US5599672A - Method of differential display of exposed mRNA by RT/PCR - Google Patents
Method of differential display of exposed mRNA by RT/PCR Download PDFInfo
- Publication number
- US5599672A US5599672A US08/351,748 US35174894A US5599672A US 5599672 A US5599672 A US 5599672A US 35174894 A US35174894 A US 35174894A US 5599672 A US5599672 A US 5599672A
- Authority
- US
- United States
- Prior art keywords
- sequence
- primer
- mrna
- nucleic acid
- mrnas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 108020004999 messenger RNA Proteins 0.000 title claims abstract description 165
- 238000000034 method Methods 0.000 title claims abstract description 84
- 229940046166 oligodeoxynucleotide Drugs 0.000 claims abstract description 60
- 230000003321 amplification Effects 0.000 claims abstract description 41
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 41
- 230000000295 complement effect Effects 0.000 claims abstract description 17
- 239000002773 nucleotide Substances 0.000 claims description 63
- 125000003729 nucleotide group Chemical group 0.000 claims description 63
- 108020004707 nucleic acids Proteins 0.000 claims description 42
- 102000039446 nucleic acids Human genes 0.000 claims description 42
- 150000007523 nucleic acids Chemical class 0.000 claims description 42
- 108090000623 proteins and genes Proteins 0.000 claims description 40
- 108020004414 DNA Proteins 0.000 claims description 21
- 238000010367 cloning Methods 0.000 claims description 15
- 108091035707 Consensus sequence Proteins 0.000 claims description 13
- 108091008146 restriction endonucleases Proteins 0.000 claims description 13
- 231100000588 tumorigenic Toxicity 0.000 claims description 10
- 230000000381 tumorigenic effect Effects 0.000 claims description 10
- 230000002441 reversible effect Effects 0.000 claims description 6
- 239000013598 vector Substances 0.000 claims description 5
- 238000003752 polymerase chain reaction Methods 0.000 claims description 3
- 238000012216 screening Methods 0.000 claims description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 claims 1
- 238000001502 gel electrophoresis Methods 0.000 claims 1
- 239000002299 complementary DNA Substances 0.000 abstract description 84
- 108020004635 Complementary DNA Proteins 0.000 abstract description 18
- 238000010839 reverse transcription Methods 0.000 abstract description 14
- 238000011144 upstream manufacturing Methods 0.000 abstract description 13
- 238000013459 approach Methods 0.000 abstract description 10
- 108010076504 Protein Sorting Signals Proteins 0.000 abstract description 5
- 108091028664 Ribonucleotide Proteins 0.000 abstract description 3
- 239000002336 ribonucleotide Substances 0.000 abstract description 3
- 125000002652 ribonucleotide group Chemical group 0.000 abstract description 3
- 239000013615 primer Substances 0.000 description 200
- 210000004027 cell Anatomy 0.000 description 58
- 230000000692 anti-sense effect Effects 0.000 description 26
- 238000002360 preparation method Methods 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000009396 hybridization Methods 0.000 description 13
- 230000037452 priming Effects 0.000 description 12
- 102000004169 proteins and genes Human genes 0.000 description 11
- 238000000137 annealing Methods 0.000 description 9
- 230000014509 gene expression Effects 0.000 description 9
- 210000002950 fibroblast Anatomy 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 238000001712 DNA sequencing Methods 0.000 description 6
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- 230000001351 cycling effect Effects 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 150000001413 amino acids Chemical group 0.000 description 5
- 239000012634 fragment Substances 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 102100034343 Integrase Human genes 0.000 description 4
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000000636 Northern blotting Methods 0.000 description 3
- 102100037935 Polyubiquitin-C Human genes 0.000 description 3
- 230000022131 cell cycle Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- NCMVOABPESMRCP-SHYZEUOFSA-N 2'-deoxycytosine 5'-monophosphate Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)C1 NCMVOABPESMRCP-SHYZEUOFSA-N 0.000 description 2
- 102000003903 Cyclin-dependent kinases Human genes 0.000 description 2
- 108090000266 Cyclin-dependent kinases Proteins 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 101000687346 Homo sapiens PR domain zinc finger protein 2 Proteins 0.000 description 2
- 229930010555 Inosine Natural products 0.000 description 2
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 102100024885 PR domain zinc finger protein 2 Human genes 0.000 description 2
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 2
- 102000012479 Serine Proteases Human genes 0.000 description 2
- 108010022999 Serine Proteases Proteins 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 108091092328 cellular RNA Proteins 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 2
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 229960003786 inosine Drugs 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 210000001161 mammalian embryo Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- KHWCHTKSEGGWEX-RRKCRQDMSA-N 2'-deoxyadenosine 5'-monophosphate Chemical group C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(O)=O)O1 KHWCHTKSEGGWEX-RRKCRQDMSA-N 0.000 description 1
- LTFMZDNNPPEQNG-KVQBGUIXSA-N 2'-deoxyguanosine 5'-monophosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@H]1C[C@H](O)[C@@H](COP(O)(O)=O)O1 LTFMZDNNPPEQNG-KVQBGUIXSA-N 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 102000016736 Cyclin Human genes 0.000 description 1
- 108050006400 Cyclin Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 102000004594 DNA Polymerase I Human genes 0.000 description 1
- 108010017826 DNA Polymerase I Proteins 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 102100029764 DNA-directed DNA/RNA polymerase mu Human genes 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 230000010190 G1 phase Effects 0.000 description 1
- 108700005087 Homeobox Genes Proteins 0.000 description 1
- 101710203526 Integrase Proteins 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 241001599018 Melanogaster Species 0.000 description 1
- 241000713869 Moloney murine leukemia virus Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101150098863 N1 gene Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- 239000013616 RNA primer Substances 0.000 description 1
- 101800000684 Ribonuclease H Proteins 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 102000014400 SH2 domains Human genes 0.000 description 1
- 108050003452 SH2 domains Proteins 0.000 description 1
- 102000000395 SH3 domains Human genes 0.000 description 1
- 108050008861 SH3 domains Proteins 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 101150003725 TK gene Proteins 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical group O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 102000003431 Ubiquitin-Conjugating Enzyme Human genes 0.000 description 1
- 108060008747 Ubiquitin-Conjugating Enzyme Proteins 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000027455 binding Effects 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000012411 cloning technique Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- GYOZYWVXFNDGLU-XLPZGREQSA-N dTMP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)C1 GYOZYWVXFNDGLU-XLPZGREQSA-N 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000005546 dideoxynucleotide Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000011901 isothermal amplification Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000004713 phosphodiesters Chemical group 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1096—Processes for the isolation, preparation or purification of DNA or RNA cDNA Synthesis; Subtracted cDNA library construction, e.g. RT, RT-PCR
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
- C12N15/1006—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers
- C12N15/101—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by means of a solid support carrier, e.g. particles, polymers by chromatography, e.g. electrophoresis, ion-exchange, reverse phase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6809—Methods for determination or identification of nucleic acids involving differential detection
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/686—Polymerase chain reaction [PCR]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/81—Packaged device or kit
Definitions
- This invention relates to methods of detecting and cloning of individual mRNAs.
- genes in cells are reflected in the kinds and quantities of their mRNA and protein species. Gene expression is crucial for processes such as aging, development, differentiation, metabolite production, progression of the cell cycle, and infectious or genetic or other disease states. Identification of the expressed mRNAs will be valuable for the elucidation of their molecular mechanisms, and for applications to the above processes.
- Mammalian cells contain approximately 15,000 different mRNA sequences, however, each mRNA sequence is present at a different frequency within the cell. Generally, mRNAs are expressed at one of three levels. A few "abundant" mRNAs are present at about 10,000 copies per cell, about 3,000-4,000 “intermediate” mRNAs are present at 300-500 copies per cell, and about 11,000 "low-abundance” or "rare” mRNAs are present at approximately 15 copies per cell. The numerous genes that are represented by intermediate and low frequencies of their mRNAs can be cloned by a variety of well established techniques (see for example Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Press, pp. 8.6-8.35).
- RNA-dependent DNA polymerase reverse transcriptase
- oligodeoxynucleotide primer 12 to 18 thymidine residues.
- the second strand of the cDNA is synthesized by one of several methods, the more efficient of which are commonly known as “replacement synthesis” and “primed synthesis”.
- RNAase H ribonuclease H
- E. coli DNA polymerase I E. coli DNA polymerase I
- Klenow E. coli DNA polymerase I
- Primed synthesis to generate the second cDNA strand is a general name for several methods which are more difficult than replacement synthesis yet clone the 5' terminal sequences with high efficiency.
- the 3' end of the cDNA strand is extended with terminal transferase, an enzyme which adds a homopolymeric "tail" of deoxynucleotides, most commonly deoxycytidylate.
- This tail is then hybridized to a primer of oligodeoxyguanidylate or a synthetic fragment of DNA with an deoxyguanidylate tail and the second strand of the cDNA is synthesized using a DNA-dependent DNA polymerase.
- the primed synthesis method is effective, but the method is laborious, and all resultant cDNA clones have a tract of deoxyguanidylate immediately upstream of the mRNA sequence.
- This deoxyguanidylate tract can interfere with transcription of the DNA in vitro or in vivo and can interfere with the sequencing of the clones by the Sanger dideoxynucleotide sequencing method.
- the cDNA library is constructed by cloning the cDNAs into an appropriate plasmid or viral vector. In practice this can be done by directly ligating the blunt ends of the cDNAs into a vector which has been digested by a restriction endonuclease to produce blunt ends. Blunt end ligations are very inefficient, however, and this is not a common method of choice.
- a generally used method involves adding synthetic linkers or adapters containing restriction endonuclease recognition sequences to the ends of the cDNAs. The cDNAs can then be cloned into the desired vector at a greater efficiency.
- a general method for subtractive hybridization is as follows.
- the complementary strand of the cDNA is synthesized and radiolabelled. This single strand of cDNA can be made from polyA mRNA or from the existing cDNA library.
- the radiolabelled cDNA is hybridized to a large excess of mRNA from a closely related cell population.
- the cDNA:mRNA hybrids are removed from the solution by chromatography on a hydroxylapatite column.
- the remaining "subtracted” radiolabelled cDNA can then be used to screen a cDNA or genomic DNA library of the same cell population.
- Subtractive hybridization removes the majority of the genes expressed in both cell populations and thus enriches for genes which are present only in the desired cell population. However, if the expression of a particular mRNA sequence is only a few times more abundant in the desired cell population than the subtractive population it may not be possible to isolate the gene by subtractive hybridization.
- the first primer contains sequence capable of hybridizing to a site including sequence that is immediately upstream of the first A ribonucleotide of the mRNA's polyA tail and the second primer contains arbitrary sequence.
- the first primer contains sequence capable of hybridizing to a site including the mRNA's polyA signal sequence and the second primer contains arbitrary sequence.
- the first primer contains arbitrary sequence and the second primer contains sequence capable of hybridizing to a site including the mRNA's Kozak sequence.
- the first primer contains a sequence that is substantially complementary to the sequence of a mRNA having a known sequence and the second primer contains arbitrary sequence.
- the first primer contains arbitrary sequence and the second primer contains sequence that is substantially identical to the sequence of a mRNA having a known sequence. The first primer is used as a primer for reverse transcription of the mRNA and the resultant cDNA is amplified with a polymerase using both the first and second primers as a primer set.
- any or all of the mRNAs from any cell type or any stage of the cell cycle can be identified and isolated.
- a comparison of the mRNAs from closely related cells which may be for example at different stages of development or different stages of the cell cycle, can show which of the mRNAs are constitutively expressed and which are differentially expressed, and their respective frequencies of expression.
- first primer or “first oligodeoxynucleotide” as used herein is defined as being the oligodeoxynucleotide primer that is used for the reverse transcription of the mRNA to make the first cDNA strand, and then is also used for amplification of the cDNA.
- the first primer can also be referred to as the 3' primer, as this primer will hybridize to the mRNA and will define the 3' end of the first cDNA strand.
- second primer as used herein is defined as being the oligodeoxynucleotide primer that is used to make the second cDNA strand, and is also used for the amplification of the cDNA.
- the second primer may also be referred to as the 5' primer, as this primer will hybridize to the first cDNA strand and will define the 5' end of the second cDNA strand.
- the "arbitrary" sequence of an oligodeoxynucleotide primer as used herein is defined as being based upon or subject to individual judgement or discretion. In some instances, the arbitrary sequence can be entirely random or partly random for one or more bases. In other instances the arbitrary sequence can be selected to contain a specific ratio of each deoxynucleotide, for example approximately equal proportions of each deoxynucleotide or predominantly one deoxynucleotide, or to not contain a specific deoxynucleotide. The arbitrary sequence can be selected to contain, or not to contain, a recognition site for specific restriction endonuclease. The arbitrary sequence can be selected to either contain a sequence that is substantially identical (at least 50% homologous) to a mRNA of known sequence or to not contain sequence from a mRNA of known sequence.
- oligodeoxynucleotide primer can be either "complementary" to a sequence or “substantially identical" to a sequence.
- a complementary oligodeoxynucleotide primer is a primer that contains a sequence which will hybridize to an mRNA, that is the bases are complementary to each other and a reverse transcriptase will be able to extend the primer to form a cDNA strand of the mRNA.
- a substantially identical primer is a primer that contains sequence which is the same as the sequence of an mRNA, that is greater than 50% identical, and the primer has the same orientation as an mRNA thus it will not hybridize to, or complement, an mRNA but such a primer can be used to hybridize to the first cDNA strand and can be extended by a polymerase to generate the second cDNA strand.
- hybridization or “hybridize”, as used herein, are defined to be the base pairing of an oligodeoxynucleotide primer with a mRNA or cDNA strand.
- condition under which an oligodeoxynucleotide hybridizes with an mRNA or a cDNA is defined to be temperature and buffer conditions (that are described later) under which the base pairing of the oligodeoxynucleotide primer with either an mRNA or a cDNA occurs and only a few mismatches (one or two) of the base pairing are permissible.
- An oligonucleotide primer can contain a sequence that is known to be a "consensus sequence" of an mRNA of known sequence.
- a "consensus sequence” is a sequence that has been found in a gene family of proteins having a similar function or similar properties. The use of a primer that includes a consensus sequence may result in the cloning of additional members of a desired gene family.
- the "preferred length" of an oligodeoxynucleotide primer is determined from the desired specificity of annealing and the number of oligodeoxynucleotides having the desired specificity that are required to hybridize to all the mRNAs in a cell.
- An oligodeoxynucleotide primer of 20 nucleotides is more specific than an oligodeoxynucleotide primer of 10 nucleotides; however, addition of each random nucleotide to an oligodeoxynucleotide primer increases by four the number of oligodeoxynucleotide primers required in order to hybridize to every mRNA in a cell.
- the invention features a method for identifying and isolating mRNAs by priming a preparation of mRNA for reverse transcription with a first oligodeoxynucleotide primer that contains sequence capable of hybridizing to a site including sequence that is immediately upstream of the first A ribonucleotide of the mRNA's polyA tail, and amplifying the cDNA by a polymerase amplification method using the first primer and a second oligodeoxynucleotide primer, for example a primer having arbitrary sequence, as a primer set.
- the first primer contains at least 1 nucleotide at the 3' end of the oligodeoxynucleotide that can hybridize to an mRNA sequence that is immediately upstream of the polyA tail, and contains at least 11 nucleotides at the 5' end that will hybridize to the polyA tail.
- the entire 3' oligodeoxynucleotide is preferably at least 13 nucleotides in length, and can be up to 20 nucleotides in length.
- the first primer contains 2 nucleotides at the 3' end of the oligodeoxynucleotide that can hybridize to an mRNA sequence that is immediately upstream of the polyA tail.
- the 2 polyA-non-complementary nucleotides are of the sequence VN, where V is deoxyadenylate ("dA”), deoxyguanylate (“dG”), or deoxycytidylate (“dC”), and N, the 3' terminal nucleotide, is dA, dG, dC, or deoxythymidylate ("dT").
- V deoxyadenylate
- dG deoxyguanylate
- dC deoxycytidylate
- N the 3' terminal nucleotide
- dT deoxythymidylate
- sequence of a preferred first primer is 5'-TTTTTTTTTTTVN [Seq. ID. No. 1].
- nucleotides can provide accurate positioning of the first primer at the junction between the mRNA and its polyA tail, as the properly aligned oligodeoxynucleotide:mRNA hybrids are more stable than improperly aligned hybrids, and thus the properly aligned hybrids will form and remain hybridized at higher temperatures.
- the mRNA sample will be divided into at least twelve aliquots and one of the 12 possible VN sequences of the first primer will be used in each reaction to prime the reverse transcription of the mRNA.
- oligodeoxynucleotide with a single sequence will reduce the number of mRNAs to be analyzed in each sample by binding to a subset of the mRNAs, statistically 1/12th, thus simplifying the identification of the mRNAs in each sample.
- the 3' end of the first primer can have 1 nucleotide that can hybridize to an mRNA sequence that is immediately upstream of the polyA tail, and 12 nucleotides at the 5' end that will hybridize to the polyA tail, thus the primer will have the sequence 5'-TTTTTTTTTTV [Seq. ID. No. 2].
- a single non-polyA-complementary deoxynucleotide would decrease the number of oligodeoxynucleotides that are required to identify every mRNA to 3, however, the use of a single nucleotide to position the annealing of primer to the junction of the mRNA sequence and the polyA tail may result in a significant loss of specificity of the annealing and 2 non-polyA-complementary nucleotides are preferred.
- the 3' end of the first primer can have 3 or more nucleotides that can hybridize to an mRNA sequence that is immediately upstream of the polyA tail.
- the addition of each nucleotide to the 3' end will further increase the stability of properly aligned hybrids, and the sequence to hybridize to the polyA tail can be decreased by one nucleotide for each additional non-polyA-complementary nucleotide added.
- first primer may not be practical for rapid screening of the mRNAs contained within a given cell line, as the use of a first primer with more than 2 nucleotides that hybridize to the mRNA immediately upstream of the polyA tail significantly increases the number of oligodeoxynucleotides required to identify every mRNA.
- the primer 5'-TTTTTTTTTTVNN [Seq. ID. No. 3] would require the use of 48 separate first primers in order to bind to every mRNA, and would significantly increase the number of reactions required to screen the mRNA from a given cell line.
- oligodeoxynucleotides with a single random nucleotide in one position can circumvent the problem of needing to set up 48 separate reactions in order to identify every mRNA.
- the non-polyA-complementary sequence became longer, it would quickly become necessary to increase the number of reactions required to identify every mRNA.
- the second primer is of arbitrary sequence and is at least 9 nucleotides in length.
- the second primer is at most 13 nucleotides in length and can be up to 20 nucleotides in length.
- the invention features a method for preparing and isolating mRNAs by priming a preparation of mRNA for reverse transcription with a first primer that contains a sequence capable of hybridizing to the polyadenylation signal sequence and at least 4 nucleotides that are positioned 5 ', or 3 ', or both of the polyadenylation signal sequence; this entire first primer is preferably at least 10 nucleotides in length, and can be up to 20 nucleotides in length.
- the sequence 5'-NNTTTATTNN [Seq. ID. No. 4] can be chosen such that the sequence is 5'-GCTTTATTNC [Seq. ID. No.
- the four resultant primers are used together in a single reaction for the priming of the mRNA for reverse transcription.
- the first primer can be used with a second primer, for example and arbitrary sequence primer, for the amplification of the cDNA.
- the invention features a method for identifying and isolating mRNAs by priming a preparation of mRNA for reverse transcription with a first oligodeoxynucleotide primer to generate a first cDNA strand, and priming the preparation of the second cDNA strand with a second primer that contains sequence substantially identical to the Kozak sequence of mRNA, and amplifying the cDNA by a polymerase amplification method using the first and second primers as a primer set.
- the first and second primers are at least 9 deoxynucleotides in length, and are at most 13 nucleotides in length, and can be up to 20 nucleotides in length. Most preferably the first and second primers are 10 deoxynucleotides in length.
- the sequence of the first primer is selected at random, or the first primer contains a selected arbitrary sequence, or the first primer contains a restriction endonuclease recognition sequence.
- the sequence of the second primer that contains sequence substantially identical to the Kozak sequence of mRNA has the sequence NNNANNATGN [Seq. ID No. 6], or has the sequence NNNANNATGG [Seq. ID No. 7].
- N is any of the four deoxynucleotides.
- the second primer has the sequence GCCACCATGG [Seq. ID No. 8].
- the first primer may further include a restriction endonuclease recognition sequence that is added to either the 5' or 3' end of the primer increasing the length of the primer by at least 5 nucleotides.
- the invention features a method for identifying and isolating mRNAs by priming a preparation of mRNA for reverse transcription with a first oligodeoxynucleotide primer that contains sequence that is substantially complementary to the sequence of a mRNA having a known sequence, and priming the preparation of the second cDNA strand with a second primer and, amplifying the cDNA by a polymerase amplification method using the first and second primers as a primer set.
- the first and second primers are at least 9 deoxynucleotides in length, and are at most 13 nucleotides in length, and can be up to 20 nucleotides in length. Most preferably the first and second primers are 10 deoxynucleotides in length.
- sequence of the first primer further includes a restriction endonuclease sequence, which may be included within the preferred 10 nucleotides of the primer or may be added to either the 3' or 5' end of the primer increasing the length of the oligodeoxynucleotide primer by at least 5 nucleotides.
- sequence of the second primer is selected at random, or the second primer contains a selected arbitrary sequence, or the second primer contains a restriction endonuclease recognition sequence.
- the invention features a method for identifying and isolating mRNAs by priming a preparation of mRNA for reverse transcription with a first oligodeoxynucleotide primer, and priming the preparation of the second cDNA strand with a second primer that contains sequence that is substantially identical to the sequence of a mRNA having a known sequence and, amplifying the cDNA by a polymerase amplification method using the first and second primers as a primer set.
- the first and second primers are at least 9 deoxynucleotides in length, and are at most 13 nucleotides in length, and can be up to 20 nucleotides in length. Most preferably the first and second primers are 10 deoxynucleotides in length.
- the sequence of the first primer is selected at random, or the first primer contains a selected arbitrary sequence, or the first primer contains a restriction endonuclease recognition sequence.
- sequence of the second primer having a sequence that is substantially complementary to the sequence of an mRNA having a known sequence further includes a restriction endonuclease sequence, which may be included within the preferred 10 nucleotides of the primer or may be added to either the 3' or 5' end of the primer increasing the length of the oligodeoxynucleotide primer by at least 5 nucleotides.
- the invention features a method for identifying and isolating mRNAs by priming a preparation of mRNA for reverse transcription with a first oligodeoxynucleotide primer that contains sequence that is substantially complementary to the sequence of a mRNA having a known sequence, and priming the preparation of the second cDNA strand with a second primer that contains sequence that is substantially identical to the Kozak sequence of mRNA, and amplifying the cDNA by a polymerase amplification method using the first and second primers as a primer set.
- the first and second primers are at least 9 deoxynucleotides in length, and are at most 13 nucleotides in length, and can be up to 20 nucleotides in length. Most preferably the first and second primers are 10 deoxynucleotides in length.
- the amplified cDNAs are separated and then the desired cDNAs are reamplified using a polymerase amplification reaction and the first and second oligodeoxynucleotide primers.
- a set of first and second oligodeoxynucleotide primers can be used, consisting of more than one of each primer.
- more than one of the first primer will be included in the reverse transcription reaction and more than one each of the first and second primers will be included in the amplification reactions.
- the use of more than one of each primer will increase the number of mRNAs identified in each reaction, and the total number of primers to be used will be determined based upon the desired method of separating the cDNAs such that it remains possible to fully isolate each individual cDNA.
- a few hundred cDNAs can be isolated and identified using denaturing polyacrylamide gel electrophoresis.
- the method according to the invention is a significant advance over current cloning techniques that utilize subtractive hybridization.
- the method according to the invention enables the genes which are altered in their frequency of expression, as well as of mRNAs which are constitutively and differentially expressed, to be identified by simple visual inspection and isolated.
- the method according to the invention provides specific oligodeoxynucleotide primers for amplification of the desired mRNA as cDNA and makes unnecessary an intermediary step of adding a homopolymeric tail to the first cDNA strand for priming of the second cDNA strand and thereby avoiding any interference from the homopolymeric tail with subsequent analysis of the isolated gene and its product.
- the method according to the invention allows the cloning and sequencing of selected mRNAs, so that the investigator may determine the relative desirability of the gene prior to screening a comprehensive cDNA library for the full length gene product.
- FIG. 1 is a schematic representation of the method according to the invention.
- FIG. 2 is the sequence of the 3' end of the N1 gene from normal mouse fibroblast cells (A31) [Seq. ID. No. 9].
- FIG. 3 is the Northern blot of the N1 sequence on total cellular RNA from normal and tumorigenic mouse fibroblast cells.
- FIG. 4 is a sequencing gel showing the results of amplification for mRNA prepared from four sources (lanes 1-4), using the Kozak primer alone, the AP-1 primer alone, the Kozak and AP-1 primers, the Kozak and AP-2 primers, the Kozak and AP-3 primers, the Kozak and AP-4 primers and the Kozak and AP-5 primers. This gel will be more fully described later.
- FIG. 5 is a partial sequence of the 5' end of a clone, K1, that was cloned from the A1-5 cell line that was cultured at the non-permissive temperature and then shifted to the permissive temperature (32.5° C.) for 24 h prior to the preparation of the mRNA.
- the A1-5 cell line is a rat primary embryo cell line that has been doubly transformed with ras and a temperature sensitive mutation of P 53 ("P 53ts ").
- oligodeoxynucleotide it is important for operation of the method that the length of the oligodeoxynucleotide be appropriate for specific hybridization to mRNA.
- oligodeoxynucleotides are usually chosen to be 20 or more nucleotides in length. The use of long oligodeoxynucleotides in this instance would decrease the number of mRNAs identified during each trial and would greatly increase the number of oligodeoxynucleotides required to identify every mRNA.
- 9-10 nucleotide primers can be used for DNA polymorphism analysis by PCR (Williams et al., 1991, Nuc. Acids Res., Vol. 18, pp. 6531-6535).
- TK cDNA plasmid The plasmid containing the cloned murine thymidine kinase gene ("TK cDNA plasmid") was used as a model template to determine the required lengths of oligodeoxynucleotides for specific hybridization to a mRNA, and for the production of specific PCR products.
- the oligodeoxynucleotide primer chosen to hybridize internally in the mRNA was varied between 6 and 13 nucleotides in length, and the oligodeoxynucleotide primer chosen to hybridize at the upstream end of the polyA tail was varied between 7 and 14 nucleotides in length. After numerous trials with different sets and lengths of primers, it was determined that the annealing temperature of 42° C.
- the internally hybridizing oligodeoxynucleotide should be at least 9 nucleotides in length and a oligodeoxynucleotide that is at least 13 nucleotides in length is required to bind to the upstream end of the polyA tail.
- the mRNAs are mixed with the first primer, for example TTTTTTTTTTTVN [Seq. ID. No. 2] (T 11 VN) 1, and reverse transcribed 2 to make the first cDNA strand.
- the cDNA is amplified as follows.
- the first cDNA strand is added to the second primer and the first primer and the polymerase in the standard buffer with the appropriate concentrations of nucleotides and the components are heated to 94° C. to denature the mRNA:cDNA hybrid 3, the temperature is reduced to 42° C. to allow the second primer to anneal 4, and then the temperature is increased to 72° C. to allow the polymerase to extend the second primer 5.
- the cycling of the temperature is then repeated 6, 7, 8, to begin the amplification of the sequences which are hybridized by the first and second primers.
- the temperature is cycled until the desired number of copies of each sequence have been made.
- this amplification method can be accomplished using thermal stable polymerase or a polymerase that is not thermal stable.
- a polymerase that is not thermal stable fresh polymerase must be added after the annealing of the primers to the templates at the start of the elongation or extending step, and the extension step must be carried out at a temperature that is permissible for the chosen polymerase.
- the method according to the invention can be used for the isolation of polyA mRNA from any source and can be used to isolate genes expressed either differentially or constitutively at any level, from rare to abundant.
- PCR was conducted under standard buffer conditions well known in the art with 10 ng TK cDNA plasmid (buffer and polymerase are available from Perkin Elmer-Cetus). The standard conditions were altered in that the primers were used at concentrations of 2.5 ⁇ M T 11 CA, 0.5 ⁇ M Ltk3, instead of 1 ⁇ M of each primer. The concentration of the nucleotides (“dNTPs") was also varied over a 100 fold range, from the standard 200 ⁇ M to 2 ⁇ M. The PCR parameters were 40 cycles of a denaturing step for 30 seconds at 94° C., an annealing step for 1 minute at 42° C., and an extension step for 30 seconds at 72° C.
- buffer and polymerase are available from Perkin Elmer-Cetus
- RNAs and mRNAs were prepared from mouse fibroblasts cells which were either growing normally, "cycling", or serum starved, "quiescent”.
- the RNAs and mRNAs were reverse transcribed with T 11 CA as the primer.
- the T 11 CA primer was annealed to the mRNA by heating the mRNA and primer together to 65° C. and allowing the mixture to gradually cool to 35° C.
- the reverse transcription reaction was carried out with Moloney murine leukemia virus reverse transcriptase at 35° C.
- the resultant cDNAs were amplified by PCR in the presence of T 11 CA and Ltk3, as described in Example 1, using 2 ⁇ M dNTPs.
- the use of the T 11 CA and Ltk3 primers allowed the TK mRNA to be used as an internal control for differential expression of a rare mRNA transcript; TK mRNA is present at approximately 30 copies per cell.
- the DNA sequencing gel revealed 50 to 100 amplified mRNAs in the size range which is optimal for further analysis, between 100 to 500 nucleotides.
- the patterns of the mRNA species observed in cycling and quiescent cells were very similar as expected, though some differences were apparent.
- the TK gene mRNA which is expressed during G1 and S phase, was found only in the RNA preparations from cycling cells, as expected, thus demonstrating the ability of this method to separate and isolate rare mRNA species such as TK.
- the expression of mRNAs in normal and tumorigenic mouse fibroblast cells was also compared using the T 11 CA and Ltk3 primers for the PCR amplification.
- the mRNA was reverse transcribed using T 11 CA as the primer and the resultant cDNA was amplified by PCR using 2 ⁇ M dNTPs and the PCR parameters described above.
- the PCR products were separated on a DNA sequencing gel.
- the TK mRNA was present at the same level in both the normal and tumorigenic mRNA preparations, as expected, and provided a good internal control to demonstrate the representation of rare mRNA species.
- the method according to the invention can be used to identify genes which are normally continuously expressed (constitutive), and differentially expressed, suppressed, or otherwise altered in their level of expression.
- cDNAs that are, the TK cDNA, one cDNA expressed only in normal cells (“N1”), and one cDNA expressed only in tumorigenic cells (“T1”), were recovered from the DNA sequencing gel by electroelution, ethanol precipitated to remove the urea and other contaminants, and reamplified by PCR, in two consecutive PCR amplifications of 40 cycles each, with the primers T 11 CA and Ltk3 in the presence of 20 ⁇ M dNTPs to achieve optimal yield without compromising the specificity.
- the reamplified PCR products were confirmed to have the appropriate sizes and primer dependencies as an additional control the reamplified TK cDNA was digested with two separate restriction endonucleases and the digestion products were also confirmed to be of the correct size.
- the reamplified N1 was cloned with the TA cloning system, Invitrogen Inc., into the plasmid pCR1000 and sequenced. With reference now to FIG. 2, the nucleotide sequence clearly shows the N1 fragment to be flanked by the underlined Ltk3 primer 15 at the 5' end and the underlined T 11 CA primer 16 at the 3' end as expected.
- a Northern analysis of total cellular RNA using a radiolabelled N1 probe reconfirmed that the N1 mRNA was only present in the normal mouse fibroblast cells, and not in the tumorigenic mouse fibroblast cells.
- the probe used to detect the mRNA is labelled to the right of the figure, and the size of the N1 mRNA can be estimated from the 28S and 18S markers depicted to the left of the figure.
- the N1 mRNA is present at low abundance in both exponentially growing and quiescent normal cells, lanes 1 and 3, and is absent from both exponentially growing or quiescent tumorigenic cells, lanes 2 and 4.
- the same Northern blot was reprobed with a radiolabelled probe for 36B4, a gene that is expressed in both normal and tumorigenic cells, to demonstrate that equal amounts of mRNA, lanes 1-4, were present on the Northern blot.
- the cell lines were a primary rat embryo fibroblast cell line ("REF"), the REF cell line that has been doubly transformed with ras and a mutant of P 53 ("T101-4"), and the REF cell line that has been doubly transformed with ras and a temperature sensitive mutation of P 53 ("A1-5").
- the A1-5 cell line was cultured at the non-permissive temperature of 37° C. for preparation of mRNA, and cultured at the permissive temperature by first culturing the cells at 37° C. and then shifting the cells to 32.5° C. for 24 h prior to the preparation of the mRNA.
- the method of the invention was conducted using the primers "Kozak” and one of five arbitrary sequence primers, "AP-1, AP-2, AP-3, AP-4, or AP-5", as the second and first primers, respectively.
- the sequence of the "Kozak” primer was chosen based upon the published consensus sequence for the translation start site consensus sequence of mRNAs (Kozak, 1991, Jour. Cell Biology, Vol. 115, pp. 887-903).
- a degenerate Kozak primer having sequences substantially identical to the translation start site consensus sequence were used simultaneously, these sequences were 5'-GCCRCCATGG [Seq. ID No. 12], in which the R is dA or dG and thus the oligodeoxynucleotide primer has only one of the given nucleotides which results in a mixture of primers.
- the sequence of the five arbitrary primers was a follows: AP-1 had the sequence 5'-AGCCAGCGAA [Seq. ID. No. 13]; AP-2 had the sequence 5'-GACCGCTTGT [Seq. ID. No. 14]; AP-3 had the sequence 5'-AGGTGACCGT [Seq. ID. No. 15]; AP-4 had the sequence 5'-GGTACTCCAC [Seq. ID. No. 16]; and AP-5 had the sequence 5'-GTTGCGATCC [Seq. ID. No. 17]. These arbitrary sequence primers were chosen arbitrarily. In general each arbitrary sequence primer was chosen to have a GC content of 50-70%.
- the mRNA was reverse transcribed using one of the AP primers, as the first primer, and the resultant first cDNA strand was amplified in the presence of both primers, the AP primer and the degenerate Kozak primer, by PCR using 2 ⁇ M NTPs and the PCR parameters described above.
- the PCR products were separated on a DNA sequencing gel. At least 50-100 amplified cDNA bands were present in each of the cell lines tested, and some bands were expressed to different levels in the different cell lines.
- the primer sets used for each reaction are shown at the top of the Fig. along the line marked Primers.
- a control a reaction was conducted using the primers in the absence of mRNA and using Ap-1 with mRNA in the absence of the Kozak primer.
- No cDNA was generated by the primers in the absence of mRNA or by the arbitrary primer alone, thus demonstrating that mRNA is required for the amplification and that both primers were required to amplify an mRNA into a cDNA.
- the cDNA products of the amplification were loaded in the same order across the gel, thus the REF cell line is shown in each of lanes 1, cell line T101-4 is shown in each of lanes 2, cell line A1-5 cultured at 37° C.
- the amplification of mRNA from each cell line and temperature using the Kozak degenerate primer and the AP-3 primer resulted in the finding of one band in particular which was present in the mRNA prepared from the A1-5 cell line when cultured at 32.5° C. for 24 h, and not in any of the other mRNA preparations, as can be seen in FIG. 4 designated as K1.
- the method according to the invention may be used to identify genes which are differentially expressed in mutant cell lines.
- the nucleotide sequence clearly shows the K1 clone to be flanked by the underlined Kozak primer 20 at the 5' end and the underlined AP-3 primer 21 at the 3' end as expected.
- the 5 ' end of this partial cDNA is identified in Seq. ID No. 18, and the 3' end of this cDNA is identified in Seq. ID No. 19.
- This partial sequence is an open reading frame, and a search of the gene databases EMBO and Genbank has revealed the translated amino acid sequence from the 3' portion of K1 to be homologous to the ubiquitin conjugating enzyme family (UBC enzyme).
- UBC enzyme ubiquitin conjugating enzyme
- the K1 clone may contain the actual 5' end of this gene, otherwise the Kozak primer hybridized just after the 5' end. This result demonstrates that the method according to the invention can be used to clone the 5' coding sequence of a gene.
- the method according to the invention can be used to identify, isolate and clone mRNAs from any number of sources.
- the method provides for the identification of desirable mRNAs by simple visual inspection after separation, and can be used for investigative research, industrial and medical applications.
- the reamplified cDNAs can be sequenced, or used to screen a DNA library in order to obtain the full length gene. Once the sequence of the cDNA is known, amino acid peptides can be made from the translated protein sequence and used to raise antibodies. These antibodies can be used for further research of the gene product and its function, or can be applied to medical diagnosis and prognosis.
- the reamplified cDNAs can be cloned into an appropriate vector for further propagation, or cloned into an appropriate expression vector in order to be expressed, either in vitro or in vivo.
- the cDNAs which have been cloned into expression vectors can be used in industrial situations for overproduction of the protein product. In other applications the reamplified cDNAs or their respective clones will be used as probes for in situ hybridization. Such probes can also be used for the diagnosis or prognosis of disease.
- the length of the oligodeoxynucleotide can be varied dependent upon the annealing temperature chosen.
- the temperature was chosen to be 42° C. and the oligonucleotide primers were chosen to be at least 9 nucleotides in length. If the annealing temperature were decreased to 35° C. then the oligonucleotide lengths can be decreased to at least 6 nucleotides in length.
- the cDNA could be radiolabelled with radioactive nucleotides other than 35 S, such as 32 P and 33 P.
- radioactive imaging methods can also be applied to the method according to the invention.
- the amplification of the cDNA could be accomplished by a temperature cycling polymerase chain reaction, as was described, using a heat stable DNA polymerase for the repetitive copying of the cDNA while cycling the temperature for continuous rounds of denaturation, annealing and extension. Or the amplification could be accomplished by an isothermal DNA amplification method (Walker et al., 1992, Proc. Natl. Acad. Sci., Vol. 89, pp. 392-396).
- the isothermal amplification method would be adapted to use for amplifying cDNA by including an appropriate restriction endonuclease sequence, one that will be nicked at hemiphosphorothioate recognition sites and whose recognition site can be regenerated during synthesis with ⁇ 35 S labelled dNTPs.
- Proteins having similar function or similar functional domains are often referred to as being part of a gene family. Many such proteins have been cloned and identified to contain consensus sequences which are highly conserved amongst the members of the family. This conservation of sequence can be used to design oligodeoxynucleotide primers for the cloning of new members, or related members, of a family.
- the mRNA from a cell can be reverse transcribed, and a cDNA could be amplified using at least one primer that has a sequence substantially identical to the sequence of a mRNA of known sequence.
- Primers for any consensus sequence can readily be designed based upon the codon usage of the amino acids. The incorporation of degeneracy at one or more sites allows the designing of a primer which will hybridize to a high percentage, greater than 50%, of the mRNAs containing the desired consensus sequence.
- Primers for use in the method according to the invention could be designed based upon the consensus sequence of the zinc finger DNA binding proteins, for example, based upon the amino acid consensus sequence of the proteins PYVC [SEQ. ID. No. 22].
- Useful primers for the cloning of further members of this family can have the following sequences: 5'-GTAYGCNTGT [Seq. ID. No. 20] or 5'-GTAYGCNTGC [Seq. ID. No. 21], in which the Y refers to the deoxynucleotides dT or dC for which the primer is degenerate at this position, and the N refers to inosine ("I").
- the base inosine can pair with all of the other bases, and was chosen for this position of the oligodeoxynucleotide as the codon for valine "V" is highly degenerate in this position.
- the described oligodeoxynucleotide primers as used will be a mixture of 5'-GTATGCITGT [SEQ. ID. No. 23] and 5'-GTACGCITGT [Seq. ID. No. 24] or a mixture of 5'-GTATGCITGC [Seq. ID. No. 25] and 5'-GTACGCITGC [Seq. ID. No. 26].
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plant Pathology (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Computational Biology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
__________________________________________________________________________ SEQUENCE LISTING (1) GENERAL INFORMATION: (iii) NUMBER OF SEQUENCES: 27 (2) INFORMATION FOR SEQ ID NO:1: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1: TTTTTTTTTTTVN13 (2) INFORMATION FOR SEQ ID NO:2: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: TTTTTTTTTTTTV13 (2) INFORMATION FOR SEQ ID NO:3: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: TTTTTTTTTTVNN13 (2) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: NNTTTATTNN10 (2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: GCTTTATTNC10 (2) INFORMATION FOR SEQ ID NO:6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: NNNANNATGN10 (2) INFORMATION FOR SEQ ID NO:7: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7: NNNANNATGG10 (2) INFORMATION FOR SEQ ID NO:8: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8: GCCACCATGG10 (2) INFORMATION FOR SEQ ID NO:9: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 260 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE: (G) CELL TYPE: Fibroblast (H) CELL LINE: A31 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9: CTTGATTGCCTCCTACAGCAGTTGCAGGCACCTTTAGCTGTACCATGAAGTTCACAGTCC60 GGGATTGTGACCCTAATACTGGAGTTCCAGATGAAGATGGATATGATGATGAATATGTGC120 TGGAAGATCTTGAGGTAACTGTGTCTGATCATATTCAGAAGATACTAAAACCTAACTTCG180 CTGCTGCCTGGGAAGAGGTGGGAGGAGCAGCTGCGACAGAGCGTCCTCTTCACAGAGGGG240 TCCTGGGTGAAAAAAAAAAA260 (2) INFORMATION FOR SEQ ID NO:10: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10: TTTTTTTTTTTCA13 (2) INFORMATION FOR SEQ ID NO:11: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: GTTGATTGCC10 (2) INFORMATION FOR SEQ ID NO:12: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: GCCRCCATGG10 (2) INFORMATION FOR SEQ ID NO:13: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13: AGCCAGCGAA10 (2) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14: GACCGCTTGT10 (2) INFORMATION FOR SEQ ID NO:15: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:15: AGGTGACCGT10 (2) INFORMATION FOR SEQ ID NO:16: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16: GGTACTCCAC10 (2) INFORMATION FOR SEQ ID NO:17: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17: GTTGCGATCC10 (2) INFORMATION FOR SEQ ID NO:18: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 42 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18: GCCGCCATGGCTCTGAAGAGAATCCACAAGGACACCCATGAA42 (2) INFORMATION FOR SEQ ID NO:19: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 78 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19: GTTGCATTTACAACAAGAATTTATCATCCAAATATTAACAGTAATGGCAGCATTTGTCTT60 GATATTCTACGGTCACCT78 (2) INFORMATION FOR SEQ ID NO:20: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20: GTAYGCNTGT10 (2) INFORMATION FOR SEQ ID NO:21: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21: GTAYGCNTGC10 (2) INFORMATION FOR SEQ ID NO:22: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22: GTAYGCNTGC10 (2) INFORMATION FOR SEQ ID NO:23: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23: GTATGCNTGT10 (2) INFORMATION FOR SEQ ID NO:24: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24: GTACGCNTGT10 (2) INFORMATION FOR SEQ ID NO:25: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25: GTATGCNTGC10 (2) INFORMATION FOR SEQ ID NO:26: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26: GTACGCNTGC10 (2) INFORMATION FOR SEQ ID NO:27: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27: NNNRNNATGN10 __________________________________________________________________________
Claims (23)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/351,748 US5599672A (en) | 1992-03-11 | 1994-12-08 | Method of differential display of exposed mRNA by RT/PCR |
US08/430,536 US5665547A (en) | 1992-03-11 | 1995-04-25 | Methods of comparing levels or amounts of mRNAs |
US08/684,547 US5965409A (en) | 1992-03-11 | 1996-07-19 | System for comparing levels or amounts of mRNAs |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/850,343 US5262311A (en) | 1992-03-11 | 1992-03-11 | Methods to clone polyA mRNA |
US3308493A | 1993-03-11 | 1993-03-11 | |
US08/351,748 US5599672A (en) | 1992-03-11 | 1994-12-08 | Method of differential display of exposed mRNA by RT/PCR |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US3308493A Continuation | 1992-03-11 | 1993-03-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/430,536 Continuation US5665547A (en) | 1992-03-11 | 1995-04-25 | Methods of comparing levels or amounts of mRNAs |
Publications (1)
Publication Number | Publication Date |
---|---|
US5599672A true US5599672A (en) | 1997-02-04 |
Family
ID=26709258
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/351,748 Expired - Lifetime US5599672A (en) | 1992-03-11 | 1994-12-08 | Method of differential display of exposed mRNA by RT/PCR |
US08/430,536 Expired - Lifetime US5665547A (en) | 1992-03-11 | 1995-04-25 | Methods of comparing levels or amounts of mRNAs |
US08/684,547 Expired - Lifetime US5965409A (en) | 1992-03-11 | 1996-07-19 | System for comparing levels or amounts of mRNAs |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/430,536 Expired - Lifetime US5665547A (en) | 1992-03-11 | 1995-04-25 | Methods of comparing levels or amounts of mRNAs |
US08/684,547 Expired - Lifetime US5965409A (en) | 1992-03-11 | 1996-07-19 | System for comparing levels or amounts of mRNAs |
Country Status (7)
Country | Link |
---|---|
US (3) | US5599672A (en) |
EP (1) | EP0592626B1 (en) |
JP (1) | JP2843675B2 (en) |
AT (1) | ATE231920T1 (en) |
CA (1) | CA2102784A1 (en) |
DE (1) | DE69332665T2 (en) |
WO (1) | WO1993018176A1 (en) |
Cited By (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998008981A1 (en) * | 1996-08-30 | 1998-03-05 | Life Technologies, Inc. | METHODS FOR IDENTIFICATION AND ISOLATION OF SPECIFIC NUCLEOTIDE SEQUENCES IN cDNA AND GENOMIC DNA |
WO1998039480A1 (en) * | 1997-03-03 | 1998-09-11 | Haqqi Tariq M | Methods and compositions for identifying expressed genes |
US5814445A (en) * | 1994-07-11 | 1998-09-29 | New York Blood Center | Method of identification and cloning differentially expressed messenger RNAs |
WO1998049345A1 (en) * | 1997-04-29 | 1998-11-05 | Trustees Of Boston University | Methods and compositions for targeted dna differential display |
US5882874A (en) * | 1998-02-27 | 1999-03-16 | The Trustees Of Columbia University In The City Of New York | Reciprocal subtraction differential display |
WO1999043844A1 (en) * | 1998-02-27 | 1999-09-02 | The Trustees Of Columbia University In The City Of New York | Reciprocal subtraction differential display |
US5994130A (en) * | 1997-04-16 | 1999-11-30 | Millennium Pharmaceuticals, Inc. | Multidrug resistance-associated polypeptide |
US5994076A (en) * | 1997-05-21 | 1999-11-30 | Clontech Laboratories, Inc. | Methods of assaying differential expression |
US6045998A (en) * | 1996-04-03 | 2000-04-04 | Johnson & Johnson Consumer Products, Inc. | Technique for differential display |
US6087102A (en) * | 1998-01-07 | 2000-07-11 | Clontech Laboratories, Inc. | Polymeric arrays and methods for their use in binding assays |
US6090553A (en) * | 1997-10-29 | 2000-07-18 | Beckman Coulter, Inc. | Use of uracil-DNA glycosylase in genetic analysis |
WO2000056936A1 (en) * | 1999-03-25 | 2000-09-28 | The University Of Maryland Biotechnology Institute | Method of differential display of prokaryotic messenger rna by rtpcr |
WO2000063436A1 (en) * | 1999-04-20 | 2000-10-26 | Joslin Diabetes Center, Inc. | Disease reversing targets |
US6147056A (en) * | 1995-06-06 | 2000-11-14 | Trustees Of Boston University | Use of locally applied DNA fragments |
WO2000075356A1 (en) * | 1999-06-04 | 2000-12-14 | Lin Shi Lung | Rna polymerase chain reaction |
US6194158B1 (en) | 1998-11-12 | 2001-02-27 | Nyxis Neurotherapies, Inc. | Diagnostic assay for cancer |
US6218529B1 (en) * | 1995-07-31 | 2001-04-17 | Urocor, Inc. | Biomarkers and targets for diagnosis, prognosis and management of prostate, breast and bladder cancer |
US6261770B1 (en) | 1997-05-13 | 2001-07-17 | Display Systems Biotech Aps | Method to clone mRNAs |
US6270966B1 (en) | 1996-02-09 | 2001-08-07 | The United States Of America As Represented By The Department Of Health And Human Services | Restriction display (RD-PCR) of differentially expressed mRNAs |
US6277571B1 (en) | 1997-10-03 | 2001-08-21 | Virginia Commonwealth University Intellectual Property Foundation | Sequential consensus region-directed amplification of known and novel members of gene families |
US6306588B1 (en) | 1997-02-07 | 2001-10-23 | Invitrogen Corporation | Polymerases for analyzing or typing polymorphic nucleic acid fragments and uses thereof |
US6342376B1 (en) | 1998-09-07 | 2002-01-29 | Aventis Pharma Deutschland Gmbh | Two-color differential display as a method for detecting regulated genes |
US20020119484A1 (en) * | 1994-07-07 | 2002-08-29 | Nanogen, Inc. | Primer extension detection methods on active electronic microarrays |
US6489455B2 (en) | 1997-05-21 | 2002-12-03 | Clontech Laboratories, Inc. | Methods of assaying differential expression |
US20030032611A1 (en) * | 2000-03-31 | 2003-02-13 | Gilchrest Barbara A. | Method to inhibit cell growth using oligonucleotides |
US6607914B1 (en) * | 1999-06-14 | 2003-08-19 | New York Blood Center, Inc. | Camello gene family and uses thereof |
US6618679B2 (en) | 2000-01-28 | 2003-09-09 | Althea Technologies, Inc. | Methods for analysis of gene expression |
US6657053B1 (en) | 1999-02-26 | 2003-12-02 | The Trustees Of Columbia University In The City Of New York | Reciprocal subtraction differential display |
US20040005625A1 (en) * | 2000-12-12 | 2004-01-08 | Masumi Abe | Method of analyzing expression of gene |
US6692915B1 (en) | 1999-07-22 | 2004-02-17 | Girish N. Nallur | Sequencing a polynucleotide on a generic chip |
US6759195B1 (en) | 1999-03-25 | 2004-07-06 | University Of Maryland Biotechnology Institute | Method of differential display of prokaryotic messenger RNA by RTPCR |
US20040142327A1 (en) * | 1996-11-22 | 2004-07-22 | Jhy-Jhu Lin | Methods for identifying and isolating DNA polymorphisms or genetic markers |
US20050009027A1 (en) * | 2001-09-03 | 2005-01-13 | Guido Krupp | Reproduction of ribonucleic acids |
WO2005118806A2 (en) | 2004-05-28 | 2005-12-15 | Ambion, Inc. | METHODS AND COMPOSITIONS INVOLVING MicroRNA |
US20060052323A1 (en) * | 1995-06-06 | 2006-03-09 | Gilchrest Barbara A | Method to inhibit cell growth using oligonucleotides |
US7031843B1 (en) | 1997-09-23 | 2006-04-18 | Gene Logic Inc. | Computer methods and systems for displaying information relating to gene expression data |
US20060172299A1 (en) * | 2002-09-04 | 2006-08-03 | Guido Krupp | Methods for the synthesis of mucleic acids |
US7094766B1 (en) | 1995-06-06 | 2006-08-22 | Trustees Of Boston University | Use of locally applied DNA fragments |
US20060269924A1 (en) * | 2003-04-11 | 2006-11-30 | Trustees Of Boston University | Modulation of telomere-initiated cell signaling |
US20070059715A1 (en) * | 2005-09-15 | 2007-03-15 | Primera Biosystems, Inc. | Quantitative gene expression profiling |
US20070128628A1 (en) * | 2001-09-03 | 2007-06-07 | Guido Krupp | Universal method for selective amplification of mRNAs |
US20070178489A1 (en) * | 1999-05-12 | 2007-08-02 | Invitrogen Corporation | Compositions and Methods for Enhanced Sensitivity and Specificity of Nucleic Acid Synthesis |
WO2008036776A2 (en) | 2006-09-19 | 2008-03-27 | Asuragen, Inc. | Mir-15, mir-26, mir -31,mir -145, mir-147, mir-188, mir-215, mir-216 mir-331, mmu-mir-292-3p regulated genes and pathways as targets for therapeutic intervention |
WO2008079972A2 (en) | 2006-12-20 | 2008-07-03 | Bayer Healthcare Llc | 4-{4- [ ({3-tert-butyl-1- [3- (hydroxymethyl) phenyl] - 1h- pyrazol- 5 -yl } carbamoyl) -amin o] -3-chlorophenoxy} -n-methylpyridine-2-carboxamide as an inhibitor of the vegfr kinase for the treatment of cancer |
US20090118132A1 (en) * | 2004-11-04 | 2009-05-07 | Roche Molecular Systems, Inc. | Classification of Acute Myeloid Leukemia |
EP2123764A1 (en) | 1999-05-14 | 2009-11-25 | Dekalb Genetics Corporation | The rice actin 2 promoter and intron and methods for use thereof |
US20100240024A1 (en) * | 2008-09-03 | 2010-09-23 | Abbott Laboratories | Assays And Kits For Determining HIV-1 Tropism |
EP2280085A2 (en) | 2004-11-01 | 2011-02-02 | George Mason University | Compositions and methods for diagnosing colon disorders |
EP2281887A1 (en) | 2004-11-12 | 2011-02-09 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
WO2011108930A1 (en) | 2010-03-04 | 2011-09-09 | Interna Technologies Bv | A MiRNA MOLECULE DEFINED BY ITS SOURCE AND ITS DIAGNOSTIC AND THERAPEUTIC USES IN DISEASES OR CONDITIONS ASSOCIATED WITH EMT |
WO2011130728A1 (en) | 2010-04-17 | 2011-10-20 | Bayer Healthcare Llc | Synthetic metabolites of fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention diseases and conditions |
US8053232B2 (en) | 2004-01-23 | 2011-11-08 | Virxsys Corporation | Correction of alpha-1-antitrypsin genetic defects using spliceosome mediated RNA trans splicing |
WO2012005572A1 (en) | 2010-07-06 | 2012-01-12 | Interna Technologies Bv | Mirna and its diagnostic and therapeutic uses in diseases or conditions associated with melanoma, or in diseases or conditions associated with activated braf pathway |
US20120071332A1 (en) * | 2009-02-02 | 2012-03-22 | Exiqon A/S | Method for Quantification of Small RNA Species |
WO2012068400A2 (en) | 2010-11-17 | 2012-05-24 | Asuragen, Inc. | Mirnas as biomarkers for distinguishing benign from malignant thyroid neoplasms |
EP2474617A1 (en) | 2011-01-11 | 2012-07-11 | InteRNA Technologies BV | Mir for treating neo-angiogenesis |
EP2487240A1 (en) | 2006-09-19 | 2012-08-15 | Asuragen, Inc. | Micrornas differentially expressed in pancreatic diseases and uses thereof |
US20120219953A1 (en) * | 2009-12-04 | 2012-08-30 | Qiagen Gmbh | Method for detecting and quantifying poly(a) rna and mrna |
WO2012158238A2 (en) | 2011-02-28 | 2012-11-22 | University Of Iowa Research Foundation | Anti-müllerian hormone changes in pregnancy and prediction ofadverse pregnancy outcomes and gender |
WO2013040251A2 (en) | 2011-09-13 | 2013-03-21 | Asurgen, Inc. | Methods and compositions involving mir-135b for distinguishing pancreatic cancer from benign pancreatic disease |
WO2013063519A1 (en) | 2011-10-26 | 2013-05-02 | Asuragen, Inc. | Methods and compositions involving mirna expression levels for distinguishing pancreatic cysts |
WO2013063544A1 (en) | 2011-10-27 | 2013-05-02 | Asuragen, Inc. | Mirnas as diagnostic biomarkers to distinguish benign from malignant thyroid tumors |
WO2013071049A1 (en) | 2011-11-10 | 2013-05-16 | Trustees Of Boston College | Gramicidin a mutants that function as antibiotics with improved solubility and reduced toxicity |
WO2014007623A1 (en) | 2012-07-03 | 2014-01-09 | Interna Technologies B.V. | Diagnostic portfolio and its uses |
WO2014055117A1 (en) | 2012-10-04 | 2014-04-10 | Asuragen, Inc. | Diagnostic mirnas for differential diagnosis of incidental pancreatic cystic lesions |
EP2767298A2 (en) | 2010-11-23 | 2014-08-20 | Presage Biosciences, Inc. | Therapeutic methods and compositions for solid delivery |
WO2014145612A1 (en) | 2013-03-15 | 2014-09-18 | Ajay Goel | Tissue and blood-based mirna biomarkers for the diagnosis, prognosis and metastasis-predictive potential in colorectal cancer |
WO2014151551A1 (en) | 2013-03-15 | 2014-09-25 | Baylor Research Institute | Ulcerative colitis (uc)-associated colorectal neoplasia markers |
US9187757B2 (en) | 2009-06-05 | 2015-11-17 | University Of Florida Research Foundation, Inc. | Isolation and targeted suppression of lignin biosynthetic genes |
EP2990487A1 (en) | 2008-05-08 | 2016-03-02 | Asuragen, INC. | Compositions and methods related to mirna modulation of neovascularization or angiogenesis |
EP3404116A1 (en) | 2013-03-15 | 2018-11-21 | The University of Chicago | Methods and compositions related to t-cell activity |
WO2019086603A1 (en) | 2017-11-03 | 2019-05-09 | Interna Technologies B.V. | Mirna molecule, equivalent, antagomir, or source thereof for treating and/or diagnosing a condition and/or a disease associated with neuronal deficiency or for neuronal (re)generation |
US10550440B2 (en) | 2016-02-26 | 2020-02-04 | Arizona Board Of Regents On Behalf Of Arizona State University | Synthetic translation-sensing riboswitches and uses thereof |
WO2020210521A2 (en) | 2019-04-12 | 2020-10-15 | The Regents Of The University Of California | Compositions and methods for increasing muscle mass and oxidative metabolism |
WO2024028794A1 (en) | 2022-08-02 | 2024-02-08 | Temple Therapeutics BV | Methods for treating endometrial and ovarian hyperproliferative disorders |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7049102B1 (en) | 1989-09-22 | 2006-05-23 | Board Of Trustees Of Leland Stanford University | Multi-gene expression profile |
US5545522A (en) | 1989-09-22 | 1996-08-13 | Van Gelder; Russell N. | Process for amplifying a target polynucleotide sequence using a single primer-promoter complex |
US5795714A (en) | 1992-11-06 | 1998-08-18 | Trustees Of Boston University | Method for replicating an array of nucleic acid probes |
US5580726A (en) * | 1994-04-29 | 1996-12-03 | Geron Corporation | Method and Kit for enhanced differential display |
US5744300A (en) * | 1993-03-24 | 1998-04-28 | Geron Corporation | Methods and reagents for the identification and regulation of senescence-related genes |
DE4317414C1 (en) * | 1993-05-18 | 1994-04-21 | Max Planck Gesellschaft | Diagnostic agent for investigating gene expression - comprises oligonucleotide primer pairs formed from labelled 5'- and 3'-oligonucleotide primers |
US5889159A (en) * | 1993-10-29 | 1999-03-30 | Dana-Farber Cancer Institute, Inc. | Monoclonal antibodies to tumor marker TC1 and methods for use of same |
US5459037A (en) * | 1993-11-12 | 1995-10-17 | The Scripps Research Institute | Method for simultaneous identification of differentially expressed mRNAs and measurement of relative concentrations |
US6096503A (en) * | 1993-11-12 | 2000-08-01 | The Scripps Research Institute | Method for simultaneous identification of differentially expresses mRNAs and measurement of relative concentrations |
US6110680A (en) * | 1993-11-12 | 2000-08-29 | The Scripps Research Institute | Method for simultaneous identification of differentially expressed mRNAs and measurement of relative concentrations |
US20050123926A1 (en) * | 1994-01-13 | 2005-06-09 | Enzo Diagnostics, Inc., | In vitro process for producing multiple nucleic acid copies |
US6986985B1 (en) * | 1994-01-13 | 2006-01-17 | Enzo Life Sciences, Inc. | Process for producing multiple nucleic acid copies in vivo using a protein-nucleic acid construct |
US20110097791A1 (en) * | 1999-04-16 | 2011-04-28 | Engelhardt Dean L | Novel process, construct and conjugate for producing multiple nucleic acid copies |
EP0735144B1 (en) * | 1995-03-28 | 2002-06-05 | Japan Science and Technology Corporation | Method for molecular indexing of genes using restriction enzymes |
DE19518505A1 (en) * | 1995-05-19 | 1996-11-21 | Max Planck Gesellschaft | Procedure for gene expression analysis |
US5882864A (en) * | 1995-07-31 | 1999-03-16 | Urocor Inc. | Biomarkers and targets for diagnosis, prognosis and management of prostate disease |
US5776683A (en) * | 1996-07-11 | 1998-07-07 | California Pacific Medical Center | Methods for identifying genes amplified in cancer cells |
EP0811696A3 (en) * | 1996-06-06 | 1998-01-07 | Smithkline Beecham Corporation | Method to obtain nucleotide sequence using randomly primed amplification |
AU6497296A (en) * | 1996-07-16 | 1998-02-09 | Periannan Senapathy | Method for contiguous genome sequencing |
JPH1057064A (en) * | 1996-08-16 | 1998-03-03 | Rikagaku Kenkyusho | Method for specific amplification of trace gene products |
EP0979282A1 (en) * | 1997-04-30 | 2000-02-16 | F. Hoffmann-La Roche Ag | Rat st38.2 chemokine |
EP0981609B1 (en) * | 1997-05-13 | 2001-09-19 | Azign Bioscience A/S | A method to clone mrnas and display of differentially expressed transcripts (dodet) |
WO1999011823A2 (en) * | 1997-09-05 | 1999-03-11 | Sidney Kimmel Cancer Center | Selection of pcr primer pairs to amplify a group of nucleotide sequences |
US6897066B1 (en) | 1997-09-26 | 2005-05-24 | Athersys, Inc. | Compositions and methods for non-targeted activation of endogenous genes |
US6150096A (en) * | 1997-09-26 | 2000-11-21 | Universite De Sherbrooke | Molecular markers for the diagnosis of human diseases including Crohn's disease |
DE19806431C1 (en) * | 1998-02-17 | 1999-10-14 | Novartis Ag | New method for the identification and characterization of mRNA molecules |
US6365346B1 (en) | 1998-02-18 | 2002-04-02 | Dade Behring Inc. | Quantitative determination of nucleic acid amplification products |
US6090593A (en) * | 1998-05-13 | 2000-07-18 | The United States Of America As Represented By The Secretary Of The Air Force | Isolation of expressed genes in microorganisms |
AU6507099A (en) * | 1998-09-29 | 2000-04-17 | Arch Development Corporation | A new strategy for genome-wide gene analysis: integrated procedures for gene identification |
CA2350168A1 (en) * | 1998-11-04 | 2000-05-11 | Digital Gene Technologies, Inc. | Method for indexing and determining the relative concentration of expressed messenger rnas |
AU1478200A (en) * | 1998-11-16 | 2000-06-05 | Genelabs Technologies, Inc. | Method for measuring target polynucleotides and novel asthma biomolecules |
US6156515A (en) * | 1999-02-09 | 2000-12-05 | Urocor, Inc. | Prostate-specific gene for diagnosis, prognosis and management of prostate cancer |
EP1155131B1 (en) * | 1999-02-19 | 2008-07-23 | ABT Holding Company | Vector comprising a splice acceptor trap and a poly a trap and the corresponding eukaryotic host cells |
US6582906B1 (en) | 1999-04-05 | 2003-06-24 | Affymetrix, Inc. | Proportional amplification of nucleic acids |
US6864050B2 (en) * | 1999-07-30 | 2005-03-08 | Affymetrix, Inc. | Single-phase amplification of nucleic acids |
US6416956B1 (en) | 1999-08-13 | 2002-07-09 | George Washington University | Transcription factor, BP1 |
US6692918B2 (en) * | 1999-09-13 | 2004-02-17 | Nugen Technologies, Inc. | Methods and compositions for linear isothermal amplification of polynucleotide sequences |
WO2001071036A2 (en) * | 2000-03-17 | 2001-09-27 | Gene Logic, Inc. | Methods of preparing amplified nucleic acid molecules |
US6468749B1 (en) | 2000-03-30 | 2002-10-22 | Quark Biotech, Inc. | Sequence-dependent gene sorting techniques |
US6387624B1 (en) | 2000-04-14 | 2002-05-14 | Incyte Pharmaceuticals, Inc. | Construction of uni-directionally cloned cDNA libraries from messenger RNA for improved 3′ end DNA sequencing |
US7846733B2 (en) | 2000-06-26 | 2010-12-07 | Nugen Technologies, Inc. | Methods and compositions for transcription-based nucleic acid amplification |
MXPA02012735A (en) | 2000-06-26 | 2004-04-20 | Nugen Tgechnologies Inc | Methods and compositions for transcription-based nucleic acid amplification. |
EP1325118B1 (en) * | 2000-10-05 | 2016-05-25 | Riken | Oligonucleotide linkers comprising a variable cohesive portion and method for the preparation of polynucleotide libraries by using said linkers. |
WO2002048402A2 (en) | 2000-12-13 | 2002-06-20 | Nugen Technologies, Inc. | Methods and compositions for generation of multiple copies of nucleic acid sequences and methods of detection thereof |
US6794141B2 (en) * | 2000-12-22 | 2004-09-21 | Arcturus Bioscience, Inc. | Nucleic acid amplification |
WO2002072773A2 (en) * | 2001-03-09 | 2002-09-19 | Nugen Technologies, Inc. | Methods and compositions for amplification of rna sequences |
KR20030082535A (en) | 2001-03-09 | 2003-10-22 | 뉴젠 테크놀로지스 인코포레이티드 | Methods and compositions for amplification of rna sequences |
EP1275738A1 (en) * | 2001-07-11 | 2003-01-15 | Roche Diagnostics GmbH | Method for random cDNA synthesis and amplification |
EP1275734A1 (en) * | 2001-07-11 | 2003-01-15 | Roche Diagnostics GmbH | Method for random cDNA synthesis and amplification |
JP4323317B2 (en) * | 2001-12-21 | 2009-09-02 | フラームス・インテルウニフェルシタイル・インステイチュート・フォール・ビオテヒノロヒー・ヴェーゼットウェー(ヴェーイーベー・ヴェーゼットウェー) | Methods for cloning variable region sequences |
US7176025B2 (en) * | 2002-03-11 | 2007-02-13 | Nugen Technologies, Inc. | Methods for generating double stranded DNA comprising a 3′ single stranded portion and uses of these complexes for recombination |
US20040005614A1 (en) * | 2002-05-17 | 2004-01-08 | Nurith Kurn | Methods for fragmentation, labeling and immobilization of nucleic acids |
AU2004230494A1 (en) * | 2003-04-14 | 2004-10-28 | Nugen Technologies, Inc. | Global amplification using a randomly primed composite primer |
JP2007524407A (en) * | 2003-12-29 | 2007-08-30 | ニューゲン テクノロジーズ, インコーポレイテッド | Methods for analyzing the methylation status of nucleic acids and methods for fragmentation, labeling and immobilization of nucleic acids |
CA2621267A1 (en) | 2005-09-07 | 2007-03-15 | Nugen Technologies, Inc. | Improved nucleic acid amplification procedure |
AT502823B1 (en) | 2005-11-29 | 2007-06-15 | Seitz Alexander Dr | POLYNUCLEOTIDE AMPLIFICATION |
US7833716B2 (en) | 2006-06-06 | 2010-11-16 | Gen-Probe Incorporated | Tagged oligonucleotides and their use in nucleic acid amplification methods |
WO2008005459A2 (en) * | 2006-06-30 | 2008-01-10 | Nugen Technologies, Inc. | Methods for fragmentation and labeling of nucleic acids |
US8034568B2 (en) | 2008-02-12 | 2011-10-11 | Nugen Technologies, Inc. | Isothermal nucleic acid amplification methods and compositions |
WO2009117698A2 (en) | 2008-03-21 | 2009-09-24 | Nugen Technologies, Inc. | Methods of rna amplification in the presence of dna |
US8362318B2 (en) | 2008-12-18 | 2013-01-29 | Board Of Trustees Of Michigan State University | Enzyme directed oil biosynthesis in microalgae |
US20110059453A1 (en) * | 2009-08-23 | 2011-03-10 | Affymetrix, Inc. | Poly(A) Tail Length Measurement by PCR |
US9328335B2 (en) | 2009-12-30 | 2016-05-03 | Board Of Trustees Of Michigan State University | Method to produce acetyldiacylglycerols (ac-TAGs) by expression of an acetyltransferase gene isolated from Euonymus alatus (burning bush) |
GB2497838A (en) | 2011-10-19 | 2013-06-26 | Nugen Technologies Inc | Compositions and methods for directional nucleic acid amplification and sequencing |
SG10201504490QA (en) | 2012-01-26 | 2015-07-30 | Nugen Technologies Inc | Compositions And Methods For Targeted Nucleic Acid Sequence Enrichment And High Efficiency Library Generation |
CA2877094A1 (en) | 2012-06-18 | 2013-12-27 | Nugen Technologies, Inc. | Compositions and methods for negative selection of non-desired nucleic acid sequences |
US20150011396A1 (en) | 2012-07-09 | 2015-01-08 | Benjamin G. Schroeder | Methods for creating directional bisulfite-converted nucleic acid libraries for next generation sequencing |
EP2971130A4 (en) | 2013-03-15 | 2016-10-05 | Nugen Technologies Inc | Sequential sequencing |
CN105849264B (en) | 2013-11-13 | 2019-09-27 | 纽亘技术公司 | For identifying the composition and method that repeat sequencing reading |
US10392629B2 (en) | 2014-01-17 | 2019-08-27 | Board Of Trustees Of Michigan State University | Increased caloric and nutritional content of plant biomass |
WO2015131107A1 (en) | 2014-02-28 | 2015-09-03 | Nugen Technologies, Inc. | Reduced representation bisulfite sequencing with diversity adaptors |
US11099202B2 (en) | 2017-10-20 | 2021-08-24 | Tecan Genomics, Inc. | Reagent delivery system |
EP4019648B1 (en) * | 2019-08-20 | 2025-03-19 | Director-General of National Institute of Infectious Diseases | Method for amplifying nucleotide sequence, and sequence determination method |
US12059674B2 (en) | 2020-02-03 | 2024-08-13 | Tecan Genomics, Inc. | Reagent storage system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683195A (en) * | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
WO1991019816A1 (en) * | 1990-06-20 | 1991-12-26 | The Board Of Trustees Of The Leland Stanford Junior University | Identification of cell subpopulations using modified pcr to amplify expression intermediates |
US5104792A (en) * | 1989-12-21 | 1992-04-14 | The United States Of America As Represented By The Department Of Health And Human Services | Method for amplifying unknown nucleic acid sequences |
WO1993014217A1 (en) * | 1992-01-10 | 1993-07-22 | Life Technologies, Inc. | Use of predetermined nucleotides having altered base pairing characteristics in the amplification of nucleic acid molecules |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4965188A (en) * | 1986-08-22 | 1990-10-23 | Cetus Corporation | Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme |
CA1338457C (en) * | 1986-08-22 | 1996-07-16 | Henry A. Erlich | Purified thermostable enzyme |
US5066584A (en) * | 1988-09-23 | 1991-11-19 | Cetus Corporation | Methods for generating single stranded dna by the polymerase chain reaction |
US5262311A (en) * | 1992-03-11 | 1993-11-16 | Dana-Farber Cancer Institute, Inc. | Methods to clone polyA mRNA |
DE4317414C1 (en) * | 1993-05-18 | 1994-04-21 | Max Planck Gesellschaft | Diagnostic agent for investigating gene expression - comprises oligonucleotide primer pairs formed from labelled 5'- and 3'-oligonucleotide primers |
-
1993
- 1993-03-11 WO PCT/US1993/002246 patent/WO1993018176A1/en active IP Right Grant
- 1993-03-11 EP EP93907440A patent/EP0592626B1/en not_active Expired - Lifetime
- 1993-03-11 AT AT93907440T patent/ATE231920T1/en not_active IP Right Cessation
- 1993-03-11 CA CA002102784A patent/CA2102784A1/en not_active Abandoned
- 1993-03-11 DE DE69332665T patent/DE69332665T2/en not_active Expired - Fee Related
- 1993-03-11 JP JP5516011A patent/JP2843675B2/en not_active Expired - Fee Related
-
1994
- 1994-12-08 US US08/351,748 patent/US5599672A/en not_active Expired - Lifetime
-
1995
- 1995-04-25 US US08/430,536 patent/US5665547A/en not_active Expired - Lifetime
-
1996
- 1996-07-19 US US08/684,547 patent/US5965409A/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4683195A (en) * | 1986-01-30 | 1987-07-28 | Cetus Corporation | Process for amplifying, detecting, and/or-cloning nucleic acid sequences |
US4683195B1 (en) * | 1986-01-30 | 1990-11-27 | Cetus Corp | |
US5104792A (en) * | 1989-12-21 | 1992-04-14 | The United States Of America As Represented By The Department Of Health And Human Services | Method for amplifying unknown nucleic acid sequences |
WO1991019816A1 (en) * | 1990-06-20 | 1991-12-26 | The Board Of Trustees Of The Leland Stanford Junior University | Identification of cell subpopulations using modified pcr to amplify expression intermediates |
WO1993014217A1 (en) * | 1992-01-10 | 1993-07-22 | Life Technologies, Inc. | Use of predetermined nucleotides having altered base pairing characteristics in the amplification of nucleic acid molecules |
Non-Patent Citations (50)
Title |
---|
A. F. Wilks, "Cloning Members of Protein-Tyrosine Kinase Family Using Polymerase Chain Reaction", 1991, Methods in Enzymology, vol. 200, pp. 533-547. |
A. F. Wilks, Cloning Members of Protein Tyrosine Kinase Family Using Polymerase Chain Reaction , 1991, Methods in Enzymology, vol. 200, pp. 533 547. * |
Frohman, M. et al. Proc. Natl. Acad. Sci. 85:8998 9002, 1988. * |
Frohman, M. et al. Proc. Natl. Acad. Sci. 85:8998-9002, 1988. |
Ghosh et al., "Cloning the cDNA encoding the AmbtV allergen from gaint ragweed (Ambrosia trifida) pollen", 1991, Gene, 101, pp. 231-238. |
Ghosh et al., Cloning the cDNA encoding the AmbtV allergen from gaint ragweed (Ambrosia trifida) pollen , 1991, Gene, 101, pp. 231 238. * |
Gilliand et al. in "PCR Protocols: A Guide to Methods and Applications", pp. 60-69, 1990. |
Gilliand et al. in PCR Protocols: A Guide to Methods and Applications , pp. 60 69, 1990. * |
He et al., "Molecular Cloning Of Androgen Receptors From Divergent Species With A Polymerase Chain Reaction Technique: Complete cDNA Sequence Of The Mouse Androgen Receptor And Isolation Of Andgrogen Receptor cDNA Probes From Dog, Guinea Pig and Clawed Frog", Biochemical and BioPhysical Research Communications, vol. 171, No. 2, Sep. 14, 1990. |
He et al., Molecular Cloning Of Androgen Receptors From Divergent Species With A Polymerase Chain Reaction Technique: Complete cDNA Sequence Of The Mouse Androgen Receptor And Isolation Of Andgrogen Receptor cDNA Probes From Dog, Guinea Pig and Clawed Frog , Biochemical and BioPhysical Research Communications, vol. 171, No. 2, Sep. 14, 1990. * |
J. D. Fritz et al., "A Novel 3' Extension Technique Using Random Primers in RNA-PCR", Nucleic Acids Research, vol. 19, No. 13, Jul. 19, 1991. |
J. D. Fritz et al., A Novel 3 Extension Technique Using Random Primers in RNA PCR , Nucleic Acids Research, vol. 19, No. 13, Jul. 19, 1991. * |
Jamel Chelly et al., "Transcription of the Dystrophin Gene in Human Muscle and Non-Muscle Tissues", Nature, vol. 333, Jun. 30, 1988. |
Jamel Chelly et al., Transcription of the Dystrophin Gene in Human Muscle and Non Muscle Tissues , Nature, vol. 333, Jun. 30, 1988. * |
Khan et al., "Efficient Double Stranded Sequencing Of cDNA Clones Containing Long Poly(A) Tails Using Anchored Poly(dT) Primers", Nucleic Acids Research, vol. 19, No. 7, Apr. 11, 1991. |
Khan et al., Efficient Double Stranded Sequencing Of cDNA Clones Containing Long Poly(A) Tails Using Anchored Poly(dT) Primers , Nucleic Acids Research, vol. 19, No. 7, Apr. 11, 1991. * |
Kocher et al., "Dynamics Of Mitochondrial DNA Evolution In Animals: Amplification And Sequencing With Conserved Primers", Proc. Natl. Acad. Sci., vol. 86, pp. 6196-6200, Aug. 1989. |
Kocher et al., Dynamics Of Mitochondrial DNA Evolution In Animals: Amplification And Sequencing With Conserved Primers , Proc. Natl. Acad. Sci., vol. 86, pp. 6196 6200, Aug. 1989. * |
Liang et al. Science 257(5072):967 971, 1992. * |
Liang et al. Science 257(5072):967-971, 1992. |
Liang et al., "Differential Display and Cloning Of Messenger RNAs From Human Breast Cancer Versus Mammary Epithelial Cells", Cancer Research, vol. 52, pp. 6966-6968, Dec. 15, 1992. |
Liang et al., Differential Display and Cloning Of Messenger RNAs From Human Breast Cancer Versus Mammary Epithelial Cells , Cancer Research, vol. 52, pp. 6966 6968, Dec. 15, 1992. * |
Libert et al., "Selective Amplification And Cloning Of Four New Members Of The G Protein-Coupled Receptor Family", Science, vol. 244, pp. 569-572, May 5, 1989. |
Libert et al., Selective Amplification And Cloning Of Four New Members Of The G Protein Coupled Receptor Family , Science, vol. 244, pp. 569 572, May 5, 1989. * |
Loh et al., "Polymerase chain reaction with single-sided specificity: analysis of T cell receptor δ chain", Jan. 1989, Science, vol. 243, pp. 217-220. |
Loh et al., Polymerase chain reaction with single sided specificity: analysis of T cell receptor chain , Jan. 1989, Science, vol. 243, pp. 217 220. * |
M. Kozak, "An Analysis of Vertebrate mRNA Sequences: Intimations of Translational Control", Nov. 1991, J. Cell Biology, vol. 115, No. 4, pp. 887-903. |
M. Kozak, An Analysis of Vertebrate mRNA Sequences: Intimations of Translational Control , Nov. 1991, J. Cell Biology, vol. 115, No. 4, pp. 887 903. * |
Michael A. Frohman et al., "Rapid Production of Full-Length cDNAs from Rare Transcripts: Amplification Using a Single Gene-Specific Oligonucleotide Primer", Proc. Natl. Acad. Sci. USA, vol. 85, pp. 8998-9002, Dec. 1988. |
Michael A. Frohman et al., Rapid Production of Full Length cDNAs from Rare Transcripts: Amplification Using a Single Gene Specific Oligonucleotide Primer , Proc. Natl. Acad. Sci. USA, vol. 85, pp. 8998 9002, Dec. 1988. * |
Osamu Ohara et al., "One-Sided Polymerase Chain Reaction: The Amplification of cDNA", Proc. Natl. Acad. Sci. USA, vol. 86, pp. 5673-5677, Aug. 1989. |
Osamu Ohara et al., One Sided Polymerase Chain Reaction: The Amplification of cDNA , Proc. Natl. Acad. Sci. USA, vol. 86, pp. 5673 5677, Aug. 1989. * |
P. T. W. Cohen, "Cloning of Protein-Serine/Threonine Phosphatases", 1991, Methods in Enzymology, vol. 201, pp. 398-409. |
P. T. W. Cohen, Cloning of Protein Serine/Threonine Phosphatases , 1991, Methods in Enzymology, vol. 201, pp. 398 409. * |
Schaefer et al., "Exclusive expression of Epstein-Barr virus nuclear antigen 1 in Burkitt lymphoma arises from a third promoter, distinct from the promoters used ing latently infected lymphocytes", Aug. 1991, Proc. Natl. Acad. Sci., USA, vol. 88, pp. 6550-6554. |
Schaefer et al., Exclusive expression of Epstein Barr virus nuclear antigen 1 in Burkitt lymphoma arises from a third promoter, distinct from the promoters used ing latently infected lymphocytes , Aug. 1991, Proc. Natl. Acad. Sci., USA, vol. 88, pp. 6550 6554. * |
Smith et al., "Complexity and sequence identification of 24 rat Vβ genes", Jul. 1, 1991, The Journal of Immunology, vol. 147, pp. 375-379. |
Smith et al., Complexity and sequence identification of 24 rat V genes , Jul. 1, 1991, The Journal of Immunology, vol. 147, pp. 375 379. * |
T. D. Sargent, "Isolation of Differentially Expressed Genes", 1987, Methods in Enzymology, vol. 152, pp. 422-433. |
T. D. Sargent, Isolation of Differentially Expressed Genes , 1987, Methods in Enzymology, vol. 152, pp. 422 433. * |
Welsh et al., "Arbitrarily primed PCR fingerprinting of RNA", Nucleic Acids Research, vol. 20, No. 19, 1992. |
Welsh et al., Arbitrarily primed PCR fingerprinting of RNA , Nucleic Acids Research, vol. 20, No. 19, 1992. * |
Welsh, Jr. et al. Nuc. Acids Res. 18(24):7213 7218, 1990. * |
Welsh, Jr. et al. Nuc. Acids Res. 18(24):7213-7218, 1990. |
William T. Tse et al., "Reverse Transcription and Direct Amplification of Cellular RNA Transcripts by Taq Polymerase", Gene, vol. 88, No. 2, Apr. 16, 1990. |
William T. Tse et al., Reverse Transcription and Direct Amplification of Cellular RNA Transcripts by Taq Polymerase , Gene, vol. 88, No. 2, Apr. 16, 1990. * |
Xiao et al., "Charaterization of a full-length cDNA which codes for the human spermidine/spermine N1 -Acetyltansferase", Aug. 30, 1991, vol. 179, No. 1, pp. 407-415. |
Xiao et al., Charaterization of a full length cDNA which codes for the human spermidine/spermine N 1 Acetyltansferase , Aug. 30, 1991, vol. 179, No. 1, pp. 407 415. * |
Zelent et al., "Differentially expressed isoforms of the mouse retinoic acid receptor β are generated by usage of two promoters and alternative splicing", 1991, The EMBO Journal, vol. 10, No,. 1, pp. 71-81. |
Zelent et al., Differentially expressed isoforms of the mouse retinoic acid receptor are generated by usage of two promoters and alternative splicing , 1991, The EMBO Journal, vol. 10, No,. 1, pp. 71 81. * |
Cited By (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020119484A1 (en) * | 1994-07-07 | 2002-08-29 | Nanogen, Inc. | Primer extension detection methods on active electronic microarrays |
US5814445A (en) * | 1994-07-11 | 1998-09-29 | New York Blood Center | Method of identification and cloning differentially expressed messenger RNAs |
US20030017490A1 (en) * | 1994-07-11 | 2003-01-23 | New York Blood Center Inc. | Method of identification and cloning differentially expressed messenger RNAs |
US6120996A (en) * | 1994-07-11 | 2000-09-19 | New York Blood Center, Inc. | Method of identification and cloning differentially expressed messenger RNAs |
US20100249218A1 (en) * | 1995-06-06 | 2010-09-30 | Trustees Of Boston University | Method to inhibit cell growth using oligonucleotides |
US20060052323A1 (en) * | 1995-06-06 | 2006-03-09 | Gilchrest Barbara A | Method to inhibit cell growth using oligonucleotides |
US20090209747A1 (en) * | 1995-06-06 | 2009-08-20 | Trustees Of Boston University | Method to inhibit cell growth using oligonucleotides |
US6147056A (en) * | 1995-06-06 | 2000-11-14 | Trustees Of Boston University | Use of locally applied DNA fragments |
US7094766B1 (en) | 1995-06-06 | 2006-08-22 | Trustees Of Boston University | Use of locally applied DNA fragments |
US8183222B2 (en) | 1995-06-06 | 2012-05-22 | Trustees Of Boston University | Method to inhibit cell growth using oligonucleotides |
US6218529B1 (en) * | 1995-07-31 | 2001-04-17 | Urocor, Inc. | Biomarkers and targets for diagnosis, prognosis and management of prostate, breast and bladder cancer |
US6270966B1 (en) | 1996-02-09 | 2001-08-07 | The United States Of America As Represented By The Department Of Health And Human Services | Restriction display (RD-PCR) of differentially expressed mRNAs |
US6045998A (en) * | 1996-04-03 | 2000-04-04 | Johnson & Johnson Consumer Products, Inc. | Technique for differential display |
WO1998008981A1 (en) * | 1996-08-30 | 1998-03-05 | Life Technologies, Inc. | METHODS FOR IDENTIFICATION AND ISOLATION OF SPECIFIC NUCLEOTIDE SEQUENCES IN cDNA AND GENOMIC DNA |
US6528256B1 (en) | 1996-08-30 | 2003-03-04 | Invitrogen Corporation | Methods for identification and isolation of specific nucleotide sequences in cDNA and genomic DNA |
US20030186287A1 (en) * | 1996-08-30 | 2003-10-02 | Invitrogen Corporation | Methods for identification and isolation of specific nucleotide sequences in cDNA and genomic DNA |
US20040142327A1 (en) * | 1996-11-22 | 2004-07-22 | Jhy-Jhu Lin | Methods for identifying and isolating DNA polymorphisms or genetic markers |
US20020168646A1 (en) * | 1997-02-07 | 2002-11-14 | Joseph Solus | Polymerases for analyzing or typing polymorphic nucleic acid fragments and uses thereof |
US6306588B1 (en) | 1997-02-07 | 2001-10-23 | Invitrogen Corporation | Polymerases for analyzing or typing polymorphic nucleic acid fragments and uses thereof |
US7501237B2 (en) | 1997-02-07 | 2009-03-10 | Life Technologies Corporation | Polymerases for analyzing or typing polymorphic nucleic acid fragments and uses thereof |
WO1998039480A1 (en) * | 1997-03-03 | 1998-09-11 | Haqqi Tariq M | Methods and compositions for identifying expressed genes |
US5994130A (en) * | 1997-04-16 | 1999-11-30 | Millennium Pharmaceuticals, Inc. | Multidrug resistance-associated polypeptide |
US6162616A (en) * | 1997-04-16 | 2000-12-19 | Millennium Pharmaceuticals, Inc. | Multidrug resistance-associated polypeptide |
US20050191307A1 (en) * | 1997-04-16 | 2005-09-01 | Shyjan Andrew W. | Novel multidrug resistance-associated polypeptide |
US8287862B2 (en) | 1997-04-16 | 2012-10-16 | Millennium Pharmaceuticals, Inc. | Multidrug resistance-associated polypeptide |
US7785812B2 (en) | 1997-04-16 | 2010-08-31 | Millennium Pharmaceuticals, Inc. | Multidrug resistance-associated polypeptide |
US20110020341A1 (en) * | 1997-04-16 | 2011-01-27 | Millennium Pharmaceuticals, Inc. | Novel multidrug resistance-associated polypeptide |
WO1998049345A1 (en) * | 1997-04-29 | 1998-11-05 | Trustees Of Boston University | Methods and compositions for targeted dna differential display |
US6261770B1 (en) | 1997-05-13 | 2001-07-17 | Display Systems Biotech Aps | Method to clone mRNAs |
US6489455B2 (en) | 1997-05-21 | 2002-12-03 | Clontech Laboratories, Inc. | Methods of assaying differential expression |
US5994076A (en) * | 1997-05-21 | 1999-11-30 | Clontech Laboratories, Inc. | Methods of assaying differential expression |
US7031843B1 (en) | 1997-09-23 | 2006-04-18 | Gene Logic Inc. | Computer methods and systems for displaying information relating to gene expression data |
US6277571B1 (en) | 1997-10-03 | 2001-08-21 | Virginia Commonwealth University Intellectual Property Foundation | Sequential consensus region-directed amplification of known and novel members of gene families |
US6090553A (en) * | 1997-10-29 | 2000-07-18 | Beckman Coulter, Inc. | Use of uracil-DNA glycosylase in genetic analysis |
US6087102A (en) * | 1998-01-07 | 2000-07-11 | Clontech Laboratories, Inc. | Polymeric arrays and methods for their use in binding assays |
US6287768B1 (en) | 1998-01-07 | 2001-09-11 | Clontech Laboratories, Inc. | Polymeric arrays and methods for their use in binding assays |
US6489159B1 (en) | 1998-01-07 | 2002-12-03 | Clontech Laboratories, Inc. | Polymeric arrays and methods for their use in binding assays |
WO1999043844A1 (en) * | 1998-02-27 | 1999-09-02 | The Trustees Of Columbia University In The City Of New York | Reciprocal subtraction differential display |
US5882874A (en) * | 1998-02-27 | 1999-03-16 | The Trustees Of Columbia University In The City Of New York | Reciprocal subtraction differential display |
US6342376B1 (en) | 1998-09-07 | 2002-01-29 | Aventis Pharma Deutschland Gmbh | Two-color differential display as a method for detecting regulated genes |
US6645741B2 (en) | 1998-09-07 | 2003-11-11 | Aventis Pharma Deutschland Gmbh | Two-color differential display as a method for detecting regulated genes |
US6440676B1 (en) | 1998-11-12 | 2002-08-27 | Nyxis Neurotherapies, Inc. | Diagnostic assay for cancer |
US6194158B1 (en) | 1998-11-12 | 2001-02-27 | Nyxis Neurotherapies, Inc. | Diagnostic assay for cancer |
US6657053B1 (en) | 1999-02-26 | 2003-12-02 | The Trustees Of Columbia University In The City Of New York | Reciprocal subtraction differential display |
US6759195B1 (en) | 1999-03-25 | 2004-07-06 | University Of Maryland Biotechnology Institute | Method of differential display of prokaryotic messenger RNA by RTPCR |
WO2000056936A1 (en) * | 1999-03-25 | 2000-09-28 | The University Of Maryland Biotechnology Institute | Method of differential display of prokaryotic messenger rna by rtpcr |
WO2000063436A1 (en) * | 1999-04-20 | 2000-10-26 | Joslin Diabetes Center, Inc. | Disease reversing targets |
US20070178489A1 (en) * | 1999-05-12 | 2007-08-02 | Invitrogen Corporation | Compositions and Methods for Enhanced Sensitivity and Specificity of Nucleic Acid Synthesis |
EP2123764A1 (en) | 1999-05-14 | 2009-11-25 | Dekalb Genetics Corporation | The rice actin 2 promoter and intron and methods for use thereof |
WO2000075356A1 (en) * | 1999-06-04 | 2000-12-14 | Lin Shi Lung | Rna polymerase chain reaction |
US6607914B1 (en) * | 1999-06-14 | 2003-08-19 | New York Blood Center, Inc. | Camello gene family and uses thereof |
US6692915B1 (en) | 1999-07-22 | 2004-02-17 | Girish N. Nallur | Sequencing a polynucleotide on a generic chip |
US20030204322A1 (en) * | 2000-01-28 | 2003-10-30 | Althea Technologies, Inc. | Methods for analysis of gene expression |
US6618679B2 (en) | 2000-01-28 | 2003-09-09 | Althea Technologies, Inc. | Methods for analysis of gene expression |
US20060183704A1 (en) * | 2000-03-31 | 2006-08-17 | Gilchrest Barbara A | Method to inhibit cell growth using oligonucleotides |
US20030032611A1 (en) * | 2000-03-31 | 2003-02-13 | Gilchrest Barbara A. | Method to inhibit cell growth using oligonucleotides |
US7033829B2 (en) | 2000-03-31 | 2006-04-25 | Trustees Of Boston University | Method to inhibit cell growth using oligonucleotides |
US6492122B2 (en) | 2000-11-09 | 2002-12-10 | Nanogen, Inc. | Quantitative analysis methods on active electronic microarrays |
US20090325185A1 (en) * | 2000-12-12 | 2009-12-31 | Aisin Seiki Kabushiki Kaisha, National Instittue Of Radiological Sciences | Method of analyzing expression of gene |
US20040005625A1 (en) * | 2000-12-12 | 2004-01-08 | Masumi Abe | Method of analyzing expression of gene |
US20070128628A1 (en) * | 2001-09-03 | 2007-06-07 | Guido Krupp | Universal method for selective amplification of mRNAs |
US20050009027A1 (en) * | 2001-09-03 | 2005-01-13 | Guido Krupp | Reproduction of ribonucleic acids |
US20060172299A1 (en) * | 2002-09-04 | 2006-08-03 | Guido Krupp | Methods for the synthesis of mucleic acids |
US20060269924A1 (en) * | 2003-04-11 | 2006-11-30 | Trustees Of Boston University | Modulation of telomere-initiated cell signaling |
US8053232B2 (en) | 2004-01-23 | 2011-11-08 | Virxsys Corporation | Correction of alpha-1-antitrypsin genetic defects using spliceosome mediated RNA trans splicing |
EP2471921A1 (en) | 2004-05-28 | 2012-07-04 | Asuragen, Inc. | Methods and compositions involving microRNA |
EP2290069A2 (en) | 2004-05-28 | 2011-03-02 | Asuragen, Inc. | Methods and compositions involving microRNA |
EP2471924A1 (en) | 2004-05-28 | 2012-07-04 | Asuragen, INC. | Methods and compositions involving microRNA |
EP2065466A2 (en) | 2004-05-28 | 2009-06-03 | Asuragen, Inc. | Methods and compositions involving MicroRNA |
EP2471922A1 (en) | 2004-05-28 | 2012-07-04 | Asuragen, Inc. | Methods and compositions involving microRNA |
WO2005118806A2 (en) | 2004-05-28 | 2005-12-15 | Ambion, Inc. | METHODS AND COMPOSITIONS INVOLVING MicroRNA |
EP2471923A1 (en) | 2004-05-28 | 2012-07-04 | Asuragen, Inc. | Methods and compositions involving microRNA |
EP2474616A1 (en) | 2004-05-28 | 2012-07-11 | Asuragen, Inc. | Methods and compositions involving microRNA |
EP2290066A2 (en) | 2004-05-28 | 2011-03-02 | Asuragen, Inc. | Methods and compositions involving microRNA |
EP2290076A2 (en) | 2004-05-28 | 2011-03-02 | Asuragen, Inc. | Methods and compositions involving microRNA |
EP2290075A2 (en) | 2004-05-28 | 2011-03-02 | Asuragen, Inc. | Methods and compositions involving microRNA |
EP2290073A2 (en) | 2004-05-28 | 2011-03-02 | Asuragen, Inc. | Methods and compositions involving microRNA |
EP2290067A2 (en) | 2004-05-28 | 2011-03-02 | Asuragen, Inc. | Methods and compositions involving microRNA |
EP2290070A2 (en) | 2004-05-28 | 2011-03-02 | Asuragen, Inc. | Methods and compositions involving microRNA |
EP2290072A2 (en) | 2004-05-28 | 2011-03-02 | Asuragen, Inc. | Methods and compositions involving microRNA |
EP2290074A2 (en) | 2004-05-28 | 2011-03-02 | Asuragen, Inc. | Methods and compositions involving microRNA |
EP2290068A2 (en) | 2004-05-28 | 2011-03-02 | Asuragen, Inc. | Methods and compositions involving microRNA |
EP2290071A2 (en) | 2004-05-28 | 2011-03-02 | Asuragen, Inc. | Methods and compositions involving microRNA |
EP2280085A2 (en) | 2004-11-01 | 2011-02-02 | George Mason University | Compositions and methods for diagnosing colon disorders |
US20090118132A1 (en) * | 2004-11-04 | 2009-05-07 | Roche Molecular Systems, Inc. | Classification of Acute Myeloid Leukemia |
EP2302056A1 (en) | 2004-11-12 | 2011-03-30 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2302055A1 (en) | 2004-11-12 | 2011-03-30 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2281889A1 (en) | 2004-11-12 | 2011-02-09 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2292755A1 (en) | 2004-11-12 | 2011-03-09 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2292756A1 (en) | 2004-11-12 | 2011-03-09 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2298894A1 (en) | 2004-11-12 | 2011-03-23 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2298893A1 (en) | 2004-11-12 | 2011-03-23 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2302054A1 (en) | 2004-11-12 | 2011-03-30 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2302053A1 (en) | 2004-11-12 | 2011-03-30 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2302051A1 (en) | 2004-11-12 | 2011-03-30 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2281888A1 (en) | 2004-11-12 | 2011-02-09 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2302052A1 (en) | 2004-11-12 | 2011-03-30 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2284265A1 (en) | 2004-11-12 | 2011-02-16 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2314688A1 (en) | 2004-11-12 | 2011-04-27 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2322616A1 (en) | 2004-11-12 | 2011-05-18 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2808390A1 (en) | 2004-11-12 | 2014-12-03 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2808389A1 (en) | 2004-11-12 | 2014-12-03 | Asuragen, Inc. | Methods and compositions involving MIRNA and MIRNA inhibitor molecules |
EP2281886A1 (en) | 2004-11-12 | 2011-02-09 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2281887A1 (en) | 2004-11-12 | 2011-02-09 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
EP2287303A1 (en) | 2004-11-12 | 2011-02-23 | Asuragen, Inc. | Methods and compositions involving miRNA and miRNA inhibitor molecules |
US20070059715A1 (en) * | 2005-09-15 | 2007-03-15 | Primera Biosystems, Inc. | Quantitative gene expression profiling |
US7368246B2 (en) | 2005-09-15 | 2008-05-06 | Primera Biosystems, Inc. | Quantitative gene expression profiling |
EP2487240A1 (en) | 2006-09-19 | 2012-08-15 | Asuragen, Inc. | Micrornas differentially expressed in pancreatic diseases and uses thereof |
WO2008036776A2 (en) | 2006-09-19 | 2008-03-27 | Asuragen, Inc. | Mir-15, mir-26, mir -31,mir -145, mir-147, mir-188, mir-215, mir-216 mir-331, mmu-mir-292-3p regulated genes and pathways as targets for therapeutic intervention |
WO2008079972A2 (en) | 2006-12-20 | 2008-07-03 | Bayer Healthcare Llc | 4-{4- [ ({3-tert-butyl-1- [3- (hydroxymethyl) phenyl] - 1h- pyrazol- 5 -yl } carbamoyl) -amin o] -3-chlorophenoxy} -n-methylpyridine-2-carboxamide as an inhibitor of the vegfr kinase for the treatment of cancer |
EP2990487A1 (en) | 2008-05-08 | 2016-03-02 | Asuragen, INC. | Compositions and methods related to mirna modulation of neovascularization or angiogenesis |
US20100240024A1 (en) * | 2008-09-03 | 2010-09-23 | Abbott Laboratories | Assays And Kits For Determining HIV-1 Tropism |
US9096895B2 (en) * | 2009-02-02 | 2015-08-04 | Exiqon A/S | Method for quantification of small RNA species |
US20120071332A1 (en) * | 2009-02-02 | 2012-03-22 | Exiqon A/S | Method for Quantification of Small RNA Species |
US9187757B2 (en) | 2009-06-05 | 2015-11-17 | University Of Florida Research Foundation, Inc. | Isolation and targeted suppression of lignin biosynthetic genes |
US8586304B2 (en) * | 2009-12-04 | 2013-11-19 | Qiagen Gmbh | Method for detecting and quantifying poly(A) RNA and mRNA |
US20120219953A1 (en) * | 2009-12-04 | 2012-08-30 | Qiagen Gmbh | Method for detecting and quantifying poly(a) rna and mrna |
WO2011108930A1 (en) | 2010-03-04 | 2011-09-09 | Interna Technologies Bv | A MiRNA MOLECULE DEFINED BY ITS SOURCE AND ITS DIAGNOSTIC AND THERAPEUTIC USES IN DISEASES OR CONDITIONS ASSOCIATED WITH EMT |
EP3214174A1 (en) | 2010-03-04 | 2017-09-06 | InteRNA Technologies B.V. | A mirna molecule defined by its source and its diagnostic and therapeutic uses in diseases or conditions associated with emt |
WO2011130728A1 (en) | 2010-04-17 | 2011-10-20 | Bayer Healthcare Llc | Synthetic metabolites of fluoro substituted omega-carboxyaryl diphenyl urea for the treatment and prevention diseases and conditions |
WO2012005572A1 (en) | 2010-07-06 | 2012-01-12 | Interna Technologies Bv | Mirna and its diagnostic and therapeutic uses in diseases or conditions associated with melanoma, or in diseases or conditions associated with activated braf pathway |
EP3369817A1 (en) | 2010-07-06 | 2018-09-05 | InteRNA Technologies B.V. | Mirna and its diagnostic and therapeutic uses in diseases or conditions associated with melanoma , or in diseases or conditions with activated braf pathway |
WO2012068400A2 (en) | 2010-11-17 | 2012-05-24 | Asuragen, Inc. | Mirnas as biomarkers for distinguishing benign from malignant thyroid neoplasms |
EP2772550A1 (en) | 2010-11-17 | 2014-09-03 | Asuragen, Inc. | MiRNAs as biomarkers for distinguishing benign from malignant thyroid neoplasms |
EP2767298A2 (en) | 2010-11-23 | 2014-08-20 | Presage Biosciences, Inc. | Therapeutic methods and compositions for solid delivery |
EP2474617A1 (en) | 2011-01-11 | 2012-07-11 | InteRNA Technologies BV | Mir for treating neo-angiogenesis |
WO2012096573A1 (en) | 2011-01-11 | 2012-07-19 | Interna Technologies B.V. | Mirna for treating diseases and conditions associated with neo-angiogenesis |
WO2012158238A2 (en) | 2011-02-28 | 2012-11-22 | University Of Iowa Research Foundation | Anti-müllerian hormone changes in pregnancy and prediction ofadverse pregnancy outcomes and gender |
WO2013040251A2 (en) | 2011-09-13 | 2013-03-21 | Asurgen, Inc. | Methods and compositions involving mir-135b for distinguishing pancreatic cancer from benign pancreatic disease |
WO2013063519A1 (en) | 2011-10-26 | 2013-05-02 | Asuragen, Inc. | Methods and compositions involving mirna expression levels for distinguishing pancreatic cysts |
WO2013063544A1 (en) | 2011-10-27 | 2013-05-02 | Asuragen, Inc. | Mirnas as diagnostic biomarkers to distinguish benign from malignant thyroid tumors |
WO2013071049A1 (en) | 2011-11-10 | 2013-05-16 | Trustees Of Boston College | Gramicidin a mutants that function as antibiotics with improved solubility and reduced toxicity |
WO2014007623A1 (en) | 2012-07-03 | 2014-01-09 | Interna Technologies B.V. | Diagnostic portfolio and its uses |
WO2014055117A1 (en) | 2012-10-04 | 2014-04-10 | Asuragen, Inc. | Diagnostic mirnas for differential diagnosis of incidental pancreatic cystic lesions |
WO2014151551A1 (en) | 2013-03-15 | 2014-09-25 | Baylor Research Institute | Ulcerative colitis (uc)-associated colorectal neoplasia markers |
WO2014145612A1 (en) | 2013-03-15 | 2014-09-18 | Ajay Goel | Tissue and blood-based mirna biomarkers for the diagnosis, prognosis and metastasis-predictive potential in colorectal cancer |
EP3366785A2 (en) | 2013-03-15 | 2018-08-29 | Baylor Research Institute | Ulcerative colitis (uc)-associated colorectal neoplasia markers |
EP3404116A1 (en) | 2013-03-15 | 2018-11-21 | The University of Chicago | Methods and compositions related to t-cell activity |
EP4163387A1 (en) | 2013-03-15 | 2023-04-12 | The University of Chicago | Methods and compositions related to t-cell activity |
US10550440B2 (en) | 2016-02-26 | 2020-02-04 | Arizona Board Of Regents On Behalf Of Arizona State University | Synthetic translation-sensing riboswitches and uses thereof |
WO2019086603A1 (en) | 2017-11-03 | 2019-05-09 | Interna Technologies B.V. | Mirna molecule, equivalent, antagomir, or source thereof for treating and/or diagnosing a condition and/or a disease associated with neuronal deficiency or for neuronal (re)generation |
WO2020210521A2 (en) | 2019-04-12 | 2020-10-15 | The Regents Of The University Of California | Compositions and methods for increasing muscle mass and oxidative metabolism |
WO2024028794A1 (en) | 2022-08-02 | 2024-02-08 | Temple Therapeutics BV | Methods for treating endometrial and ovarian hyperproliferative disorders |
Also Published As
Publication number | Publication date |
---|---|
US5665547A (en) | 1997-09-09 |
JP2843675B2 (en) | 1999-01-06 |
EP0592626B1 (en) | 2003-01-29 |
DE69332665D1 (en) | 2003-03-06 |
EP0592626A4 (en) | 1994-08-17 |
CA2102784A1 (en) | 1993-09-12 |
ATE231920T1 (en) | 2003-02-15 |
EP0592626A1 (en) | 1994-04-20 |
DE69332665T2 (en) | 2003-11-27 |
WO1993018176A1 (en) | 1993-09-16 |
US5965409A (en) | 1999-10-12 |
JPH07500735A (en) | 1995-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5599672A (en) | Method of differential display of exposed mRNA by RT/PCR | |
US5262311A (en) | Methods to clone polyA mRNA | |
Liang et al. | Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimization | |
JP3150061B2 (en) | Gene expression analysis method | |
US5459037A (en) | Method for simultaneous identification of differentially expressed mRNAs and measurement of relative concentrations | |
US6096503A (en) | Method for simultaneous identification of differentially expresses mRNAs and measurement of relative concentrations | |
US6120996A (en) | Method of identification and cloning differentially expressed messenger RNAs | |
WO2018112806A1 (en) | Method for converting linear sequencing library to circular sequencing library | |
EP1138764A2 (en) | Two-step reverse transcription | |
JP2006519621A (en) | Amplification and analysis of whole genome and whole transcriptome libraries generated by the DNA polymerization process | |
US6461814B1 (en) | Method of identifying gene transcription patterns | |
US6261770B1 (en) | Method to clone mRNAs | |
EP0372524A2 (en) | Method of enrichment and cloning for DNA containing an insertion or corresponding to a deletion | |
CN107038349B (en) | Method and apparatus for determining pre-rearrangement V/J gene sequence | |
US6110680A (en) | Method for simultaneous identification of differentially expressed mRNAs and measurement of relative concentrations | |
IL151360A (en) | Sequence-dependent gene sorting techniques | |
CA2356861A1 (en) | Method of identifying nucleic acids | |
JPH10510981A (en) | Methods, devices and compositions for characterizing nucleotide sequences | |
Patel et al. | PCR‐based subtractive cDNA cloning | |
US5871927A (en) | Nucleotide analog-containing hybrid subtraction with sequentially enzymatic digestion |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PRESIDENT AND FELLOWS OF HARVARD COLLEGE, MASSACHU Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIANCHI, CESARIO F.;REEL/FRAME:007611/0681 Effective date: 19950829 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS INDIV INVENTOR (ORIGINAL EVENT CODE: LSM1); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
REMI | Maintenance fee reminder mailed |