US5528505A - Position-marking method for a machine that measures in three dimensions, and apparatus for implementing the method - Google Patents
Position-marking method for a machine that measures in three dimensions, and apparatus for implementing the method Download PDFInfo
- Publication number
- US5528505A US5528505A US08/308,304 US30830494A US5528505A US 5528505 A US5528505 A US 5528505A US 30830494 A US30830494 A US 30830494A US 5528505 A US5528505 A US 5528505A
- Authority
- US
- United States
- Prior art keywords
- emitter
- axis
- plane
- machine
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
- G01B21/04—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1679—Programme controls characterised by the tasks executed
- B25J9/1692—Calibration of manipulator
Definitions
- the present invention relates to the field of techniques for measuring the shape and/or position of an object by means of a machine for measuring in three dimensions.
- Such machines are generally constituted by a support and a deformable arm made up of hinged arm segments, with a contact mounted at the end of the last hinged arm segment. A plurality of points on the object to be measured are then touched by means of the sensor which is movable relative to a reference coordinate system.
- the measurement machine is also connected to a computer which makes use of the information provided by the sensor and by position detectors associated with the arm.
- the present trend is towards machines that are simultaneously compact, lightweight, and accurate. This poses problems that are particularly difficult when measuring the positions of objects inside motor vehicle bodywork.
- the invention seeks specifically to solve that problem by means of a position-marking technique that enables the volume that is measurable by means of a three-dimensional measuring machine to be increased while retaining high accuracy.
- An object of the invention is thus to design a position-marking method, and apparatus for implementing it, to enable large volumes to be measured using a machine of small dimensions, and to enable the three-dimensional measurement machine to be displaced without losing accuracy, while keeping the design simple and the cost reasonable.
- the present invention provides a position-marking method for a measurement machine that measures in three dimensions and that is constituted by a support and a deformable arm in the form of hinged arm segments, with a contact sensor mounted at the end of the last hinged arm segment to measure the shape and/or the position of an object, said method using a computer associated with said measurement machine to determine the coordinates of the contact sensor for any position of the hinged arm segments, the method comprising the following steps performed without displacing the support of the machine:
- the contact sensor is replaced with a light sensor secured at the same position
- a first position-marking axis as defined by a light beam emitted by an emitter disposed in a first position, by measuring two points on said first axis with the light sensor thereby defining a first vector
- the emitter is displaced in a plane so as to take up a second position in such a manner that the light beam it emits is coplanar and not parallel to the light beam emitted in the first position;
- a second position-marking axis defined by the light beam emitted by the emitter when disposed in said second position, by measuring a point on said second axis, and by determining the projection of said point on the first position-marking axis, thereby defining a second vector, said projection being selected as the origin of a frame of reference in which the three leading vectors are constituted by said first and second vectors and by a third vector which is the result of the vector product of the second and first vectors;
- a determined displacement of the support of the machine for the purpose of taking measurements in a zone that is further away requires a new frame of reference to be determined using the same steps, using the same first axis or another first axis at a known angle to said first axis, and using a new point on another second axis obtained by a new displacement of the emitter performed to keep it in the same plane, so as to determine the origin of the new frame of reference, thereby making it possible to make available a plurality of known frames of reference.
- the emitter When the support of the machine is displaced in or close to a fixed plane, it is advantageous for the emitter to be displaced by pivoting about a fixed axis which is perpendicular to said fixed plane. In which case, it is possible to use a second emitter secured relative to the fixed axis carrying the first emitter, and the same steps are performed with said second emitter which is therefore displaced in a plane that is parallel to the displacement plane of the first emitter.
- the emitter in a variant, it is possible to provide for the emitter to be displaced by sliding over a fixed support surface belonging to a reference block, said surface being parallel to said fixed plane.
- the magnitude of the displacement of the machine support is determined by means of a linear measurement member such as a flat strip or an elongate bar having reference marks at known distances, said linear measurement member extending along a direction that is close to the direction of the first position-marking axis.
- the magnitude of the displacement of the machine support is determined by means of pre-established reference marks associated with fixing or fastening the support of the machine on a fixed unit.
- the emitter In some cases, particularly for voluminous objects and after a reference frame has been determined, it is advantageous to provide for the emitter to be repositioned in such a manner as to enable it to be displaced in another plane that is not parallel to the first plane used, and another frame of reference is determined using the same steps, optionally together with another new frame of reference following determined displacement of the support of the machine in order to take measurements in a zone that is further away in the direction of said other plane.
- the other plane may be perpendicular to the first plane used.
- the emitter prefferably to be repositioned by being pressed against two fixed support surfaces that are mutually perpendicular and perpendicular to the first fixed support surface used, said surfaces belonging to a reference block whose rectified faces are in known orientations.
- the invention also provides apparatus specially designed for implementing the above method in which one or more pivoting emitters are used, the apparatus comprising at least one emitter mounted to pivot about a fixed axis which is perpendicular to the plane in which the light beam associated with each emitter is displaced, together with a light sensor replacing the contact sensor of the arm of the measurement machine and secured in the same position as said contact sensor.
- the apparatus comprises a reference block whose rectified faces are in known orientations and serve as fixed support surfaces for an emitter capable of being displaced by sliding over one of said surfaces, together with a light sensor replacing the contact sensor of the arm of the measurement machine and secured at the same position as the contact sensor.
- FIG. 1 shows a preferred implementation of the method of the invention using a light beam emitter a laser beam) that is pivotally mounted (in this case in a vertical plane), together with a flat strip of distance markers extending in a direction close to that of the light beam, the three-dimensional machine being shown in a first position (support shown in solid lines) with an associated frame of reference referred to the machine, and in a second position (support shown in dashed lines) with another associated frame of reference which is also positioned relative to the initial light beam;
- a light beam emitter a laser beam
- FIG. 1 shows a preferred implementation of the method of the invention using a light beam emitter a laser beam) that is pivotally mounted (in this case in a vertical plane), together with a flat strip of distance markers extending in a direction close to that of the light beam, the three-dimensional machine being shown in a first position (support shown in solid lines) with an associated frame of reference referred to the machine, and in a second position (support shown in dashed lines) with another
- FIG. 2 is a diagram showing the steps in constructing a frame of reference marked by the machine and using the method of the invention
- FIG. 3 shows a moving support for the three-dimensional machine which is displaced past the object concerned (in this case a motor vehicle), and
- FIG. 4 shows the various measurement volumes that are obtained for the positions occupied by the above-mentioned moving support;
- FIG. 5 is a diagrammatic plan view showing the various measurement volumes that can be obtained using two emitters referred to a common axis, and disposed on either side of the vehicle, the volumes of the middle row (internal measurements) being obtained with a rail (not shown) or by offsetting from previously measured points;
- FIG. 6 shows a bench for assembling vehicle bodywork, with the front panel removed
- FIG. 7 shows the inside face of the middle panel, with its three locations associated with fixing the machine support, FIGS. 8a, 8b, and 8c showing the machine in said locations;
- FIG. 9 shows how the use of a pivoting emitter makes it possible to obtain accurate position-marking in each of the volumes associated with the above-mentioned locations.
- FIG. 10 is a fragmentary view of a reference block enabling a sliding emitter to be easily repositioned, in this case in another plane that is perpendicular to the plane first used.
- FIG. 1 there can be seen a three-dimensional measurement machine 10 of known type designed to measure shapes and/or positions on an object A symbolized by chain-dotted lines.
- the machine 10 shown herein is constituted by a support 1 and a deformable arm 12 made up of hinged arm segments 13, 14, 15, and 16, together with a contact sensor 17 mounted at the end of the last hinged arm segment 16 for the purpose of making measurements on the object A.
- the shape and/or position of the object A can be measured by moving the hinged arm so as to bring the contact sensor 17 into contact with a determined point of the object A.
- the machine 10 shown herein has six axes of rotation 20, 21, 22, 23, 24, and 25, which axes are locked against rotation by progressive abutments that are not shown.
- a computer 30 connected to the measurement machine 10 by means of a cable 31 is associated with said measurement machine to determine the coordinates of the contact sensor 17 (assumed to be a point) for any position of the hinged arm segments making up the deformable arm 12.
- the computer 30 shown is a portable microcomputer having a keyboard 34 and a screen 32 having a portion 33 used for displaying the Cartesian coordinates X, Y, and Z of the sensor 17 in the frame of reference of the measurement machine 10.
- Movements of the sensor 17 are controlled by rotating the last two encoders of the deformable arm 12 that are associated with the axes 24 and 25, and the screen 32 includes a reference mark 35 having an abscissa axis which corresponds to horizontal movement of the encoder associated with the axis 25, and an ordinate axis which corresponds to vertical movement of the encoder associated with the axis 24.
- the operator can use the keyboard 34 of the computer to display the Cartesian coordinates of the sensor 17 at any moment, and in this case a remote control button 40 is also provided to make it possible to avoid using the keyboard 34: while holding the deformable arm of the three-dimensional measurement machine 10 in place, the operator can then readily simultaneously input the command when the sensor 17 is in contact with the object A at the point to be measured.
- the operator can monitor proceedings on the screen 32 which displays a cursor that moves horizontally and vertically relative to the reference mark 35.
- the three-dimensional measurement machine 10 When the three-dimensional measurement machine 10 is in the position shown in solid lines, it can perform shape and/or position measurements within a volume defined by a sphere S1.
- the contact sensor 17 of the machine is replaced in this case by a light beam sensor 10 secured to occupy the same position as otherwise occupied by the contact sensor, said light beam sensor serving to implement the position-marking method of the invention, which method makes it possible to displace the three-dimensional machine and then perform measurements in a new volume.
- the support 11 of the machine is shown by means of dashed lines in a new position, thereby enabling the measurement machine to use its contact sensor 17 to perform measurements in a new volume as defined by a sphere S2.
- This situation arises frequently when the object A is bulky, or very long, and insofar as there is a need to make measurements in a zone that is further away, lying outside the first volume as defined by the sphere S1.
- a reference frame is established for a first position of the measurement machine 10 by using a beam sensor 100 mounted in the place of and instead of the contact sensor of the three-dimensional machine, and also using a light beam emitter 101 (preferably a laser beam emitter), said emitter being mounted on a support 102 in such a manner as to enable it to be moved so that the light beam can be displaced to some other position in which it is coplanar but not parallel to the beam as emitted in the first position.
- a light beam emitter 101 preferably a laser beam emitter
- an emitter 101 is provided that is pivotally mounted on its support 102 so as to be capable of being pivoted about a fixed axis 110 that is perpendicular to the fixed plane in which the light beam propagates in the various angular positions of the emitter 101.
- the support 102 stands on the ground or on a support block having a horizontal face, such that the fixed plane in which the light beam moves is vertical in this case.
- the beam sensor 100 replaces the contact sensor of the machine's hinged arm by being secured at the same position as the contact sensor, i.e., when the beam sensor is constituted by a microcamera, its light sensitive grid which has a radius of about 3 cm is in the form of a circular disk centered on the point previously occupied by the contact sensor 17 prior to being substituted therefor.
- a first position-marking axis 111 is used as defined by the light beam emitted by the emitter 101 while it is disposed in a first position, with this being done by measuring two points A 11 and A 12 on said first axis by means of the light sensor 100.
- the computer 30 uses the resulting data to define a first vector V1.
- the emitter 101 is moved in a plane (in this case a vertical plane) so as to take up a second position in which the light beam is coplanar and not parallel to the beam emitted in the first position. Since the emitter is pivotally mounted, the second position is obtained in this case by rotation through an angle a about the fixed axis 110.
- a second position-marking axis 112 is then used as defined by the light beam emitted by the emitter 101 while in its second position, with a point B 1 being measured on the second axis. This information makes it possible to determine a projection O 1 of the point B 1 on the first position-marking axis 111, the projection preferably being orthogonal so as to simplify the calculations.
- the point O 1 is then selected as the origin of a frame of reference whose three leading vectors are constituted by the first vector V1, a second vector V2 extending from O 1 to B 1 , and by a third vector V3 which is the result of the vector product of the second and first vectors.
- This provides a frame of reference marked O 1 X, O 1 Y, O 1 Z.
- the support 11 of the machine 10 is then displaced for the purpose of taking measurements in a zone that is further away, thus requiring a new frame of reference to be determined, with this being done using the same technique.
- the displacement is "determined", i.e. a linear measurement is available that represents the displacement of the machine support, this measurement being preferably performed in substantially the same direction as said displacement.
- a flat or shaped elongate strip 120 is provided that has reference marks 121 at known distances, said flat or shaped strip extending in a direction that is close to the direction of the first position-marking axis 111.
- the elongate flat or shaped strip may be constituted, for example, by a conventional type of measurement tape, or by a wire drawn from a housing, or if necessary by a solid bar (which nevertheless suffers from the drawback of being bulkier). More generally, the magnitude of the displacement of the machine support is determined by means of a linear measurement member, and this may be done by any system that enables linear measurements to be taken without making contact, e.g. a laser interferometer. The linear measurement member thus makes it possible to establish how far the machine support has moved in translation after being displaced.
- a first axis 111' is used which may coincide with the first axis 111 as used during the preceding determination (as shown), or which may be some other first axis at a known angle relative to said first axis 111. Two points A 21 and A 22 on said new first axis are then measured using the light sensor 100 so as to determine a new first vector.
- the emitter 101 is displaced within its plane (in this case by being rotated about the axis 110) so as to move the beam to a second position that defines a second axis 112' (which in this case does not coincide with the second axis 112 used in the preceding determination), thus making it possible, after measuring a point B 2 on this new second axis 112', to determine the origin O 2 of a new frame of reference O 2 X, O 2 Y, O 2 Z.
- the process can be repeated, thereby providing a plurality of known frames of reference.
- FIGS. 3 and 4 show how the above-described position-marking method is implemented in associated with an object that is constituted in this case by a motor vehicle V.
- FIG. 3 there can be seen the various positions of a moving support T on which the support 11 of the above-described three-dimensional machine can be placed.
- the moving support T may run on casters, for example to enable it to be moved along the vehicle V.
- FIG. 4 is a diagram showing the various frames of reference that can then be defined for each measurement volume S1, S2, S3, and S4 within which it is possible to measure some of the outside points of the vehicle V.
- FIG. 1 is a diagram showing the various frames of reference that can then be defined for each measurement volume S1, S2, S3, and S4 within which it is possible to measure some of the outside points of the vehicle V.
- FIG. 4 shows a first position-marking axis 111 and a plurality of second position-marking axes 112, 112', 112".
- the process for determining a frame of reference is implemented as described above, thereby making it possible in each of the zones concerned, 1, 2, 3, and 4, to determine the following frames of reference with ease and with great accuracy (O 1 X, O 1 Y, O 1 Z), (O 2 X, O 2 Y, O 2 Z), (O 3 X, O 3 Y, O 3 Z), and (O 4 X, O 4 Y, O 4 Z).
- the mode of scanning used by the laser beam is essentially vertical. It may then be of interest to be able to double up the measurements by performing shape and/or position measurements of the same object V but on the other side of the object, and using the same apparatus.
- FIG. 5 is a plan view. This is done by using a second emitter 101 secured to the same fixed axis 110 as carries the first emitter. The same steps are then performed using the second emitter which is thus displaced in a plane P" parallel to the displacement plane P' of the first emitter. Naturally, it is important to ensure that the initial angular settings of the emitters 101 relative to the axis are the same to within good accuracy.
- the first and second position-marking axes 111 and 112 associated with each emitter 101 lie in parallel vertical planes P' and P" that extend on either side of the vehicle V on which shape and/or position measurements are being performed.
- FIG. 6 shows a portion of a bench for assembling vehicle bodywork, with the front panel of the bench being removed, its rear panel 50 including clamps 51 for holding the components of the bodywork A that is to be assembled.
- the front panel is shown in FIG. 7 and is provided not only with clamps 51, but also with three locations 140 associated with fixing the support 11 of the above-described three-dimensional machine, with an appropriate one of these three locations being selected to perform measurements in the desired volume S1, S2, or S3, as shown in FIGS. 8a, 8b, and 8c.
- Members 130 mounted on the panel 50 constitute reference points for facilitating position-marking.
- FIG. 9 thus shows the use of a pivoting emitter 101 for application of the method described above, so as to achieve accurate position-marking in each of the volumes associated with the above-mentioned positions.
- the various position-marking axes used when determining the frames of reference are marked 111, 112', 112", and 112'".
- At least one emitter that is displaced by sliding over a fixed support surface, said surface being parallel to the fixed plane in which, or close to which, the three-dimensional machine support is displaced.
- FIG. 10 shows a support block having additional facilities insofar as it makes it possible to reposition the emitter in such a manner as to enable it to be displaced in another plane that is not parallel to the first plane used (in this case the other plane is perpendicular to the first plane used), and another reference frame can be determined using the same steps, optionally together with another new reference frame following determined displacement of the machine support for taking measurements in a zone that is further away in the direction of said other plane.
- the reference block 60 thus includes rectified faces 61, 62, and 63 having known orientations and preferably defining a base frame of reference defined by three right angles.
- the emitter 101 which is the form of a housing constituting a rectangular parallelepiped is initially pressed against all three reference faces to define the first position-marking axis 111, and is then displaced by sliding over a lateral face 62 to determine the second position-marking axis 112. Thereafter, the emitter 101 is repositioned to another position shown in chain-dotted lines to define a new first axis 111, after which it is moved to define a new second position-marking axis 112 by being slid over side support face 63.
- the light beam plane is then exactly perpendicular to the preceding plane, thereby making it possible to go very quickly to a new measurement plane perpendicular to the first.
- the invention thus provides a position-marking technique that makes it possible to increase the volume measurable by a three-dimensional measuring machine while retaining high measurement accuracy.
- a measurement machine of the kind shown in the figures, it is possible to obtain measurement accuracy of the order of one-tenth of a millimeter while the machine support is displaced over 4 or 5 meters.
- the apparatus for implementing the invention is, in addition, simple in design and reasonable in cost.
- the position-marking method and apparatus of the invention make it easy to recreate a new known frame of reference very quickly each time that it is necessary to displace the measurement machine.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9311157A FR2710407B1 (en) | 1993-09-20 | 1993-09-20 | Positioning method for a three-dimensional measuring machine and device for implementing the method. |
FR9311157 | 1993-09-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5528505A true US5528505A (en) | 1996-06-18 |
Family
ID=9451020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/308,304 Expired - Lifetime US5528505A (en) | 1993-09-20 | 1994-09-19 | Position-marking method for a machine that measures in three dimensions, and apparatus for implementing the method |
Country Status (3)
Country | Link |
---|---|
US (1) | US5528505A (en) |
DE (1) | DE4433233C2 (en) |
FR (1) | FR2710407B1 (en) |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5715167A (en) * | 1995-07-13 | 1998-02-03 | General Electric Company | Fixture for calibrated positioning of an object |
US5926782A (en) * | 1996-11-12 | 1999-07-20 | Faro Technologies Inc | Convertible three dimensional coordinate measuring machine |
US6073056A (en) * | 1997-04-08 | 2000-06-06 | Larry J. Winget | Method and system for building a data model of a physical part in a data format useful for and reproduction of the part |
WO2000060400A1 (en) * | 1999-04-01 | 2000-10-12 | Megascale Ab | An apparatus for marking by light planes a corner angle in a work area |
US6470578B1 (en) * | 1999-09-28 | 2002-10-29 | P&G Development Group, Inc. | Method and apparatus for indicating a pattern of intersection using a light column |
US6618496B1 (en) * | 1999-10-18 | 2003-09-09 | Charalambos Tassakos | Device for determining the position of measuring points of a measurement object relative to a reference system |
EP1637835A2 (en) | 2004-08-09 | 2006-03-22 | Mitutoyo Corporation | Reference coordinate calculating method, reference coordinate calculating program, recording medium thereof, reference plate and form measuring machine |
US20070063500A1 (en) * | 2005-09-13 | 2007-03-22 | Homer Eaton | Vehicle having an articulator |
US20070256311A1 (en) * | 2006-05-01 | 2007-11-08 | Paul Ferrari | Sealed battery for coordinate measurement machine |
US20080127501A1 (en) * | 2006-11-20 | 2008-06-05 | Eaton Homer L | Coordinate measurement machine with improved joint |
EP1975546A1 (en) | 2007-03-26 | 2008-10-01 | Hexagon Metrology AB | Multi-axis positioning and measuring system and method of using |
US20090010740A1 (en) * | 2008-03-28 | 2009-01-08 | Paul Ferrari | Coordinate measuring machine with rotatable grip |
US20090013548A1 (en) * | 2006-12-22 | 2009-01-15 | Paul Ferrari | Joint axis for coordinate measurement machine |
US20090013547A1 (en) * | 2007-07-09 | 2009-01-15 | Paul Ferrari | Joint for coordinate measurement device |
WO2009034593A1 (en) * | 2007-09-14 | 2009-03-19 | Hexagon Metrology S.P.A. | Method of aligning arm reference systems of a multiple- arm measuring machine |
US20090083985A1 (en) * | 2007-09-28 | 2009-04-02 | Romer / Cimcore | Coordinate measurement machine |
US7578069B2 (en) | 2004-01-14 | 2009-08-25 | Hexagon Metrology, Inc. | Automated robotic measuring system |
US20090234502A1 (en) * | 2008-03-12 | 2009-09-17 | Denso Wave Incorporated | Apparatus for determining pickup pose of robot arm with camera |
US20090241360A1 (en) * | 2008-03-28 | 2009-10-01 | Hogar Tait | Systems and methods for improved coordination acquisition member comprising calibration information |
US20090271996A1 (en) * | 2008-05-05 | 2009-11-05 | Paul Ferrari | Systems and methods for calibrating a portable coordinate measurement machine |
US20100036525A1 (en) * | 2006-12-19 | 2010-02-11 | Abb Research Ltd. | Parts handling device, system and method |
US20100095542A1 (en) * | 2008-10-16 | 2010-04-22 | Romer, Inc. | Articulating measuring arm with laser scanner |
US7805854B2 (en) | 2006-05-15 | 2010-10-05 | Hexagon Metrology, Inc. | Systems and methods for positioning and measuring objects using a CMM |
US20100325907A1 (en) * | 2009-06-30 | 2010-12-30 | Hexagon Metrology Ab | Coordinate measurement machine with vibration detection |
US20110107614A1 (en) * | 2009-11-06 | 2011-05-12 | Hexagon Metrology Ab | Enhanced position detection for a cmm |
US20110170534A1 (en) * | 2010-01-11 | 2011-07-14 | Faro Technologies, Inc. | Method and apparatus for synchronizing measurements taken by multiple metrology devices |
US20110173827A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
US20110178766A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers |
US20110176148A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Coordinate measuring machine having an illuminated probe end and method of operation |
US20110213247A1 (en) * | 2010-01-08 | 2011-09-01 | Hexagon Metrology, Inc. | Articulated arm with imaging device |
EP2381212A1 (en) | 2010-04-26 | 2011-10-26 | Tesa Sa | Coordinate measuring system for rotationally symmetric workpieces |
EP2384851A1 (en) | 2010-05-03 | 2011-11-09 | Tesa Sa | Coordinate Measuring System with rotatory adapter |
US8127458B1 (en) | 2010-08-31 | 2012-03-06 | Hexagon Metrology, Inc. | Mounting apparatus for articulated arm laser scanner |
USD659035S1 (en) | 2010-03-29 | 2012-05-08 | Hexagon Metrology Ab | Portable coordinate measurement machine |
US8229208B2 (en) | 2004-01-14 | 2012-07-24 | Hexagon Metrology, Inc. | Transprojection of geometry data |
CN103105186A (en) * | 2011-11-14 | 2013-05-15 | 鸿富锦精密工业(深圳)有限公司 | Probe automatic replacement system and method |
US8615893B2 (en) | 2010-01-20 | 2013-12-31 | Faro Technologies, Inc. | Portable articulated arm coordinate measuring machine having integrated software controls |
US8638446B2 (en) | 2010-01-20 | 2014-01-28 | Faro Technologies, Inc. | Laser scanner or laser tracker having a projector |
US8677643B2 (en) | 2010-01-20 | 2014-03-25 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
US8763267B2 (en) | 2012-01-20 | 2014-07-01 | Hexagon Technology Center Gmbh | Locking counterbalance for a CMM |
US8832954B2 (en) | 2010-01-20 | 2014-09-16 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
US8875409B2 (en) | 2010-01-20 | 2014-11-04 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
US8898919B2 (en) | 2010-01-20 | 2014-12-02 | Faro Technologies, Inc. | Coordinate measurement machine with distance meter used to establish frame of reference |
US8997362B2 (en) | 2012-07-17 | 2015-04-07 | Faro Technologies, Inc. | Portable articulated arm coordinate measuring machine with optical communications bus |
US9069355B2 (en) | 2012-06-08 | 2015-06-30 | Hexagon Technology Center Gmbh | System and method for a wireless feature pack |
US9074883B2 (en) | 2009-03-25 | 2015-07-07 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
US9113023B2 (en) | 2009-11-20 | 2015-08-18 | Faro Technologies, Inc. | Three-dimensional scanner with spectroscopic energy detector |
US9163922B2 (en) | 2010-01-20 | 2015-10-20 | Faro Technologies, Inc. | Coordinate measurement machine with distance meter and camera to determine dimensions within camera images |
US9163921B2 (en) | 2013-12-18 | 2015-10-20 | Hexagon Metrology, Inc. | Ultra-portable articulated arm coordinate measurement machine |
US9168654B2 (en) | 2010-11-16 | 2015-10-27 | Faro Technologies, Inc. | Coordinate measuring machines with dual layer arm |
US9210288B2 (en) | 2009-11-20 | 2015-12-08 | Faro Technologies, Inc. | Three-dimensional scanner with dichroic beam splitters to capture a variety of signals |
US9250214B2 (en) | 2013-03-12 | 2016-02-02 | Hexagon Metrology, Inc. | CMM with flaw detection system |
US9329271B2 (en) | 2010-05-10 | 2016-05-03 | Faro Technologies, Inc. | Method for optically scanning and measuring an environment |
US9372265B2 (en) | 2012-10-05 | 2016-06-21 | Faro Technologies, Inc. | Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration |
US9417316B2 (en) | 2009-11-20 | 2016-08-16 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
US9417056B2 (en) | 2012-01-25 | 2016-08-16 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
US9513107B2 (en) | 2012-10-05 | 2016-12-06 | Faro Technologies, Inc. | Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner |
US9529083B2 (en) | 2009-11-20 | 2016-12-27 | Faro Technologies, Inc. | Three-dimensional scanner with enhanced spectroscopic energy detector |
US9551575B2 (en) | 2009-03-25 | 2017-01-24 | Faro Technologies, Inc. | Laser scanner having a multi-color light source and real-time color receiver |
US9594250B2 (en) | 2013-12-18 | 2017-03-14 | Hexagon Metrology, Inc. | Ultra-portable coordinate measurement machine |
US9607239B2 (en) | 2010-01-20 | 2017-03-28 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations |
US9628775B2 (en) | 2010-01-20 | 2017-04-18 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations |
US9759540B2 (en) | 2014-06-11 | 2017-09-12 | Hexagon Metrology, Inc. | Articulating CMM probe |
CN108474640A (en) * | 2016-04-04 | 2018-08-31 | 宝马股份公司 | Mobile measuring system for three dimensional optical measuring vehicle and vehicle part |
US10067231B2 (en) | 2012-10-05 | 2018-09-04 | Faro Technologies, Inc. | Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner |
US10175037B2 (en) | 2015-12-27 | 2019-01-08 | Faro Technologies, Inc. | 3-D measuring device with battery pack |
US10281259B2 (en) | 2010-01-20 | 2019-05-07 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features |
USD875573S1 (en) | 2018-09-26 | 2020-02-18 | Hexagon Metrology, Inc. | Scanning device |
US11022434B2 (en) | 2017-11-13 | 2021-06-01 | Hexagon Metrology, Inc. | Thermal management of an optical scanning device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2183004A1 (en) * | 1996-08-23 | 1998-02-24 | Nino Camurri | Articulated-arm measuring machine and twist-net network |
DE10229293A1 (en) * | 2002-06-29 | 2004-01-29 | Tecmedic Gmbh | Method for determining the relative orientation of a robot traversing axis in relation to a robot coordinate system |
CN114485427B (en) * | 2022-01-20 | 2023-09-22 | 上汽大众汽车有限公司 | Measurement reference construction method and system for vehicle body size measurement |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3279079A (en) * | 1965-10-22 | 1966-10-18 | Portage Machine Company | Inspection machine |
US3636635A (en) * | 1969-10-07 | 1972-01-25 | Jerome H Lemelson | Automatic measurement apparatus |
US3774311A (en) * | 1971-03-01 | 1973-11-27 | Bendix Corp | Carriage and bearing arrangement for a measuring machine |
US3774312A (en) * | 1971-06-30 | 1973-11-27 | Bendix Corp | Coordinate measuring machine |
US3944798A (en) * | 1974-04-18 | 1976-03-16 | Eaton-Leonard Corporation | Method and apparatus for measuring direction |
GB1498009A (en) * | 1975-05-29 | 1978-01-18 | Newall Eng | Measuring device |
US4453085A (en) * | 1981-05-11 | 1984-06-05 | Diffracto Ltd. | Electro-optical systems for control of robots, manipulator arms and co-ordinate measuring machines |
US4575802A (en) * | 1983-07-11 | 1986-03-11 | United Technologies Corporation | Robot/workpiece orientation |
EP0188623A1 (en) * | 1984-07-12 | 1986-07-30 | Fanuc Ltd. | Method for setting tool coordinate system |
FR2597969A1 (en) * | 1986-04-29 | 1987-10-30 | Granger Romain | Device for measuring the shape or position of an object |
US4821207A (en) * | 1987-04-28 | 1989-04-11 | Ford Motor Company | Automated curvilinear path interpolation for industrial robots |
US4894788A (en) * | 1987-05-04 | 1990-01-16 | Siemens Aktiengesellschaft | Method for positioning a tool of a multi-joint robot |
US4954762A (en) * | 1989-02-01 | 1990-09-04 | Hitachi, Ltd | Method and apparatus for controlling tracking path of working point of industrial robot |
EP0511396A1 (en) * | 1990-11-16 | 1992-11-04 | Fanuc Ltd. | Method for setting coordinate system of robot |
US5380978A (en) * | 1991-07-12 | 1995-01-10 | Pryor; Timothy R. | Method and apparatus for assembly of car bodies and other 3-dimensional objects |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5008555A (en) * | 1988-04-08 | 1991-04-16 | Eaton Leonard Technologies, Inc. | Optical probe with overlapping detection fields |
DE4109483A1 (en) * | 1991-03-22 | 1992-09-24 | Zeiss Carl Fa | METHOD AND DEVICE FOR DETECTING EDGES AND HOLES WITH AN OPTICAL PROBE HEAD |
-
1993
- 1993-09-20 FR FR9311157A patent/FR2710407B1/en not_active Expired - Lifetime
-
1994
- 1994-09-17 DE DE4433233A patent/DE4433233C2/en not_active Expired - Lifetime
- 1994-09-19 US US08/308,304 patent/US5528505A/en not_active Expired - Lifetime
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3279079A (en) * | 1965-10-22 | 1966-10-18 | Portage Machine Company | Inspection machine |
US3636635A (en) * | 1969-10-07 | 1972-01-25 | Jerome H Lemelson | Automatic measurement apparatus |
US3774311A (en) * | 1971-03-01 | 1973-11-27 | Bendix Corp | Carriage and bearing arrangement for a measuring machine |
US3774312A (en) * | 1971-06-30 | 1973-11-27 | Bendix Corp | Coordinate measuring machine |
US3944798A (en) * | 1974-04-18 | 1976-03-16 | Eaton-Leonard Corporation | Method and apparatus for measuring direction |
GB1498009A (en) * | 1975-05-29 | 1978-01-18 | Newall Eng | Measuring device |
US4453085A (en) * | 1981-05-11 | 1984-06-05 | Diffracto Ltd. | Electro-optical systems for control of robots, manipulator arms and co-ordinate measuring machines |
US4575802A (en) * | 1983-07-11 | 1986-03-11 | United Technologies Corporation | Robot/workpiece orientation |
EP0188623A1 (en) * | 1984-07-12 | 1986-07-30 | Fanuc Ltd. | Method for setting tool coordinate system |
FR2597969A1 (en) * | 1986-04-29 | 1987-10-30 | Granger Romain | Device for measuring the shape or position of an object |
US4821207A (en) * | 1987-04-28 | 1989-04-11 | Ford Motor Company | Automated curvilinear path interpolation for industrial robots |
US4894788A (en) * | 1987-05-04 | 1990-01-16 | Siemens Aktiengesellschaft | Method for positioning a tool of a multi-joint robot |
US4954762A (en) * | 1989-02-01 | 1990-09-04 | Hitachi, Ltd | Method and apparatus for controlling tracking path of working point of industrial robot |
EP0511396A1 (en) * | 1990-11-16 | 1992-11-04 | Fanuc Ltd. | Method for setting coordinate system of robot |
US5380978A (en) * | 1991-07-12 | 1995-01-10 | Pryor; Timothy R. | Method and apparatus for assembly of car bodies and other 3-dimensional objects |
Non-Patent Citations (2)
Title |
---|
Proceedings 1987 IEEE International Conference on Robotics and Automation, vol. 2, Apr. 1987, Raleigh, North Carolina, USA pp. 807 815 C. H. Chen, A. C. KAK, Modeling and calibration of a structured light scanner for 3 D robot vision . * |
Proceedings 1987 IEEE International Conference on Robotics and Automation, vol. 2, Apr. 1987, Raleigh, North Carolina, USA pp. 807-815 C. H. Chen, A. C. KAK, `Modeling and calibration of a structured light scanner for 3-D robot vision`. |
Cited By (179)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5715167A (en) * | 1995-07-13 | 1998-02-03 | General Electric Company | Fixture for calibrated positioning of an object |
US5926782A (en) * | 1996-11-12 | 1999-07-20 | Faro Technologies Inc | Convertible three dimensional coordinate measuring machine |
US6073056A (en) * | 1997-04-08 | 2000-06-06 | Larry J. Winget | Method and system for building a data model of a physical part in a data format useful for and reproduction of the part |
WO2000060400A1 (en) * | 1999-04-01 | 2000-10-12 | Megascale Ab | An apparatus for marking by light planes a corner angle in a work area |
US6601309B1 (en) | 1999-04-01 | 2003-08-05 | Megascale Ab | Apparatus for marking by light planes a corner angle in a work area |
US6470578B1 (en) * | 1999-09-28 | 2002-10-29 | P&G Development Group, Inc. | Method and apparatus for indicating a pattern of intersection using a light column |
US6710929B2 (en) * | 1999-09-28 | 2004-03-23 | P&G Development Group, Inc. | Method of forming and using laser light columns |
US6618496B1 (en) * | 1999-10-18 | 2003-09-09 | Charalambos Tassakos | Device for determining the position of measuring points of a measurement object relative to a reference system |
US7578069B2 (en) | 2004-01-14 | 2009-08-25 | Hexagon Metrology, Inc. | Automated robotic measuring system |
US9734609B2 (en) | 2004-01-14 | 2017-08-15 | Hexagon Metrology, Inc. | Transprojection of geometry data |
US8229208B2 (en) | 2004-01-14 | 2012-07-24 | Hexagon Metrology, Inc. | Transprojection of geometry data |
US8792709B2 (en) | 2004-01-14 | 2014-07-29 | Hexagon Metrology, Inc. | Transprojection of geometry data |
EP1637835A2 (en) | 2004-08-09 | 2006-03-22 | Mitutoyo Corporation | Reference coordinate calculating method, reference coordinate calculating program, recording medium thereof, reference plate and form measuring machine |
EP1637835A3 (en) * | 2004-08-09 | 2009-03-25 | Mitutoyo Corporation | Reference coordinate calculating method, reference coordinate calculating program, recording medium thereof, reference plate and form measuring machine |
US20070063500A1 (en) * | 2005-09-13 | 2007-03-22 | Homer Eaton | Vehicle having an articulator |
US20090243532A1 (en) * | 2005-09-13 | 2009-10-01 | Romer Inc. | Vehicle having an articulator |
US7525276B2 (en) * | 2005-09-13 | 2009-04-28 | Romer, Inc. | Vehicle having an articulator |
US20070256311A1 (en) * | 2006-05-01 | 2007-11-08 | Paul Ferrari | Sealed battery for coordinate measurement machine |
US7568293B2 (en) | 2006-05-01 | 2009-08-04 | Paul Ferrari | Sealed battery for coordinate measurement machine |
US7805854B2 (en) | 2006-05-15 | 2010-10-05 | Hexagon Metrology, Inc. | Systems and methods for positioning and measuring objects using a CMM |
US8015721B2 (en) | 2006-11-20 | 2011-09-13 | Hexagon Metrology Ab | Coordinate measurement machine with improved joint |
US8336220B2 (en) | 2006-11-20 | 2012-12-25 | Hexagon Metrology Ab | Coordinate measurement machine with improved joint |
US7743524B2 (en) | 2006-11-20 | 2010-06-29 | Hexagon Metrology Ab | Coordinate measurement machine with improved joint |
US20100257746A1 (en) * | 2006-11-20 | 2010-10-14 | Hexagon Metrology, Ab | Coordinate measurement machine with improved joint |
US20080127501A1 (en) * | 2006-11-20 | 2008-06-05 | Eaton Homer L | Coordinate measurement machine with improved joint |
US8855817B2 (en) * | 2006-12-19 | 2014-10-07 | Abb Research Ltd. | Parts handling device, system and method |
US20100036525A1 (en) * | 2006-12-19 | 2010-02-11 | Abb Research Ltd. | Parts handling device, system and method |
US20090013548A1 (en) * | 2006-12-22 | 2009-01-15 | Paul Ferrari | Joint axis for coordinate measurement machine |
US7624510B2 (en) | 2006-12-22 | 2009-12-01 | Hexagon Metrology, Inc. | Joint axis for coordinate measurement machine |
CN101275821B (en) * | 2007-03-26 | 2011-11-09 | 六边形度量衡股份公司 | Multi-axis positioning and measuring system and method of using |
US20080235969A1 (en) * | 2007-03-26 | 2008-10-02 | Hexagon Metrology Ab | Multi-axis positioning and measuring system and method of using |
EP1975546A1 (en) | 2007-03-26 | 2008-10-01 | Hexagon Metrology AB | Multi-axis positioning and measuring system and method of using |
US7676942B2 (en) | 2007-03-26 | 2010-03-16 | Hexagon Metrology Ab | Multi-axis positioning and measuring system and method of using |
US20090013547A1 (en) * | 2007-07-09 | 2009-01-15 | Paul Ferrari | Joint for coordinate measurement device |
US7546689B2 (en) | 2007-07-09 | 2009-06-16 | Hexagon Metrology Ab | Joint for coordinate measurement device |
US8166664B2 (en) | 2007-09-14 | 2012-05-01 | Hexagon Metrology S.P.A. | Method of aligning arm reference system of a multiple-arm measurement machine |
WO2009034593A1 (en) * | 2007-09-14 | 2009-03-19 | Hexagon Metrology S.P.A. | Method of aligning arm reference systems of a multiple- arm measuring machine |
US20100281705A1 (en) * | 2007-09-14 | 2010-11-11 | Hexagon Metrology S.P.A. | Method of aligning arm reference system of a multiple-arm measurement machine |
US7774949B2 (en) | 2007-09-28 | 2010-08-17 | Hexagon Metrology Ab | Coordinate measurement machine |
US20090083985A1 (en) * | 2007-09-28 | 2009-04-02 | Romer / Cimcore | Coordinate measurement machine |
US20090234502A1 (en) * | 2008-03-12 | 2009-09-17 | Denso Wave Incorporated | Apparatus for determining pickup pose of robot arm with camera |
US8406923B2 (en) * | 2008-03-12 | 2013-03-26 | Denso Wave Incorporated | Apparatus for determining pickup pose of robot arm with camera |
US8201341B2 (en) * | 2008-03-28 | 2012-06-19 | Hexagon Metrology, Inc. | Coordinate measuring machine with rotatable grip |
US8122610B2 (en) | 2008-03-28 | 2012-02-28 | Hexagon Metrology, Inc. | Systems and methods for improved coordination acquisition member comprising calibration information |
US7984558B2 (en) | 2008-03-28 | 2011-07-26 | Hexagon Metrology, Inc. | Coordinate measuring machine with rotatable grip |
US20090241360A1 (en) * | 2008-03-28 | 2009-10-01 | Hogar Tait | Systems and methods for improved coordination acquisition member comprising calibration information |
US20090010740A1 (en) * | 2008-03-28 | 2009-01-08 | Paul Ferrari | Coordinate measuring machine with rotatable grip |
US20120017454A1 (en) * | 2008-03-28 | 2012-01-26 | Hexagon Metrology, Inc. | Coordinate measuring machine with rotatable grip |
US7779548B2 (en) | 2008-03-28 | 2010-08-24 | Hexagon Metrology, Inc. | Coordinate measuring machine with rotatable grip |
US20100281706A1 (en) * | 2008-03-28 | 2010-11-11 | Hexagon Metrology, Inc. | Coordinate measuring machine with rotatable grip |
US8453338B2 (en) | 2008-03-28 | 2013-06-04 | Hexagon Metrology, Inc. | Coordinate measuring machine with rotatable grip |
US7640674B2 (en) | 2008-05-05 | 2010-01-05 | Hexagon Metrology, Inc. | Systems and methods for calibrating a portable coordinate measurement machine |
US20090271996A1 (en) * | 2008-05-05 | 2009-11-05 | Paul Ferrari | Systems and methods for calibrating a portable coordinate measurement machine |
US8176646B2 (en) | 2008-10-16 | 2012-05-15 | Hexagon Metrology, Inc. | Articulating measuring arm with laser scanner |
US9618330B2 (en) | 2008-10-16 | 2017-04-11 | Hexagon Metrology, Inc. | Articulating measuring arm with laser scanner |
US8955229B2 (en) | 2008-10-16 | 2015-02-17 | Hexagon Metrology, Inc. | Articulating measuring arm with optical scanner |
US8438747B2 (en) | 2008-10-16 | 2013-05-14 | Hexagon Metrology, Inc. | Articulating measuring arm with laser scanner |
US20110192043A1 (en) * | 2008-10-16 | 2011-08-11 | Hexagon Metrology, Inc. | Articulating measuring arm with laser scanner |
US20100095542A1 (en) * | 2008-10-16 | 2010-04-22 | Romer, Inc. | Articulating measuring arm with laser scanner |
US7908757B2 (en) | 2008-10-16 | 2011-03-22 | Hexagon Metrology, Inc. | Articulating measuring arm with laser scanner |
US11029142B2 (en) | 2008-10-16 | 2021-06-08 | Hexagon Metrology, Inc. | Articulating measuring arm with laser scanner |
US10337853B2 (en) | 2008-10-16 | 2019-07-02 | Hexagon Metrology, Inc. | Articulating measuring arm with laser scanner |
US9551575B2 (en) | 2009-03-25 | 2017-01-24 | Faro Technologies, Inc. | Laser scanner having a multi-color light source and real-time color receiver |
US9074883B2 (en) | 2009-03-25 | 2015-07-07 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
US20100325907A1 (en) * | 2009-06-30 | 2010-12-30 | Hexagon Metrology Ab | Coordinate measurement machine with vibration detection |
US8104189B2 (en) | 2009-06-30 | 2012-01-31 | Hexagon Metrology Ab | Coordinate measurement machine with vibration detection |
US8220173B2 (en) | 2009-06-30 | 2012-07-17 | Hexagon Metrology Ab | Coordinate measurement machine with vibration detection |
US20110112786A1 (en) * | 2009-11-06 | 2011-05-12 | Hexagon Metrology Ab | Cmm with improved sensors |
US20110107611A1 (en) * | 2009-11-06 | 2011-05-12 | Hexagon Metrology Ab | Systems and methods for control and calibration of a cmm |
US11340056B2 (en) | 2009-11-06 | 2022-05-24 | Hexagon Technology Center Gmbh | CMM with improved sensors |
US20110107614A1 (en) * | 2009-11-06 | 2011-05-12 | Hexagon Metrology Ab | Enhanced position detection for a cmm |
US20110107613A1 (en) * | 2009-11-06 | 2011-05-12 | Hexagon Metrology Ab | Cmm with modular functionality |
US10126109B2 (en) | 2009-11-06 | 2018-11-13 | Hexagon Technology Center Gmbh | CMM with modular functionality |
US9989348B2 (en) | 2009-11-06 | 2018-06-05 | Hexagon Technology Center Gmbh | Systems and methods for control and calibration of a CMM |
US20110107612A1 (en) * | 2009-11-06 | 2011-05-12 | Hexagon Metrology Ab | Articulated arm |
US9696129B2 (en) | 2009-11-06 | 2017-07-04 | Hexagon Technology Center Gmbh | CMM with modular functionality |
US8082673B2 (en) | 2009-11-06 | 2011-12-27 | Hexagon Metrology Ab | Systems and methods for control and calibration of a CMM |
US8099877B2 (en) | 2009-11-06 | 2012-01-24 | Hexagon Metrology Ab | Enhanced position detection for a CMM |
US8844151B2 (en) | 2009-11-06 | 2014-09-30 | Hexagon Metrology Ab | Articulated arm |
US9551558B2 (en) | 2009-11-06 | 2017-01-24 | Hexagon Technology Center Gmbh | Articulated arm |
US8112896B2 (en) | 2009-11-06 | 2012-02-14 | Hexagon Metrology Ab | Articulated arm |
US8407907B2 (en) | 2009-11-06 | 2013-04-02 | Hexagon Metrology Ab | CMM with modular functionality |
US8402669B2 (en) | 2009-11-06 | 2013-03-26 | Hexagon Metrology Ab | Articulated arm |
US8151477B2 (en) | 2009-11-06 | 2012-04-10 | Hexagon Metrology Ab | CMM with modular functionality |
US8327555B2 (en) | 2009-11-06 | 2012-12-11 | Hexagon Metrology Ab | Enhanced position detection for a CMM |
US9360291B2 (en) | 2009-11-06 | 2016-06-07 | Hexagon Metrology Ab | Systems and methods for control and calibration of a CMM |
US9360290B2 (en) | 2009-11-06 | 2016-06-07 | Hexagon Metrology Ab | CMM with modular functionality |
US8701299B2 (en) | 2009-11-06 | 2014-04-22 | Hexagon Metrology Ab | CMM with modular functionality |
US8707572B2 (en) | 2009-11-06 | 2014-04-29 | Hexagon Metrology Ab | Systems and methods for control and calibration of a CMM |
US9529083B2 (en) | 2009-11-20 | 2016-12-27 | Faro Technologies, Inc. | Three-dimensional scanner with enhanced spectroscopic energy detector |
US9113023B2 (en) | 2009-11-20 | 2015-08-18 | Faro Technologies, Inc. | Three-dimensional scanner with spectroscopic energy detector |
US9210288B2 (en) | 2009-11-20 | 2015-12-08 | Faro Technologies, Inc. | Three-dimensional scanner with dichroic beam splitters to capture a variety of signals |
US9417316B2 (en) | 2009-11-20 | 2016-08-16 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
US20110213247A1 (en) * | 2010-01-08 | 2011-09-01 | Hexagon Metrology, Inc. | Articulated arm with imaging device |
US8630314B2 (en) | 2010-01-11 | 2014-01-14 | Faro Technologies, Inc. | Method and apparatus for synchronizing measurements taken by multiple metrology devices |
US20110170534A1 (en) * | 2010-01-11 | 2011-07-14 | Faro Technologies, Inc. | Method and apparatus for synchronizing measurements taken by multiple metrology devices |
US8898919B2 (en) | 2010-01-20 | 2014-12-02 | Faro Technologies, Inc. | Coordinate measurement machine with distance meter used to establish frame of reference |
US20110178754A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Portable Articulated Arm Coordinate Measuring Machine Having Integrated Software Controls |
US20110175745A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Embedded arm strain sensors |
US8001697B2 (en) | 2010-01-20 | 2011-08-23 | Faro Technologies, Inc. | Counter balance for coordinate measurement device |
US20110178753A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Portable Articulated Arm Coordinate Measuring Machine and Integrated Environmental Recorder |
US8028432B2 (en) | 2010-01-20 | 2011-10-04 | Faro Technologies, Inc. | Mounting device for a coordinate measuring machine |
US20110173828A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Intelligent repeatable arm mounting system |
US10281259B2 (en) | 2010-01-20 | 2019-05-07 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features |
US10060722B2 (en) | 2010-01-20 | 2018-08-28 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations |
US8537374B2 (en) | 2010-01-20 | 2013-09-17 | Faro Technologies, Inc. | Coordinate measuring machine having an illuminated probe end and method of operation |
US8533967B2 (en) | 2010-01-20 | 2013-09-17 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
US8601702B2 (en) | 2010-01-20 | 2013-12-10 | Faro Technologies, Inc. | Display for coordinate measuring machine |
US8615893B2 (en) | 2010-01-20 | 2013-12-31 | Faro Technologies, Inc. | Portable articulated arm coordinate measuring machine having integrated software controls |
US20110178764A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Portable Articulated Arm Coordinate Measuring Machine with Multi-Bus Arm Technology |
US8638446B2 (en) | 2010-01-20 | 2014-01-28 | Faro Technologies, Inc. | Laser scanner or laser tracker having a projector |
US8677643B2 (en) | 2010-01-20 | 2014-03-25 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
US8683709B2 (en) | 2010-01-20 | 2014-04-01 | Faro Technologies, Inc. | Portable articulated arm coordinate measuring machine with multi-bus arm technology |
US8284407B2 (en) | 2010-01-20 | 2012-10-09 | Faro Technologies, Inc. | Coordinate measuring machine having an illuminated probe end and method of operation |
US8276286B2 (en) | 2010-01-20 | 2012-10-02 | Faro Technologies, Inc. | Display for coordinate measuring machine |
US9628775B2 (en) | 2010-01-20 | 2017-04-18 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations |
US8763266B2 (en) | 2010-01-20 | 2014-07-01 | Faro Technologies, Inc. | Coordinate measurement device |
US20110178762A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Portable Articulated Arm Coordinate Measuring Machine with Multiple Communication Channels |
US8832954B2 (en) | 2010-01-20 | 2014-09-16 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
US20110178755A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Portable Articulated Arm Coordinate Measuring Machine and Integrated Electronic Data Processing System |
US20110178763A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Use of inclinometers to improve relocation of a portable articulated arm coordinate measuring machine |
US8875409B2 (en) | 2010-01-20 | 2014-11-04 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
US20110173825A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Counter balance for coordinate measurement device |
US8942940B2 (en) | 2010-01-20 | 2015-01-27 | Faro Technologies, Inc. | Portable articulated arm coordinate measuring machine and integrated electronic data processing system |
US20110178766A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers |
US20110178765A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Multi-functional coordinate measurement machines |
US9607239B2 (en) | 2010-01-20 | 2017-03-28 | Faro Technologies, Inc. | Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations |
US9009000B2 (en) | 2010-01-20 | 2015-04-14 | Faro Technologies, Inc. | Method for evaluating mounting stability of articulated arm coordinate measurement machine using inclinometers |
US20110173823A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Mounting device for a coordinate measuring machine |
US20110173827A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
US20110173824A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Coordinate measurement device |
US9163922B2 (en) | 2010-01-20 | 2015-10-20 | Faro Technologies, Inc. | Coordinate measurement machine with distance meter and camera to determine dimensions within camera images |
US20110173826A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Display for coordinate measuring machine |
US20110176148A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Coordinate measuring machine having an illuminated probe end and method of operation |
US20110178758A1 (en) * | 2010-01-20 | 2011-07-21 | Faro Technologies, Inc. | Integrated part temperature measurement system |
US8171650B2 (en) | 2010-01-20 | 2012-05-08 | Faro Technologies, Inc. | Intelligent repeatable arm mounting system |
USD659035S1 (en) | 2010-03-29 | 2012-05-08 | Hexagon Metrology Ab | Portable coordinate measurement machine |
USD687322S1 (en) | 2010-03-29 | 2013-08-06 | Hexagon Metrology Ab | Coordinate acquistion member of a portable coordinate measurement machine |
US8312635B2 (en) | 2010-04-26 | 2012-11-20 | Tesa Sa | Measuring system |
CN102252639A (en) * | 2010-04-26 | 2011-11-23 | 特莎有限公司 | Measuring system |
EP2381212A1 (en) | 2010-04-26 | 2011-10-26 | Tesa Sa | Coordinate measuring system for rotationally symmetric workpieces |
CN102261900B (en) * | 2010-05-03 | 2015-03-18 | 特莎有限公司 | Measuring system |
US8479403B2 (en) | 2010-05-03 | 2013-07-09 | Tesa Sa | Measuring system |
EP2384851A1 (en) | 2010-05-03 | 2011-11-09 | Tesa Sa | Coordinate Measuring System with rotatory adapter |
CN102261900A (en) * | 2010-05-03 | 2011-11-30 | 特莎有限公司 | Measuring system |
US9684078B2 (en) | 2010-05-10 | 2017-06-20 | Faro Technologies, Inc. | Method for optically scanning and measuring an environment |
US9329271B2 (en) | 2010-05-10 | 2016-05-03 | Faro Technologies, Inc. | Method for optically scanning and measuring an environment |
US8429828B2 (en) | 2010-08-31 | 2013-04-30 | Hexagon Metrology, Inc. | Mounting apparatus for articulated arm laser scanner |
US8127458B1 (en) | 2010-08-31 | 2012-03-06 | Hexagon Metrology, Inc. | Mounting apparatus for articulated arm laser scanner |
US9168654B2 (en) | 2010-11-16 | 2015-10-27 | Faro Technologies, Inc. | Coordinate measuring machines with dual layer arm |
CN103105186A (en) * | 2011-11-14 | 2013-05-15 | 鸿富锦精密工业(深圳)有限公司 | Probe automatic replacement system and method |
US8763267B2 (en) | 2012-01-20 | 2014-07-01 | Hexagon Technology Center Gmbh | Locking counterbalance for a CMM |
US9417056B2 (en) | 2012-01-25 | 2016-08-16 | Faro Technologies, Inc. | Device for optically scanning and measuring an environment |
US9069355B2 (en) | 2012-06-08 | 2015-06-30 | Hexagon Technology Center Gmbh | System and method for a wireless feature pack |
US8997362B2 (en) | 2012-07-17 | 2015-04-07 | Faro Technologies, Inc. | Portable articulated arm coordinate measuring machine with optical communications bus |
US11112501B2 (en) | 2012-10-05 | 2021-09-07 | Faro Technologies, Inc. | Using a two-dimensional scanner to speed registration of three-dimensional scan data |
US9746559B2 (en) | 2012-10-05 | 2017-08-29 | Faro Technologies, Inc. | Using two-dimensional camera images to speed registration of three-dimensional scans |
US9739886B2 (en) | 2012-10-05 | 2017-08-22 | Faro Technologies, Inc. | Using a two-dimensional scanner to speed registration of three-dimensional scan data |
US9513107B2 (en) | 2012-10-05 | 2016-12-06 | Faro Technologies, Inc. | Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner |
US11815600B2 (en) | 2012-10-05 | 2023-11-14 | Faro Technologies, Inc. | Using a two-dimensional scanner to speed registration of three-dimensional scan data |
US11035955B2 (en) | 2012-10-05 | 2021-06-15 | Faro Technologies, Inc. | Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner |
US10067231B2 (en) | 2012-10-05 | 2018-09-04 | Faro Technologies, Inc. | Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner |
US9372265B2 (en) | 2012-10-05 | 2016-06-21 | Faro Technologies, Inc. | Intermediate two-dimensional scanning with a three-dimensional scanner to speed registration |
US9618620B2 (en) | 2012-10-05 | 2017-04-11 | Faro Technologies, Inc. | Using depth-camera images to speed registration of three-dimensional scans |
US10203413B2 (en) | 2012-10-05 | 2019-02-12 | Faro Technologies, Inc. | Using a two-dimensional scanner to speed registration of three-dimensional scan data |
US10739458B2 (en) | 2012-10-05 | 2020-08-11 | Faro Technologies, Inc. | Using two-dimensional camera images to speed registration of three-dimensional scans |
US9250214B2 (en) | 2013-03-12 | 2016-02-02 | Hexagon Metrology, Inc. | CMM with flaw detection system |
US9803967B2 (en) | 2013-12-18 | 2017-10-31 | Hexagon Metrology, Inc. | Ultra-portable articulated arm coordinate measurement machine |
US10309764B2 (en) | 2013-12-18 | 2019-06-04 | Hexagon Metrology, Inc. | Ultra-portable coordinate measurement machine |
US9594250B2 (en) | 2013-12-18 | 2017-03-14 | Hexagon Metrology, Inc. | Ultra-portable coordinate measurement machine |
US9163921B2 (en) | 2013-12-18 | 2015-10-20 | Hexagon Metrology, Inc. | Ultra-portable articulated arm coordinate measurement machine |
US10317186B2 (en) | 2014-06-11 | 2019-06-11 | Hexagon Metrology, Inc. | Articulating CMM probe |
US9759540B2 (en) | 2014-06-11 | 2017-09-12 | Hexagon Metrology, Inc. | Articulating CMM probe |
US10175037B2 (en) | 2015-12-27 | 2019-01-08 | Faro Technologies, Inc. | 3-D measuring device with battery pack |
CN108474640B (en) * | 2016-04-04 | 2020-07-03 | 宝马股份公司 | Mobile measuring system for three-dimensional optical measurement of vehicles and vehicle components |
US10718608B2 (en) | 2016-04-04 | 2020-07-21 | Bayerische Motoren Werke Aktiengesellschaft | Mobile measurement system for the three-dimensional optical measurement of vehicles and vehicle parts |
CN108474640A (en) * | 2016-04-04 | 2018-08-31 | 宝马股份公司 | Mobile measuring system for three dimensional optical measuring vehicle and vehicle part |
US11022434B2 (en) | 2017-11-13 | 2021-06-01 | Hexagon Metrology, Inc. | Thermal management of an optical scanning device |
USD875573S1 (en) | 2018-09-26 | 2020-02-18 | Hexagon Metrology, Inc. | Scanning device |
Also Published As
Publication number | Publication date |
---|---|
DE4433233A1 (en) | 1995-04-13 |
DE4433233C2 (en) | 1996-09-05 |
FR2710407A1 (en) | 1995-03-31 |
FR2710407B1 (en) | 1995-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5528505A (en) | Position-marking method for a machine that measures in three dimensions, and apparatus for implementing the method | |
US4663852A (en) | Active error compensation in a coordinated measuring machine | |
US4961267A (en) | Method and apparatus for making coordinate measurements | |
US5446545A (en) | Method of and apparatus for calibrating machines including a measuring probe and a measuring apparatus | |
JP3467063B2 (en) | Coordinate measuring device | |
CN102472615B (en) | Coordinate measuring machine (CMM) and method of compensating errors in a CMM | |
US6611346B2 (en) | System for identifying the position of a three-dimensional machine in a fixed frame of reference | |
US5467289A (en) | Method of and an apparatus for measuring surface contour | |
US4782598A (en) | Active error compensation in a coordinate measuring machine | |
WO1994011700A1 (en) | Computerized three dimensional data acquisition apparatus and method | |
EP0204701A1 (en) | Method and apparatus for calibrating a positioning system | |
US20200003546A1 (en) | Three-coordinate mapper and mapping method | |
CN1211724A (en) | Probe coordinate system driving apparatus | |
JPS6232302A (en) | Three-dimensional measuring method and device | |
US4466195A (en) | Measuring machine of the portal variety | |
JP3524385B2 (en) | 3D shape measuring device | |
JP2005121370A (en) | Surface shape measuring apparatus and method | |
JP3531882B2 (en) | Measurement error correction device for CMM | |
US5243872A (en) | Robotic hand for controlling movement in multiple axes | |
JP2755346B2 (en) | Method and apparatus for measuring motion accuracy of automatic machine tool | |
JP2933187B2 (en) | Three-dimensional measuring devices | |
JPS62265520A (en) | Three-dimensional measuring machine equipped with two detecting elements | |
JPH07139936A (en) | Coordinate measuring apparatus | |
JP2583740Y2 (en) | Drive | |
JPH08334438A (en) | Headlight tester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ROMER, FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GRANGER, ROMAIN;EATON, HOMER;REEL/FRAME:007155/0122 Effective date: 19940912 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: HEXAGON METROLOGY, INC., GEORGIA Free format text: MERGER;ASSIGNOR:ROMER, INC.;REEL/FRAME:022960/0243 Effective date: 20090531 Owner name: HEXAGON METROLOGY, INC.,GEORGIA Free format text: MERGER;ASSIGNOR:ROMER, INC.;REEL/FRAME:022960/0243 Effective date: 20090531 |
|
AS | Assignment |
Owner name: HEXAGON METROLOGY, INC., RHODE ISLAND Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S ADDRESS PREVIOUSLY RECORDED ON REEL 022960 FRAME 0243. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNEE'S CORRECT ADDRESS;ASSIGNOR:ROMER, INC.;REEL/FRAME:030406/0644 Effective date: 20090531 |