US5280289A - Automatic signal thresholding system - Google Patents
Automatic signal thresholding system Download PDFInfo
- Publication number
- US5280289A US5280289A US07/872,482 US87248292A US5280289A US 5280289 A US5280289 A US 5280289A US 87248292 A US87248292 A US 87248292A US 5280289 A US5280289 A US 5280289A
- Authority
- US
- United States
- Prior art keywords
- signal
- target signal
- target
- threshold
- operable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims description 26
- 238000009499 grossing Methods 0.000 claims description 21
- 230000001419 dependent effect Effects 0.000 claims description 11
- 230000003287 optical effect Effects 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 230000008859 change Effects 0.000 description 8
- 230000005855 radiation Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 4
- 230000001629 suppression Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000003491 array Methods 0.000 description 1
- 238000005474 detonation Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/285—Receivers
- G01S7/292—Extracting wanted echo-signals
- G01S7/2923—Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods
- G01S7/2927—Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods by deriving and controlling a threshold value
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
- G01S13/50—Systems of measurement based on relative movement of target
- G01S13/52—Discriminating between fixed and moving objects or between objects moving at different speeds
- G01S13/522—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
- G01S13/524—Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
- G01S13/5244—Adaptive clutter cancellation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/30—Noise filtering
Definitions
- the present invention relates to target detection, and more particularly to target detection using an automatic threshold system in infrared (IR) and radar detectors to differentiate between targets and clutter in high noise environments.
- IR infrared
- a satellite-based sensor array can be used to scan a region on earth to detect missile or spacecraft launchings or nuclear tests.
- the sensors detect radiated energy in for example the infrared spectrum and electrical signals are generated by the scanning sensors. Electrical signals of sufficient amplitude would represent targets, or bright spots of radiative energy.
- a key problem in infrared and radar systems is the need to detect the electrical signals caused by legitimate radiating targets and reject those caused by noise or background clutter. This is differentiation process is classically accomplished by "thresholding". A predetermined threshold is compared to the received signal. If the amplitude of the electrical signal is greater than the threshold then a target has been detected.
- Known methods and systems for computing signal thresholds typically partition the geographic area scanned into a number of "threshold zones”. A different threshold value is then computed for each zone. Every point within a given zone gets the same threshold value. This method works well when the noise statistics are approximately constant over the entire zone. However, this threshold zone method does not provide reliable data when radiative clutter is present.
- noisy areas occur when portions of the zone scanned are very "noisy” or bright while other areas are very “quiet” or dark.
- noisy areas occur when the sensor receives non-target generated radiation from the earth's atmosphere or from natural radiating elements on the earth's surface such as bodies of water. Additionally, man-made radiation from manufacturing processes or weapon detonations would also produce false targets as viewed by a scanning sensor.
- the computed threshold value is driven up by the noisiest portion of the zone. This results in very poor probability of target detection for targets near clutter areas.
- the method of computing threshold values is typically to count the number of threshold exceedances (false detections) for each zone on one or more frames of data and then compute the threshold value needed to achieve the desired false detection rate.
- the computed threshold value is not applied until the next frame so that there is a lag in response to changing noise or clutter conditions.
- present thresholding methods cannot distinguish between exceedances caused by noise, and those exceedances which may be caused by true targets.
- the sudden appearance of a large number of targets may cause thresholds to be raised resulting in poor target detection probability.
- the technique commonly used to prevent this event is to further delay application of the computed threshold until some outside intelligence such as a human operator, determines whether the signal threshold should be raised or not.
- Disadvantages of the known zone thresholding systems and method include: poor overall performance near clutter; poor performance in rapidly changing noise conditions (for example during battle field counter-measure) and required human intervention to set or adjust thresholds.
- the present invention provides for highly efficient target detection in a high clutter environment through the use of an automatic signal thresholding system.
- a detector receives energy radiated from outside of the system and generates at least one output signal representative of the detected energy.
- the generated electrical signal is filtered, producing at least one filtered output signal having both positive and negative signal values.
- a target signal threshold is generated by; determining the most negative value of the filtered output signals, smoothing the varying values of these most negative signals so that the variation from sample to sample is reduced, and computing the target signal threshold using constants chosen to achieve a desired probability of detection and the value of the most negative signal.
- the most positive signal peak is compared to the target signal threshold.
- a peak in excess amplitude of the threshold is a potential target.
- a peak less than the amplitude of the threshold is a candidate for clutter or noise.
- the filtered output signals can also be compared by their shape to a known range of shapes for the filtered output signal.
- the width of the amplitude spike can determine if the spike is noise, clutter or a legitimate target.
- An alternative embodiment of the invention allows the automatic thresholding system to change its operating conditions dependent upon the likelihood that the area being scanned is likely to contain clutter.
- FIG. 1a is a schematic representation of a satellite in space containing the automatic thresholding system in accordance with the present invention
- FIG. 1b is a schematic representation of the detection system in the satellite in space in accordance with the present invention.
- FIG. 2 is a block diagram of the automatic thresholding system in accordance with the present invention.
- FIG. 3 is a schematic representation of the filter output due to a received target signal plus noise signal compared with a predetermined flat threshold
- FIG. 4a is a block diagram of a one embodiment of the thresholding system
- FIG. 4b is a block diagram of an alternative embodiment of the automatic thresholding system in accordance with the present invention.
- FIG. 5a is a graph comparing filter output to sample number for a point target and for a step in background signal representing clutter;
- FIG. 5b is a graph comparing filter output to sample number for a point target and step clutter compared with a fixed, flat threshold
- FIG. 5c is a graph comparing filter output to sample number for a point target and step clutter compared with an automatic, variable threshold in accordance with the present invention
- FIG. 6 is a graph comparing filter output to sample number for an automatic, variable threshold system responding to rapidly changing clutter conditions
- FIG. 7 is a graph of peak signal to threshold ratio versus 3 ⁇ 3 "shape" parameter for the combined threshold and shape test showing the region where potential targets are detected;
- FIG. 8 is a schematic representation of one example of a detection scheme for the invention a 3 ⁇ 3 pixel array
- FIG. 9 is a graph comparing percent of targets detected versus target intensity for both "automatic threshold” and “flat” threshold systems.
- FIG. 10 is a graph comparing peak signal to threshold ratio versus 3 ⁇ 3 shape parameter providing discrimination between targets, gamma spikes and noise in accordance with the present invention.
- This invention is a system for the detection of true targets in high noise environments.
- the automatic thresholding system examines signals produced by a DC rejection filter commonly used in IR and radar signal processing systems. Based upon those signals, and an a priori knowledge of the expected signals caused by true targets, a threshold value which will eliminate most non-target signals such as those causes by noise, background clutter, radiation induced noise spikes may be computed.
- this system incorporates in one embodiment a controlled incremental increase of the computed threshold in response to bright target environments.
- An alternative embodiment teaches the counting of the number of samples which exceed threshold value.
- This automatic thresholding system is operable with both infrared sensors and radio frequency systems. This automatic thresholding system computes threshold value so that the amplitude of background noise does not exceed the known threshold value but target signals do. This thresholding system allows hardware to be reduced in size. Implementing this system in hardware means that it runs much faster than when implemented in software. It is a method that is particularly applicable to systems with high data rates.
- this invention provides infrared detection signal processing for satellite based systems observing earth bound missile launches.
- the same system has applicability to FLIR (Forward Looking Infrared) systems used in conventional aircraft.
- FLIR Forward Looking Infrared
- the bright light from an energy emitting object such as the tail of a missile competes, when viewed by a satellite in space, with other bright lights radiating from the earth.
- These natural reflective, radiating bodies produce "clutter". Clutter such as city lights, or the reflection from the surface of a body of water can be easily confused with actual targets in the same detection area.
- Scanning sensors within the satellite scan the earth scenes target and background.
- the scanning sensors contain DC rejection filters. These filters remove the average value of the signal passing only the variation about the means value.
- a target signal produces a signal spike of great amplitude which exceeds a threshold.
- a 4:1 ratio of negative peak to positive peak is characteristic of targets compared to clutter noise for which the ratio of positive and negative peak amplitudes is 1:1.
- threshold values are computed in "real time” so they can change rapidly in response to changing noise or clutter conditions thereby maintaining a low rate of false detections for widely varying noise and clutter conditions; rapid change in threshold permits target detection very near to severe clutter or countermeasures, and the presence of targets does not cause a significant rise in threshold so excellent probability of target detection is maintained.
- the shape test examines the size or extent of the positive portion of the signal. Specifically, a narrow shape indicates a potential spike, a moderate shape indicates a potential target while a broad shape indicates likely clutter.
- FIG. 1a is a schematic representation of a satellite in space containing the automatic thresholding system in accordance with the present invention.
- the satellite 10 circles the earth 5 while scanning sensor system 12 receives radiative energy from potential targets within the earth's atmosphere 6.
- Target 14 is launched producing radiative energy 15.
- the target 14, in this example a missile, continues to produce infrared detectable energy 15 as the missile 14 flies toward its target.
- a body of water, here lake 20 reflects energy 21 which will be detected by the sensor 12 on the satellite 10 as a potential target.
- the glow layer 23 surrounding the earth 5 produces limb clutter 22, which may be detected by the sensor 12 housed within satellite 10 as yet another potential target.
- FIG. 1b is a schematic representation of the scanning sensor system 12 housed in the satellite 10 in accordance with the present invention.
- An energy gathering device such as a scanning radar array or an optical detector 13 electronically or physically scans the surface of the earth 5.
- a scanning mechanism 17, either electronic or mechanical, moves the detector 13 face across the surface of the environment scanned. Energy emitted from a multiplicity of sources at a variety of energy intensities is viewed by the detector 13.
- Potential targets such as missile plume 15, lake 20 and atmosphere 6 emit energy which is detected by the sensor system 12. This received energy is converted into electrical signals by a converter 25. These electrical signals are amplified by amplifier 28 and filtered in filter 35 producing scanning sensor output signal 31.
- FIG. 2 is a block diagram of the automatic thresholding system 30 in accordance with the present invention.
- the shaded portions of FIG. 2 indicate those functions which are performed particular to the present invention.
- the DC rejecting filter removes the local background level from the signal thereby producing an output signal whose average value is zero. Noise and clutter cause the instantaneous signal to vary around the zero average value in a random manner. Targets, shown as point sources, cause a signal pulse, assumed for our purposes henceforth to be positive in amplitude.
- the automatic thresholding system 30 receives output signals 31.
- the purpose of this system 30 is to evaluate and manipulate the signals 33 produced by the DC rejecting filter 32.
- the DC rejecting filter 32 is commonly used in IR and radar signal processing systems generating electrical signals having both positive and negative amplitudes.
- Signals 33, and an a-priori knowledge of the expected signals 34 caused by true targets are used to compute a comparison threshold value which will eliminate most non-target signals. For example, those non-target signals caused by noise, background clutter, radiation inducted noise spikes, would not produce a true target detection because they will not have at their peak the amplitude of the designated threshold value.
- FIG. 2 is a schematic representation of an IR sensor signal processing chain in accordance with the present invention.
- signal 31 is generated by the scanning sensor from radiative energy detected outside the system 30.
- This signal 31 enters a DC rejecting filter 32 where it is modulated producing output signal 33.
- a threshold computation 34 is performed utilizing a priori knowledge of known targets.
- the automatic threshold determination is compared with the signal amplitude.
- the threshold and signal amplitude are compared in step 38. If the modulated signal 33 is greater than the automatic threshold then a potential target is detected.
- the shape of the modulated signal is also a determining factor in target identification.
- the signal shape is computed in function 38. If the width of the DC rejection filtered signal falls within known parameters 40 then a true target detection 41 occurs.
- FIG. 3 is a schematic representation of the filter output due to a received target signal plus noise signal compared with a predetermined flat threshold.
- Signal 60 has negative 62 and positive 63 amplitudes which vary about the average value zero, 64.
- Targets point sources here are assumed to generate positive signal pulses 68. When the maximum amplitude signal pulses 68 exceed the threshold 66 a true target is identified.
- FIG. 3 illustrates a threshold whose value has been chosen so that no signals due to noise exceed the threshold value, while the signal due to the target does exceed that value.
- the probability that a signal caused by a true target exceeds threshold is denoted by the symbol Pd (Probability of Detection), and the probability that a signal due to some non-target cause exceeds threshold is denoted by the symbol Pfd (Probability of False Detection).
- Pd Probability of Detection
- Pfd Probability of False Detection
- Detection Peak Signal Passes Threshold Detection Criteria
- the positive portion of the electrical signal When a target is present, the positive portion of the electrical signal has a significantly greater amplitude than does the negative portion of that same electrical assuming an adequate signal to noise ratio.
- the system utilizes the ratios of the amplitudes of the positive and negative portions of the filter output signal as a discriminate between targets and noise. Noise and clutter produces a ratio near unity. For legitimate targets this ratio will be larger, 4 or 5 time for a typical filter implementation.
- FIG. 4a is a block diagram of one embodiment of the automatic thresholding method 70.
- Signals detected by the sensor 72 are directed to a Filter Input Buffer 74 where they are combined with a set of fixed filter coefficients to produce the Filtered Output Signal 76.
- the Filter Output Signals are stored in a Filter Output Buffer 78 so that they may be examined to determine the proper threshold value.
- the Sample Filter Output Buffer 78 provides electrical signals to the step 84 "Finds the Most Negative Signal", by examining the filter output signals stored in the buffer 78 and selecting that single signal which has the most negative amplitude. If there are no negative signals in the buffer, the value for Most Negative Signal is set to zero. At each sample time a new signal sample enters the Filter Input Buffer 74 and a new filter output signal 76 is generated and sent to the Filter Output Buffer 78. At each sample time a new value of Most Negative Signal (MNS) is found.
- MNS Most Negative Signal
- the Smoothing Function 86 "Smooth MNS", shown in FIG. 4a filters the successive MNS values to reduce sample to sample variability. This smoothing technique is controlled by "Smoothing Time Constants" 88.
- the automatic threshold method 80 computes a new threshold value based upon the current value of Smoothed Most Negative Signal provided by function 86. The equation used to compute the threshold value is:
- the parameters A and B are fixed numbers chosen to achieve the desired false detection rate.
- the threshold value computed by method 80 is compared to one of the signals contained in the Filter Output Buffer 78 in order to determine whether that signal exceeds the threshold value and is thereby "detected" 82.
- the signal in the Filter Output Buffer 78 which is compared to the computed threshold value is that signal which occurred at the earliest time.
- the threshold computed at sample time N is compared to the signal generated at earlier sample time M where the difference between M and N is one half the length of the Filter Output Buffer 78. This difference in time is the "Threshold Lead" 82.
- FIG. 4b is a block diagram of an alternate embodiment of the automatic thresholding system in accordance with the present invention. This embodiment is similar to that described in FIG. 4a with the addition of functions to automatically select values for the Smoothing Time Constants 122 and for the computation of a Threshold Control Increment 120 which is added to the threshold computed as described in FIG. 4a.
- An added step 104 examines the signals contained in the Filter Input Buffer 106 and computes the average value of these signals.
- Step 120 computes a Threshold Control Increment which is added to the threshold value computed in function 128.
- Function 122 compares the current value of Average Filter Input 130 to a precomputed threshold value, the "Dim/Bright Threshold", and selects a single value of Smoothing Time Constant 124 for use in the current threshold computation.
- the selected smoothing time constant is short so that the threshold can responds rapidly to changes in bright scenes.
- the selected smoothing time constant is long so that the threshold changes slowly in "dim" scene areas.
- the system bases its threshold value only on the negative portions of the filter output. This is done by sending the filter output to a "Filter Output Buffer" where the last N samples of filter output are stored.
- the first step in threshold computation is to find the "Most Negative Signal" in this filter output Buffer.
- the MNS can change from sample to sample.
- the second step in threshold computation is to smooth these varying values of MNS so that the variation from sample to sample is reduced. In the case simulated, this smoothing is performed by a recursive filter, but other techniques can be used.
- the third and last step in threshold computation is to accurately compute the threshold value.
- the third and last step in threshold computation is to accurately compute the threshold value.
- any function of MNS could be used to compute the threshold.
- a nonlinear term could be included to raise thresholds when the absolute value of MNS is large:
- Table I contains a representative comparison of the type of signals detected by the system of the present invention and the approximate ratio of the Most positive amplitude of the detected, filtered signal and the most negative.
- features of the method described above include: the threshold value is based on the negative portions of the signal remaining after filtering to remove the local DC level; a signal "shape test" is combined with the amplitude test to provide additional discrimination between targets and noise, and the local average signal amplitude is used to identify areas of potential clutter and to increase noise rejection in those areas.
- FIG. 4b the overall structure of the threshold computation portion of the Automatic Thresholding System is shown.
- the smoothing time constant for smoothing of MNS is selected. If the scene is "dim", then the average filter input is less than some pre-computed value (the Dim/Bright Threshold), then a long smoothing time constant is selected and the computed threshold values change slowly with time. If the scene is "bright, the average filter input is greater than the Dim/Bright Threshold, then a short time constant is selected for smoothing and the threshold values are allowed to change more rapidly. Next, after the scene is deemed to be dim or bright, a computation is performed producing a "Threshold Control Increment" which is added to the threshold in bright scene areas to raise thresholds slightly in those area which are likely to contain clutter.
- FIG. 5a is a graph 130 comparing filter output to sample number for a point target and a step in scene radiance representing clutter.
- the point target signal spike positive component 132 has here a value of approximately 18 volts. While the negative component 134 of the same spike has a vlaue of approximately -4 volts.
- the Step in Scene radiance oscillates negative spike 138 to positive spike 136 in the range of -20 volts to 20 volts, respectively.
- Step in Scene radiance means that the area surrounding the potential target becomes very bright in comparison to other areas of less light.
- FIG. 5b is a graph 140 comparing filter output to sample number for a point target compared with a fixed, flat threshold.
- the point target signal spike positive component 142 has here a value of approximately 18 volts.
- the Step in Scene radiance positive spike 146 has a value of 20 volts.
- the flat threshold 150 is non-variable and here is shown at 17 volts. For this example, both target signal and clutter signal exceed threshold and are "detected".
- FIG. 5c is a graph comparing filter output to sample number for a point target compared with an automatic, variable threshold in accordance with the present invention.
- the point target signal spike positive component 162 has here a value of approximately 18 volts. While the negative component 164 of the same spike has a value of approximately -4 volts.
- the Step in Scene radiance oscillates negative spike 170 to positive spike 174 in the range of -20 volts to 20 volts, respectively.
- the variable threshold 172 for the point target computed in accordance with hits invention has a value of approximately 4 volts. Because the peak target signal 162 value (18 volts) exceeds the threshold value (4 volts), the point target is detected.
- variable threshold 174 for the step in scene radiance computed in accordance with this invention has value of approximately 22 volts. Because the peak clutter signal 168 value (20 volts) is less than the threshold value (22 volts), the step in scene radiance is not detected.
- FIG. 6 is a graph 180 comparing filter output to sample number for an automatic, variable threshold system responding to rapidly changing clutter conditions. Because of changing scene radiance, the filter output signal 184 varies rapidly. The Most Negative Signal 182 is used in the automatic threshold computation. The automatic, variable threshold 186 computed in accordance with the present invention rises and falls rapidly in response to the changing clutter conditions.
- FIG. 7 is a graph 200 of peak to threshold ratio versus "shape" parameter for the combined threshold and shape test.
- the second portion of the Automatic Thresholding System includes a "shape" test to further reduce Pfd.
- This shape test is based on some general characteristics of signals produced by targets, radiation induced noise spikes, and clutter. Targets typically produce signals which span a finite time interval and thereby produce a few positive amplitude signal samples. Radiation induced noise spikes, on the other hand, produce very short duration pulses (spikes) which typically produce only a single positive sample. Clutter typically produces signals which are extended in time and produce several positive samples. Peaks only in region 204 of graph 200 are detected.
- the combined threshold and shape test bound region 204 with gamma suppression 202, noise suppression 206 and clutter suppression 208.
- the "3 ⁇ 3" designation shown on FIG. 7 is representative of one shape determination configuration and is not intended to be the only method of shape comparison.
- a "5 ⁇ 5" array of pixels or "9 ⁇ 9" array would also produce the same results.
- FIG. 8 is a schematic representation of a 3 ⁇ 3 pixel array 205. This array contains nine pixels 207. There are many different parameters which could be used to characterize signal shape. The one developed for the case simulated is called the "3 ⁇ 3 Shape Parameter". When a positive peak signal is found whose amplitude exceeds the computed threshold value, then a 3 ⁇ 3 packet of signal samples surrounding that peak sample 209 is captured and used to compute the 3 ⁇ 3 shape parameter. This parameter is the sum of the amplitudes of the eight nearest neighbor samples, shown as region 203 divided by the amplitude of the peak sample.
- Shape A some pre-computed value shown as numerical values 0.0 to 0.5
- Shape B an intermediate value (in the range of 0.50 through 3.0)
- Shape B here greater than 3.0
- the peak is considered to be likely clutter and the effective threshold value is raised so that broad peaks are accepted only if they have large amplitudes.
- the combined amplitude and shape test is illustrated in FIG. 7. In FIG. 7. only signals whose parameters fall within the unshaded portion of the figure are accepted as possible targets. All signals which fall in the shaded area are rejected.
- FIG. 9 is a graph 220 comparing percent of targets detected versus target intensity for both "automatic threshold” and “flat” threshold systems.
- FIG. 6 compares the performance of the automatic thresholding system against that of a "flat” thresholding algorithm which represents the performance of thresholding algorithms prior to the present invention.
- the two curves, automatic threshold 222 and flat threshold 224 show that at the same values of Pfd the system yields a significantly higher probability of detecting low intensity targets than is possible with the "flat threshold”.
- the "flat" thresholding algorithm used here is one which establishes the same threshold value over the entire image area, with the value of that threshold chosen to yield the same Pfd as is achieved with the present system.
- FIG. 7 shows that the ability of the systems threshold to change over the scene, depending upon clutter amplitudes, permits targets to be detected in the relatively "quiet” areas of the scene while still containing the number of false detections in the "noisy” areas of the scene.
- FIG. 10 is a graph 230 comparing peak to threshold ratio versus 3 ⁇ 3 shape parameter providing discrimination between targets peaks 236, gamma peaks 232 and noise peaks 234 in accordance with the present invention.
- FIG. 10 shows the effectiveness of the combined threshold and shape tests in discriminating between targets and noise and gamma radiation induced spikes.
- the invention used in conjunction with scanning infrared sensors detects small but bright (point source) targets embedded in a cluttered background.
- the invention is also applicable with radar systems. This system facilitates operation at very high probability of target detection and very low probability of false detection in a cluttered background.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
Threshold=A-B*Smoothed Most Negative Signal
Threshold=A-B*MNS
Threshold=A-B*MNS+C*MNS 2.
TABLE I ______________________________________ Approximate Ratio of Most Positive Type of Signal and Most Negative Signals ______________________________________ Targets 4:1 Gaussian Noise 1:1 Non-Gaussian Noise 1:1 Cloud Edges 1:1 ______________________________________
Claims (21)
Threshold=A-B*MNS
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/872,482 US5280289A (en) | 1992-04-23 | 1992-04-23 | Automatic signal thresholding system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/872,482 US5280289A (en) | 1992-04-23 | 1992-04-23 | Automatic signal thresholding system |
Publications (1)
Publication Number | Publication Date |
---|---|
US5280289A true US5280289A (en) | 1994-01-18 |
Family
ID=25359648
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/872,482 Expired - Fee Related US5280289A (en) | 1992-04-23 | 1992-04-23 | Automatic signal thresholding system |
Country Status (1)
Country | Link |
---|---|
US (1) | US5280289A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5805742A (en) * | 1995-08-16 | 1998-09-08 | Trw Inc. | Object detection system with minimum-spanning gradient filter for scene clutter suppression |
EP1162829A2 (en) * | 2000-05-31 | 2001-12-12 | Samsung Electronics Co., Ltd. | Image signal characterization |
US20020037113A1 (en) * | 2000-05-31 | 2002-03-28 | Hyun-Doo Shin | Method of describing pattern repetitiveness of image |
US20030179727A1 (en) * | 2002-03-21 | 2003-09-25 | Soong Anthony C.K. | Forward link supervision for packet data users in a wireless communication network |
WO2004104623A1 (en) * | 2003-05-26 | 2004-12-02 | Robert Bosch Gmbh | Parking aid comprising suppression of ground echoes or interfering echoes by means of an adaptive adjustment of the reception characteristics |
US20050244569A1 (en) * | 2004-04-29 | 2005-11-03 | Nordson Corporation | Automatic tolerance determination system for material application inspection operation |
US20060109263A1 (en) * | 2002-10-31 | 2006-05-25 | Microsoft Corporation | Universal computing device |
US20070041654A1 (en) * | 2005-08-17 | 2007-02-22 | Microsoft Corporation | Embedded interaction code enabled surface type identification |
US20090067743A1 (en) * | 2005-05-25 | 2009-03-12 | Microsoft Corporation | Preprocessing for information pattern analysis |
US7729539B2 (en) | 2005-05-31 | 2010-06-01 | Microsoft Corporation | Fast error-correcting of embedded interaction codes |
US7826074B1 (en) | 2005-02-25 | 2010-11-02 | Microsoft Corporation | Fast embedded interaction code printing with custom postscript commands |
US8156153B2 (en) | 2005-04-22 | 2012-04-10 | Microsoft Corporation | Global metadata embedding and decoding |
US20120293361A1 (en) * | 2011-05-17 | 2012-11-22 | Robert Stephen Mowbray | Radar clutter suppression system |
US20130342382A1 (en) * | 2012-06-21 | 2013-12-26 | Furuno Electric Co., Ltd. | Target object detecting device and echo signal processing method |
US20150331098A1 (en) * | 2012-12-19 | 2015-11-19 | Valeo Schalter Und Sensoren Gmbh | Method for setting a detection threshold for a received signal of a frequency-modulated continuous wave radar sensor of a motor vehicle on the basis of the noise level, radar sensor and motor vehicle |
US9658319B2 (en) | 2013-03-15 | 2017-05-23 | Valentine Research, Inc. | High probability of intercept radar detector |
CN108254732A (en) * | 2017-12-21 | 2018-07-06 | 彩虹无人机科技有限公司 | A kind of small field of view laser detector precisely captures mesh calibration method in big field range |
CN110221286A (en) * | 2019-05-30 | 2019-09-10 | 安徽四创电子股份有限公司 | Adaptive targets detection method based on ground surveillance radar |
US10514441B2 (en) | 2013-03-15 | 2019-12-24 | Valentine Research, Inc. | High probability of intercept radar detector |
US11462229B2 (en) * | 2019-10-17 | 2022-10-04 | Tata Consultancy Services Limited | System and method for reducing noise components in a live audio stream |
US11675045B2 (en) * | 2017-06-15 | 2023-06-13 | Src, Inc. | Method and apparatus for adaptively filtering radar clutter |
US11874394B2 (en) | 2020-04-02 | 2024-01-16 | Rockwell Collins, Inc. | System and method for improving signal qualification |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3838422A (en) * | 1973-09-20 | 1974-09-24 | Us Navy | Radar adaptive video processor |
US4044352A (en) * | 1974-12-23 | 1977-08-23 | Hughes Aircraft Company | Signal processor |
US4431993A (en) * | 1980-02-04 | 1984-02-14 | Hollandse Signaalapparaten B.V. | Threshold voltage generator |
US4459592A (en) * | 1980-10-31 | 1984-07-10 | Long Maurice W | Methods of and circuits for suppressing doppler radar clutter |
US4550318A (en) * | 1982-02-03 | 1985-10-29 | The Johns Hopkins University | Retrospective data filter |
US4684950A (en) * | 1984-07-20 | 1987-08-04 | Long Maurice W | Methods of and circuits for suppressing doppler radar clutter |
US4862177A (en) * | 1974-11-25 | 1989-08-29 | Hughes Aircraft Company | Processor for discriminating between ground and moving targets |
US4894658A (en) * | 1983-11-04 | 1990-01-16 | Motorola, Inc. | Method of data reduction in non-coherent side-looking airborne radars |
US5070335A (en) * | 1989-12-21 | 1991-12-03 | Siemens Plessey Electronic Systems Limited | Pulse doppler radar systems for helicopter recognition |
-
1992
- 1992-04-23 US US07/872,482 patent/US5280289A/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3838422A (en) * | 1973-09-20 | 1974-09-24 | Us Navy | Radar adaptive video processor |
US4862177A (en) * | 1974-11-25 | 1989-08-29 | Hughes Aircraft Company | Processor for discriminating between ground and moving targets |
US4044352A (en) * | 1974-12-23 | 1977-08-23 | Hughes Aircraft Company | Signal processor |
US4431993A (en) * | 1980-02-04 | 1984-02-14 | Hollandse Signaalapparaten B.V. | Threshold voltage generator |
US4459592A (en) * | 1980-10-31 | 1984-07-10 | Long Maurice W | Methods of and circuits for suppressing doppler radar clutter |
US4550318A (en) * | 1982-02-03 | 1985-10-29 | The Johns Hopkins University | Retrospective data filter |
US4894658A (en) * | 1983-11-04 | 1990-01-16 | Motorola, Inc. | Method of data reduction in non-coherent side-looking airborne radars |
US4684950A (en) * | 1984-07-20 | 1987-08-04 | Long Maurice W | Methods of and circuits for suppressing doppler radar clutter |
US5070335A (en) * | 1989-12-21 | 1991-12-03 | Siemens Plessey Electronic Systems Limited | Pulse doppler radar systems for helicopter recognition |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5805742A (en) * | 1995-08-16 | 1998-09-08 | Trw Inc. | Object detection system with minimum-spanning gradient filter for scene clutter suppression |
US7330601B2 (en) | 2000-05-31 | 2008-02-12 | Samsung Electronics Co., Ltd. | Method of describing pattern repetitiveness of image |
US20020037113A1 (en) * | 2000-05-31 | 2002-03-28 | Hyun-Doo Shin | Method of describing pattern repetitiveness of image |
EP1162829A3 (en) * | 2000-05-31 | 2003-05-02 | Samsung Electronics Co., Ltd. | Image signal characterization |
EP1162829A2 (en) * | 2000-05-31 | 2001-12-12 | Samsung Electronics Co., Ltd. | Image signal characterization |
US20030179727A1 (en) * | 2002-03-21 | 2003-09-25 | Soong Anthony C.K. | Forward link supervision for packet data users in a wireless communication network |
US20060109263A1 (en) * | 2002-10-31 | 2006-05-25 | Microsoft Corporation | Universal computing device |
WO2004104623A1 (en) * | 2003-05-26 | 2004-12-02 | Robert Bosch Gmbh | Parking aid comprising suppression of ground echoes or interfering echoes by means of an adaptive adjustment of the reception characteristics |
US20050244569A1 (en) * | 2004-04-29 | 2005-11-03 | Nordson Corporation | Automatic tolerance determination system for material application inspection operation |
US7826074B1 (en) | 2005-02-25 | 2010-11-02 | Microsoft Corporation | Fast embedded interaction code printing with custom postscript commands |
US8156153B2 (en) | 2005-04-22 | 2012-04-10 | Microsoft Corporation | Global metadata embedding and decoding |
US7920753B2 (en) * | 2005-05-25 | 2011-04-05 | Microsoft Corporation | Preprocessing for information pattern analysis |
US20090067743A1 (en) * | 2005-05-25 | 2009-03-12 | Microsoft Corporation | Preprocessing for information pattern analysis |
US7729539B2 (en) | 2005-05-31 | 2010-06-01 | Microsoft Corporation | Fast error-correcting of embedded interaction codes |
US20070041654A1 (en) * | 2005-08-17 | 2007-02-22 | Microsoft Corporation | Embedded interaction code enabled surface type identification |
US7817816B2 (en) | 2005-08-17 | 2010-10-19 | Microsoft Corporation | Embedded interaction code enabled surface type identification |
US20120293361A1 (en) * | 2011-05-17 | 2012-11-22 | Robert Stephen Mowbray | Radar clutter suppression system |
US20150153446A1 (en) * | 2011-05-17 | 2015-06-04 | Navico Holding As | Radar Clutter Suppression System |
US9213088B2 (en) * | 2011-05-17 | 2015-12-15 | Navico Holding As | Radar clutter suppression system |
US9213089B2 (en) * | 2011-05-17 | 2015-12-15 | Navico Holding As | Radar clutter suppression system |
US9274211B2 (en) * | 2012-06-21 | 2016-03-01 | Furuno Electric Co., Ltd. | Target object detecting device and echo signal processing method |
US20130342382A1 (en) * | 2012-06-21 | 2013-12-26 | Furuno Electric Co., Ltd. | Target object detecting device and echo signal processing method |
US9702967B2 (en) * | 2012-12-19 | 2017-07-11 | Valeo Schalter Und Sensoren Gmbh | Method for setting a detection threshold for a received signal of a frequency-modulated continuous wave radar sensor of a motor vehicle on the basis of the noise level, radar sensor and motor vehicle |
US20150331098A1 (en) * | 2012-12-19 | 2015-11-19 | Valeo Schalter Und Sensoren Gmbh | Method for setting a detection threshold for a received signal of a frequency-modulated continuous wave radar sensor of a motor vehicle on the basis of the noise level, radar sensor and motor vehicle |
US10585168B2 (en) | 2013-03-15 | 2020-03-10 | Valentine Research Inc. | High probability of intercept radar detector |
US10488490B2 (en) | 2013-03-15 | 2019-11-26 | Valentine Research, Inc. | High probability of intercept radar detector |
US10514441B2 (en) | 2013-03-15 | 2019-12-24 | Valentine Research, Inc. | High probability of intercept radar detector |
US9658319B2 (en) | 2013-03-15 | 2017-05-23 | Valentine Research, Inc. | High probability of intercept radar detector |
US11474198B2 (en) | 2013-03-15 | 2022-10-18 | Valentine Research, Inc. | High probability of intercept radar detector |
US11675045B2 (en) * | 2017-06-15 | 2023-06-13 | Src, Inc. | Method and apparatus for adaptively filtering radar clutter |
CN108254732A (en) * | 2017-12-21 | 2018-07-06 | 彩虹无人机科技有限公司 | A kind of small field of view laser detector precisely captures mesh calibration method in big field range |
CN110221286A (en) * | 2019-05-30 | 2019-09-10 | 安徽四创电子股份有限公司 | Adaptive targets detection method based on ground surveillance radar |
US11462229B2 (en) * | 2019-10-17 | 2022-10-04 | Tata Consultancy Services Limited | System and method for reducing noise components in a live audio stream |
US11874394B2 (en) | 2020-04-02 | 2024-01-16 | Rockwell Collins, Inc. | System and method for improving signal qualification |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5280289A (en) | Automatic signal thresholding system | |
US7312856B2 (en) | Programmable pulse capture device with automatic gain control | |
EP0222014B1 (en) | Fire sensor cross-correlator circuit and method | |
EP0399180B1 (en) | Method and apparatus for search and tracking of targets | |
EP0791839B1 (en) | Method and apparatus to detect the presence of a particular living being in an environment supervised by a Doppler detector | |
US20100066597A1 (en) | All-digital line-of-sight (los) processor architecture | |
Tzannes et al. | Temporal filters for point target detection in IR imagery | |
US7764222B2 (en) | Adaptive pulse detection for all-digital line-of-sight (LOS) processor | |
AU646976B2 (en) | Ultrasonic ranging devices | |
US7362654B2 (en) | System and a method for detecting the direction of arrival of a sound signal | |
Nichtern et al. | Parameter adjustment for a dynamic programming track-before-detect-based target detection algorithm | |
FR2548347A1 (en) | PROCESS FOR PRODUCING AN IGNITION SIGNAL AND DETECTION AND IGNITION DEVICE WITH SEVERAL DETECTORS | |
WO2005069197A1 (en) | A method and system for adaptive target detection | |
Diani et al. | Joint striping noise removal and background clutter cancellation in IR naval surveillance systems | |
Goudail et al. | Optimal and suboptimal detection of a target with random grey levels imbedded in non-overlapping noise | |
Peli et al. | Signal processing improvements for infrared missile warning sensors | |
Breuers et al. | Sensor fusion algorithms for the detection of land mines | |
Zhou et al. | Study on image processing technology in imaging laser detection system | |
Jespersen et al. | Sonar image enhancements for improved detection of sea mines | |
Pollock | Clutter rejection for infrared surveillance sensors | |
WO1986001061A1 (en) | A method of signal processing of optical signals | |
Slamani et al. | Application of A'SCAPE to the millimeter wave data for the detection of concealed weapons | |
US6426684B1 (en) | Point detect filter | |
Peckham et al. | IRST signal processing concepts | |
Johnson et al. | Star background cancellation for deep space surveillance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HUGHES AIRCRAFT COMPANY, A CORP. OF DE, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ROOT, GEORGE R.;REEL/FRAME:006187/0171 Effective date: 19920709 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: HE HOLDINGS, INC., A DELAWARE CORP., CALIFORNIA Free format text: CHANGE OF NAME;ASSIGNOR:HUGHES AIRCRAFT COMPANY, A CORPORATION OF THE STATE OF DELAWARE;REEL/FRAME:016087/0541 Effective date: 19971217 Owner name: RAYTHEON COMPANY, MASSACHUSETTS Free format text: MERGER;ASSIGNOR:HE HOLDINGS, INC. DBA HUGHES ELECTRONICS;REEL/FRAME:016116/0506 Effective date: 19971217 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20060118 |