US5429721A - Process for preparing diacetoxybutene - Google Patents
Process for preparing diacetoxybutene Download PDFInfo
- Publication number
- US5429721A US5429721A US08/245,663 US24566394A US5429721A US 5429721 A US5429721 A US 5429721A US 24566394 A US24566394 A US 24566394A US 5429721 A US5429721 A US 5429721A
- Authority
- US
- United States
- Prior art keywords
- distillation tower
- diacetoxybutene
- bottoms
- process according
- distillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/48—Separation; Purification; Stabilisation; Use of additives
- C07C67/52—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
- C07C67/54—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/04—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds
- C07C67/05—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation
- C07C67/055—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides onto unsaturated carbon-to-carbon bonds with oxidation in the presence of platinum group metals or their compounds
Definitions
- the present invention relates to a process for preparing diacetoxybutene.
- Diacetoxybutene is an important raw material for the production of 1,4-butanediol and tetrahydrofuran which are utilized as a solvent or synthetic resin material.
- Diacetoxybutene is usually produced by reacting butadiene, acetic acid and oxygen in the presence of a palladium catalyst. It is necessary to separate diacetoxybutene from the acetoxylation reaction product, but some problems are involved in this process. Since both of the unreacted materials and diacetoxybutene contained in the reaction product have unsaturated groups (unsaturated radicals), there can be generated polymeric substances as a by-product depending on the treatment involved, and such generation of the polymeric substances as a by-product may become a cause of decrease of yield or operational impediment.
- a process for preparing diacetoxybutene which comprises:
- FIG. 1 illustrates the process according to the present invention.
- the reaction product used in the present invention is an acetoxylation reaction product obtained by reacting butadiene, acetic acid and oxygen in the presence of a palladium-based catalyst.
- This acetoxylation reaction is not subjected to specific restrictions but can be carried out in accordance with the known procedure which is described in U.S. Pat. Nos. 4,150,239 and 5,177,254.
- the amounts of the reactants used are, for example, 3 to 5 moles of acetic acid and 7 to 15 moles of oxygen based on one mole of butadiene.
- the palladium-based catalyst there can be used palladium metal or a salt thereof singly or in combination with a cocatalyst of a metal such as bismuth, selenium, antimony, tellurium, copper or the like or a salt thereof.
- the catalyst supported on a carrier such as silica, alumina, activated carbon or the like is preferably used.
- the amount of the catalyst metals in the supported catalyst usually the amount of palladium metal is selected from the range of 0.1 to 20 wt % and the amount of other cocatalyst metal from the range of 0.01 to 30 wt %.
- the acetoxylation reaction can be carried out according to any suitable system such as fixed bed system, fluidized bed system, suspending catalyst system, etc., but usually fixed bed system is preferred.
- the reaction is usually carried out at a temperature in the range of 40 to 180° C., preferably 60 to 150° C., under normal pressure or above.
- the thus obtained acetoxylation reaction product contains unreacted butadiene and other undesirable substances, so that the reaction product is preferably subjected to distillation described below after undergoing a degassing treatment.
- the degassed reaction product In the degassed reaction product are contained, beside diacetoxybutene, monodiacetoxybutene, triacetoxybutene, water produced by the acetoxylation reaction, acetic acid, high boiling point materials and so on.
- the composition of this reaction product is usually 10 to 25 wt % of diacetoxybutene, 90 to 60 wt % of acetic acid, 1 to 5 wt % of water and 0.5 to 3 wt % of the high boiling point materials.
- the reaction product is fed into a first distillation tower for distilling off substantially all (not less than 99 wt %) of water and acetic acid, and the bottoms (materials remaining in the bottom) of the first distillation tower is fed into a second distillation tower.
- the temperature of the bottom of the distillation tower is maintained usually at not more than 190° C., preferably 120 to 180° C.
- the top pressure of the distillation towers is usually set at 30 to 300 mmHg for the first tower and 2 to 100 mmHg for the second tower.
- the pressures of the respective towers are preferably so controlled that the pressure of the first distillation tower is lower than the pressure of the second distillation tower.
- the residence time of the bottoms of the respective distillation towers varies depending on the design of the towers and distilling conditions, but usually it is 10 to 60 minutes in the case of the first tower and 1 to 10 hours in the case of the second tower.
- Each distillation tower may be constituted by two or more units of tower.
- the first distillation tower may composed of a normal pressure column and a reduced pressure column, so that acetic acid and water are roughly distilled off by the normal pressure column and then they are substantially distilled off by the reduced pressure column.
- the materials (bottoms) withdrawn from the bottom of the first distillation tower is distilled and separated into diacetoxybutene and high boiling point materials, and the objective diacetoxybutene is recovered.
- diacetoxybutene is distilled out from the top of the second distillation tower while the content of the high boiling point materials in the bottoms of the second distillation tower is maintained at not more than 20 wt %, preferably not more than 15 wt %.
- the residence time of high boiling point materials at the bottom of the second distillation tower is accordingly prolonged, thereby elevating a bottom temperature of the second distillation tower and encouraging polymerization and decomposition of diacetoxybutenes, etc. Consequently, the decomposed materials may get mixed in the distillate and the viscosity of the bottoms may be increased to make it difficult to withdraw the bottoms and to even cause a hindrance to the normal distilling operation.
- the distilling-out amount of diacetoxybutene from the second distillation tower is not so high, as the bottoms is withdrawn from the second distillation tower so that the concentration of high boiling point materials in the bottoms does not exceed the above-mentioned range.
- the content of diacetoxybutene contained in the bottoms withdrawn from the bottom of the second distillation tower is usually 3 to 40 wt %, preferably 6 to 20 wt % based on the amount of diacetoxybutene contained in the materials withdrawn from the bottom of the first distillation tower.
- the "high boiling point materials” in the present invention mean substances having a higher boiling point than diacetoxybutene under an ordinary pressure, particularly, substances which do not boil at a temperature of not more than 250° C. under an ordinary pressure.
- the high boiling point materials are composed of substances whose boiling point is usually not less than 250° C. and/or which are thermally decomposed before vaporized. Such high boiling point materials are not specified in their structure, but most of them are supposed to be the polymers of butadiene and/or diacetoxybutene.
- a considerable amount of diacetoxybutene is contained in the bottoms of the second distillation tower, so that in the present invention the said bottoms is further treated in a thin-film evaporator to separate the residual diacetoxybutene from the bottoms, and substantially whole of diacetoxybutene which is contained in bottoms is recycled into the second distillation tower, while the high boiling point materials are purged.
- the concentration of diacetoxybutene in the evaporated materials can be as high as 80% or above, but as they contain the undesirable byproducts such as triacetoxybutene, it is necessary to be recycled into the second distillation tower.
- the thin-film evaporator In operation of the thin-film evaporator, its internal pressure is so controlled that the pressure thereof is lower than the bottom pressure of the second distillation tower. This makes it possible to evaporate and recover the useful substance: diacetoxybutene in the bottoms withdrawn from the second distillation tower while separating the high boiling point materials as non-evaporated matter.
- the pressure of the said evaporator is usually set within the range of 1 to 50 mmHg.
- the evaporating temperature is preferably set at not more than 190° C. as well as the bottom temperature of the first and second distillation towers.
- the average residence time of the bottoms to be evaporated is usually 0.5 to 10 minutes, preferably 1 to 5 minutes, which is very short as compared with the residence time of the distillation towers.
- the thin-film evaporator used in the present invention need not be of a specific structure. It may be of the same structure as the commercially available evaporators, and there can be used various types of thin-film evaporators, such as vertical thin-film evaporator, plate-type downcast thin-film evaporator and tube-type downcast thin-film evaporator.
- diacetoxybutene can be distilled and recovered from the said reaction product by an industrially stable operation without causing blockage of the distillation towers, i.e. the blockage of the outlet for withdrawing the bottoms in the distillation towers, and other troubles. Also, the recovery rate of diacetoxybutene and the quality of recovered diacetoxybutene are high. It is notable that the purity of diacetoxybutene recovered from the top of the second distillation tower used in the present invention is higher than 80 wt %, and quite remarkably the content of 1,1,4-triacetoxybutene, which is an undesirable by-product, is less than 1 wt %
- FIG. 1 An embodiment of the present invention is illustrated in FIG. 1.
- Acetoxytation reaction is carried out in reactor 1, and after the reaction product has been degassed by a gas/liquid separator (not shown), the liquid phase (reaction product) is fed into first distillation tower 2 where water, acetic acid and other low-boiling substances are distilled off and the bottoms withdrawn from the first distillation tower is fed into second distillation tower 3.
- Diacetoxybutene is distilled out from the top of the second distillation tower 3. Also, a part of the bottoms is withdrawn, and the evaporated materials from thin-film evaporator 4 is recycled into second distillation tower 3.
- distillation of diacetoxybutene is carried out under the relatively mild conditions with the distilling-out rate of diacetoxybutene being limited and the withdrawing rate of the bottoms from the second distillation tower being increased.
- the withdrawn bottoms is fed into a thin-film evaporator.
- the residence time of the bottoms in the thin-film evaporator is very short, and the high boiling point materials can be removed efficiently. Further, the most portion of diacetoxybutene in the bottoms can be recovered. It is possible with this process to recover diacetoxybutene with high purity in a high yield.
- the present invention is therefore of high industrial utility.
- Diacetoxybutene was prepared according to the process flow shown in FIG. 1. Butadiene, acetic acid and oxygen were reacted in the presence of a palladium-based catalyst composed of activated carbon with 2 wt % of palladium and 0.1 wt % of tellurium supported thereon at a temperature of 100° C. under a pressure of 90 kg/cm 2 to obtain a reaction product containing 15.4 wt % of diacetoxybutene (1.4-form being 14.0 wt %) and 1.1 wt % of high boiling point materials. The reaction product was fed into the first distillation tower at a rate of 3,600 parts/hr and distilled under the following conditions:
- the bottoms withdrawn from the said first distillation tower was fed into the second distillation tower at a rate of 660 parts/hr. Also evaporated materials from a thin-film evaporator described later was returned into the second distillation tower at a rate of 40 parts/hr, and the mixture of the bottoms and evaporated materials was distilled in the second distillation tower under the following conditions:
- diacetoxybutene with a purity of 84.4% (1,4-form being 76.3 wt %) was distilled out at a rate of 634 parts/hr. (Approximately 93% of diacetoxybutene fed to the second distillation tower was distilled out). Also, the bottoms (containing 59.5 wt % of 1,4-diacetoxybutene and 20.0 wt % of high boiling point materials) was withdrawn at a rate of 66 parts/hr.
- the said bottoms was fed into the thin-film evaporator and subjected to thin-film evaporation under the following conditions:
- Evaporating temperature 175° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
Claims (11)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11725493A JP3336677B2 (en) | 1993-05-19 | 1993-05-19 | Method for producing diacetoxybutene |
JP5-117254 | 1993-05-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
US5429721A true US5429721A (en) | 1995-07-04 |
Family
ID=14707216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/245,663 Expired - Fee Related US5429721A (en) | 1993-05-19 | 1994-05-18 | Process for preparing diacetoxybutene |
Country Status (4)
Country | Link |
---|---|
US (1) | US5429721A (en) |
EP (1) | EP0625503B1 (en) |
JP (1) | JP3336677B2 (en) |
DE (1) | DE69405290T2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69801350T2 (en) * | 1997-04-16 | 2002-05-16 | Mitsubishi Chemical Corp., Tokio/Tokyo | Process for the preparation of diacetoxybutene |
JP2005350388A (en) * | 2004-06-10 | 2005-12-22 | Sumitomo Chemical Co Ltd | Method for producing aniline |
DE102011118953B4 (en) * | 2011-11-19 | 2014-06-05 | Oxea Gmbh | Distillative process for the recovery of di-trimethylolpropane |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2627001A1 (en) * | 1975-06-17 | 1977-02-10 | Mitsubishi Chem Ind | PROCESS FOR THE PRODUCTION OF DIACETOXYBUTEN |
US4057472A (en) * | 1974-03-12 | 1977-11-08 | Noboru Haji | Method of separating diacetoxybutene |
US4150239A (en) * | 1976-06-02 | 1979-04-17 | Mitsubishi Chemical Industries Ltd. | Process for producing 1,4-glycol diester |
US4225729A (en) * | 1974-03-28 | 1980-09-30 | Mitsubishi Chemical Industries, Limited | Process for hydrogenation of diacetoxybutene |
US4228301A (en) * | 1977-10-21 | 1980-10-14 | Japan Synthetic Rubber Co., Ltd. | Process for the preparation of diacetoxybutene |
US4236024A (en) * | 1976-06-25 | 1980-11-25 | Sumitomo Chemical Company, Limited | Process for producing diacetoxybutene |
DE3224509A1 (en) * | 1982-07-01 | 1984-01-05 | Basf Ag, 6700 Ludwigshafen | Process for the preparation of diacyloxybutenes |
US5177254A (en) * | 1987-04-23 | 1993-01-05 | Mitsubishi Chemical Industries Limited | Method for producing an unsaturated glycol diester |
-
1993
- 1993-05-19 JP JP11725493A patent/JP3336677B2/en not_active Expired - Lifetime
-
1994
- 1994-05-18 DE DE69405290T patent/DE69405290T2/en not_active Expired - Fee Related
- 1994-05-18 EP EP94107697A patent/EP0625503B1/en not_active Expired - Lifetime
- 1994-05-18 US US08/245,663 patent/US5429721A/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4057472A (en) * | 1974-03-12 | 1977-11-08 | Noboru Haji | Method of separating diacetoxybutene |
US4225729A (en) * | 1974-03-28 | 1980-09-30 | Mitsubishi Chemical Industries, Limited | Process for hydrogenation of diacetoxybutene |
DE2627001A1 (en) * | 1975-06-17 | 1977-02-10 | Mitsubishi Chem Ind | PROCESS FOR THE PRODUCTION OF DIACETOXYBUTEN |
US4150239A (en) * | 1976-06-02 | 1979-04-17 | Mitsubishi Chemical Industries Ltd. | Process for producing 1,4-glycol diester |
US4236024A (en) * | 1976-06-25 | 1980-11-25 | Sumitomo Chemical Company, Limited | Process for producing diacetoxybutene |
US4228301A (en) * | 1977-10-21 | 1980-10-14 | Japan Synthetic Rubber Co., Ltd. | Process for the preparation of diacetoxybutene |
DE3224509A1 (en) * | 1982-07-01 | 1984-01-05 | Basf Ag, 6700 Ludwigshafen | Process for the preparation of diacyloxybutenes |
US5177254A (en) * | 1987-04-23 | 1993-01-05 | Mitsubishi Chemical Industries Limited | Method for producing an unsaturated glycol diester |
Also Published As
Publication number | Publication date |
---|---|
DE69405290T2 (en) | 1998-01-29 |
JPH06321861A (en) | 1994-11-22 |
JP3336677B2 (en) | 2002-10-21 |
EP0625503B1 (en) | 1997-09-03 |
EP0625503A1 (en) | 1994-11-23 |
DE69405290D1 (en) | 1997-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0818434B1 (en) | Process for the production of high-purity isophthalic acid | |
US4254246A (en) | Column system process for polyester plants | |
WO1998052904A1 (en) | Processes for refining butylacrylate | |
EP0044409B1 (en) | Process for purifying methyl methacrylate | |
US3972955A (en) | Process for preparation of isoprene | |
EP1094061B1 (en) | Process for recovering N-Vinyl-2-Pyrrolidone | |
EP0326538A2 (en) | Method for preparation of alkyl glycolates | |
US5429721A (en) | Process for preparing diacetoxybutene | |
EP0140866B1 (en) | Production of high purity alkyl glyoxylate | |
US5209827A (en) | Process for the purification of hydroxypivalyl hydroxypivalate | |
CN114174258A (en) | Recovery of anhydrous methanesulfonic acid from a distillation column bottom stream | |
US4968834A (en) | Recovery of acrylic acid and/or ethyl acrylate from black acid | |
EP0074162B1 (en) | Process for producing p-cresol | |
EP0872472B1 (en) | Process for producing diacetoxybutene | |
US4639294A (en) | Process for production sorbic acid | |
US3663613A (en) | Separation of organic acid products and water from catalysts after synthesis by reduced pressure distillation | |
US5705039A (en) | Process for purifying a 2,6-dialkylphenol | |
US5951828A (en) | Continuous distillation of thermolabile monomers | |
WO2022139675A1 (en) | Process for the production of lactide | |
US2504195A (en) | Heatcd | |
JPH0987273A (en) | Purification of epsilon-caprolactone | |
EP0012376B1 (en) | Process for producing tetrahydrofuran and 1,4-butanediol | |
US5959148A (en) | Purification process of N-vinylformamide | |
WO2012116817A2 (en) | Process for producing highly purified n-propanol | |
JPH0565279A (en) | Separation of epsilon-caprolactone and aromatic carboxylic acid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MITSUBISHI CHEMICAL CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KANDORI, HIROAKI;MURAI, NOBUYUKI;REEL/FRAME:007266/0081 Effective date: 19941117 |
|
AS | Assignment |
Owner name: MITSUBISHI CHEMICAL CORPORATION, JAPAN Free format text: CHANGE OF NAME;ASSIGNOR:MITSUBISHI KASEI CORPORATION;REEL/FRAME:007332/0577 Effective date: 19941001 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20070704 |