[go: up one dir, main page]

US5029142A - Static memory device provided with a signal generating circuit for high-speed precharge - Google Patents

Static memory device provided with a signal generating circuit for high-speed precharge Download PDF

Info

Publication number
US5029142A
US5029142A US07/400,309 US40030989A US5029142A US 5029142 A US5029142 A US 5029142A US 40030989 A US40030989 A US 40030989A US 5029142 A US5029142 A US 5029142A
Authority
US
United States
Prior art keywords
address
logic
equalizing
circuits
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US07/400,309
Inventor
Manabu Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Assigned to NEC CORPORATION reassignment NEC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: ANDO, MANABU
Application granted granted Critical
Publication of US5029142A publication Critical patent/US5029142A/en
Assigned to NEC ELECTRONICS CORPORATION reassignment NEC ELECTRONICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NEC CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/418Address circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/419Read-write [R-W] circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/18Address timing or clocking circuits; Address control signal generation or management, e.g. for row address strobe [RAS] or column address strobe [CAS] signals

Definitions

  • the present invention relates to a semiconductor memory device formed on a semiconductor substrate, and more particularly to an asynchronous type static memory device having a precharge signal generating circuit for generating a precharge signal upon a change in address signals.
  • Static memory devices comprise a memory array of memory cells for storing data in the form of binary logic levels.
  • a memory cell to be selected for reading or writing is identified by row and column address applied to the memory.
  • a memory cell is accessed by means of a word line and a pair of bit lines selected by a row address and a column address, respectively.
  • each of the bit lines is set at a level according to data stored in the memory cell connected thereto and to a selected word line, and thus if a bit line has a low logic level after reading the data in a first memory cell, this bit line has to change to a high logic level on reading the opposite data from next memory cell. In this case, a significant time is required for the bit line to accomplish such a change in logic levels, thereby limiting the operation speed.
  • equalization of potentials at each pair of bit lines is performed prior to each access operation.
  • bit lines are equalized in potential before read data out of a memory cell, by a potential-equalizing signal generated in accordance with an output of the ATD circuit which detects the change of an address and generates a one-shot precharge signal, and thereby a reading speed is increased.
  • the ATD circuit Since the memory receives a plurality of address signals and change in any one of the address signals causes the change in the address to be accessed, the ATD circuit is adopted to generate the one-shot precharge signal when any one of the address signals is changed in levels. Therefore, the ATD circuit is constructed by a plurality of detection units and a logical sum (OR) circuit receiving output from all the detection units. Each of the detection units is supplied with each one of address signals, and generates an active level of output signal upon change in levels of the supplied address signal.
  • the logical sum circuit generates the one-shot precharge signal when at least one of the detection units generates the active level of output signal.
  • the output of the logical sum circuit i.e. the one-shot precharge signal is applied to all the equalizing or precharge driver circuits provided to the plurality of bit line pairs, and the number of the bit lines of the recent memory having a large memory capacity such as 1 mega bits or more, is very large. Therefore, in the conventional static memory, a length of a control wiring for carrying the one-shot precharge signal to the precharge driver circuit from the ATD circuit, particularly the logical sum circuit is very long. Accordingly, the above control wiring inevitably has a large stray capacitance and a large load capacitance.
  • a static memory device comprises a plurality of memory blocks, each of the memory blocks including a plurality of pairs of bit lines, a plurality of equalizing circuits provided for equalizing the pairs of bit lines and, a plurality of static memory cells coupled to the bit lines; a plurality of address terminals for receiving address signals; a plurality of address transition detecting units, each of the detecting units being coupled to one of the address terminals for operatively generating a detection signal at its output terminal when the address signal received by the associated address terminal is changed; a first logic section for operatively generating a first number of intermediate logic signals representing a logical sum of logic levels at the output terminals of the plurality of detection units, the first number being smaller than the number of the detection units; a plurality of second logic sections provided for the memory blocks, each of the second logic sections generating a control signal representing a logical sum of the intermediate logic signals, and a plurality of control means provided for the memory blocks, each of the control means enabling the equalizing circuits of the associated
  • a plurality of pairs of bit lines and a plurality of equalizing circuits for equalizing pairs of bit lines are divided into a plurality of memory blocks, and each of the memory blocks is provided with the independent second logic section generating the control signal as a result of the logical sum of the intermediate logic signal.
  • each of the second logic sections drive a small number of the equalizing circuits which number is reduced by the factor of the number of memory blocks. Accordingly, the equalizing circuits can be driven at a high speed.
  • FIG. 1 is a schematic block diagram showing a first example of the conventional static memory
  • FIG. 2 is a schematic block diagram showing an address transition detection unit
  • FIG. 3 is a schematic block diagram showing a second example of the conventional static memory
  • FIG. 4 is a schematic block diagram of a static memory device according to a first preferred embodiment of the present invention.
  • FIG. 5 is a schematic block diagram of the static memory device according to a second embodiment of the present invention.
  • FIG. 6 is a schematic block diagram showing the static memory device according to a third embodiment of the present invention.
  • FIG. 7 is a schematic block diagram showing the memory device according to a fourth embodiment of the present invention.
  • a plurality of static type memory cells (c) 21 are arranged in a matrix form of rows and columns, and a plurality of word lines W 0 -W i and a plurality of bit line pairs B 0 -B j , B j are arranged in rows and columns, respectively in a known way.
  • the word lines are coupled to a row decoder 20 receiving row address signals A 0 -A 7 .
  • a plurality of P-channel MOS transistors Q E are provided for the bit line pairs for equalizing a pair of bit lines in the respective bit line pairs by short-circuiting them in response to an equalize control signal EQ supplied from an address detection (ATD) circuit 1 through a control wiring 30.
  • the ATD circuit 1 includes a change detection units 10-0 to 10-7 coupled to receive the address signals A 0 to A 7 respectively, and a plurality of logical sum circuits 11-1 to 11-7. Each of the detector units generates a low level of output signal as a change detection signal when the address signal associated thereto is changed in levels. Each of the circuits 11-1 to 11-7 includes a NAND gate NG and an inverter INV. A resultant logical sum of all the outputs of the detection units 10-0 to 10-7 is generated through the circuits 11-1 to 11-6 from the output of the circuit 11-7. Thus, when at least one of the address signals A 0 -A 7 is changed, a low level of the equalize control signal EQ from the circuit 11-7 so that each pair of bit lines are equalized to the same intermediate level.
  • the detection unit 10-i includes inverters IV 1 -IV 6 , delay circuits DL1, DL2 and NAND gates NG1, NG2, NG3, as illustrated in FIG. 2.
  • FIG. 3 Another example of the conventional memory is shown in FIG. 3.
  • the array of memory cells is divided into a plurality of memory blocks BL 0 -BL m , and the equalizing transistors QE 0 -QE m are separately controlled by BEQ 0 -BEQ m according to the blocks thereof.
  • block selection signals BS 0 -BS m are applied to the blocks BL 0 -BL m , respectively.
  • the selection signal BS 0 When the block BL 0 is to be selected, the selection signal BS 0 is at a high level so that one of block word lines BWoo-BWoi is selected in accordance with the selected main word line. Also, the low active signal EQ is grated through a NAND gate NGA and an inverter IVA as BEQ 0 upon change in the address signals so that the bit line pairs Boo, Boo-Bol, Bol of the block BL 0 are equalized in a pulsed manner prior to a read operation. While, in other blocks such as BL m , the selection signal BS m is at a low level and the signal BEQ m is continuously at the low level irrespective of EQ so that the transistors QE m are continuously rendered conductive. Thus, the bit line pairs of the non-selected blocks are equalized in a static manner.
  • equalizing transistors Q E are driven directly by the signal EQ obtained by taking the logical sum of all the detection unit outputs, while in the circuit of FIG. 3, equalizing transistors QE 0 -QE m are driven by signals BEQ 0 to BEQ m which are obtained by summing up logically the signal EQ obtained by the ATD circuit 1 and the selection signal BS 0 to BS m for selecting one memory block.
  • the characteristic feature of this circuit is that, since only some of the equalizing transistors e.g. QE 0 are driven, the gate capacitance of the transistor QE 0 decreases proportional to the number of the blocks and therefore the consumption of power can be reduced in the operation of equalizing the potential.
  • the prior-art static memories described above have a construction wherein the signal obtained by taking the logical sum of all the detection units is distributed substantially to all bit lines. Therefore the lengths of the control wiring 30 is long, and the number of stages of the logic circuits required until a potential-equalizing signal is obtained is large, which results in a fault that the time of delay caused in a process from the transition of an address to the generation of the signal EQ is long. Moreover, the chip size of the static memory tends to be large, as the capacity thereof becomes large, and the above-mentioned output wiring length of the ATD circuit becomes longer and longer, which turns to be a large impediment now on the occasion when the signal EQ is generated at high speed.
  • FIG. 4 the elements or portions corresponding to those in FIGS. 1 and 4 are denoted by the same or similar references and detailed description therefor will be omitted.
  • the ATD circuit 1 of FIGS. 1 and 4 is split into a first stage section 1A and a plurality of second stage sections 1B 0 -1B m provided in accordance with the memory blocks BL 0 -BL m , respectively.
  • the first stage section 1A includes the change detection units 10-0 to 10-7 coupled to the row address inputs A 0 to A 7 and the logical sum circuits 11-1 to 11-4.
  • Each of the second stage sections 1B 0 -1B m includes NAND gates 41, 42, 43 and inverters 44, 45, 46 and produces a logical sum with respect to the outputs of the first stage section 1A supplied through control wirings MEQ 0 -MEQ 3 .
  • each of the second stage section serves as the logical sum circuits 11-5, 11-6 and 11-7 of FIG. 1.
  • all the second stage sections IB 0 -IB m generate low (active) level of outputs to control lines BEQ 0 -BEQ m and therefore the equalizing transistors QE 0 -QE m of all the blocks BL 0 -BL m are rendered conductive simultaneously to equalize the respective pairs of bit lines.
  • each of the second stage sections drives a reduced number of the equalizing transistors by splitting the memory array into the plurality of memory blocks. Therefore, a load, i.e. the number of the transistors QE 0 -QE m to be driven by each of the second stage sections is greatly reduced and the length of the respective control lines BEQ 0 -BEQ m is also reduced. Therefore, the output of each second stage section is transmitted to the gates of the equalizing transistors at a high speed and equalizing operation of the bit lines is performed at a high speed.
  • FIG. 5 shows a modification of the embodiment of FIG. 4, as a second embodiment. According to this modification, a pair of precharge transistors of P-channel type Q p1 and Q p2 are inserted between each pair of bit lines and a precharge potential source V p .
  • a plurality of second stage sections 1B 0 '-1B m ' are provided for the memory blocks BL 0 -BL m , respectively.
  • the second stage section 1B 0 ' includes NAND gates 41, 42 and inverters 44, 45. Namely, the second section 1B 0 ' is obtained by removing the NAND gate 43 and the inverter 46 of the second section 1B 0 of FIG. 4. While in place of the NAND gate 43 and the inverter 46 of FIG.
  • two equalizing transistors (P-channel type) Q E0-1 and Q E0-2 are connected between each pair of bit lines of the block BL 0 and the outputs of the inverters 45 and 44 are supplied to the gates of the transistors Q E0-1 and Q E0-2 through control lines BEQ 00 and BEQ 01 , respectively.
  • the pair of transistors QE 0-1 and QE 0-2 provided for each pair of bit lines perform a logical sum function with respect to the outputs (BEQ 00 , BEQ 01 ) of the inverters 44 and 45.
  • BE m ' and other memory blocks such as BL m are constructed similarly.
  • This embodiment is advantageous in that the number of circuit elements can be reduced by employing the pair of equalizing transistors in place of the logical sum circuit corresponding to the circuit 11-7 of FIG. 1.
  • This memory device is obtained by combining the memory structure of FIG. 3 and the embodiment of FIG. 6. Namely, the block selection signals BS 0 -BS m for selecting the memory block to be accessed are also applied to the second stage sections 1B 0 "-1B m ". For example, the block-selection signal BS 0 is inputted to NAND gates 41' and 42" of the section 1B 0 ". If the block selection signal BS 0 is at the high level and the memory block BL 0 is selected, the second section 1B 0 " operates in the same manner as the section 1B 0 ' of FIG. 6.
  • the selection signals such as BS m is at the low level. Therefore, the levels of the control lines BEQ m0 , BEQ m1 are at the low levels and all the equalizing transistors QE m-1 , QE m-2 are conductive throughout this state, irrespective of the outputs of the first stage section 1A. Thus, only the block BL 0 is subjected to the access operation through the equalizing operation. This construction enables the reduction of power consumption, as described on the prior-art example in FIG. 3.
  • the present invention has excellent effects that the wiring length in the logical sum circuit can be shortened, and the number of logic stages can be reduced. Consequently, a time required from the transition of an address to the turn-ON of the potential-equalizing transistor can be shortened, thus making it possible to make high the speed of access to the static memory.
  • the number of the ATD circuits is assumed to be eight and that of the main potential-equalizing signal lines to be four in the description of the present embodiments, these numbers can be varied, of course.
  • the circuit to take the logical sum is constructed of NANDs and inverters therein, because the ATD circuit output is assumed to be a pulse having a peak projecting downward.
  • Another circuit having an equivalent function may be employed, of course, in this relation within a scope not impairing the effects of the present invention.
  • the chip size tends to increase as the demand for static memories to be of large capacity and high speed, and therefore the potential equalization of bit lines by using ATDs becomes a technique of increased importance.
  • the effects of the present invention are very great, since it enables the high-speed generation of the potential-equalizing signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)

Abstract

An asynchronous type static memory device in which a plurality of pairs of bit lines are equalized upon change of address signals at a high speed is disclosed. The memory device comprises a plurality of memory blocks having a plurality of pairs of bit lines and a plurality of equalizing circuits provided for the plurality of pairs of bit lines, a plurality of address terminals receiving address signals, and an address transistion detecting circuit having a plurality of detection units, each of the detection units being coupled to one of the address terminals and generating a detecting signal when the signal at the associated address terminal coupled thereto is changed, a first logic section for generating a first number of intermediate logic signals for performing logical sum with respect to outputs of the detection units, the first number being smaller than the number of the detection units, and a plurality of second logic sections provided for the plurality of memory blocks respectively, each of the second logic sections operatively generating a control signal for enabling the equalizing circuits associated therewith as a result of performing a logical sum of the intermediate logic signals.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a semiconductor memory device formed on a semiconductor substrate, and more particularly to an asynchronous type static memory device having a precharge signal generating circuit for generating a precharge signal upon a change in address signals.
2. Description of the Related Art
Static memory devices comprise a memory array of memory cells for storing data in the form of binary logic levels. A memory cell to be selected for reading or writing is identified by row and column address applied to the memory. In particular, a memory cell is accessed by means of a word line and a pair of bit lines selected by a row address and a column address, respectively. In operation, each of the bit lines is set at a level according to data stored in the memory cell connected thereto and to a selected word line, and thus if a bit line has a low logic level after reading the data in a first memory cell, this bit line has to change to a high logic level on reading the opposite data from next memory cell. In this case, a significant time is required for the bit line to accomplish such a change in logic levels, thereby limiting the operation speed. In order to avoid the above problem, equalization of potentials at each pair of bit lines is performed prior to each access operation.
In an asynchronous type static memory which does not receive any clock or timing signal, such equalization of the bit lines is performed by detecting change in address signals by an address transition detecting (ATD) circuit. An example of this technique is disclosed in U.S. Pat. No. 4,355,377 issued to Rahul Sud et al. According to this technique, bit lines are equalized in potential before read data out of a memory cell, by a potential-equalizing signal generated in accordance with an output of the ATD circuit which detects the change of an address and generates a one-shot precharge signal, and thereby a reading speed is increased.
Since the memory receives a plurality of address signals and change in any one of the address signals causes the change in the address to be accessed, the ATD circuit is adopted to generate the one-shot precharge signal when any one of the address signals is changed in levels. Therefore, the ATD circuit is constructed by a plurality of detection units and a logical sum (OR) circuit receiving output from all the detection units. Each of the detection units is supplied with each one of address signals, and generates an active level of output signal upon change in levels of the supplied address signal.
The logical sum circuit generates the one-shot precharge signal when at least one of the detection units generates the active level of output signal. The output of the logical sum circuit, i.e. the one-shot precharge signal is applied to all the equalizing or precharge driver circuits provided to the plurality of bit line pairs, and the number of the bit lines of the recent memory having a large memory capacity such as 1 mega bits or more, is very large. Therefore, in the conventional static memory, a length of a control wiring for carrying the one-shot precharge signal to the precharge driver circuit from the ATD circuit, particularly the logical sum circuit is very long. Accordingly, the above control wiring inevitably has a large stray capacitance and a large load capacitance. As a result, it is difficult to apply a sufficient level of the one-shot precharge signal to the precharge drive circuit from the ATD circuit at a high speed through the control wiring, in the conventional memory. Thus, it is difficult to achieve a high speed precharge operation in the conventional memory.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a static memory device provided with an improved bit line precharging arrangement operable at a high speed.
It is another object of the present invention to provide an asynchronous type static memory provided with an improved address transition detecting circuit suitable for a large memory capacity.
A static memory device according to the present invention comprises a plurality of memory blocks, each of the memory blocks including a plurality of pairs of bit lines, a plurality of equalizing circuits provided for equalizing the pairs of bit lines and, a plurality of static memory cells coupled to the bit lines; a plurality of address terminals for receiving address signals; a plurality of address transition detecting units, each of the detecting units being coupled to one of the address terminals for operatively generating a detection signal at its output terminal when the address signal received by the associated address terminal is changed; a first logic section for operatively generating a first number of intermediate logic signals representing a logical sum of logic levels at the output terminals of the plurality of detection units, the first number being smaller than the number of the detection units; a plurality of second logic sections provided for the memory blocks, each of the second logic sections generating a control signal representing a logical sum of the intermediate logic signals, and a plurality of control means provided for the memory blocks, each of the control means enabling the equalizing circuits of the associated memory block when the control signal generated by the associated second logic section is at an active level.
According to the present invention, a plurality of pairs of bit lines and a plurality of equalizing circuits for equalizing pairs of bit lines are divided into a plurality of memory blocks, and each of the memory blocks is provided with the independent second logic section generating the control signal as a result of the logical sum of the intermediate logic signal. Thus, each of the second logic sections drive a small number of the equalizing circuits which number is reduced by the factor of the number of memory blocks. Accordingly, the equalizing circuits can be driven at a high speed.
BRIEF DESCRIPTION OF THE DRAWINGS
The above and further objects, features and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings, wherein:
FIG. 1 is a schematic block diagram showing a first example of the conventional static memory;
FIG. 2 is a schematic block diagram showing an address transition detection unit;
FIG. 3 is a schematic block diagram showing a second example of the conventional static memory;
FIG. 4 is a schematic block diagram of a static memory device according to a first preferred embodiment of the present invention;
FIG. 5 is a schematic block diagram of the static memory device according to a second embodiment of the present invention;
FIG. 6 is a schematic block diagram showing the static memory device according to a third embodiment of the present invention; and
FIG. 7 is a schematic block diagram showing the memory device according to a fourth embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION Prior Art
With reference to FIG. 1, an example of the static memory device in the prior art will be explained briefly.
A plurality of static type memory cells (c) 21 are arranged in a matrix form of rows and columns, and a plurality of word lines W0 -Wi and a plurality of bit line pairs B0 -Bj, Bj are arranged in rows and columns, respectively in a known way. The word lines are coupled to a row decoder 20 receiving row address signals A0 -A7. A plurality of P-channel MOS transistors QE are provided for the bit line pairs for equalizing a pair of bit lines in the respective bit line pairs by short-circuiting them in response to an equalize control signal EQ supplied from an address detection (ATD) circuit 1 through a control wiring 30.
The ATD circuit 1 includes a change detection units 10-0 to 10-7 coupled to receive the address signals A0 to A7 respectively, and a plurality of logical sum circuits 11-1 to 11-7. Each of the detector units generates a low level of output signal as a change detection signal when the address signal associated thereto is changed in levels. Each of the circuits 11-1 to 11-7 includes a NAND gate NG and an inverter INV. A resultant logical sum of all the outputs of the detection units 10-0 to 10-7 is generated through the circuits 11-1 to 11-6 from the output of the circuit 11-7. Thus, when at least one of the address signals A0 -A7 is changed, a low level of the equalize control signal EQ from the circuit 11-7 so that each pair of bit lines are equalized to the same intermediate level.
An example of the detection unit 10-i is shown in FIG. 2. The detection unit includes inverters IV1 -IV6, delay circuits DL1, DL2 and NAND gates NG1, NG2, NG3, as illustrated in FIG. 2.
Another example of the conventional memory is shown in FIG. 3.
This example is such as disclosed in IEEE Journal of Solid-State Circuits, Vol. SC-21, No. 5, October 1986, pp. 692 to 702. In this example, the array of memory cells is divided into a plurality of memory blocks BL0 -BLm, and the equalizing transistors QE0 -QEm are separately controlled by BEQ0 -BEQm according to the blocks thereof. In order to select one of the blocks, block selection signals BS0 -BSm are applied to the blocks BL0 -BLm, respectively. When the block BL0 is to be selected, the selection signal BS0 is at a high level so that one of block word lines BWoo-BWoi is selected in accordance with the selected main word line. Also, the low active signal EQ is grated through a NAND gate NGA and an inverter IVA as BEQ0 upon change in the address signals so that the bit line pairs Boo, Boo-Bol, Bol of the block BL0 are equalized in a pulsed manner prior to a read operation. While, in other blocks such as BLm, the selection signal BSm is at a low level and the signal BEQm is continuously at the low level irrespective of EQ so that the transistors QEm are continuously rendered conductive. Thus, the bit line pairs of the non-selected blocks are equalized in a static manner.
In the conventional memory of FIG. 1, the equalizing transistors QE are driven directly by the signal EQ obtained by taking the logical sum of all the detection unit outputs, while in the circuit of FIG. 3, equalizing transistors QE0 -QEm are driven by signals BEQ0 to BEQm which are obtained by summing up logically the signal EQ obtained by the ATD circuit 1 and the selection signal BS0 to BSm for selecting one memory block. The characteristic feature of this circuit is that, since only some of the equalizing transistors e.g. QE0 are driven, the gate capacitance of the transistor QE0 decreases proportional to the number of the blocks and therefore the consumption of power can be reduced in the operation of equalizing the potential.
The prior-art static memories described above have a construction wherein the signal obtained by taking the logical sum of all the detection units is distributed substantially to all bit lines. Therefore the lengths of the control wiring 30 is long, and the number of stages of the logic circuits required until a potential-equalizing signal is obtained is large, which results in a fault that the time of delay caused in a process from the transition of an address to the generation of the signal EQ is long. Moreover, the chip size of the static memory tends to be large, as the capacity thereof becomes large, and the above-mentioned output wiring length of the ATD circuit becomes longer and longer, which turns to be a large impediment now on the occasion when the signal EQ is generated at high speed.
Embodiments
With reference to FIG. 4, the static memory device according to a first embodiment of the present invention will be explained.
In FIG. 4, the elements or portions corresponding to those in FIGS. 1 and 4 are denoted by the same or similar references and detailed description therefor will be omitted.
As shown in FIG. 4, the ATD circuit 1 of FIGS. 1 and 4 is split into a first stage section 1A and a plurality of second stage sections 1B0 -1Bm provided in accordance with the memory blocks BL0 -BLm, respectively.
The first stage section 1A includes the change detection units 10-0 to 10-7 coupled to the row address inputs A0 to A7 and the logical sum circuits 11-1 to 11-4. Each of the second stage sections 1B0 -1Bm includes NAND gates 41, 42, 43 and inverters 44, 45, 46 and produces a logical sum with respect to the outputs of the first stage section 1A supplied through control wirings MEQ0 -MEQ3. In other words, each of the second stage section serves as the logical sum circuits 11-5, 11-6 and 11-7 of FIG. 1. Thus, when at least one of the address signals A0 -A7 is changed, all the second stage sections IB0 -IBm generate low (active) level of outputs to control lines BEQ0 -BEQm and therefore the equalizing transistors QE0 -QEm of all the blocks BL0 -BLm are rendered conductive simultaneously to equalize the respective pairs of bit lines.
According to the present embodiment, each of the second stage sections drives a reduced number of the equalizing transistors by splitting the memory array into the plurality of memory blocks. Therefore, a load, i.e. the number of the transistors QE0 -QEm to be driven by each of the second stage sections is greatly reduced and the length of the respective control lines BEQ0 -BEQm is also reduced. Therefore, the output of each second stage section is transmitted to the gates of the equalizing transistors at a high speed and equalizing operation of the bit lines is performed at a high speed.
FIG. 5 shows a modification of the embodiment of FIG. 4, as a second embodiment. According to this modification, a pair of precharge transistors of P-channel type Qp1 and Qp2 are inserted between each pair of bit lines and a precharge potential source Vp.
With reference to FIG. 6, the static memory device according to a third embodiment of the present invention will be explained.
According to this embodiment, a plurality of second stage sections 1B0 '-1Bm ' are provided for the memory blocks BL0 -BLm, respectively. The second stage section 1B0 ' includes NAND gates 41, 42 and inverters 44, 45. Namely, the second section 1B0 ' is obtained by removing the NAND gate 43 and the inverter 46 of the second section 1B0 of FIG. 4. While in place of the NAND gate 43 and the inverter 46 of FIG. 4, two equalizing transistors (P-channel type) QE0-1 and QE0-2 are connected between each pair of bit lines of the block BL0 and the outputs of the inverters 45 and 44 are supplied to the gates of the transistors QE0-1 and QE0-2 through control lines BEQ00 and BEQ01, respectively.
Therefore, the pair of transistors QE0-1 and QE0-2 provided for each pair of bit lines perform a logical sum function with respect to the outputs (BEQ00, BEQ01) of the inverters 44 and 45.
Other second stage sections such as BEm ' and other memory blocks such as BLm are constructed similarly. This embodiment is advantageous in that the number of circuit elements can be reduced by employing the pair of equalizing transistors in place of the logical sum circuit corresponding to the circuit 11-7 of FIG. 1.
With reference to FIG. 7, the memory device according to a fourth embodiment of the present invention will be explained.
This memory device is obtained by combining the memory structure of FIG. 3 and the embodiment of FIG. 6. Namely, the block selection signals BS0 -BSm for selecting the memory block to be accessed are also applied to the second stage sections 1B0 "-1Bm ". For example, the block-selection signal BS0 is inputted to NAND gates 41' and 42" of the section 1B0 ". If the block selection signal BS0 is at the high level and the memory block BL0 is selected, the second section 1B0 " operates in the same manner as the section 1B0 ' of FIG. 6.
While in other memory blocks such as BLm and the second sections such as 1Bm ", the selection signals such as BSm is at the low level. Therefore, the levels of the control lines BEQm0, BEQm1 are at the low levels and all the equalizing transistors QEm-1, QEm-2 are conductive throughout this state, irrespective of the outputs of the first stage section 1A. Thus, only the block BL0 is subjected to the access operation through the equalizing operation. This construction enables the reduction of power consumption, as described on the prior-art example in FIG. 3.
Effect of the invention
By the construction described above wherein the ATDs are divided into two or more groups, the potential-equalizing signal being generated for each of the divided groups, while the memory cell arrays are divided into two or more memory cell array blocks, the circuit to take the logical sum of the two or more potential-equalizing signals and to generate the block potential-equalizing signal being provided for each of the divided memory cell array blocks, and the potential-equalizing transistor is driven by the block potential-equalizing signal, the present invention has excellent effects that the wiring length in the logical sum circuit can be shortened, and the number of logic stages can be reduced. Consequently, a time required from the transition of an address to the turn-ON of the potential-equalizing transistor can be shortened, thus making it possible to make high the speed of access to the static memory.
While the number of the ATD circuits is assumed to be eight and that of the main potential-equalizing signal lines to be four in the description of the present embodiments, these numbers can be varied, of course. In addition, the circuit to take the logical sum is constructed of NANDs and inverters therein, because the ATD circuit output is assumed to be a pulse having a peak projecting downward. Another circuit having an equivalent function may be employed, of course, in this relation within a scope not impairing the effects of the present invention.
As already stated, the chip size tends to increase as the demand for static memories to be of large capacity and high speed, and therefore the potential equalization of bit lines by using ATDs becomes a technique of increased importance. In such a tendency, the effects of the present invention are very great, since it enables the high-speed generation of the potential-equalizing signal.

Claims (5)

What is claimed is:
1. A static memory device comprising:
a plurality of memory blocks, each of said memory blocks including a plurality of pairs of bit lines, a plurality of equalizing circuits, each of said equalizing circuits, having a control terminal, and being for equalizing the associated pair of bit lines of the same memory block in response to an active level applied to said control terminal, and a plurality of static memory cells coupled to said bit lines;
a plurality of address terminals for receiving address signals;
a plurality of address transition detecting units, each of said address transition detecting units being coupled to one of said address terminals for operatively generating a detection signal at its output terminal when the address signal received by the associated address terminal is changed;
a plurality of control signal lines extending along said plurality of memory blocks;
a plurality of first logic-sum circuits having a plurality of input ends coupled to the output terminals of at least two of said address transition detecting units and an output end generating a first logic signal representing a logic sum of the input ends thereof, said output end of each one of said logic-sum circuits being coupled to each one of said control signal lines;
a plurality of second logic-sum circuits each provided for each of said plurality of memory blocks, each of said second logic-sum circuits having a plurality of input ends coupled to said plurality of control signal lines and an output end generating a second logic signal representing a logic sum of levels at the input ends thereof; and
a plurality of connection means for operatively coupling said address transition detection units with said equalizing circuits, each provided for each of said memory blocks, each of said connection means applying the active level to the control terminal of the associated equalizing circuit when at least one of said address transition detecting units generates said detection signal.
2. The static memory according to claim 1, in which a number of said control signal lines and a number of said first logic-sum circuits are a first number which is smaller than the number of said address terminals.
3. The static memory device according to claim 1, in which each of said equalizing circuits includes a field effect transistor having a source-drain path connected between each pair of bit lines.
4. The static memory device according to claim 1, further comprising a plurality of word lines extending through said plurality of memory blocks and coupled to said memory cells and a row selection circuit for selecting one of said word lines in response to said address signals.
5. The static memory device according to claim 1, further comprising means for selecting one of said memory blocks and means for enabling one of said second logic-sum circuits associated with the selected memory block.
US07/400,309 1988-08-29 1989-08-29 Static memory device provided with a signal generating circuit for high-speed precharge Expired - Lifetime US5029142A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63214209A JP2805761B2 (en) 1988-08-29 1988-08-29 Static memory
JP63-214209 1988-08-29

Publications (1)

Publication Number Publication Date
US5029142A true US5029142A (en) 1991-07-02

Family

ID=16652040

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/400,309 Expired - Lifetime US5029142A (en) 1988-08-29 1989-08-29 Static memory device provided with a signal generating circuit for high-speed precharge

Country Status (4)

Country Link
US (1) US5029142A (en)
EP (1) EP0356983B1 (en)
JP (1) JP2805761B2 (en)
DE (1) DE68924686T2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255242A (en) * 1990-12-17 1993-10-19 Texas Instruments Incorporated Sequential memory
US5594700A (en) * 1990-12-17 1997-01-14 Texas Instruments Incorporated Sequential memory
US20070159900A1 (en) * 2006-01-11 2007-07-12 Mamoru Aoki Semiconductor memory device and method of testing the same
US20140160833A1 (en) * 2011-08-24 2014-06-12 Panasonic Corporation Semiconductor memory device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0474384A (en) * 1990-07-17 1992-03-09 Toshiba Corp Semiconductor integrated circuit device
JPH04178996A (en) * 1990-11-13 1992-06-25 Kawasaki Steel Corp Semiconductor storage device
JP3253310B2 (en) * 1991-02-19 2002-02-04 株式会社東芝 Luminance signal / color signal separation circuit
US6163495A (en) * 1999-09-17 2000-12-19 Cypress Semiconductor Corp. Architecture, method(s) and circuitry for low power memories

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751680A (en) * 1986-03-03 1988-06-14 Motorola, Inc. Bit line equalization in a memory
US4787068A (en) * 1986-04-02 1988-11-22 Mitsubishi Denki Kabushiki Kaisha MOS-type memory circuit
US4843596A (en) * 1986-11-29 1989-06-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device with address transition detection and timing control

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4636991A (en) * 1985-08-16 1987-01-13 Motorola, Inc. Summation of address transition signals
JPH0640439B2 (en) * 1986-02-17 1994-05-25 日本電気株式会社 Semiconductor memory device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751680A (en) * 1986-03-03 1988-06-14 Motorola, Inc. Bit line equalization in a memory
US4787068A (en) * 1986-04-02 1988-11-22 Mitsubishi Denki Kabushiki Kaisha MOS-type memory circuit
US4843596A (en) * 1986-11-29 1989-06-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device with address transition detection and timing control

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255242A (en) * 1990-12-17 1993-10-19 Texas Instruments Incorporated Sequential memory
US5594700A (en) * 1990-12-17 1997-01-14 Texas Instruments Incorporated Sequential memory
US20070159900A1 (en) * 2006-01-11 2007-07-12 Mamoru Aoki Semiconductor memory device and method of testing the same
US7443748B2 (en) * 2006-01-11 2008-10-28 Elpida Memory, Inc. Semiconductor memory device and method of testing the same
US20140160833A1 (en) * 2011-08-24 2014-06-12 Panasonic Corporation Semiconductor memory device

Also Published As

Publication number Publication date
EP0356983B1 (en) 1995-11-02
EP0356983A2 (en) 1990-03-07
DE68924686D1 (en) 1995-12-07
EP0356983A3 (en) 1991-03-20
JP2805761B2 (en) 1998-09-30
DE68924686T2 (en) 1996-05-15
JPH0262789A (en) 1990-03-02

Similar Documents

Publication Publication Date Title
US5724291A (en) Semiconductor memory device with reduced chip area
KR970011133B1 (en) Semiconductor memory
US4817057A (en) Semiconductor memory device having improved precharge scheme
US4972373A (en) Precharge system in a SRAM
US4222112A (en) Dynamic RAM organization for reducing peak current
US4449207A (en) Byte-wide dynamic RAM with multiplexed internal buses
US4125878A (en) Memory circuit
US4644501A (en) Semiconductor memory device with charging circuit
JPH0713872B2 (en) Semiconductor memory device
KR910002931B1 (en) Memory circuit and sum address transition signal supply method
US4627033A (en) Sense amplifier with reduced instantaneous power
US4951259A (en) Semiconductor memory device with first and second word line drivers
US4608670A (en) CMOS sense amplifier with N-channel sensing
US4241425A (en) Organization for dynamic random access memory
US6108254A (en) Dynamic random access memory having continuous data line equalization except at address transition during data reading
US4926384A (en) Static ram with write recovery in selected portion of memory array
US20240274174A1 (en) Memory device and method of operating the same
US5387827A (en) Semiconductor integrated circuit having logic gates
US5029142A (en) Static memory device provided with a signal generating circuit for high-speed precharge
US5295111A (en) Dynamic random access memory device with improved power supply system for speed-up of rewriting operation on data bits read-out from memory cells
US5392242A (en) Semiconductor memory device with single data line pair shared between memory cell arrays
JPS6177194A (en) Semiconductor memory device
KR910002964B1 (en) Semiconductor Memory with Divided Bit Load and Data Bus Lines
US4878201A (en) Semiconductor memory device having an improved timing signal generator for the column selection circuit
US5295104A (en) Integrated circuit with precharged internal data bus

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ANDO, MANABU;REEL/FRAME:005168/0832

Effective date: 19890829

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: NEC ELECTRONICS CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEC CORPORATION;REEL/FRAME:013758/0440

Effective date: 20021101