 | Mauri Brother & Thomson (N.Z.) Limited | Food processing apparatus |
US4989504A (en) * | 1988-11-09 | 1991-02-05 | Sherping Systems, Inc. | Food processing vat |
US4938424A (en) * | 1989-08-08 | 1990-07-03 | Damrow Company, Inc. | Food processing vat |
US5178060A (en) * | 1991-11-14 | 1993-01-12 | Damrow Company | Food processing vat with contoured bottom and mated agitator blade |
US5513559A (en) * | 1995-05-18 | 1996-05-07 | Damrow Company | Food processing vat |
US5606907A (en) * | 1995-05-18 | 1997-03-04 | Damrow Company | Food processing vat |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6458393B1 (en) * | 1999-01-27 | 2002-10-01 | Kraft Foods, Inc. | Cottage cheese having porous curd |
US6468570B1 (en) | 2001-09-14 | 2002-10-22 | Kraft Foods Holdings, Inc. | Methods and apparatus for making precise weight cheese products |
US6482460B1 (en) * | 2002-01-11 | 2002-11-19 | Hosokawa Bepex Corporation | Method and apparatus for processing cottage cheese |
WO2003059045A1 (en) * | 2002-01-11 | 2003-07-24 | Hosokawa Bepex Corporation | Method and apparatus for processing cottage cheese |
US20030200873A1 (en) * | 2002-04-24 | 2003-10-30 | Joseph Abler | Vortex cheese processing apparatus and method |
US20110045131A1 (en) * | 2006-09-01 | 2011-02-24 | Relco Unisystems Corporation | Process and system for cooking cheese with a substantially invariable energy transfer |
US8783637B2 (en) | 2010-04-19 | 2014-07-22 | Cheese & Whey Systems, Inc. | Temporary shaft support system |
US8820224B2 (en) | 2010-04-19 | 2014-09-02 | Cheese & Whey Systems, Inc. | Food processing vat with heat exchangers |
US9055730B2 (en) | 2010-04-19 | 2015-06-16 | Cheese & Whey Systems, Inc. | Food processing vat with zoned temperature control |
US9073019B2 (en) | 2010-04-19 | 2015-07-07 | Cheese & Whey Systems, Inc. | Blade arrangement for a food processing vat |
US9848616B2 (en) | 2010-04-19 | 2017-12-26 | Custom Fabricating & Repair, Inc. | Method of controlling temperature zones in food processing vat |
EP2377390B2 (en) † | 2010-04-19 | 2017-06-14 | Cheese Systems, Inc. | Food processing vat with zoned temperature control |
US10278541B2 (en) | 2010-04-19 | 2019-05-07 | Custom Fabricating & Repair, Inc. | Blade arrangement for a food processing vat |
US10519415B2 (en) | 2013-12-10 | 2019-12-31 | Abec, Inc. | Attachment device for single use containers |
US11168296B2 (en) | 2013-12-10 | 2021-11-09 | Abec, Inc. | Attachment device for single use containers |
US11649426B2 (en) | 2013-12-10 | 2023-05-16 | Abec, Inc. | Attachment device for single use containers |
US11976264B2 (en) | 2013-12-10 | 2024-05-07 | Abec, Inc. | Attachment device for single use containers |
WO2017085211A1 (en) | 2015-11-20 | 2017-05-26 | Tetra Laval Holdings & Finance S.A. | Apparatus for producing a food product |
US20170181444A1 (en) * | 2015-12-28 | 2017-06-29 | Tetra Laval Holdings & Finance S.A. | Apparatus for producing a food product |
US11623200B2 (en) | 2017-10-03 | 2023-04-11 | Abec, Inc. | Reactor systems |
US12064639B2 (en) | 2018-03-22 | 2024-08-20 | Greatbatch Ltd. | Electrical connection for an AIMD utilizing an anisotropic conductive layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5985347A (en) | Cheese processing vat and method | |
AU626502B2 (en) | Food processing vat | |
US4321860A (en) | Closed cheese making vat with recirculating whey | |
US2917827A (en) | Continuous flow cheese making apparatus | |
JP2507839B2 (en) | Stirrer | |
US5606907A (en) | Food processing vat | |
JPH07143852A (en) | Conche | |
EP0830889B1 (en) | Conical mixing device comprising at least one mixing screw and a fast rotating horizontal rotor on a vertical drive shaft | |
CA1145230A (en) | Apparatus for disintegrating and mixing foodstuffs | |
US5178060A (en) | Food processing vat with contoured bottom and mated agitator blade | |
US4938424A (en) | Food processing vat | |
US4050369A (en) | Cheese vat | |
JP3149065B2 (en) | Oblique stirrer | |
US2564715A (en) | Continuous apparatus for making butter | |
US6482460B1 (en) | Method and apparatus for processing cottage cheese | |
CN212087921U (en) | Take ball-milling function's heat preservation jar for food production | |
US5178459A (en) | Tank with a double stirring system, primarily a curdling tank | |
CN207722655U (en) | A kind of flavor of raw material emulsifying device | |
CN108620010A (en) | A kind of reaction kettle for fixed-end forces | |
CN218056731U (en) | A ejection of compact cooling system for emulsifier | |
RU2790133C1 (en) | Butter making machine | |
RU2787199C1 (en) | Butter churn | |
CN218393322U (en) | Blendor for feed processing | |
US12225915B2 (en) | System and method for mixing of product | |
CN215917230U (en) | Little algae fodder preparation facilities for freshwater fish is bred |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DAMROW COMPANY, INC., WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EJNIK, STEPHEN J.;REEL/FRAME:009301/0731 Effective date: 19980629 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: TUCHENHAGEN-DAMROW, LLC, WISCONSIN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DAMROW COMPANY, INC.;REEL/FRAME:010461/0407 Effective date: 19991201 |
|
REMI | Maintenance fee reminder mailed | ||
REIN | Reinstatement after maintenance fee payment confirmed | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20031116 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES FILED (ORIGINAL EVENT CODE: PMFP); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PMFG); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
PRDP | Patent reinstated due to the acceptance of a late maintenance fee |
Effective date: 20050926 |
|
AS | Assignment |
Owner name: CARLISLE MANAGEMENT COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TUCHENHAGEN-DAMROW, LLC;REEL/FRAME:018490/0332 Effective date: 20000320 Owner name: CARLISLE PROCESS SYSTEMS, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CARLISLE MANAGEMENT COMPANY;REEL/FRAME:018490/0343 Effective date: 20061108 |
|
AS | Assignment |
Owner name: TUCHENHAGEN-DAMROW, LLC, WISCONSIN Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:DAMROW COMPANY, INC.;REEL/FRAME:018545/0970 Effective date: 20061121 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: TETRA LAVAL HOLDINGS & FINANCE S.A., SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CARLISLE PROCESS SYSTEMS, INC.;REEL/FRAME:019733/0430 Effective date: 20070701 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
RR | Request for reexamination filed |
Effective date: 20130830 |
|
B1 | Reexamination certificate first reexamination |
Free format text: THE PATENTABILITY OF CLAIMS 1-12 IS CONFIRMED. |