US5766740A - Adherent film with low thermal impedance and high electrical impedance used in an electronic assembly with a heat sink - Google Patents
Adherent film with low thermal impedance and high electrical impedance used in an electronic assembly with a heat sink Download PDFInfo
- Publication number
- US5766740A US5766740A US08/743,661 US74366196A US5766740A US 5766740 A US5766740 A US 5766740A US 74366196 A US74366196 A US 74366196A US 5766740 A US5766740 A US 5766740A
- Authority
- US
- United States
- Prior art keywords
- assembly
- layer
- adhesive
- heat sink
- electronic circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0058—Laminating printed circuit boards onto other substrates, e.g. metallic substrates
- H05K3/0061—Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/05—Insulated conductive substrates, e.g. insulated metal substrate
- H05K1/056—Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0393—Flexible materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0129—Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0203—Fillers and particles
- H05K2201/0206—Materials
- H05K2201/0209—Inorganic, non-metallic particles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/01—Tools for processing; Objects used during processing
- H05K2203/0191—Using tape or non-metallic foil in a process, e.g. during filling of a hole with conductive paste
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/901—Printed circuit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24917—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/2495—Thickness [relative or absolute]
- Y10T428/24967—Absolute thicknesses specified
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/252—Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/256—Heavy metal or aluminum or compound thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/258—Alkali metal or alkaline earth metal or compound thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/259—Silicic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2848—Three or more layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2852—Adhesive compositions
- Y10T428/287—Adhesive compositions including epoxy group or epoxy polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/28—Web or sheet containing structurally defined element or component and having an adhesive outermost layer
- Y10T428/2852—Adhesive compositions
- Y10T428/2878—Adhesive compositions including addition polymer from unsaturated monomer
- Y10T428/2891—Adhesive compositions including addition polymer from unsaturated monomer including addition polymer from alpha-beta unsaturated carboxylic acid [e.g., acrylic acid, methacrylic acid, etc.] Or derivative thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31511—Of epoxy ether
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31721—Of polyimide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31786—Of polyester [e.g., alkyd, etc.]
- Y10T428/31797—Next to addition polymer from unsaturated monomers
Definitions
- the invention relates to an electronic circuit comprising a circuit pathway or trace made on a rigid or flexible printed circuit board substrate and an electronic assembly which uses the circuit in thermal communication with, but electrically insulated from a heat sink.
- the invention additionally relates to an electronic circuit assembly that uses a rigid or flexible substrate, an electrical insulation layer and a heat sink.
- Electronic assemblies that include a circuit trace or pattern on a rigid or flexible printed circuit board, are known. Because heat is generated during the electrical operation of many such assemblies, a need exists for the effective removal and dissipation of heat. If the heat is not removed, circuit operation can be impaired or one or more parts of the assembly may be damaged or destroyed.
- a well known means for providing heat removal is the use of a heat sink, having substantial heat capacity and heat dissipation properties, as a part of the assembly. Heat flows from the active circuit into the heat sink and away from the source of heat. The heat sink operates through a large heat capacity and by heat dissipation through conduction, convection, radiation or a combination of these effects.
- the insulating layer comprises a material that has a maximized thermal conductivity (minimum thermal impedance) with optimized electrical insulation (high dielectric strength). Because close contact between the circuit and the heat sink improves heat dissipation, a material that is both thermally conductive and electrically insulating is particularly desirable. Further, heat flow is optimized if the insulation is as thin as possible without losing electrical isolation.
- the semiconductor chip is wire bonded to the active printed circuit pattern.
- the package then is integrated into the active circuit using conventional components.
- Barker, III et al., U.S. Pat. No. 5,175,613 describes a thermally conductive elastomer that is placed between the circuit and the heat sink. Mechanical devices are employed to compress the elastomer and maintain contact between the components of the package. No adhesive material is used to bond the chip to the heat sink. No detail is provided regarding the nature of the thermally conductive elastomer.
- DeGree et al., U.S. Pat. No. 4,574,879 teaches a thermally conductive mounting pad for a solid state device such as a power transistor, SCR or triac.
- the mounting pad comprises at least a three-layer laminate.
- the laminate comprises, in a center layer, a filled polyimide (amide) containing a thermally conductive particulate such as aluminum oxide, boron nitride, etc.
- the two outside layers in the laminate comprise a silicone base rubber.
- DeGree et al., U.S. Pat. No. 4,810,563 teaches a thermally conductive laminate structure.
- the laminate can have up to five layers including two oppositely disposed outer metallic layers enclosing center composite layers.
- the center layers comprise films of polyimide (amide) filled with aluminum oxide, boron nitride or other suitable thermally conducting particulate. Squitieri, U.S. Pat. No.
- 4,869,954 discloses a thermally conductive laminate having at least three layers; the center layer comprising a conventional glass, fiberglass, plastic film and metal foil layer.
- the two oppositely disposed external layers form from a curable liquid urethane material containing thermally conductive particulate.
- the liquid urethane material is formed into a coating on the center layer, is cured to form solid laminate structure.
- Anschel et al., U.S. Pat. No. 4,914,551 teaches an electronic package adapted to cool a discrete electronic device such as a semiconductor (e.g., a silicon chip).
- the semiconductor device is positioned on a thin film substrate attached to a second substrate.
- a heat spreading surface is bonded to the semiconductor device surface and a heat sink is bonded to the heat spreading device.
- the heat spreading device is a bulk material such as silicon carbide, aluminum nitride, or copper clad material.
- An adhesive material is used to define a first interface between the semiconductor device and the heat spreader.
- the interface between the heat sink and the heat spreader is also insulated by a thermally conducted insulating adhesive.
- Hastings et al., U.S. Pat. No. 5,285,108 describe the use of a thermally conductive material that is also electrically insulating.
- the material comprises silicone or urethane elastomer that is filled with known thermally conducting fillers.
- Circuits that generate substantial heat need an insulating layer that can conduct substantial heat while maintaining substantial dielectric strength.
- the electrical properties improve the thickness of the layer can often increase. Such thickness can result from higher amounts of fillers to increase thermal conductivity or from the use of thicker layers to achieve the required dielectric strength. These thick layers reduce the flexibility of the printed circuit, reduce thermal properties and additionally can increase the cost of the final product.
- the invention resides in an electrical assembly having at least one flexible or rigid circuit substrate having at least one copper circuit trace on each side of the substrate.
- the circuit is bonded to a heat sink to form the assembly.
- the active metal circuit pattern, trace or traces are disposed on a side of the circuit substrate bonded to the heat sink and are insulated from the heat sink using an interposed or intermediate adherent film.
- the film comprises an unfilled thin polymer film or sheet that separates the metallic circuit traces from the heat sink.
- the heat sink and circuit are bonded to the insulating film using a filled adhesive layer disposed on opposite sides of the unfilled insulating film layer.
- the filled adhesive comprises a thermoplastic or thermosetting, adhesive or pressure sensitive adhesive (PSA) formulation containing a thermally conductive particulate filler material.
- PSA pressure sensitive adhesive
- the particulate material in the adhesive on the heat sink side may also be electrically conductive. However, any particulate in contact with an active circuit is preferably not electrically conductive.
- the film of the insulating layer is substantially free of any thermally conductive filler. Preferred fillers are ceramic particulate. Using this combination of elements, a thermally conductive bond ply can be made having a thickness of less than 150 ⁇ m, preferably less than 135 ⁇ m can be used.
- the rigid or flexible printed circuit board can be a circuit comprising a single hard board layer such as phenolic or epoxy, or a polymeric layer, having one or more circuit traces on opposite sides of the board or film or can be a multilayer film comprising two, three, four or more layers of circuitry bonded into a cooperating active circuit by interconnections between the layers.
- Metallic traces can also act to manage heat as thermal passageways or dissipation units.
- the heat sink can be a sheet of metallic material such as aluminum or copper. Alternatively, heat sinks having heat capacity and heat dissipation rates substantially greater than metallic sheets can also be used. Finned heat sinks or tabbed heat sinks or heat sinks having liquid coolant can be used.
- the adherent film can have multiple layers.
- the adherent film assembly can comprise a first filled thermally conducting adhesive layer, an unfilled polymeric film having high dielectric strength, and a second filled thermally conducting adhesive layer.
- the adherent film assembly preferably has a maximum thermal impedance of 250° C.-mm 2 /watt and a minimum dielectric strength of 400 V (ac).
- the first adhesive layer requires dielectric strength sufficient to prevent trace to trace shorting.
- the two adhesive layers of the film increase the thermal conductivity of the assembly by maintaining close contact between the active circuit and the heat sink. The layers provide useful electrical dielectric strength.
- the first and/or the second adhesive layer contain a thermally conductive material such as a ceramic particulate to increase the thermal conductivity of the layer.
- a thermally conductive material such as a ceramic particulate to increase the thermal conductivity of the layer.
- an unfilled polymeric film is chosen having good dielectric strength.
- This film layer is as thin as possible to minimize thermal resistance while providing electrical insulation. Suitable materials for this layer include, for example, polyesters, polyetherimides, polyimides and other equivalent engineering resins.
- the adherent film assembly of the invention has a combination of physical, thermal, and electrical properties that are well suited for assembly processes (e.g., soldering) mounting printed circuits on to a heat sink or other heat dissipating devices.
- Another aspect of the instant invention is an electronic assembly that comprises a printed circuit board attached to a heat sink by the adherent film article.
- the adherent film provides superior heat dissipation into the heat sink. Performance is not impaired by thermal stress, and the unfilled polymeric layer provides electrical insulation between the printed circuit and the heat sink.
- a further aspect of the invention is a method of assembling the electronic package comprising bonding of an assembly made from a thin dielectric film and filled adhesive to the backside of a circuit, followed by bonding to a heat sink at least partly coated with a layer of thermally conductive adhesive.
- the FIGURE is a perspective of an exploded view of a double sided printed circuit board having exposed portions.
- the flexible printed circuit board can be adhered to the heat sink using an intermediate insulating layer.
- the electronic assemblies of the invention use a thin insulating polymer film disposed between an active circuit and a heat sink using a filled, thermally conductive adhesive.
- the film should be selected to minimize thermal impedance while maintaining adequate dielectric strength. Thermal impedance is reduced by reducing the thickness of the film. However, as the film thickness is reduced, the insulating value or dielectric strength is reduced. Below a certain thickness, the film cannot be relied upon for providing adequate electrical insulation.
- Preferred films have a maximum thickness of less than 15 ⁇ m, about 1 to 15 ⁇ m, preferably about 5 to 12 ⁇ m.
- the dielectric strength of the layer must be at least 300 volts (ac) preferably at least 1000 volts (ac).
- the thermal properties of the film can be characterized with a thermal impedance (less than about 100° C.-mm 2 /watt, preferably less than about 50° C.-mm 2 /watt). Any film that corresponds to these dimensions and thermal and dielectric strength properties can be used as an insulating layer. Lastly the films are substantially unfilled. Commonly in this art, insulating films have been used containing a substantial portion of a thermally particulate filler material to improve the thermal conductivity. Such thermally conductive particulate typically comprise a ceramic material. The films of this invention are substantially free of any such filler material. The absence of filler permits the use of a film of thin film at low cost. A broad class of potential film materials are known. Preferred film materials include thermoplastic polyesters, polyimides, polyetherimides and equivalent engineering resins.
- Preferred films are made from aromatic dicarboxylic acids and alkane diols.
- Preferred alkane diols and the polyesters include ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanediol and other aliphatic diols having from 2-12 carbon atoms in a saturated linear or cyclic alkyl structure.
- Preferred aromatic acids in the manufacture of the polyesters of the invention include terephthalic acid (1,4 benzene dicarboxylic acid) terephthalic dicarboxylic acids, (e.g.,), 2,6-naphthalene dicarboxylic acid, 2,7-naphthalene dicarboxylic acid, etc.
- the preferred polyester film composition of the invention is a poly (ethylene-co-2,6-naphthalene dicarboxylic) (PEN).
- Polyimides are condensation polymers derived from bifunctional carboxylic anhydrides and primary amines.
- Aromatic heterocyclic polymers exhibit outstanding mechanical properties and excellent stability.
- Polyimides can be prepared from an aliphatic diamine and an aromatic tetracarboxylic acid in a multistep sequence in the melt reaction.
- An alternative preferred preparation from aromatic tetracarboxylic dianhydrides is more versatile.
- Aromatic diamines such as 1,4-phenylene diamine, 1,3-phenylene diamine, 4,4'-methylene diphenylene diamine, hexamethylene diamine, 4,4'-oxydianiline (ODA), etc. can be reacted with the dianhydride.
- Polyetherimides are an engineering plastic well known in the art. The techniques used to produce polyetherimides are also well known. See, for example, U.S. Pat. No. 4,297,474.
- a substituted aromatic bis-amide is reactive with an alkali metal phenate to form the polyether amide.
- the alkali metal phenate can be either monocyclic or polycyclic and can contain two phenate groups. The phenates are reacted with materials as described above containing the --O--phenylene--O-- group.
- the polyetherimide can be made by a conventional condensation of diamines and an ether containing dianhydride.
- Preferred polyetherimide resins are ULTEM® polyetherimide (PEI) resins manufactured by G.E. Plastics Company.
- Insulating films discussed above commonly are coated with a thermally conductive adhesive layer before use.
- the adhesive layer is made thermally conductive using a minimum film thickness and a substantial proportion of the heat conductive filler material.
- Preferred fillers are metallic, inorganic or ceramic particulate that can be dispersed or suspended in the adhesive material prior to coating the polymer film.
- the particle size of the particulate typically ranges from about 0.1 to 30 microns, preferably 1.0 to 25 microns.
- Useful thermally conducting but electrically insulating ceramic materials include aluminum oxide, beryllium oxide, magnesium oxide, titanium oxides, zinc oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, silica, diamond, etc. and mixtures thereof.
- the thermally conducting material within the adhesive layer, in contact with the heat sink can be the particulate above or the following Cu, Al, Ag, Au, Ni, Zn, Fe, Pd, Pb, Sn, solder, graphite, carbon, or mixtures thereof.
- thermoplastic or thermosetting adhesives are available.
- the preferred adhesive comprises a solvent borne or based, hot melt thermoplastic adhesive solvent borne, water borne, or hot melt thermoplastic adhesive.
- Solvent borne adhesive systems permit better dispersal of particulate filler and also improved consolidation of the filler matrix upon drying. Such systems are typically composed of soluble or dispersed acrylic epoxy, polyimide, polyester or polyurethane resins. Water borne adhesives can be used if compatible with filler.
- Thermoplastic hot melt adhesives typically comprise a thermoplastic polymer such as an ABA block copolymer (wherein A is polystyrene and B is a polybutadiene or polyisoprene), polyethylene, poly(ethylene-co-vinyl acetate), an acrylic resin, a polystyrene resin, or other known polymer, in combination with a tackifier, a plasticizer or extender.
- ABA block copolymer wherein A is polystyrene and B is a polybutadiene or polyisoprene
- polyethylene poly(ethylene-co-vinyl acetate)
- acrylic resin a polystyrene resin
- plasticizer or extender a plasticizer or extender
- thermosetting adhesive types include epoxy adhesives and urethane adhesives.
- the adhesives typically contain about 10 to 50 vol-%, preferably about 30 to 40 vol-% of the thermally conductive inorganic filler particulate.
- the film is typically coated on both sides of the film, with a layer of filled adhesive composition.
- the thickness of the adhesive film is about 15 to 60 microns, preferably 25 to 40 microns.
- the thickness of the adhesive film is minimized to obtain adequate bonding while maximizing thermal conductivity.
- the thermal conductivity of the filled adhesive composition should range between about 0.5-20 watts/m-K, preferably greater than 1 watts/m-K.
- the adhesive film preferably has a maximum thermal impededance of 250° C.-mm 2 /watt and a minimum dielectric strength of 400V (ac).
- a major limiting factor for any electronic circuit consuming electric power is the high thermal resistance between the component and the ambient surroundings.
- the circuit must be mounted in intimate thermal contact with a heat sink.
- a heat sink is simply a mechanical device with an improved heat transfer capability, i.e., heat transfer from the device into the ambient atmosphere.
- Heat sinks often consist of a metal chassis, a metal sheet, a finned structure with or without forced air cooling or even a liquid cooled metal structure for maximum heat transfer and minimum volume. The available shapes and sizes vary widely. The choice of a heat sink for a particular application depends on the net thermal resistance from the circuit to the ambient atmosphere in terms of required power dissipation.
- Preferred heat sinks in this application are thin metallic sheets, preferably aluminum having a thickness of about 0.020-0.0125 inches.
- thicker aluminum can be used, alternatively finned sheets or liquid cooled structures can be used.
- Rigid printed circuit substrate material can include rigid boards made from phenolic, epoxy, epoxy fiberglass, and other conventional rigid circuit board substrates.
- the flexible printed circuit boards of the invention are typically made from a flexible metal-film laminate material.
- the laminate can comprise a polymer film layer having a metal layer on each surface of a film. Both adhesiveless and adhesive containing laminates can be used.
- Films that can be used for forming the metal film laminates used in the circuit boards of the invention are commonly organic film-forming compositions that can be formed from a variety of common polymeric films including addition polymers, condensation polymers, natural polymers, treated films, thermosetting or thermoplastic resins.
- thermosetting resins include phenolic resins, epoxy resins, polyurethane resins, thermosetting polyester resins, silicone resins, etc.
- Engineering plastics such as polyamide (Nylon), aromatic polyester, polyetherimide, polyether ether ketone, polysulfone, and polyphenylene ether; crosslinkable resins obtained by compounding an organic peroxide as a crosslinking agent and a radical polymerizable polyfunctional compound, a thermosetting resin and the like can be used. Because of the nature of thermosetting resins, they cannot be further heat processed without severe distortion or destruction.
- Polyimide film can be used in the preferred film circuit laminate.
- Preferred polyimides are typically made by a two step reaction involving contacting a tetrabasic acid dianhydride with an aromatic diamine giving first a polyamic acid that is then converted by heat or catalyst into a high molecular weight, linear polyimide. Such polyimides are easily produced as film or sheet.
- Thermoplastic resins are also useful in the laminate films of the invention.
- Useful addition polymers include poly alpha-olefins, polyethylene, polypropylene, poly 4-methyl-pentene-1, ethylene/vinyl copolymers, ethylene vinyl acetate copolymers, ethylene acrylic acid copolymers, ethylene methacrylate copolymers, ethyl-methylacrylate copolymers, etc.; thermoplastic propylene polymers such as polypropylene, ethylene-propylene copolymers, etc.; vinyl chloride polymers and copolymers; vinylidene chloride polymers and copolymers; polyvinyl alcohols, acrylic polymers made from acrylic acid, methacrylic acid, methylacrylate, methacrylate, acrylamide and others.
- Fluorocarbon resins such as polytetrafluoroethylene, polyvinylidiene fluoride, and fluorinated ethylene-propylene resins.
- Styrene resins such as a polystyrene, alpha-methylstyrene, high impact polystyrene acrylonitrile-butadiene-styrene polymers and others.
- condensation polymers can also be used in the manufacture of the laminates of the invention including nylon (polyamide) resins such as nylon 6, nylon 66, nylon 10, nylon 11, nylon 12, etc.
- nylon (polyamide) resins such as nylon 6, nylon 66, nylon 10, nylon 11, nylon 12, etc.
- polyester materials can be made from dibasic aliphatic and aromatic carboxylic acids and di- or triols. Representative examples include poly(ethylene-co-terephthlate), poly(butylene-co-terephthlate), poly(ethylene-co-naphthalate) and others.
- Polycarbonates can also be used in the manufacture of the circuit invention.
- Such polycarbonates are long chained linear polyesters of carbonic acid and dihydric phenols typically made by reacting phosgene (COCl 2 ) with bisphenol A materials resulting in transparent, tough, dimensionally stable plastics.
- COCl 2 phosgene
- a variety of other condensation polymers are used including polyetherimide, polysulfone, polyethersulfone, polybenzazoles, aromatic polysulfones, polyphenylene oxides, polyether ether ketone and others.
- polyester film materials such as polyethylene-terephthlate, polybutylene terephthlate and polyimide materials. These film materials are sold by dupont, Allied-Apical, Teijin, Kanega-fuchi, as Mylar®, Kapton®, Apical®, Upilex®, etc., films.
- the metal useful in forming the metal film laminate of the circuit boards of the invention are often shiny, metallic layers not subject to substantial corrosion from atmospheric conditions and have substantial electrical conductivity.
- Preferred metals for use in forming the laminate structures of the invention include aluminum, copper, gold, silver, etc.
- a foil can be adhered to a hard board or film substrate with a conventional laminating adhesive.
- the film can be contacted with a source of a conductive layer.
- a source of metal vapor is used to form a metallized layer on the plasma treated film.
- Vapor metallization is a low pressure, high temperature (energy) process in which metal vapor is formed.
- a variety of other layers can be used including carbon, conductive polymers, etc.
- the metallization step can be each carried out at relatively low pressure, typically less than 200 Torr. This process can be carried out in a single chamber which is divided into sections operated at a pressure that is optimized for multiple metal addition. Typically, the metallization occurs at pressures less than 0.5 Torr.
- the metallized film is particularly suited for the subsequent formation of thick metal layers such as those useful in the end uses discussed above.
- Such layers can be formed in a variety of techniques, however, electroplating and electroless plating are the most commonly used metal layer formation techniques.
- Electroplating is the electrodeposition of an adherent metallic coating on an electrode surface to form a metal deposit.
- the electrode surface being treated is made the cathode in an electroplating solution or bath.
- Such baths are typically aqueous solutions from which metal is reduced by the flow of an electric current through a solution of the metal salt.
- the electrode or substrate is often cleaned, rinsed, dipped in acid or is subject to other pretreatment or substrate preparation.
- the substrate is immersed into a solution and necessary DC power is applied typically from metallic anodes to the substrate cathode.
- the solutions are often agitated and the temperature current metal concentration and other variables are closely controlled using well known principles.
- the laminate metal is typically copper plated onto a substrate having a metal layer prepared using the copper metallization techniques.
- Useful copper layers can also be formed using electroless plating which is the controlled autocatalytic deposition of a continuous film by the interaction, in a solution of metal salt between a metal and a chemical reducing agent.
- Electroless deposition can give films of metals, alloys, metallic compounds, and composites on both conductive and non-conductive surfaces.
- Electroless solutions contain a metal salt, reducing agent, a pH adjuster or buffer, a complexing agent and one or more additives to control solution stability, film properties, deposition rates, etc.
- nickel, copper, gold and silver are plated using electroless techniques.
- the advantage of electroless plating is the ability to plate metal on non-conductive or poorly conductive surfaces.
- a printed wiring board can be made by forming the circuit pattern in metal on the film.
- the pattern can be formed by an etching process or by a semi-additive pattern plating process.
- a resist and basic etchant baths are used to selectively remove copper leaving the pattern.
- a conductive circuit pattern can be formed on the laminate of the invention using a semi-additive technique. In such a technique, the circuit pattern is formed in a way to significantly reduce the amount of metal removed through an etching step.
- the semi-additive technique after the first metal layer is formed using metallization, a resist is formed on the first layer.
- the resist leaves revealed, the first metal layer in the pattern of the desired circuit. Onto the revealed pattern is plated a thick, 0.1 to 40 ⁇ m layer of copper using commonly electroplating or electroless techniques. After the second metal layer in the desired pattern is complete, the resist can be removed leaving the thick metal pattern and in the areas revealed by the removal of resist, the thin metallized layer. The remaining revealed metallized areas are then removed using a light etch. The metallized layers are thin and require brief etching substantially reducing the amount of metal removed, the amount of etchant consumed and substantially reduces the amounts of waste materials.
- the technology in Swisher, U.S. Pat. No. 5,112,462 can be used to make the flexible, polymer-metal circuit.
- the appropriately patterned double sided printed circuit board is manufactured into a finished circuit by attaching active and passive components to one surface of the board.
- the opposite surface of the circuit board is attached to the heat sink through the disclosed insulating layer.
- the active circuits can be attached to the printed circuit board by any fabrication technology.
- a preferred method of attaching the active components involves surface mounting of the active components.
- the use of surface mount technology in attaching active components to one surface of the double sided printed circuit board of the invention results in a side free of any active component or attachment structures that would interfere in thermal transfer to the heat sink.
- the noncomponent side of the circuit board comprises a flat surface having only circuit patterns, ground plane, logos or other etched patterns overlying the flexible film material. As such, the flat surface is ideal for attachment through the adhesive coated layer to the heat sink.
- the flat surface is thermally connected to the heat sink over the entire surface. No gaps arise due to active component or attachment structure interference. Such a structure maximizes thermal conductivity.
- Different processing techniques may be used to bond the surface mount components to the footprints of bonding pads formed in the circuit board.
- flip chips i.e., unpackaged integrated circuit chips having solder bumps formed on one side thereof
- one preferred direct chip attachment mechanism in U.S. Pat. No. 5,261,593, issued to Casson et al.
- a low temperature solder paste is registered on contact pads on the overlay.
- One or more flip chips are registered on the overlay with the solder bumps on the chips centered on the solder paste on the contact pads.
- the solder paste is then reflowed by heating the entire assembly as a whole in an infrared reflow oven or other heat applying mechanism.
- solder bumps and solder paste then form homogenous compositions which solidify to provide a mechanical and electrical interconnection between the flip chips and the circuit board.
- Many other direct chip attachment techniques such as tape automated bonding (tab), wire lead bonding C4, etc. may be used in the alternative, and that different materials, such as solders, solder pastes, conductive adhesives, etc. may be used to bond solder bumps or leads of the surface mount components to the circuit board.
- Typical components include resistors, capacitors, inductors, integrated circuits, diodes, transistors, resistor arrays and others.
- a variety of integrated circuit packaging can be used including chip carriers, dual in line packages, solder bump technology, direct wire interconnections and others can be used. Conventional soldering techniques can be used including IR reflow, heat probe, wave soldering and other techniques.
- the resulting circuits, with attached heat sinks, of the invention can be used in a variety of applications where thermal control is important including radio frequency circuits, power circuits, high frequency circuits, circuits exposed to increased temperatures, etc.
- One preferred application for the technology of this invention is in automotive applications.
- Such automotive applications can include engine controllers, automatic breaking system controllers, pollution control modules, automotive radios, etc. or any other useful automotive application that can be mounted in the engine compartment, near exhaust systems, or in the vicinity of heated braking elements.
- the heat sink 10 comes into contact with the adhesive layer 21 as the unfilled polymeric film layer 20, having an adhesive layer 21 on the opposite side of the polymeric layer 20.
- the flexible printed circuit board layer 30 having circuit traces 31 on one side of the flexible layer and circuit element 32 on the opposite side of the layer is adhered to the adhesive 21 on the insulating layer 20.
- Insulating layer 20 prevents conduction of electricity from circuit portion 32 to heat sink 11.
- the insulating layer covers all active portions of the circuit pattern 32.
- the surface of the printed circuit board 30 that does not contact the insulating layer can be coated with a solder resist or other resist coating.
- the printed circuit board can be of any design and can have virtually any circuit pattern including surface contact pads, edge connectors or mounting locations for passive devices, resistors, capacitors, inductors or active components such as diodes, transistors, integrated circuits or power devices such as power transistors, SCR's, triacs, and other rectifiers, inverters, transformers, inductors, capacitors, resistors and others.
- the printed circuit board can extend past the edge of the aluminum heat sink if desired. However, any portions of the printed circuit board having substantial heat generation should come in contact with the heat sink. In the FIGURE, the ground plane 33 of the reverse side of the printed circuit board 30 extends past the edge of the aluminum heat sink at 33.
- the following examples and data illustrate specific embodiments of the invention.
- the examples and data contain information regarding the structures and manufacturing techniques of the adhesive coated insulating film of the invention and to the assemblies comprising a printed circuit board, a heat sink and the intermediate adhesive film. Further, the thermal and electrical properties of the assembly and test methods for measurement are recited. The following contains a best mode:
- the Bergquist PSA is a filled acrylic with a thermal conductivity of 0.9 watts/m-K while the Sheldahl adhesive 713-51 is a filled thermoplastic/thermoset with a thermal conductivity of between 1.0 and 2.0 watts/m-K.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Laminated Bodies (AREA)
Abstract
Description
TABLE I __________________________________________________________________________ Thermal Impedance Dielectric Strength KV ac. Sample Description °C.-mm.sup.2 /watt* ASTM-D-149 __________________________________________________________________________ 1 6 μm PEN 2 × 45 μm Bergquist PSA** 150 3.1 2 12 μm PEN 2 × 45 μm Bergquist PSA 190 6.1 3 6 μm PEN 2 × 35 μm Sheldahl 713-51*** 100 5.8 4 12 μm PEN 2 × 35 μm Sheldahl 713-51 140 7.3 5 5 μm PEI 2 × 35 μm Sheldahl 713-51 80 2.4 6 8 μm PEI 2 × 35 μm Sheldahl 713-51 95 5.7 7 14 μm PEI 2 × 35 μm Sheldahl 713-51 125 6.4 __________________________________________________________________________ *Theoretical impedance. **Has a k of 0.9 watts/mK. ***Has a k of 1.0 to 2.0 watts/mK.
Claims (47)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/743,661 US5766740A (en) | 1995-05-26 | 1996-11-05 | Adherent film with low thermal impedance and high electrical impedance used in an electronic assembly with a heat sink |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US45112895A | 1995-05-26 | 1995-05-26 | |
US08/743,661 US5766740A (en) | 1995-05-26 | 1996-11-05 | Adherent film with low thermal impedance and high electrical impedance used in an electronic assembly with a heat sink |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US45112895A Continuation | 1995-05-26 | 1995-05-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5766740A true US5766740A (en) | 1998-06-16 |
Family
ID=23790923
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/675,564 Expired - Lifetime US5798171A (en) | 1995-05-26 | 1996-07-03 | Adherent film with low thermal impedance and high electrical impedance used in an electronic assembly with a heat sink |
US08/743,661 Expired - Lifetime US5766740A (en) | 1995-05-26 | 1996-11-05 | Adherent film with low thermal impedance and high electrical impedance used in an electronic assembly with a heat sink |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/675,564 Expired - Lifetime US5798171A (en) | 1995-05-26 | 1996-07-03 | Adherent film with low thermal impedance and high electrical impedance used in an electronic assembly with a heat sink |
Country Status (2)
Country | Link |
---|---|
US (2) | US5798171A (en) |
WO (1) | WO1996037915A1 (en) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000045435A1 (en) * | 1999-01-29 | 2000-08-03 | The University Of Akron | Polyimides used as microelectronic coatings |
WO2000077116A1 (en) * | 1999-06-15 | 2000-12-21 | Lexmark International, Inc. | Adhesive bonding laminates |
US6254971B1 (en) * | 1996-06-07 | 2001-07-03 | Asahi Kasei Kabushiki Kaisha | Resin-having metal foil for multilayered wiring board, process for producing the same, multilayered wiring board, and electronic device |
US6329713B1 (en) * | 1998-10-21 | 2001-12-11 | International Business Machines Corporation | Integrated circuit chip carrier assembly comprising a stiffener attached to a dielectric substrate |
WO2002013586A1 (en) * | 2000-08-03 | 2002-02-14 | Hamilton Sundstrand Corporation | Adhesive bonding of printed circuit boards to heat sinks |
US6361146B1 (en) | 1999-06-15 | 2002-03-26 | Lexmark International, Inc. | Adhesive bonding laminates |
US20030066672A1 (en) * | 2001-05-10 | 2003-04-10 | Watchko George R. | Thermal-sprayed metallic conformal coatings used as heat spreaders |
FR2835689A1 (en) * | 2002-02-01 | 2003-08-08 | Siemens Vdo Automotive | Method of gluing a rigid integrated circuit on an aluminum plate, used in the fabrication of IC chips |
US6613984B1 (en) * | 2002-04-29 | 2003-09-02 | Hewlett-Packard Development Company, L.P. | Means and methods of insulating a bolster plate |
US20040195662A1 (en) * | 2003-01-10 | 2004-10-07 | Kyocera America, Inc. | Semiconductor package having non-ceramic based window frame |
US6821819B1 (en) * | 2001-02-21 | 2004-11-23 | Sandia Corporation | Method of packaging and assembling micro-fluidic device |
US20050173692A1 (en) * | 2002-12-27 | 2005-08-11 | Park Young H. | Vertical GaN light emitting diode and method for manufacturing the same |
US20050241801A1 (en) * | 2004-05-03 | 2005-11-03 | Mitchell Jonathan E | Lightweight heat sink |
WO2006001943A2 (en) * | 2004-06-14 | 2006-01-05 | 3M Innovative Properties Company | Multi-layered thermally conductive sheet |
EP1615488A3 (en) * | 2004-07-09 | 2006-01-18 | Valeo Vision | Electronic assembly with heat transfer, especially for a control module for a discharge head lamp of a vehicle |
US7074493B1 (en) | 1999-01-29 | 2006-07-11 | The University Of Akron | Polyimides used as microelectronic coatings |
US20060266475A1 (en) * | 2005-05-24 | 2006-11-30 | American Standard Circuits, Inc. | Thermally conductive interface |
US7202570B2 (en) | 1996-05-30 | 2007-04-10 | Renesas Technology Corp. | Circuit tape having adhesive film semiconductor device and a method for manufacturing the same |
US20070177356A1 (en) * | 2006-02-01 | 2007-08-02 | Jeffrey Panek | Three-dimensional cold plate and method of manufacturing same |
US20070184289A1 (en) * | 2006-02-08 | 2007-08-09 | American Standard Circuits | Thermally and electrically conductive interface |
US20070216034A1 (en) * | 2006-03-14 | 2007-09-20 | Bachman Mark A | Low thermal resistance assembly for flip chip applications |
US20070258017A1 (en) * | 2006-03-17 | 2007-11-08 | Toshihiko Matsuzawa | Flat panel display |
US20080116567A1 (en) * | 2006-11-22 | 2008-05-22 | Ahmed Amin | Flip Chip Assembly Having Improved Thermal Dissipation |
US20080190585A1 (en) * | 2007-02-08 | 2008-08-14 | Lundell Timothy J | Sealed thermal interface component |
US20090218119A1 (en) * | 2008-03-03 | 2009-09-03 | Ibiden Co., Ltd | Method of manufacturing multilayer printed wiring board |
US7666270B1 (en) * | 2003-10-14 | 2010-02-23 | Graftech International Holdings Inc. | Heat spreader for display panel |
US20100310827A1 (en) * | 2009-06-03 | 2010-12-09 | Wistron Corporation | Electronic device and hot melt structure thereof |
WO2011019719A1 (en) | 2009-08-12 | 2011-02-17 | Parker-Hannifin Corporation | Fully-cured thermally or electrically-conductive form-in-place gap filler |
US7954236B2 (en) | 2007-02-08 | 2011-06-07 | Lundell Manufacturing Corporation | Method of assembling a sealed thermal interface |
US20120082838A1 (en) * | 2010-09-29 | 2012-04-05 | Saint-Gobain Performance Plastics Corporation | Barrier film or fabric |
WO2012152364A1 (en) * | 2011-05-09 | 2012-11-15 | Heraeus Materials Technology Gmbh & Co. Kg | Substrate with electrically neutral region |
US20130188318A1 (en) * | 2012-01-20 | 2013-07-25 | Lite-On Technology Corporation | Heat dissipation structure and electronic device with the same |
US20140318698A1 (en) * | 2010-03-04 | 2014-10-30 | Rogers Corporation | Dielectric bond plies for circuits and multilayer circuits, and methods of manufacture thereof |
US20150373832A1 (en) * | 2014-06-23 | 2015-12-24 | Taiwan Green Point Enterprises Co., Ltd. | Circuit-and-heat-dissipation assembly and method of making the same |
US20160003419A1 (en) * | 2014-07-03 | 2016-01-07 | Sansi Technology, Inc. | Lighting device and led luminaire |
US9761403B2 (en) | 2003-10-14 | 2017-09-12 | Advanced Energy Technologies Llc | Heat spreader for plasma display panel |
US10954860B2 (en) | 2013-12-16 | 2021-03-23 | Raytheon Technologies Corporation | Ceramic coating for heated fuel filter |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997041599A1 (en) * | 1996-04-29 | 1997-11-06 | Parker-Hannifin Corporation | Conformal thermal interface material for electronic components |
US6432497B2 (en) | 1997-07-28 | 2002-08-13 | Parker-Hannifin Corporation | Double-side thermally conductive adhesive tape for plastic-packaged electronic components |
JP4086946B2 (en) | 1998-01-05 | 2008-05-14 | 日東電工株式会社 | Thermally conductive pressure-sensitive adhesive sheets and methods for fixing electronic components and heat dissipation members using the same |
GB9814835D0 (en) | 1998-07-08 | 1998-09-09 | Europ Org For Nuclear Research | A thermal management board |
US6129260A (en) * | 1998-08-19 | 2000-10-10 | Fravillig Technologies Company | Solderable structures |
US6359334B1 (en) | 1999-06-08 | 2002-03-19 | Micron Technology, Inc. | Thermally conductive adhesive tape for semiconductor devices and method using the same |
US6644395B1 (en) | 1999-11-17 | 2003-11-11 | Parker-Hannifin Corporation | Thermal interface material having a zone-coated release linear |
US6794030B1 (en) | 1999-11-30 | 2004-09-21 | 3M Innovative Properties Company | Heat conductive sheet and method of producing the sheet |
US6201700B1 (en) * | 2000-01-06 | 2001-03-13 | Ford Motor Company | Box design for maximum heat dissipation |
DE60128727T2 (en) | 2001-01-22 | 2008-01-31 | PARKER HANNIFIN Corporation, Cleveland | REINSTRUCTIBLE REMOVABLE THERMAL CONNECTOR WITH PHASE TRANSITION MATERIAL |
JP4219686B2 (en) * | 2001-03-09 | 2009-02-04 | 東レ・ダウコーニング株式会社 | Grease-like silicone composition |
JP4459470B2 (en) * | 2001-04-06 | 2010-04-28 | 信越化学工業株式会社 | Electronic component heat dissipation structure and heat dissipation sheet used therefor |
US6946190B2 (en) | 2002-02-06 | 2005-09-20 | Parker-Hannifin Corporation | Thermal management materials |
EP1472728B1 (en) | 2002-02-06 | 2008-09-24 | Parker Hannifin Corporation | Thermal management materials having a phase change dispersion |
US7208192B2 (en) * | 2002-05-31 | 2007-04-24 | Parker-Hannifin Corporation | Thermally or electrically-conductive form-in-place gap filter |
US6956739B2 (en) | 2002-10-29 | 2005-10-18 | Parker-Hannifin Corporation | High temperature stable thermal interface material |
US8119191B2 (en) | 2003-01-16 | 2012-02-21 | Parker-Hannifin Corporation | Dispensable cured resin |
CN101653056B (en) * | 2007-02-15 | 2011-08-31 | 日本电气株式会社 | Elecric device-installed apparatus and its noise reduction method |
CN103909689A (en) * | 2013-01-07 | 2014-07-09 | 深圳富泰宏精密工业有限公司 | Ceramic and plastic complex, and electronic device using complex |
CN109313714B (en) * | 2016-04-05 | 2022-03-01 | 惠普发展公司,有限责任合伙企业 | Modular Radio Frequency Identification (RFID) device |
KR20230152077A (en) | 2021-03-04 | 2023-11-02 | 모멘티브 퍼포먼스 머티리얼즈 인크. | Thermal gel composition |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5645060A (en) * | 1979-09-21 | 1981-04-24 | Hitachi Ltd | Semiconductor device |
US4297474A (en) * | 1980-02-29 | 1981-10-27 | General Electric Company | Polyetherimides prepared by self-condensation of hydroxyaryl phthalimide salts |
JPS5852859A (en) * | 1981-09-25 | 1983-03-29 | Hitachi Ltd | Insulated semiconductor device |
JPS60157244A (en) * | 1984-11-10 | 1985-08-17 | Denki Kagaku Kogyo Kk | Insulation heat-dissipating sheet with adhesive |
US4574879A (en) * | 1984-02-29 | 1986-03-11 | The Bergquist Company | Mounting pad for solid-state devices |
US4810563A (en) * | 1986-03-14 | 1989-03-07 | The Bergquist Company | Thermally conductive, electrically insulative laminate |
US4849857A (en) * | 1987-10-05 | 1989-07-18 | Olin Corporation | Heat dissipating interconnect tape for use in tape automated bonding |
US4858073A (en) * | 1986-12-10 | 1989-08-15 | Akzo America Inc. | Metal substrated printed circuit |
US4866108A (en) * | 1988-01-19 | 1989-09-12 | Hughes Aircraft Company | Flexible epoxy adhesive blend |
US4869954A (en) * | 1987-09-10 | 1989-09-26 | Chomerics, Inc. | Thermally conductive materials |
US4914551A (en) * | 1988-07-13 | 1990-04-03 | International Business Machines Corporation | Electronic package with heat spreader member |
US5014159A (en) * | 1982-04-19 | 1991-05-07 | Olin Corporation | Semiconductor package |
US5175613A (en) * | 1991-01-18 | 1992-12-29 | Digital Equipment Corporation | Package for EMI, ESD, thermal, and mechanical shock protection of circuit chips |
US5285108A (en) * | 1991-06-21 | 1994-02-08 | Compaq Computer Corporation | Cooling system for integrated circuits |
US5372883A (en) * | 1990-03-20 | 1994-12-13 | Staystik, Inc. | Die attach adhesive film, application method and devices incorporating the same |
US5448105A (en) * | 1989-09-28 | 1995-09-05 | Dia Nippon Printing Co., Ltd. | Semiconductor device having a leadframe and metal substrate |
US5471027A (en) * | 1994-07-22 | 1995-11-28 | International Business Machines Corporation | Method for forming chip carrier with a single protective encapsulant |
US5510174A (en) * | 1993-07-14 | 1996-04-23 | Chomerics, Inc. | Thermally conductive materials containing titanium diboride filler |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5151777A (en) * | 1989-03-03 | 1992-09-29 | Delco Electronics Corporation | Interface device for thermally coupling an integrated circuit to a heat sink |
-
1996
- 1996-05-09 WO PCT/US1996/006624 patent/WO1996037915A1/en active Application Filing
- 1996-07-03 US US08/675,564 patent/US5798171A/en not_active Expired - Lifetime
- 1996-11-05 US US08/743,661 patent/US5766740A/en not_active Expired - Lifetime
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5645060A (en) * | 1979-09-21 | 1981-04-24 | Hitachi Ltd | Semiconductor device |
US4297474A (en) * | 1980-02-29 | 1981-10-27 | General Electric Company | Polyetherimides prepared by self-condensation of hydroxyaryl phthalimide salts |
JPS5852859A (en) * | 1981-09-25 | 1983-03-29 | Hitachi Ltd | Insulated semiconductor device |
US5014159A (en) * | 1982-04-19 | 1991-05-07 | Olin Corporation | Semiconductor package |
US4574879A (en) * | 1984-02-29 | 1986-03-11 | The Bergquist Company | Mounting pad for solid-state devices |
JPS60157244A (en) * | 1984-11-10 | 1985-08-17 | Denki Kagaku Kogyo Kk | Insulation heat-dissipating sheet with adhesive |
US4810563A (en) * | 1986-03-14 | 1989-03-07 | The Bergquist Company | Thermally conductive, electrically insulative laminate |
US4858073A (en) * | 1986-12-10 | 1989-08-15 | Akzo America Inc. | Metal substrated printed circuit |
US4869954A (en) * | 1987-09-10 | 1989-09-26 | Chomerics, Inc. | Thermally conductive materials |
US4849857A (en) * | 1987-10-05 | 1989-07-18 | Olin Corporation | Heat dissipating interconnect tape for use in tape automated bonding |
US4866108A (en) * | 1988-01-19 | 1989-09-12 | Hughes Aircraft Company | Flexible epoxy adhesive blend |
US4914551A (en) * | 1988-07-13 | 1990-04-03 | International Business Machines Corporation | Electronic package with heat spreader member |
US5448105A (en) * | 1989-09-28 | 1995-09-05 | Dia Nippon Printing Co., Ltd. | Semiconductor device having a leadframe and metal substrate |
US5372883A (en) * | 1990-03-20 | 1994-12-13 | Staystik, Inc. | Die attach adhesive film, application method and devices incorporating the same |
US5175613A (en) * | 1991-01-18 | 1992-12-29 | Digital Equipment Corporation | Package for EMI, ESD, thermal, and mechanical shock protection of circuit chips |
US5285108A (en) * | 1991-06-21 | 1994-02-08 | Compaq Computer Corporation | Cooling system for integrated circuits |
US5510174A (en) * | 1993-07-14 | 1996-04-23 | Chomerics, Inc. | Thermally conductive materials containing titanium diboride filler |
US5471027A (en) * | 1994-07-22 | 1995-11-28 | International Business Machines Corporation | Method for forming chip carrier with a single protective encapsulant |
Non-Patent Citations (10)
Title |
---|
24th ISATA, Florence, Italy, 20 24th May, 1991, Y. Belopolsky: Evaluation of Power Transistor Mounting fpr Automotive Electronics Based on Planar Heat XP000308596 Spreading , pp. 37 44 see figure 2; table 1. * |
24th ISATA, Florence, Italy, 20-24th May, 1991, Y. Belopolsky: "Evaluation of Power Transistor Mounting fpr Automotive Electronics Based on Planar Heat XP000308596 Spreading", pp. 37-44 see figure 2; table 1. |
Advanced Packaging, vol. 4, No. 4, Jun. 1995 Aug. 1995, Ishing Group US, p. 16 XP000532820 Insulating Tape see the whole document. * |
Advanced Packaging, vol. 4, No. 4, Jun. 1995-Aug. 1995, Ishing Group US, p. 16 XP000532820 "Insulating Tape" see the whole document. |
Patent Abstracts of Japan, vol. 5, No. 103 (E 64), 3 Jul. 1981 & JP,A,56 045060 (Hitachi), 24 Apr. 1981, see abstract. * |
Patent Abstracts of Japan, vol. 5, No. 103 (E-64), 3 Jul. 1981 & JP,A,56 045060 (Hitachi), 24 Apr. 1981, see abstract. |
Patent Abstracts of Japan, vol. 7, No. 140 (E 182), 18 Jun. 1983 & JP,A,58 052859 (Hitachi), 29 Mar. 1983, see abstract. * |
Patent Abstracts of Japan, vol. 7, No. 140 (E-182), 18 Jun. 1983 & JP,A,58 052859 (Hitachi), 29 Mar. 1983, see abstract. |
Patent Abstracts of Japan, vol. 9, No. 325 (E 368), 20 Dec. 1985 & JP,A,60 157244 (Denki Kagaku Kogyo), 17 Aug. 1985, see abstract. * |
Patent Abstracts of Japan, vol. 9, No. 325 (E-368), 20 Dec. 1985 & JP,A,60 157244 (Denki Kagaku Kogyo), 17 Aug. 1985, see abstract. |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7202570B2 (en) | 1996-05-30 | 2007-04-10 | Renesas Technology Corp. | Circuit tape having adhesive film semiconductor device and a method for manufacturing the same |
US6254971B1 (en) * | 1996-06-07 | 2001-07-03 | Asahi Kasei Kabushiki Kaisha | Resin-having metal foil for multilayered wiring board, process for producing the same, multilayered wiring board, and electronic device |
US6329713B1 (en) * | 1998-10-21 | 2001-12-11 | International Business Machines Corporation | Integrated circuit chip carrier assembly comprising a stiffener attached to a dielectric substrate |
WO2000045435A1 (en) * | 1999-01-29 | 2000-08-03 | The University Of Akron | Polyimides used as microelectronic coatings |
US7074493B1 (en) | 1999-01-29 | 2006-07-11 | The University Of Akron | Polyimides used as microelectronic coatings |
US6361146B1 (en) | 1999-06-15 | 2002-03-26 | Lexmark International, Inc. | Adhesive bonding laminates |
US6210522B1 (en) | 1999-06-15 | 2001-04-03 | Lexmark International, Inc. | Adhesive bonding laminates |
WO2000077116A1 (en) * | 1999-06-15 | 2000-12-21 | Lexmark International, Inc. | Adhesive bonding laminates |
WO2002013586A1 (en) * | 2000-08-03 | 2002-02-14 | Hamilton Sundstrand Corporation | Adhesive bonding of printed circuit boards to heat sinks |
US6821819B1 (en) * | 2001-02-21 | 2004-11-23 | Sandia Corporation | Method of packaging and assembling micro-fluidic device |
US6965071B2 (en) | 2001-05-10 | 2005-11-15 | Parker-Hannifin Corporation | Thermal-sprayed metallic conformal coatings used as heat spreaders |
US20030066672A1 (en) * | 2001-05-10 | 2003-04-10 | Watchko George R. | Thermal-sprayed metallic conformal coatings used as heat spreaders |
FR2835689A1 (en) * | 2002-02-01 | 2003-08-08 | Siemens Vdo Automotive | Method of gluing a rigid integrated circuit on an aluminum plate, used in the fabrication of IC chips |
US6613984B1 (en) * | 2002-04-29 | 2003-09-02 | Hewlett-Packard Development Company, L.P. | Means and methods of insulating a bolster plate |
US20050173692A1 (en) * | 2002-12-27 | 2005-08-11 | Park Young H. | Vertical GaN light emitting diode and method for manufacturing the same |
US20050214965A1 (en) * | 2002-12-27 | 2005-09-29 | Samsung Electro-Mechanics Co., Ltd. | Vertical GaN light emitting diode and method for manufacturing the same |
US7268372B2 (en) * | 2002-12-27 | 2007-09-11 | Samsung Electro-Mechanics Co., Ltd. | Vertical GaN light emitting diode and method for manufacturing the same |
US7112456B2 (en) | 2002-12-27 | 2006-09-26 | Samsung Electro-Mechanics Co., Ltd. | Vertical GaN light emitting diode and method for manufacturing the same |
US7582964B2 (en) | 2003-01-10 | 2009-09-01 | Kyocera America, Inc. | Semiconductor package having non-ceramic based window frame |
US20040195662A1 (en) * | 2003-01-10 | 2004-10-07 | Kyocera America, Inc. | Semiconductor package having non-ceramic based window frame |
US20080142963A1 (en) * | 2003-01-10 | 2008-06-19 | Kyocera America, Inc. | Semiconductor Package Having Non-Ceramic Based Window Frame |
US7298046B2 (en) * | 2003-01-10 | 2007-11-20 | Kyocera America, Inc. | Semiconductor package having non-ceramic based window frame |
US9761403B2 (en) | 2003-10-14 | 2017-09-12 | Advanced Energy Technologies Llc | Heat spreader for plasma display panel |
US7666270B1 (en) * | 2003-10-14 | 2010-02-23 | Graftech International Holdings Inc. | Heat spreader for display panel |
US20050241801A1 (en) * | 2004-05-03 | 2005-11-03 | Mitchell Jonathan E | Lightweight heat sink |
US7147041B2 (en) | 2004-05-03 | 2006-12-12 | Parker-Hannifin Corporation | Lightweight heat sink |
WO2006001943A2 (en) * | 2004-06-14 | 2006-01-05 | 3M Innovative Properties Company | Multi-layered thermally conductive sheet |
US20070231552A1 (en) * | 2004-06-14 | 2007-10-04 | Masaki Yoda | Multi-Layered Thermally Conductive Sheet |
KR101202525B1 (en) | 2004-06-14 | 2012-11-16 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Multi-layered thermally conductive sheet |
US7709098B2 (en) | 2004-06-14 | 2010-05-04 | 3M Innovative Properties Company | Multi-layered thermally conductive sheet |
WO2006001943A3 (en) * | 2004-06-14 | 2006-02-02 | 3M Innovative Properties Co | Multi-layered thermally conductive sheet |
EP1615488A3 (en) * | 2004-07-09 | 2006-01-18 | Valeo Vision | Electronic assembly with heat transfer, especially for a control module for a discharge head lamp of a vehicle |
US7540081B2 (en) | 2005-05-24 | 2009-06-02 | American Standard Circuits | Thermally conductive interface |
US20070113399A1 (en) * | 2005-05-24 | 2007-05-24 | American Standard Circuits, Inc. | Thermally Conductive Interface |
US20060266475A1 (en) * | 2005-05-24 | 2006-11-30 | American Standard Circuits, Inc. | Thermally conductive interface |
US20080296256A1 (en) * | 2006-02-01 | 2008-12-04 | Cool Shield Inc. | Three-dimensional cold plate and method of manufacturing same |
US20070177356A1 (en) * | 2006-02-01 | 2007-08-02 | Jeffrey Panek | Three-dimensional cold plate and method of manufacturing same |
US7527873B2 (en) | 2006-02-08 | 2009-05-05 | American Standard Circuits | Thermally and electrically conductive interface |
US20080251199A1 (en) * | 2006-02-08 | 2008-10-16 | American Standard Circuits | Thermally and Electrically Conductive Interface |
US7867353B2 (en) | 2006-02-08 | 2011-01-11 | American Standard Circuits | Thermally and electrically conductive interface |
US20070184289A1 (en) * | 2006-02-08 | 2007-08-09 | American Standard Circuits | Thermally and electrically conductive interface |
US7479695B2 (en) * | 2006-03-14 | 2009-01-20 | Agere Systems Inc. | Low thermal resistance assembly for flip chip applications |
US20070216034A1 (en) * | 2006-03-14 | 2007-09-20 | Bachman Mark A | Low thermal resistance assembly for flip chip applications |
US7649737B2 (en) * | 2006-03-17 | 2010-01-19 | Hitachi, Ltd. | Flat panel display |
US20070258017A1 (en) * | 2006-03-17 | 2007-11-08 | Toshihiko Matsuzawa | Flat panel display |
US20080116567A1 (en) * | 2006-11-22 | 2008-05-22 | Ahmed Amin | Flip Chip Assembly Having Improved Thermal Dissipation |
US7982307B2 (en) * | 2006-11-22 | 2011-07-19 | Agere Systems Inc. | Integrated circuit chip assembly having array of thermally conductive features arranged in aperture of circuit substrate |
US8448693B2 (en) | 2007-02-08 | 2013-05-28 | Lundell Manufacturing Corporation | Sealed thermal interface component |
US20080190585A1 (en) * | 2007-02-08 | 2008-08-14 | Lundell Timothy J | Sealed thermal interface component |
US7954236B2 (en) | 2007-02-08 | 2011-06-07 | Lundell Manufacturing Corporation | Method of assembling a sealed thermal interface |
US20110272286A1 (en) * | 2008-03-03 | 2011-11-10 | Ibiden Co., Ltd. | Method of manufacturing multilayer printed wiring board |
US20090218119A1 (en) * | 2008-03-03 | 2009-09-03 | Ibiden Co., Ltd | Method of manufacturing multilayer printed wiring board |
US8499446B2 (en) * | 2008-03-03 | 2013-08-06 | Ibiden Co., Ltd. | Method of manufacturing multilayer printed wiring board |
US20100310827A1 (en) * | 2009-06-03 | 2010-12-09 | Wistron Corporation | Electronic device and hot melt structure thereof |
US8198552B2 (en) * | 2009-06-03 | 2012-06-12 | Wistron Corporation | Electronic device and hot melt structure thereof |
WO2011019719A1 (en) | 2009-08-12 | 2011-02-17 | Parker-Hannifin Corporation | Fully-cured thermally or electrically-conductive form-in-place gap filler |
US20140318698A1 (en) * | 2010-03-04 | 2014-10-30 | Rogers Corporation | Dielectric bond plies for circuits and multilayer circuits, and methods of manufacture thereof |
US9918384B2 (en) * | 2010-03-04 | 2018-03-13 | Rogers Corporation | Dielectric bond plies for circuits and multilayer circuits, and methods of manufacture thereof |
US20120082838A1 (en) * | 2010-09-29 | 2012-04-05 | Saint-Gobain Performance Plastics Corporation | Barrier film or fabric |
WO2012152364A1 (en) * | 2011-05-09 | 2012-11-15 | Heraeus Materials Technology Gmbh & Co. Kg | Substrate with electrically neutral region |
US20130188318A1 (en) * | 2012-01-20 | 2013-07-25 | Lite-On Technology Corporation | Heat dissipation structure and electronic device with the same |
US10954860B2 (en) | 2013-12-16 | 2021-03-23 | Raytheon Technologies Corporation | Ceramic coating for heated fuel filter |
US20150373832A1 (en) * | 2014-06-23 | 2015-12-24 | Taiwan Green Point Enterprises Co., Ltd. | Circuit-and-heat-dissipation assembly and method of making the same |
US9713263B2 (en) * | 2014-06-23 | 2017-07-18 | Taiwan Green Point Enterprises Co., Ltd. | Circuit-and-heat-dissipation assembly and method of making the same |
US20160003419A1 (en) * | 2014-07-03 | 2016-01-07 | Sansi Technology, Inc. | Lighting device and led luminaire |
US10024530B2 (en) * | 2014-07-03 | 2018-07-17 | Sansi Led Lighting Inc. | Lighting device and LED luminaire |
Also Published As
Publication number | Publication date |
---|---|
WO1996037915A1 (en) | 1996-11-28 |
US5798171A (en) | 1998-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5766740A (en) | Adherent film with low thermal impedance and high electrical impedance used in an electronic assembly with a heat sink | |
US4858073A (en) | Metal substrated printed circuit | |
US4810563A (en) | Thermally conductive, electrically insulative laminate | |
US5930117A (en) | Heat sink structure comprising a microarray of thermal metal heat channels or vias in a polymeric or film layer | |
KR100602537B1 (en) | Adhesive Adhesive Tape for Semiconductor Connection Boards and Copper Foil Laminates Using the Same | |
WO1998020542A1 (en) | Electronic parts device | |
KR20010014302A (en) | Semiconductor plastic package and method of producing printed wiring board | |
EP0981268A1 (en) | Circuit board with an electronic component mounted thereon and multi-layer board | |
US5679444A (en) | Method for producing multi-layer circuit board and resulting article of manufacture | |
JP2012004527A (en) | Heat-radiating substrate and method of manufacturing the same | |
US6249045B1 (en) | Tented plated through-holes and method for fabrication thereof | |
US20130025839A1 (en) | Thermal substrate | |
EP0497286A2 (en) | Gold plating bath additives for copper circuitization on polyimide printed circuit boards | |
JP2007116134A (en) | Tape for semiconductor, adhesive tape for semiconductor, substrate for connecting semiconductor integrated circuits, and semiconductor device | |
WO1996011105A1 (en) | Thermal management for additive printed circuits | |
CN100468675C (en) | Method for producing laminate for COF substrate | |
JPH046893A (en) | Package | |
JP3255315B2 (en) | Electrical insulating material and circuit board using the same | |
JPH06350213A (en) | Metal base board | |
JPH0818182A (en) | Circuit board | |
JP2708821B2 (en) | Electric laminate | |
JP3199599B2 (en) | Metal-based multilayer circuit board | |
JPS617694A (en) | Composite printed circuit board | |
KR960008916B1 (en) | Adhesive tape | |
JPH1187401A (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: WELLS FARGO BANK MINNESOTA, NATIONAL ASSOCIATION, Free format text: SECURITY AGREEMENT;ASSIGNOR:SHELDAHL, INC.;REEL/FRAME:011987/0399 Effective date: 20010622 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: PNC BANK, NATIONAL ASSOCIATION, PENNSYLVANIA Free format text: SECURITY INTEREST;ASSIGNOR:NORTHFIELD ACQUISITION CO.;REEL/FRAME:013269/0727 Effective date: 20020830 |
|
AS | Assignment |
Owner name: NORTHFIELD ACQUISITION CO., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHELDAHL, INC.;REEL/FRAME:013669/0947 Effective date: 20020829 |
|
AS | Assignment |
Owner name: NORTHFIELD ACQUISITION CO., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SHELDAHL, INC.;REEL/FRAME:013718/0385 Effective date: 20020829 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: MULTEK FLEXIBLE CIRCUITS, INC., MINNESOTA Free format text: CHANGE OF NAME;ASSIGNOR:NORTHFIELD ACQUISITION CO.;REEL/FRAME:025379/0223 Effective date: 20041019 |