US5884252A - Method of and apparatus for coding speech signal - Google Patents
Method of and apparatus for coding speech signal Download PDFInfo
- Publication number
- US5884252A US5884252A US08/657,660 US65766096A US5884252A US 5884252 A US5884252 A US 5884252A US 65766096 A US65766096 A US 65766096A US 5884252 A US5884252 A US 5884252A
- Authority
- US
- United States
- Prior art keywords
- signal
- delay
- quantization
- speech signal
- candidates
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 47
- 230000003595 spectral effect Effects 0.000 claims abstract description 193
- 238000013139 quantization Methods 0.000 claims abstract description 173
- 230000005284 excitation Effects 0.000 claims abstract description 129
- 230000003044 adaptive effect Effects 0.000 claims abstract description 75
- 230000001934 delay Effects 0.000 claims abstract description 30
- 230000004044 response Effects 0.000 claims description 39
- 239000011295 pitch Substances 0.000 description 47
- 239000013598 vector Substances 0.000 description 31
- 238000010586 diagram Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L19/00—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
- G10L19/04—Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
- G10L19/08—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters
- G10L19/12—Determination or coding of the excitation function; Determination or coding of the long-term prediction parameters the excitation function being a code excitation, e.g. in code excited linear prediction [CELP] vocoders
- G10L19/125—Pitch excitation, e.g. pitch synchronous innovation CELP [PSI-CELP]
Definitions
- the present invention relates to a method of and an apparatus for coding a speech signal with high quality at a low bit rate.
- a transmitter extracts spectral parameters representing spectral characteristics of a speech signal from the speech signal in each frame of 20 ms, for example, using linear predictive coding (LPC).
- LPC linear predictive coding
- Each frame is divided into subframes each of 5 ms, for example, and parameters, i.e., a delay parameter and a gain parameter corresponding to a pitch period, in an adaptive code book are extracted in each subframe based on a past excitation signal, for pitch prediction of the speech signal in the subframes using the adaptive code book.
- an optimum excitation code vector is selected from a excitation code book (vector quantization code book) of noise signals of predetermined type to calculate an optimum gain for thereby quantizing the excitation signal.
- the excitation code vector is selected in a manner to minimize any error power between a signal synthesized from a selected noise signal and a residual signal.
- An index and a gain which indicate the type of the selected code vector, and the spectral parameters and the parameters in the adaptive code book are combined by a multiplexer and transmitted. Details of a receiver will not be described below.
- the above conventional speech signal coding process employs linear predictive coding (LPC) for the calculation of spectral parameters.
- LPC linear predictive coding
- Female speakers with high pitches utter phonemes whose speech formants and pitch frequencies are close to each other. Since such phonemes are strongly affected by pitches, a large error is encountered in the extraction of spectral parameters from the phonemes. If a pitch is extracted using such wrong spectral parameters, then a wrong pitch period results.
- LPC linear predictive coding
- an apparatus for coding a speech signal comprising:
- a spectral parameter calculator for determining spectral parameters from an inputted speech signal, quantizing the spectral parameters, and outputting a plurality of quantization candidates
- an adaptive code book for determining delays with respect to each of said quantization candidates outputted from said spectral parameter calculator, generating a pitch predictive signal based on a past excitation signal for each of the delays and associating quantization candidates, and outputting a quantization candidate and a delay which provide a minimum distortion between the speech signal and said pitch predictive signal;
- excitation quantizer for quantizing and outputting the excitation signal of said speech signal
- a gain quantizer for quantizing and outputting a gain of at least one of said adaptive code book and said excitation signal.
- an apparatus for coding a speech signal comprising:
- a spectral parameter calculator for determining spectral parameters from an inputted speech signal, quantizing the spectral parameters, and outputting a plurality of quantization candidates
- an adaptive code book for determining delay, generating delay candidates existing within predetermined delay range, generating a pitch predictive signal calculated using a signal extracted from past excitation signal for a delay candidate and quantization candidate, for each of all combinations between each of said delay candidates and each of quantization candidates, and outputting an optimal combination between a quantization candidate and a delay which provides a minimum distortion between the inputted speech signal and said quantized excitation signal;
- a gain quantizer for quantizing and outputting a gain of at least one of said adaptive code book and said quantized excitation signal.
- an apparatus for coding a speech signal comprising:
- a spectral parameter and delay calculator for calculating spectral parameters and a first delay from a signal extracted from a past excitation signal for a delay and an inputted speech signal
- a spectral parameter quantizer for quantizing the spectral parameters and outputting at least one quantization candidate
- an adaptive codebook for determining second delay based on said first delay, calculating at least one second delay candidate neighboring said first delay, generating a pitch predictive signal calculated using a signal scissored from past excitation signal for said second delay candidate and quantization candidate, for all of the combinations between each of second delay candidates and each of quantization candidates,
- excitation quantizer for quantizing and outputting the excitation signal of said speech signal
- a gain quantizer for quantizing and outputting a gain of at least one of said adaptive code book and said quantized excitation signal.
- an apparatus for coding a speech signal comprising:
- a spectral parameter and delay calculator for being supplied with an inputted speech signal, jointly calculating spectral parameters and a first delay from a signal extracted from a past drive signal for a delay and the inputted speech signal;
- a drive signal calculator for calculating a drive signal from said spectral parameters and said speech signal
- a spectral parameter quantizer for quantizing the spectral parameters and outputting at least one quantization candidate
- an adaptive codebook for determining second delay based on said first delay, calculating at least one second delay candidate neighboring said first delay, generating a pitch predictive signal calculated using a signal extracted from past excitation signal for said second delay candidate and quantization candidate, for all of the combinations between each of second delay candidates and each of quantization candidates;
- excitation quantizer for quantizing and outputting the excitation signal of said speech signal
- a gain quantizer for quantizing and outputting a gain of at least one of said adaptive code book and said quantized excitation signal.
- an apparatus for coding a speech signal comprising:
- a mode decision unit for deciding a mode of an inputted speech signal and outputting mode decision information
- a spectral parameter calculator for determining spectral parameters from the speech signal, quantizing the spectral parameters, and outputting a plurality of quantization candidates
- an adaptive code book for determining delay with respect to each of said quantization candidates, respectively, outputted from said spectral parameter quantizer, generating a pitch predective signal based on a past excitation signal for each of the delays and associating quantization candidates, and outputting a quantization candidate and a delay which provide a minimum distortion between the speech signal and said pitch predictive signal, if the mode decision information outputted from said mode decision unit represents a predetermined mode;
- excitation quantizer for quantizing and outputting the excitation signal of said speech signal
- a gain quantizer for quantizing and outputting a gain of at least one of said adaptive code book and said quantized excitation signal.
- an apparatus for coding a speech signal comprising:
- a mode decision unit for deciding a mode of an inputted speech signal and outputting mode decision information
- a spectral parameter calculator for determining spectral parameters from the speech signal, quantizing the spectral parameters, and outputting a plurality of quantization candidates
- an adaptive codebook for determining delay, generating delay candidates existing within predetermined delay range, generating a pitch predictive signal calculated using a signal extracted from past excitation signal for a delay candidate and quantization candidate, for each of all combinations between each of said delay candidates and each of quantization candidates, and outputting an optimal combination between a quantization candidate and a delay which provides a minimum distortion between the inputted speech signal and said pitch predictive signal, if the mode decision information outputted from said mode decision unit represents a predetermined mode;
- a gain quantizer for quantizing and outputting a gain of at least one of said adaptive code book and said quantized excitation signal.
- an apparatus for coding a speech signal comprising:
- a mode decision unit for deciding a mode of an inputted speech signal and outputting mode decision information
- a spectral parameter calculator for determining spectral parameters from the speech signal, quantizing the spectral parameters, and outputting a plurality of quantization candidates
- a spectral parameter and delay calculator for calculating spectral parameters and a first delay from a signal scissored from a past excitation signal for a delay and an inputted speech signal
- a spectral parameter quantizer for quantizing the spectral parameters and outputting at least one quantization candidate
- an adaptive codebook for determing second delay based on said first delay, calculating at least one second delay candidate neighboring said first delay, generating a pitch predictive signal calculated using a signal extracted from past excitation signal for said second delay candidate and quantization candidate, for all of the combinations between each of second delay candidates and each of quantization candidates, if the mode decision information outputted from said mode decision unit represents a predetermined mode;
- excitation quantizer for quantizing and outputting the excitation signal of said speech signal
- a gain quantizer for quantizing and outputting a gain of at least one of said adaptive code book and said quantized excitation signal.
- an apparatus for coding a speech signal comprising:
- a mode decision unit for deciding a mode of an inputted speech signal and outputting mode decision information
- a spectral parameter and delay calculator for being supplied with an inputted speech signal, jointly calculating spectral parameters and a first delay from a signal extracted from a past drive signal for a delay and the inputted speech signal;
- a drive signal calculator for calculating a drive signal from said spectral parameters and said speech signal
- a spectral parameter quantizer for quantizing the spectral parameters and outputting at least one quantization candidate
- an adaptive codebook for determing second delay based on said first delay, calculating at least one second delay candidate neighboring said first delay, generating a pitch predictive signal calculated using a signal extracted from past excitation signal for said second delay candidate and quantization candidate, for all of the combinations between each of second delay candidates and each of quantization candidates, if the mode decision information outputted from said mode decision unit represents a predetermined mode;
- excitation quantizer for quantizing and outputting the excitation signal of said speech signal
- a gain quantizer for quantizing and outputting a gain of at least one of said adaptive code book and said quantized excitation signal.
- a method of coding a speech signal comprising the steps of:
- determining delays with respect to said quantization candidates generating a pitch predictive signal based on a past excitation signal for each of the delays and each of the quantization candidates, and determining a quantization candidate and a delay which provide a minimum distortion between the inputted speech signal and said pitch predictive signal.
- a method of coding a speech signal comprising the steps of:
- determining delay determining delay, generating delay candidates existing within predetermined delay range, generating a pitch predictive signal calculated using a signal scissored from past excitation signal for a delay candidate and quantization candidate, for each of all combinations between each of said delay candidates and each of quantization candidates, and outputting an optimal combination between a quantization candidate and a delay which provides a minimum distortion between the inputted speech signal and said quantized excitation signal.
- a method of coding a speech signal comprising the steps of:
- a method of coding a speech signal comprising the steps of:
- a method of coding a speech signal comprising the steps of:
- a method of coding a speech signal comprising the steps of:
- determining delay determining delay, generating delay candidates existing within predetermined delay range, generating a pitch predictive signal calculated using a signal extracted from past excitation signal for a delay candidate and quantization candidate, for each of all combinations between each of said delay candidates and each of quantization candidates, and outputting an optimal combination between a quantization candidate and a delay which provides a minimum distortion between the inputted speech signal and said pitch predective signal, if the mode decision information outputted from said mode decision unit represents a predetermined mode.
- a method of coding a speech signal comprising the steps of:
- a method of coding a speech signal comprising the steps of:
- the adaptive code book calculates delays with respect to a plurality of quantization candidates (e.g., M quantization candidates) for spectral parameters, calculates a pitch predictive signal with respect to combinations of the M quantization candidates and the delays, calculates an error power with respect to an inputted speech signal, and outputs a combination of a quantization candidate and a delay which minimize the error power.
- a plurality of quantization candidates e.g., M quantization candidates
- the adaptive code book calculates a pitch predictive signal with respect to all combinations of a plurality of quantization candidates (e.g., M quantization candidates) for spectral parameters and a plurality of delay candidates (i.e., L delay candidates) in a predetermined range, calculates an error power with respect to an inputted speech signal, and outputs a combination of a quantization candidate and a delay which minimize the error power.
- a plurality of quantization candidates e.g., M quantization candidates
- a plurality of delay candidates i.e., L delay candidates
- the spectral parameter and delay calculator calculates spectral parameters and a first delay from a past excitation signal and an inputted speech signal, calculates a pitch predictive signal with respect to combinations of a plurality of quantization candidates (e.g., M quantization candidates) for spectral parameters and a plurality of second delay candidates (e.g., Q second delay candidates) determined in the vicinity of the first delay, calculates an error power with respect to the inputted speech signal, and outputs a combination of a quantization candidate and a second delay candidate which minimize the error power.
- a plurality of quantization candidates e.g., M quantization candidates
- second delay candidates e.g., Q second delay candidates
- the spectral parameter and delay calculator calculates spectral parameters and a first delay from a past drive signal and an inputted speech signal.
- a predictive residual signal is used as the drive signal.
- the spectral parameter and delay calculator calculates a pitch predictive signal with respect to combinations of a plurality of quantization candidates (e.g., M quantization candidates) for spectral parameters and a plurality of second delay candidates (e.g., Q second delay candidates) determined in the vicinity of the first delay, calculates an error power with respect to the inputted speech signal, and outputs a combination of a quantization candidate and a second delay candidate which minimize the error power.
- a plurality of quantization candidates e.g., M quantization candidates
- second delay candidates e.g., Q second delay candidates
- the mode decision unit determines a feature amount from an inputted speech signal, and classifies the speech signal into one of a plurality of modes using the feature amount.
- modes There are four types of modes as follows:
- Mode 2 weak steady part of a vowel
- Mode 3 strong steady part of a vowel.
- the apparatus and method according to the fifth aspect of the present invention operate in the same manner as the apparatus and method according to the first aspect of the present invention.
- the apparatus and method according to the sixth aspect of the present invention operate in the same manner as the apparatus and method according to the second aspect of the present invention.
- the apparatus and method according to the seventh aspect of the present invention operate in the same manner as the apparatus and method according to the third aspect of the present invention.
- the apparatus and method according to the eighth aspect of the present invention operate in the same manner as the apparatus and method according to the fourth aspect of the present invention.
- FIG. 1 is a block diagram of a speech signal coding apparatus according to a first embodiment of the present invention
- FIG. 2 is a block diagram of an adaptive code book circuit of the speech signal coding apparatus shown in FIG. 1;
- FIG. 3 is a block diagram of a speech signal coding apparatus according to a second embodiment of the present invention.
- FIG. 4 is a block diagram of an adaptive code book circuit of the speech signal coding apparatus shown in FIG. 3;
- FIG. 5 is a block diagram of a speech signal coding apparatus according to a third embodiment of the present invention.
- FIG. 6 is a block diagram of an adaptive code book circuit of the speech signal coding apparatus shown in FIG. 5;
- FIG. 7 is a block diagram of a speech signal coding apparatus according to a fourth embodiment of the present invention.
- FIG. 8 is a block diagram of a speech signal coding apparatus according to a fifth embodiment of the present invention.
- FIG. 9 is a block diagram of a speech signal coding apparatus according to a sixth embodiment of the present invention.
- FIG. 10 is a block diagram of a speech signal coding apparatus according to a seventh embodiment of the present invention.
- FIG. 11 is a block diagram of a speech signal coding apparatus according to an eighth embodiment of the present invention.
- FIG. 1 shows in block form a speech signal coding apparatus according to a first embodiment of the present invention.
- a speech signal is supplied to the speech signal coding apparatus from an input terminal 100.
- a frame divider 110 divides the supplied speech signal into frames each of 10 ms, for example, and a subframe divider 120 divides the speech signal in each of the frames into subframes each of 2.5 ms, for example, shorter than the frames.
- Spectral parameters may be calculated according to a known analysis such as LPC analysis, Burg analysis, or the like. In this embodiment, the Burg analysis is used to calculate spectral parameters.
- linear predictive coefficients For converting linear predictive coefficients into LSP parameters, reference should be made to Sugamura, et al. "Speech information compression using linear spectrum pair (LSP) speech analysis and synthesis", Journal of Electronic Communication Society, J64-A, pp. 599-606, 1981 (hereinafter referred to as "document 5").
- the spectral parameter calculator 200 also outputs the LSP parameters in the fourth subframe to a spectral parameter quantizer 210.
- the spectral parameter quantizer 210 efficiently quantizes LSP parameters in predetermined subframes, and outputs quantized values of a plurality of M candidates (M ⁇ 2) in the order of increasing distortions D j expressed by the following equation: ##EQU1## where LSP (i), QLSP (i) j , W (i) represent an ith--order LSP parameter before quantization, a jth result after quantization, and a weighting coefficient, respectively, and p represents the order which is 10 below.
- LSP parameters in the fourth subframe will be quantized.
- the LSP parameters may be quantized by a known vector quantization process.
- a known vector quantization process may be the vector quantization process as disclosed in Japanese laid-open patent publication No. 4-171500 (hereinafter referred to as "document 6"), Japanese laid-open patent publication No. 4-363000 (hereinafter referred to as "document 7"), Japanese laid-open patent publication No. 5-6199 (hereinafter referred to as "document 8”), or T. Nomura, et al. "LSP Coding Using VQ-SVQ With Interpolation in 4.075 Kbps M-LCELP Speech Coder", Proc. Mobile Multimedia Communications, pp. B.2.5, 1993 (hereinafter referred to as "document 9”), for example.
- the spectral parameter quantizer 210 also restores the LSP parameters in the first through fourth subframes based on the quantized LSP parameters in the fourth subframe. Specifically, the spectral parameter quantizer 210 restores the LSP parameters in the first through third subframes by linearly interpolating the quantized LSP parameters in the fourth subframe of the present frame and the quantized LSP parameters in the fourth subframe of the preceding frame.
- the spectral parameter quantizer 210 can restore the LSP parameters in the first through fourth subframes by way of linear interpolation. For improved performance, after selecting a plurality of candidates for a code vector for minimizing the error power, the spectral parameter quantizer 210 can evaluate each of the candidates for an accumulated distortion and select a combination of the candidate and interpolated LSP parameters which minimize the accumulated distortion.
- document 10 Japanese laid-open patent publication No. 6-222797
- the spectral parameter quantizer 210 also outputs indexes representing code vectors of the quantized LSP parameters in the subframes to a multiplexer 400.
- interpolating patterns for LSP parameters as the number of given bits, e.g., 2 bits, may be employed, and the LSP parameters in the first through fourth subframes may be restored with respect to each of the interpolating patterns to select a combination of a code vector and an interpolating pattern which minimize an accumulated distortion.
- This process allows time-dependent changes of the LSP parameters in the frames to be represented with greater precision though the transmitted information increases by the number of bits of the interpolating patterns.
- the interpolating patterns may be generated through a learning process using LSP data for training purpose, or predetermined patterns may be stored as the interpolating patterns.
- the predetermined patterns may be those described in T.
- an error signal may be determined between true LSP parameters and interpolated LSP parameters, and the error signal may be represented by an error code book.
- the response signal, indicated by x z (n) is expressed according to the following equation (2): ##EQU2## where ⁇ is a weighting coefficient for controlling the amount of audio weighting.
- the subtractor 235 produces a value x w ' (n) by subtracting the response signal for one subframe from the weighted signal according to the equation (3) given below, and outputs the value x w ' (n) to an adaptive code book circuit 500.
- the impulse response calculator 310 calculates an impulse response hw (n) of a weighting filter whose z--transform is expressed according to the equation (4) given below, for a predetermined number of points L, and outputs the impulse response h w (n) to the adaptive code book circuit 500 and a excitation quantizer 350. ##EQU3##
- the adaptive code book circuit 500 is shown in detail in FIG. 2.
- the adaptive code book circuit 500 has a delay searching and distortion calculating circuit 510 which is supplied with a past excitation signal v (n), the output signal x w ' (n) of the subtractor 235, and the impulse response h w (n) from respective input terminals 501, 502, 503.
- the impulse response is supplied in as many types as the number M of candidates for spectral parameter quantization.
- a delay T with respect to a pitch is determined in order to minimize a distortion DT given by the following equation (5): ##EQU4## where y w (n-T) is expressed according to the following equation (6) where * represents a convolutional operation:
- a gain ⁇ can be determined according to the following equation (7): ##EQU5##
- the calculation of the equation (5) is repeated as many times as the number M of quantization candidates outputted from the spectral parameter quantizer 210, and the delay T and the distortion D T for each candidate are outputted to a decision circuit 520. Stated otherwise, a delay is determined with respect to each of the quantization candidates M, a speech signal is generated from a past excitation signal for each delay and each of the quantization candidates, and a quantization candidate and a delay for minimizing the distortion of the speech signal are outputted.
- delays may be determined not in terms of integer samples but in terms of decimal samples.
- P. Kroon Pitch predictors with high temporal resolution
- Proc. ICASSP, pp. 661-664, 1990 hereinafter referred to as "document 12").
- the decision circuit 520 is supplied with M distortions and M delays, outputs a delay which minimizes the distortions to a residual calculator 530, and also outputs an index representing the selected delay from a terminal 550 to the multiplexer 400.
- the decision circuit 520 also outputs a decision signal from a terminal 560 to selectors 320-1, 320-2, 320-3.
- the residual calculator 530 effects pitch prediction according the equation (8) given below, and outputs an adaptive code book predictive residual signal z (n) through a terminal 540 to the excitation quantizer 350.
- the selectors 320-1, 320-2, 320-3 are supplied with the decision signal from the adaptive code book circuit 500.
- the selector 320-1 outputs an impulse response corresponding to the selected spectral parameter quantization candidate to the excitation quantizer 350 and a gain quantizer 365.
- the selector 320-2 outputs an index corresponding to the selected spectral parameter quantization candidate to the multiplexer 400.
- the selector 320-3 outputs the selected spectral parameter quantization candidate to the response signal calculator 240 and a weighting signal calculator 360.
- the excitation quantizer 350 quantizes a excitation signal by searching for a code vector stored in a excitation code book 351. Specifically, the excitation quantizer 350 selects a best excitation code vector c j (n) in order to minimize an equation.
- the excitation quantizer 350 may select one best code vector, or may provisionally select two or more code vectors from which one code vector may be selected upon gain quantization. It is assumed here that two or more code vectors are selected according to the following equation (9): ##EQU6##
- the gain quantizer 365 reads a gain code vector from a gain code book 355, and selects a combination of a sound code vector and a gain code vector for minimizing the equation (10) given below with respect to the selected sound code vector.
- An example of simultaneous vector quantization of both a gain of the adaptive code book and a gain of the excitation book is illustrated here. ##EQU7##
- a plurality of excitation code vectors may be preliminarily selected, and the equation (10) may be applied to the preliminarily selected excitation code vectors.
- ⁇ ' k , ⁇ ' k represent kth code vectors in a two-dimensional gain code book stored in the gain code book 355.
- the gain quantizer 365 outputs an index representing the excitation code vector and the gain code vector which are selected to the multiplexer 400.
- the weighting signal calculator 360 is supplied with the output parameters from the spectral parameter calculator 200 and their respective indexes, reads corresponding code vectors from the indexes, and determines a drive excitation signal v (n) according to the following equation (11):
- the weighting signal calculator 360 calculates a response signal s w (n) in each subframe according to the following equation (12), using the output parameters from the spectral parameter calculator 200 and the output parameters from the spectral parameter quantizer 210, and outputs the response signal sw (n) to the response signal calculator 240: ##EQU8##
- FIG. 3 shows in block form a speech signal coding apparatus according to a second embodiment of the present invention. Those parts shown in FIG. 3 which are identical to those shown in FIG. 1 operate identically to those shown in FIG. 1, and will not be described in detail below.
- An adaptive code book circuit 600 shown in FIG. 3 operates differently from the adaptive code book circuit 500 shown in FIG. 1, and will be described below with reference to FIG. 4.
- a search range setting circuit 614 presets a search range for delays. It is assumed here that the search range setting circuit 614 presets a search range L.
- a distortion calculator 610 calculates a distortion according to the equation (5) with respect to all combinations L, M of all delays in the search range L and M types of impulse responses, and outputs the value of the distortion and the delays to a decision circuit 520.
- FIG. 5 shows in block form a speech signal coding apparatus according to a third embodiment of the present invention. Those parts shown in FIG. 5 which are identical to those shown in FIG. 1 operate identically to those shown in FIG. 1, and will not be described in detail below.
- a spectral parameter and delay calculator 700 is supplied with an input speech signal x (n) and a past excitation signal v (n), and calculates spectral parameters ⁇ i in order to minimize a distortion expressed by the following equation (13) with respect to each delay T in a predetermined first delay search range. ##EQU9##
- a combination of a first delay and a spectral parameter for minimizing the distortion ET is selected.
- the first delay is outputted to an adaptive code book circuit 710, and the spectral parameter ⁇ i is outputted to a spectral parameter quantizer 210.
- FIG. 6 shows in detail the adaptive code book circuit 710 illustrated in FIG. 5. Those parts shown in FIG. 6 which are identical to those shown in FIG. 4 operate identically to those shown in FIG. 4, and will not be described in detail below.
- the first delay is supplied from a terminal 711.
- a search range setting circuit 720 determines second a search range for second delay candidates in the vicinity of the first delay.
- a distortion calculator 730 fixes an impulse response, and determines a delay T for minimizing a distortion expressed by the equation (14) given below and a distortion at the time, with respect to each delay included in the search range.
- one type of a delay for minimizing the distortion expressed by the equation (14) is selected as a second delay with respect to one impulse response candidate.
- y w (n-T) is expressed by the following equation (15) where * represents a convolutional operation:
- the calculation of the equation (14) is repeated as many times as the number M of impulse response candidates, and the delay T and the distortion D T for each candidate are outputted to a decision circuit 740.
- the decision circuit 740 is supplied with M distortions and M delays, selects a delay for minimizing the distortion as a second delay, outputs the selected delay to a residual calculator 530, and outputs an index representing the selected delay from a terminal 550 to a multiplexer 400.
- the decision circuit 740 also outputs a decision signal from a terminal 560 to selectors 320-1, 320-2, 320-3.
- FIG. 7 shows in block form a speech signal coding apparatus according to a fourth embodiment of the present invention. Those parts shown in FIG. 7 which are identical to those shown in FIG. 1 or 5 operate identically to those shown in FIG. 1 or 5, and will not be described in detail below.
- a spectral parameter and delay calculator 800 is supplied with an input speech signal x (n) and a past excitation signal e (n), and calculates spectral parameters ⁇ i in order to minimize a distortion expressed by the following equation (17) with respect to each delay T in a predetermined first delay search range. ##EQU12##
- a combination of a first delay and a spectral parameter for minimizing the distortion E T is selected.
- the first delay is outputted to an adaptive code book circuit 710, and the spectral parameter ⁇ i is outputted to a spectral parameter quantizer 210.
- a drive signal calculator 810 is supplied with a speech signal divided into subframes from a subframe divider 120 and spectral parameters from the spectral parameter and delay calculator 800, calculates a predictive residual signal e (n) for a subframe length according to the following equation (18), and stores the calculated predictive residual signal e (n) as a drive signal: ##EQU13##
- FIG. 8 shows in block form a speech signal coding apparatus according to a fifth embodiment of the present invention. Those parts shown in FIG. 8 which are identical to those shown in FIG. 1 operate identically to those shown in FIG. 1, and will not be described in detail below.
- a mode decision circuit 850 receives a weighted signal in each frame from an audio weighting circuit 230, and outputs mode decision information. In this embodiment, the following four modes are employed:
- Mode 2 weak steady part of a vowel
- Mode 3 strong steady part of a vowel.
- a feature amount such as a pitch predictive gain, for example, of a present frame is used to decide a mode.
- a pitch predictive gain is calculated according to the following equations (19) ⁇ (21), for example: ##EQU14## where T is an optimum delay for maximizing the pitch predictive gain.
- the pitch predictive gain is compared with a plurality of predetermined thresholds and classified into one of plural types of modes.
- a mode decision circuit 850 outputs the mode decision information to an adaptive code book circuit 860 and a multiplexer 400.
- the adaptive code book circuit 860 supplied with the mode decision information. If the mode decision information represents a predetermined mode, the adaptive code book circuit 860 operates in the same manner as the adaptive code book circuit 500 shown in FIG. 1, calculates a delay, and outputs the delay and an index indicative of the delay.
- the mode is decided as described above because while in the strong steady part of a vowel in the mode 3, the speech signal can be coded highly efficiently due to large pitch periodicity, the pitch periodicity is small and many errors tend to occur in the other modes.
- any coding according to an adaptive code book is not carried out in those modes in which the speech signal cannot be coded highly efficiently, so that the overall operation of the apparatus is made highly efficient.
- FIG. 9 shows in block form a speech signal coding apparatus according to a sixth embodiment of the present invention. Those parts shown in FIG. 9 which are identical to those shown in FIG. 3 or 8 operate identically to those shown in FIG. 3 or 8, and will not be described in detail below.
- an adaptive code book circuit 900 is supplied with mode decision information from a mode decision circuit 850. If the mode decision information represents a predetermined mode, the adaptive code book circuit 900 operates in the same manner as the adaptive code book circuit 600 shown in FIG. 3, calculates a delay, and outputs the delay and an index indicative of the delay.
- FIG. 10 shows in block form a speech signal coding apparatus according to a seventh embodiment of the present invention. Those parts shown in FIG. 10 which are identical to those shown in FIG. 5 or 8 operate identically to those shown in FIG. 5 or 8, and will not be described in detail below.
- an adaptive code book circuit 910 is supplied with mode decision information from a mode decision circuit 850. If the mode decision information represents a predetermined mode, the adaptive code book circuit 910 operates in the same manner as the adaptive code book circuit 710 shown in FIG. 5, calculates a delay, and outputs the delay and an index indicative of the delay.
- FIG. 11 shows in block form a speech signal coding apparatus according to an eighth embodiment of the present invention. Those parts shown in FIG. 11 which are identical to those shown in FIG. 7 or 8 operate identically to those shown in FIG. 7 or 8, and will not be described in detail below.
- an adaptive code book circuit 920 is supplied with mode decision information from a mode decision circuit 850. If the mode decision information represents a predetermined mode, the adaptive code book circuit 920 operates in the same manner as the adaptive code book circuit 710 shown in FIG. 7, calculates a delay, and outputs the delay and an index indicative of the delay.
- the excitation code book for the excitation quantizer may be of any of other known arrangements, e.g., a multistage arrangement or a sparse arrangement.
- the excitation quantizer searches the excitation code book.
- the excitation quantizer may search a plurality of multipulses having different positions and amplitudes.
- the amplitudes and positions of multipulses may be determined in order to minimize the following equation (22): ##EQU15## where g j , m j represent the amplitude and position of a jth multipulse, and k the number of multipulses.
- delays in an adaptive bode book are determined with respect to a plurality of quantization candidates for spectral parameters, and the best of all combinations of the delays and the quantization candidates is selected.
- Spectral parameters and a first delay are simultaneously calculated, at least one second delay is calculated based on the first delay with respect to the plurality of quantization candidates for spectral parameters, and the best of all combinations of the second delay and the quantization candidates is selected.
- the above processing is carried out with respect to only a predetermined mode. Therefore, it is possible for the coding process to be less subject to effects of a pitch and to determine spectral parameters taking quantization and delays in an adaptive code book into account. Consequently, the coding process according to the present invention can maintain good sound quality even if the bit rate is lowered, as compared with the conventional systems.
Landscapes
- Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
Description
x'.sub.w (n)=x.sub.w (n)-x.sub.z (n) (3)
y.sub.W (n-T)=v(n-T)*h.sub.W (n) (6)
z(n)=x'.sub.W (n)-βv(n-T)*h.sub.W (n) (8)
v(n)=g'(1)v(n-T)+g'(2)c.sub.j (n) (11)
y.sub.W (n-T)=v(n-T)*h.sub.W (n) (15)
Claims (19)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13337295A JP3308764B2 (en) | 1995-05-31 | 1995-05-31 | Audio coding device |
JP7-133372 | 1995-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5884252A true US5884252A (en) | 1999-03-16 |
Family
ID=15103195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/657,660 Expired - Lifetime US5884252A (en) | 1995-05-31 | 1996-05-31 | Method of and apparatus for coding speech signal |
Country Status (5)
Country | Link |
---|---|
US (1) | US5884252A (en) |
EP (1) | EP0745972B1 (en) |
JP (1) | JP3308764B2 (en) |
CA (1) | CA2177226C (en) |
DE (1) | DE69614761T2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6233550B1 (en) * | 1997-08-29 | 2001-05-15 | The Regents Of The University Of California | Method and apparatus for hybrid coding of speech at 4kbps |
US6351490B1 (en) * | 1998-01-14 | 2002-02-26 | Nec Corporation | Voice coding apparatus, voice decoding apparatus, and voice coding and decoding system |
US20030142699A1 (en) * | 2002-01-29 | 2003-07-31 | Masanao Suzuki | Voice code conversion method and apparatus |
US6691084B2 (en) * | 1998-12-21 | 2004-02-10 | Qualcomm Incorporated | Multiple mode variable rate speech coding |
US20050010400A1 (en) * | 2001-11-13 | 2005-01-13 | Atsushi Murashima | Code conversion method, apparatus, program, and storage medium |
US20060156159A1 (en) * | 2004-11-18 | 2006-07-13 | Seiji Harada | Audio data interpolation apparatus |
CN111105807A (en) * | 2014-01-15 | 2020-05-05 | 三星电子株式会社 | Weight function determination apparatus and method for quantizing linear predictive coding coefficients |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2613651T3 (en) | 2013-01-29 | 2017-05-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Quantification of adaptive audio signals by low complexity tone |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6333025A (en) * | 1986-07-28 | 1988-02-12 | Nippon Telegr & Teleph Corp <Ntt> | Sound encoding method |
US4985923A (en) * | 1985-09-13 | 1991-01-15 | Hitachi, Ltd. | High efficiency voice coding system |
US5077798A (en) * | 1988-09-28 | 1991-12-31 | Hitachi, Ltd. | Method and system for voice coding based on vector quantization |
US5091945A (en) * | 1989-09-28 | 1992-02-25 | At&T Bell Laboratories | Source dependent channel coding with error protection |
JPH04171500A (en) * | 1990-11-02 | 1992-06-18 | Nec Corp | Voice parameter coding system |
JPH04305135A (en) * | 1991-04-01 | 1992-10-28 | Nippon Telegr & Teleph Corp <Ntt> | Predictive encoding for pitch of voice |
JPH04363000A (en) * | 1991-02-26 | 1992-12-15 | Nec Corp | System and device for voice parameter encoding |
JPH056199A (en) * | 1991-06-27 | 1993-01-14 | Nec Corp | Voice parameter coding system |
US5208862A (en) * | 1990-02-22 | 1993-05-04 | Nec Corporation | Speech coder |
US5230036A (en) * | 1989-10-17 | 1993-07-20 | Kabushiki Kaisha Toshiba | Speech coding system utilizing a recursive computation technique for improvement in processing speed |
JPH05265496A (en) * | 1992-03-18 | 1993-10-15 | Hitachi Ltd | Speech encoding method with plural code books |
EP0607989A2 (en) * | 1993-01-22 | 1994-07-27 | Nec Corporation | Voice coder system |
FR2709367A1 (en) * | 1993-08-26 | 1995-03-03 | Nec Corp | Speech pitch coding system. |
US5396576A (en) * | 1991-05-22 | 1995-03-07 | Nippon Telegraph And Telephone Corporation | Speech coding and decoding methods using adaptive and random code books |
US5426718A (en) * | 1991-02-26 | 1995-06-20 | Nec Corporation | Speech signal coding using correlation valves between subframes |
US5485581A (en) * | 1991-02-26 | 1996-01-16 | Nec Corporation | Speech coding method and system |
US5546498A (en) * | 1993-06-10 | 1996-08-13 | Sip - Societa Italiana Per L'esercizio Delle Telecomunicazioni S.P.A. | Method of and device for quantizing spectral parameters in digital speech coders |
US5598504A (en) * | 1993-03-15 | 1997-01-28 | Nec Corporation | Speech coding system to reduce distortion through signal overlap |
US5625744A (en) * | 1993-02-09 | 1997-04-29 | Nec Corporation | Speech parameter encoding device which includes a dividing circuit for dividing a frame signal of an input speech signal into subframe signals and for outputting a low rate output code signal |
US5633980A (en) * | 1993-12-10 | 1997-05-27 | Nec Corporation | Voice cover and a method for searching codebooks |
-
1995
- 1995-05-31 JP JP13337295A patent/JP3308764B2/en not_active Expired - Fee Related
-
1996
- 1996-05-23 CA CA002177226A patent/CA2177226C/en not_active Expired - Fee Related
- 1996-05-30 DE DE69614761T patent/DE69614761T2/en not_active Expired - Lifetime
- 1996-05-30 EP EP96108599A patent/EP0745972B1/en not_active Expired - Lifetime
- 1996-05-31 US US08/657,660 patent/US5884252A/en not_active Expired - Lifetime
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4985923A (en) * | 1985-09-13 | 1991-01-15 | Hitachi, Ltd. | High efficiency voice coding system |
JPS6333025A (en) * | 1986-07-28 | 1988-02-12 | Nippon Telegr & Teleph Corp <Ntt> | Sound encoding method |
US5077798A (en) * | 1988-09-28 | 1991-12-31 | Hitachi, Ltd. | Method and system for voice coding based on vector quantization |
US5091945A (en) * | 1989-09-28 | 1992-02-25 | At&T Bell Laboratories | Source dependent channel coding with error protection |
US5230036A (en) * | 1989-10-17 | 1993-07-20 | Kabushiki Kaisha Toshiba | Speech coding system utilizing a recursive computation technique for improvement in processing speed |
US5208862A (en) * | 1990-02-22 | 1993-05-04 | Nec Corporation | Speech coder |
JPH04171500A (en) * | 1990-11-02 | 1992-06-18 | Nec Corp | Voice parameter coding system |
JPH04363000A (en) * | 1991-02-26 | 1992-12-15 | Nec Corp | System and device for voice parameter encoding |
US5487128A (en) * | 1991-02-26 | 1996-01-23 | Nec Corporation | Speech parameter coding method and appparatus |
US5485581A (en) * | 1991-02-26 | 1996-01-16 | Nec Corporation | Speech coding method and system |
US5426718A (en) * | 1991-02-26 | 1995-06-20 | Nec Corporation | Speech signal coding using correlation valves between subframes |
JPH04305135A (en) * | 1991-04-01 | 1992-10-28 | Nippon Telegr & Teleph Corp <Ntt> | Predictive encoding for pitch of voice |
US5396576A (en) * | 1991-05-22 | 1995-03-07 | Nippon Telegraph And Telephone Corporation | Speech coding and decoding methods using adaptive and random code books |
JPH056199A (en) * | 1991-06-27 | 1993-01-14 | Nec Corp | Voice parameter coding system |
JPH05265496A (en) * | 1992-03-18 | 1993-10-15 | Hitachi Ltd | Speech encoding method with plural code books |
JPH06222797A (en) * | 1993-01-22 | 1994-08-12 | Nec Corp | Voice encoding system |
EP0607989A2 (en) * | 1993-01-22 | 1994-07-27 | Nec Corporation | Voice coder system |
US5625744A (en) * | 1993-02-09 | 1997-04-29 | Nec Corporation | Speech parameter encoding device which includes a dividing circuit for dividing a frame signal of an input speech signal into subframe signals and for outputting a low rate output code signal |
US5598504A (en) * | 1993-03-15 | 1997-01-28 | Nec Corporation | Speech coding system to reduce distortion through signal overlap |
US5546498A (en) * | 1993-06-10 | 1996-08-13 | Sip - Societa Italiana Per L'esercizio Delle Telecomunicazioni S.P.A. | Method of and device for quantizing spectral parameters in digital speech coders |
JPH0764600A (en) * | 1993-08-26 | 1995-03-10 | Nec Corp | Pitch encoding device for voice |
FR2709367A1 (en) * | 1993-08-26 | 1995-03-03 | Nec Corp | Speech pitch coding system. |
US5633980A (en) * | 1993-12-10 | 1997-05-27 | Nec Corporation | Voice cover and a method for searching codebooks |
Non-Patent Citations (18)
Title |
---|
Chang et al., "A Low Data Rate LPC Vocoder Using Contour Quantization", vol. 1, 24-27 Aug. 1992 Brussels, BE, pp. 459-462. |
Chang et al., A Low Data Rate LPC Vocoder Using Contour Quantization , vol. 1, 24 27 Aug. 1992 Brussels, BE, pp. 459 462. * |
Kleijn et al., "Improved Speech Quality and Efficient Vector Quantization In SELP", Proc. ICASSP, (1988), pp. 155-158. |
Kleijn et al., Improved Speech Quality and Efficient Vector Quantization In SELP , Proc. ICASSP, (1988), pp. 155 158. * |
Kroon et al., "Pitch Predictors With High Temporal Resolution", Proc. ICASSP, (1990), pp. 661-664. |
Kroon et al., Pitch Predictors With High Temporal Resolution , Proc. ICASSP, (1990), pp. 661 664. * |
Nakamizo, "Signal Analysis and System Indentification", Corona Co. Ltd., (1988), 82-87. |
Nakamizo, Signal Analysis and System Indentification , Corona Co. Ltd., (1988), 82 87. * |
Nomura et al., "LSP Coding Using VQ-SVQ With Interpolation In 4.075 KBP M-LCELP Speech Coder", Proc. Mobile Multimedia Communications, (1993), pp. B.2.1-B.2.4. |
Nomura et al., LSP Coding Using VQ SVQ With Interpolation In 4.075 KBP M LCELP Speech Coder , Proc. Mobile Multimedia Communications, (1993), pp. B.2.1 B.2.4. * |
Schroeder et al., "Code-Excited Linear Prediction (CLEP): High-Quality Speech At Very Low Bit Rates", Proc. ICASSP, (1985), pp. 937-940. |
Schroeder et al., Code Excited Linear Prediction (CLEP): High Quality Speech At Very Low Bit Rates , Proc. ICASSP, (1985), pp. 937 940. * |
Singhal et al., "Optimizing LPC Filter Parameters for Multi-Pluse Excitation", Proc. ICASSP, (1983), pp. 781-784. |
Singhal et al., Optimizing LPC Filter Parameters for Multi Pluse Excitation , Proc. ICASSP, (1983), pp. 781 784. * |
Sugamura et al., "Speech Data Compression by LSP Speech Analysis-Synthesis Technique", Journal of Electronic Communication Society, (1981) pp. 599-606. |
Sugamura et al., Speech Data Compression by LSP Speech Analysis Synthesis Technique , Journal of Electronic Communication Society, (1981) pp. 599 606. * |
Taniguchi et al., "Improved CELP Speech Coding at 4 KBIT/S and Below", Proc. ICSLP, (1992), 41-44. |
Taniguchi et al., Improved CELP Speech Coding at 4 KBIT/S and Below , Proc. ICSLP, (1992), 41 44. * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6233550B1 (en) * | 1997-08-29 | 2001-05-15 | The Regents Of The University Of California | Method and apparatus for hybrid coding of speech at 4kbps |
US6475245B2 (en) | 1997-08-29 | 2002-11-05 | The Regents Of The University Of California | Method and apparatus for hybrid coding of speech at 4KBPS having phase alignment between mode-switched frames |
US6351490B1 (en) * | 1998-01-14 | 2002-02-26 | Nec Corporation | Voice coding apparatus, voice decoding apparatus, and voice coding and decoding system |
US6691084B2 (en) * | 1998-12-21 | 2004-02-10 | Qualcomm Incorporated | Multiple mode variable rate speech coding |
US7496505B2 (en) | 1998-12-21 | 2009-02-24 | Qualcomm Incorporated | Variable rate speech coding |
US20050010400A1 (en) * | 2001-11-13 | 2005-01-13 | Atsushi Murashima | Code conversion method, apparatus, program, and storage medium |
US7630884B2 (en) | 2001-11-13 | 2009-12-08 | Nec Corporation | Code conversion method, apparatus, program, and storage medium |
US20030142699A1 (en) * | 2002-01-29 | 2003-07-31 | Masanao Suzuki | Voice code conversion method and apparatus |
US7590532B2 (en) | 2002-01-29 | 2009-09-15 | Fujitsu Limited | Voice code conversion method and apparatus |
US20060156159A1 (en) * | 2004-11-18 | 2006-07-13 | Seiji Harada | Audio data interpolation apparatus |
CN111105807A (en) * | 2014-01-15 | 2020-05-05 | 三星电子株式会社 | Weight function determination apparatus and method for quantizing linear predictive coding coefficients |
CN111105807B (en) * | 2014-01-15 | 2023-09-15 | 三星电子株式会社 | Weighting function determining apparatus and method for quantizing linear predictive coding coefficient |
Also Published As
Publication number | Publication date |
---|---|
CA2177226A1 (en) | 1996-12-01 |
EP0745972A3 (en) | 1998-09-02 |
EP0745972A2 (en) | 1996-12-04 |
EP0745972B1 (en) | 2001-08-29 |
DE69614761D1 (en) | 2001-10-04 |
JP3308764B2 (en) | 2002-07-29 |
DE69614761T2 (en) | 2002-06-20 |
CA2177226C (en) | 2000-10-03 |
JPH08328597A (en) | 1996-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5778334A (en) | Speech coders with speech-mode dependent pitch lag code allocation patterns minimizing pitch predictive distortion | |
EP0422232B1 (en) | Voice encoder | |
US5142584A (en) | Speech coding/decoding method having an excitation signal | |
US5826226A (en) | Speech coding apparatus having amplitude information set to correspond with position information | |
US6023672A (en) | Speech coder | |
EP0833305A2 (en) | Low bit-rate pitch lag coder | |
US6978235B1 (en) | Speech coding apparatus and speech decoding apparatus | |
EP1162604B1 (en) | High quality speech coder at low bit rates | |
US7680669B2 (en) | Sound encoding apparatus and method, and sound decoding apparatus and method | |
US5873060A (en) | Signal coder for wide-band signals | |
US6006178A (en) | Speech encoder capable of substantially increasing a codebook size without increasing the number of transmitted bits | |
CA2090205C (en) | Speech coding system | |
US5797119A (en) | Comb filter speech coding with preselected excitation code vectors | |
US5884252A (en) | Method of and apparatus for coding speech signal | |
US5774840A (en) | Speech coder using a non-uniform pulse type sparse excitation codebook | |
EP1154407A2 (en) | Position information encoding in a multipulse speech coder | |
JP3299099B2 (en) | Audio coding device | |
JP3153075B2 (en) | Audio coding device | |
JPH08185199A (en) | Voice coding device | |
JP3192051B2 (en) | Audio coding device | |
JPH08320700A (en) | Sound coding device | |
JPH08194499A (en) | Speech encoding device | |
JPH09319399A (en) | Voice encoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NEC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OZAWA, KAZUNORI;REEL/FRAME:008027/0797 Effective date: 19960520 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: RAKUTEN, INC., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEC CORPORATION;REEL/FRAME:028273/0933 Effective date: 20120514 |
|
AS | Assignment |
Owner name: RAKUTEN, INC., JAPAN Free format text: CHANGE OF ADDRESS;ASSIGNOR:RAKUTEN, INC.;REEL/FRAME:037751/0006 Effective date: 20150824 |