US4950225A - Method for extracorporeal blood shear treatment - Google Patents
Method for extracorporeal blood shear treatment Download PDFInfo
- Publication number
- US4950225A US4950225A US07/247,767 US24776788A US4950225A US 4950225 A US4950225 A US 4950225A US 24776788 A US24776788 A US 24776788A US 4950225 A US4950225 A US 4950225A
- Authority
- US
- United States
- Prior art keywords
- blood
- extracorporeal
- treatment
- cells
- human subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000004369 blood Anatomy 0.000 title claims abstract description 150
- 239000008280 blood Substances 0.000 title claims abstract description 150
- 238000000034 method Methods 0.000 title claims abstract description 40
- 238000011282 treatment Methods 0.000 title abstract description 51
- 241000282414 Homo sapiens Species 0.000 claims abstract description 10
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229960002897 heparin Drugs 0.000 claims abstract description 9
- 229920000669 heparin Polymers 0.000 claims abstract description 9
- 210000004698 lymphocyte Anatomy 0.000 claims abstract description 7
- 230000005012 migration Effects 0.000 claims abstract description 4
- 238000013508 migration Methods 0.000 claims abstract description 4
- 239000013043 chemical agent Substances 0.000 claims abstract 3
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 230000003993 interaction Effects 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 2
- 230000005855 radiation Effects 0.000 abstract description 15
- 238000011277 treatment modality Methods 0.000 abstract description 14
- 230000002977 hyperthermial effect Effects 0.000 abstract description 7
- 210000001744 T-lymphocyte Anatomy 0.000 abstract description 5
- 230000001939 inductive effect Effects 0.000 abstract description 5
- 239000004606 Fillers/Extenders Substances 0.000 abstract description 4
- 208000015181 infectious disease Diseases 0.000 abstract description 4
- 208000035049 Blood-Borne Infections Diseases 0.000 abstract description 3
- 238000000605 extraction Methods 0.000 abstract description 3
- 210000002751 lymph Anatomy 0.000 abstract description 3
- 241000725303 Human immunodeficiency virus Species 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 25
- 210000002433 mononuclear leukocyte Anatomy 0.000 description 19
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 17
- 210000000265 leukocyte Anatomy 0.000 description 17
- 210000000601 blood cell Anatomy 0.000 description 15
- 241000700605 Viruses Species 0.000 description 12
- 238000006213 oxygenation reaction Methods 0.000 description 12
- 208000031886 HIV Infections Diseases 0.000 description 11
- 210000002381 plasma Anatomy 0.000 description 11
- 239000003146 anticoagulant agent Substances 0.000 description 10
- 229940127219 anticoagulant drug Drugs 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 208000030507 AIDS Diseases 0.000 description 7
- 244000005700 microbiome Species 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 230000003068 static effect Effects 0.000 description 6
- 230000001225 therapeutic effect Effects 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 230000003134 recirculating effect Effects 0.000 description 4
- 230000003612 virological effect Effects 0.000 description 4
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 239000012510 hollow fiber Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 206010053567 Coagulopathies Diseases 0.000 description 2
- 241001136003 Human T-lymphotropic virus 3 Species 0.000 description 2
- 241000282342 Martes americana Species 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000035602 clotting Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000009849 deactivation Effects 0.000 description 2
- 210000003191 femoral vein Anatomy 0.000 description 2
- 208000026278 immune system disease Diseases 0.000 description 2
- 230000003308 immunostimulating effect Effects 0.000 description 2
- 230000000415 inactivating effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- IJRKANNOPXMZSG-SSPAHAAFSA-N 2-hydroxypropane-1,2,3-tricarboxylic acid;(2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC(=O)CC(O)(C(O)=O)CC(O)=O IJRKANNOPXMZSG-SSPAHAAFSA-N 0.000 description 1
- 206010001513 AIDS related complex Diseases 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010020843 Hyperthermia Diseases 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 208000008771 Lymphadenopathy Diseases 0.000 description 1
- 206010025280 Lymphocytosis Diseases 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000010100 anticoagulation Effects 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- UIZLQMLDSWKZGC-UHFFFAOYSA-N cadmium helium Chemical compound [He].[Cd] UIZLQMLDSWKZGC-UHFFFAOYSA-N 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 230000002612 cardiopulmonary effect Effects 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 238000002618 extracorporeal membrane oxygenation Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- 230000000222 hyperoxic effect Effects 0.000 description 1
- 230000036031 hyperthermia Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 208000018555 lymphatic system disease Diseases 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000011034 membrane dialysis Methods 0.000 description 1
- 238000011228 multimodal treatment Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 238000002616 plasmapheresis Methods 0.000 description 1
- 210000004180 plasmocyte Anatomy 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3601—Extra-corporeal circuits in which the blood fluid passes more than once through the treatment unit
- A61M1/3603—Extra-corporeal circuits in which the blood fluid passes more than once through the treatment unit in the same direction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3681—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by irradiation
- A61M1/3683—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by irradiation using photoactive agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3681—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by irradiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/369—Temperature treatment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/05—General characteristics of the apparatus combined with other kinds of therapy
- A61M2205/051—General characteristics of the apparatus combined with other kinds of therapy with radiation therapy
- A61M2205/053—General characteristics of the apparatus combined with other kinds of therapy with radiation therapy ultraviolet
Definitions
- This invention relates generally to a method and apparatus for extracorporeal blood treatment. More particularly, the invention provides a method and apparatus for treating certain disease states by way of an extracorporeal circuit capable of simultaneously and/or intermittently carrying out three separate treatment modalities.
- HIV-1 has previously been known by several names including AIDS-related virus (ARV), Human T-Lymphotropic Virus-Type 3 (HTLV-3), and Lymphadenopathy-Associated Virus (LAV).
- ARV AIDS-related virus
- HTLV-3 Human T-Lymphotropic Virus-Type 3
- LAV Lymphadenopathy-Associated Virus
- the HIV-1 is associated with virtually all presently reported AIDS cases in the United States. It is noted, however, that a second HIV variant, known as Human Immunodeficiency Virus-Type 2 (HIV-2) has also been identified. HIV-2 shares similar biological properties with HIV-1 and is known to cause AIDS in certain regions of Central Africa.
- HIV-1 shall not be construed as a limiting or narrowing of the therapeutic applicability of the invention in any way.
- a number of prior art devices are known for carrying out extracorporeal treatment of the blood. Indeed, many extracorporeal treatment methods have become well established as routine methods of treating specific conditions or diseases Examples of extracorporeal treatment methods of known effectiveness include those adapted for extracorporeal blood oxygenation, plasmapheresis, leukapheresis, membrane dialysis, electrodialysis, radiotherapy, and extracorporeal treatment by various pharmacological and chemotherapeutic agents.
- U.S. Pat. No. 3,482,575 discloses an extracorporeal blood oxygenation method wherein sodium bicarbonate is added to adjust the pH of the blood to 7.45-7.50 or higher prior to oxygenation. Such alkalization of the blood is purported to enable the blood to take up a greater amount of oxygen during the ensuing extracorporeal oxygenation process.
- U.S. Pat. No. 4,692,138 discloses a pump block which is used to interface an irradiation chamber with a roller pump. Such pump block is incorporated into an extracorporeal apparatus wherein photoactivatable agents are added to the patient's blood prior to extracorporeal irradiation of the blood. After such irradiation is completed, the blood is returned to the patient.
- U.S. Pat. No. 4,479,798 (Parks) describes a subcutaneously implantable device for warming the blood so as to raise the patient's core temperature to 41.5°-42.5° C. for the purpose of hyperthermically retarding the growth of cancer cells within the body.
- U.S. Pat. No. 4,381,004 describes a method for treating infectious and parasitic diseases whereby the patient's blood, or a fraction thereof, is treated extracorporeally with a biologically or pharmacologically active agent capable of inactivating the target microorganism. Thereafter, the inactivating agent is scavenged or removed from the blood prior to returning the blood to the patient.
- the Babb system is purported to allow the use of chemical or biological drugs which, at the doses required, would exhibit toxic or other adverse effects if administered directly to the patient.
- U.S. Pat. No. 4,540,401 (Marten) describes a means and method for removing immunoreactive compounds from blood using immunological homologes of the compound bound to the surfaces of lipid vesicles.
- the HIV-1 virus like many retroviruses, is known to be temperature labile. In fact, the HIV-1 virus has been reported to undergo thermal inactivation in certain in vitro preparations at relatively moderate temperatures. McDougal, J. S. et al., Thermal Inactivation of Acquired Immunodeficiency Syndrome Virus, Human T-Lymphotropic Virus-III/Lymphadenopathy-Associated Virus, With Special Reference to Antihemophilic Factor, Journal of Clinical Investigation, 76:875-877 (August, 1985) and Spire, B. et al., Inactivation of Lymphadenopathy-Associated Virus By Heat, Gamma Rays, and Ultraviolet Light; Lancet:188-189 (Jan. 26, 1985).
- T-lymphocytes which contain or have been infected by the HIV-1 virus may become structurally fragile.
- the possible fragility of HIV-1 infected cells suggests that such cells may be selectively disrupted or destroyed within an extracorporeal circuit by the induction of mechanical shear or be more sensitive to temperature and/or PO 2 increases or decreases or other physical agents described herein.
- X-rays and other types of radiant energy may also have effects on the blood constituents and/or infecting organisms or viruses.
- the present invention provides a method and apparatus for extracorporeally treating blood by any or all of three treatment modalities.
- the three treatment modalities employed are:
- a means for subjecting whole blood or some fraction of the blood to irradiation e.g. ultraviolet, visible, infrared, x-ray, laser, or radiofrequency radiation
- irradiation e.g. ultraviolet, visible, infrared, x-ray, laser, or radiofrequency radiation
- an extracorporeal blood treatment device which is operative to adjust the temperature and pH of the blood to prescribed levels and to subsequently maintain such adjusted temperature and pH while holding the blood under static or low flow conditions for a period of time sufficient to bring about a desired therapeutic effect, such as deactivation of an infecting virus.
- the device will include means for extracorporeally separating and isolating selected blood cells, such as mononuclear leukocytes, and subjecting the isolated cells to selected types and doses of radiant energy (e.g. x-ray, UV, IR, visible, laser and/or radiofrequency) prior to recombining the treated cells with the remaining blood plasma and/or other formed elements.
- selected blood cells such as mononuclear leukocytes
- radiant energy e.g. x-ray, UV, IR, visible, laser and/or radiofrequency
- the device may include an extracorporeal recirculation loop wherein blood may be rapidly recirculated to create linear or other mechanical shear forces within the flowing blood.
- linear shear will cause selective disruption or damage to blood cells which are also being treated with hyperthermia reduced pH, etc.
- T-lymphocytes which have been infected with the HIV-1 virus may be rendered fragile by the virus. By selectively disrupting or damaging such infected cells, an independent or adjuvant therapeutic effect may be achieved.
- mechanical forces may separate or detach viral particles or "buds" which may be attached to or extend from outer surfaces of certain blood cells.
- a means for optimizing the effectiveness of the extracorporeal blood treatment(s) by administering heparin to the patient prior to extraction of the blood into the extracorporeal treatment device of the invention.
- the heparin will be given at a dose sufficient to induce or cause migration of lymphocytes from the lymph system into the circulatory system.
- the number of lymphocytes in the subsequently extracted blood will be increased, thereby rendering the extracorporeal treatment of certain lymphocyte-borne infections (e.g., HIV-1) more effective than it may otherwise have been.
- a principal object of the invention is to provide an extracorporeal device capable of treating certain pathological conditions of the blood including but not limited to infections with the HIV-1 virus.
- Another object of the invention is to provide a novel means of treating certain blood borne infections by holding the blood under variable and/or static-low flow conditions, at an elevated temperature and at a pH below 7.4, for a period of time sufficient to deactivate or destroy the infecting microorganism or virus without disturbing the physiological functioning and compatibility of the blood.
- a further object of the invention is to provide a novel method of treating certain blood borne infections by selectively damaging or disrupting cells which contain or have been affected by the infecting microorganism or virus.
- An even further object of the invention is to provide a means for prospectively delaying or preventing the development of AIDS Related Complex and/or Acquired Immune Deficiency syndrome in individuals who have been infected with the HIV-1 virus but who are currently asymptomatic.
- a still further object of the invention is to provide a means for periodically reducing the level of a virus or microorganism present in the blood of an infected individual so as to either fully irradicate the infecting virus/microorganism or maintain the virus/microorganism at subclinical levels.
- a still further object of the invention is to provide a multi-purpose extracorporeal circuit or device capable of intermittently and/or simultaneously (a) carrying out hyperthermic treatment, (b) inducing mechanical shear, and/or (c) irradiating the blood.
- An even further object of the invention is to provide a multipurpose extracorporeal circuit or device which includes means for initially separating and isolating selected blood cells and means for subsequently subjecting the isolated blood cells to specific types of radiant energy including, but not limited to, laser, ultraviolet, and/or x-ray radiation while optionally maintaining the temperature of the isolated cells within the range of approximately 41.5°-44.0° C.
- FIG. 1 is a flow diagram of a preferred method of hyperthermically treating blood in accordance with the invention
- FIG. 2 is a flow diagram of a preferred method of subjecting blood to physical shear in accordance with the present invention
- FIG. 3 is a flow diagram of a preferred method of subjecting blood to x-ray and/or UV and/or laser irradiation in accordance with the present invention.
- FIG. 4 is a schematic diagram of a preferred extracorporeal blood treatment apparatus of the present invention.
- FIG. 1 outlines a method by which the present invention may be employed to cause thermal deactivation of the temperature labile HIV-1 virus.
- the initial step is to withdraw blood 10 from the patient.
- Such withdrawal of blood is generally accomplished by insertion of a single or double lumen cannula into a sizeable vein such as the femoral vein
- an anticoagulant e.g. heparin, sodium citrate
- the extracorporeal circuit may be primed by a small amount of heparinized saline solution prior to introduction of the blood.
- the direct administration of heparin to the patient prior to withdrawal of the blood may have the effect of causing migration of lymphocytes from the lymph system into the circulatory system. See Janse, C. R. et al., Studies on Lymphocytes II: The Production of Lymphocytosis by Intravenous Heparin in Calves' Blood; 20:4, 443-52 (1962).
- the temperature of the blood is adjusted 14 to 41.0°-42.5° C. Since normal human body temperature is 37° C., the transition to the adjusted temperature of 41.0°-42.5° C. will generally require that the blood be gently warmed. Such warming of the blood is accomplished by providing a coil-type blood warmer within the extracorporeal circuit and slowly recirculating the blood through the warmer until the desired temperature has been reached.
- the pH of the blood (as measured at the elevated temperature) will be adjusted to 7.2+/-0.1.
- Such adjustment of pH is generally accomplished by raising the pCO 2 blood through the use of an extracorporeal oxygenator within the extracorporeal system.
- oxygenator may also be employed to adjust and control the PO 2 of the extracorporally circulating blood as certain effects of UV radiation are known to be significantly altered under hyperoxic conditions.
- sodium bicarbonate may be periodically added to the circulating blood to bring about increases in pH when necessary.
- Examples of commercially available blood oxygenators which may be used in connection with the extracorporeal treatment device and method of the present invention include:
- the blood is preferably maintained at such adjusted pH and temperature under static or very slow flow conditions 18.
- static or reduced flow conditions will be accomplished by slowly circulating the blood through a capacitance reservoir positioned within the extracorporeal circuit.
- Such reservoir will be sufficiently large, and the flow rate of blood into and out of the reservoir will be sufficiently low, that the blood will be permitted to reside within the capacitance reservoir under substantially static conditions.
- static or reduced flow condition, as well as the adjusted pH and temperature will be maintained for a period of time sufficient to deactivate all or a portion of the HIV-1 virus present in the blood.
- hyperthermic treatment conditions will be maintained for approximately 60 to 240 minutes.
- the blood may be returned 20 to the patient or shunted to a separate region of the extracorporeal device where it may be subjected to an alternative/adjunct treatment modality 22.
- One of the alternative/adjunct treatment modalities provided by the present invention is the induction of "mechanical shear" within the extracorporeal circuit, as outlined in the block diagram of FIG. 2.
- blood is initially withdrawn from the vein 30 or received from another portion of the extracorporeal circuit wherein the blood had previously been treated. If freshly withdrawn blood is being used, anticoagulant will be added 32 as described previously. If, however, the blood has already been subjected to treatment in another portion of the extracorporeal circuit, it will have already received anticoagulant and in all probability will not require further anticoagulant addition.
- Inert blood extenders may also be added as needed to minimize the volume of blood extracted from the patient and/or to maintain optimal functioning of the extracorporeal treatment device.
- the temperature of the blood is adjusted and maintained 34 within the approximate range of 41.0°-42.5° C.
- the blood is then recirculated rapidly in a tubular recirculation loop so as to induce linear shear 36 within the circulating blood.
- linear shear will be induced for the purpose of mechanically damaging those blood cells which may have been rendered fragile due to infection. Also, such physical forces will serve to break or interrupt the attachment of viral particles to the surfaces of blood cells.
- the induction of mechanical shear 36 is preferably accomplished by passing the blood through a tube at a relatively high flow rate. The result is that a frictional interaction will occur between the flowing blood and the inner wall of the tubing. Such frictional interaction will induce the desired linear shear forces within the circulating blood.
- the temperature of the blood may be maintained at an elevated level, such as approximately 41.0°-42.5° C.
- the blood may be (a) returned 38 to the patient or (b) shunted to another area of the extracorporeal device 40 for purposes of carrying out another alternative/adjunct treatment modality.
- the third alternative/adjunct treatment method of the present invention is the irradiation (x-ray and/or laser and/or UV) method outlined in the block diagram of FIG. 3. Again, blood is withdrawn 50 or obtained from another region of the extracorporeal circuit and anticoagulant and/or volume extenders are added 52 as needed.
- the blood is then subjected to a process whereby selected cells are separated and isolated 54.
- a process whereby selected cells are separated and isolated 54.
- Such may be achieved by simple centrifugation or by the positioning of a blood cell separator within the extracorporeal circuit.
- specific cell types may be separated from the remaining plasma and other formed elements of the blood.
- leukocytes in general may be separated from the red cells and plasma of the blood.
- mononuclear leukocytes in particular may be separated and isolated
- Examples of commercially available pheresis systems which may be employed in connection with the extracorporeal treatment method/device include: IBM 2997 Blood Cell Separator and Buffer System, Cobe Laboratories, 1185 Oak Street, Lakewood, Colo. 80215; Model 30, 30S Cell Separator, Haemonetics Corporation, 400 Wood Road, Braintree, Mass. 02184; Model CS-3006, Fenwal Division, Baxter Health Care Corp , Santa Ana, Calif.
- centrifugation techniques may be employed to separate and isolate the desired cell types.
- the isolated cells may be subjected to any or all of three preferred radiation treatments such as ultraviolet radiation 56 for the purpose of inhibiting T-lymphocytes and/or specific types of laser radiation 58 for the dual purposes of inhibiting T-lymphocytes and/or immunostimulation or stimulation of certain cell types and/or x-ray radiation 60 may also be used. Additionally, the temperature of the blood may be adjusted and controlled within the range of 41.5°-44.0° C. during these irradiation treatments to optimize the effects thereof..
- the cells may be recombined 62 with the previously separated plasma and other formed elements of the blood.
- the treated cells may be independently suspended in plasma or any suitable suspending agent which will permit reinfusion or fluidic transfer of the cells.
- the treated cells will be returned 64 to the patient or shunted to another area of the extracorporeal circuit where they will be subjected to an alternative/adjunct treatment modality 66.
- FIG. 4 A preferred multimodal extracorporeal circuit whereby each of the three previously outlined treatment methods may be separately and/or simultaneously performed is shown in FIG. 4.
- a single lumen cannula 80 is inserted into a relatively large vein of the patient, such as the femoral vein. Initially, blood is withdrawn through the cannula lumen 80 into venous drainage line 82.
- a venous drainage clamp 84 is positioned within venous drainage line 82 so as to permit stoppage of the blood flow from the patient as desired.
- a Y-adaptor 86 is positioned at one end of venous drainage line 82. The Y-adaptor 86 is provided with a latex injection port 88 through which heparin or any other anticoagulant may be introduced.
- Y-adaptor 86 at the base of the venous drainage line 82 further serves to bifurcate line 82 into a reservoir supply line 90 and an oxygenator feedline 92.
- Clamp 94 when closed, will cause the incoming blood to be passed through the oxygenator feedline 92.
- closure of clamp 96 and opening of clamp 94 will cause the incoming blood to be directed through the reservoir supply line 90 and subsequently into the reservoir 98 through inlet port 100.
- a first reservoir outlet line 102 exits the reservoir through a first outlet port 104.
- the first outlet line 102 converges with oxygenator feedline 92 at Y-adaptor 106.
- Clamp 108 when opened, permits free outflow of blood from the reservoir 98 through outlet line 102 and into oxygenator feedline 92 via Y-connector 106.
- a second reservoir outlet line 112 exits the reservoir 98 through second outlet port 114 and serves to connect the reservoir 98 to the inlet 119 of pheresis system 150.
- Blood flowing out of reservoir 98 through exit port 104 and through outlet line 102, or alternatively blood received through venous drainage line 82 and subsequently directed through oxygenator supply line 92 will be moved by pump 120 in the direction indicated by the arrow within the pump symbol.
- the pump 120 is a standard roller pump of the type used in combination with commercially available oxygenation systems (examples listed above).
- the pump 120 feeds blood into the membrane oxygenation system 122, or alternatively through a membrane oxygenation system bypass loop 124 depending on the relative opening and closing of clamps 126, 128, and 130.
- An inline blood heater 132 may be incorporated into or positioned outside of the extracorporeal membrane oxygenation unit.
- the blood heater 132 is preferably positioned on the oxygenator outlet line 134.
- the oxygenator outlet line 134 extends in a loop-like fashion to a Y-connector 136 whereby line 134 bifurcates to form (a) a patient return segment 138 and (b) an extracorporeal recirculation segment 140 Accordingly, the opening and/or closing of clamps 142 and 144 will determine whether blood flowing through oxygenator outlet line 134 is to be returned to the patient via segment 138 or shunted back into the extracorporeal circuit via segment 140.
- Blood which exits the reservoir 98 through second exit port 114 and pheresis system supply line 112 will be pumped through pump 118 into a pheresis system 150 capable of effecting separation of mononuclear leukocytes from the plasma and remaining formed elements of the blood.
- Pheresis systems of the type used herein are commercially available (examples listed above).
- the leukocytes will be suspended in a suitable extending agent such as blood plasma or anticoagulant citrate dextrose adenine (ACDA), and will pass through leukocyte separation line 152.
- a suitable extending agent such as blood plasma or anticoagulant citrate dextrose adenine (ACDA)
- ACDA anticoagulant citrate dextrose adenine
- the remaining plasma and formed elements of the blood will pass through extracorporeal return line 154.
- the plasma and formed elements passing through return line 154 will enter the membrane oxygenation system outlet line 134 via Y-connector 156 so as to be reintroduced into the mass of whole blood within the extracorporeal system.
- the separated leukocytes on the other hand will pass from the leukocyte separation line 152 into a leukocyte isolation and treatment loop circled by dotted lines and labeled "A".
- the suspended leukocytes may be held within isolation and treatment loop A by closing clamps 158 and 160. Thereafter pump 162 may be utilized to continually recirculate the suspended leukocytes within the isolation loop A which is formed generally of lines 168 and 170. A standard roller pump 162 is positioned on line 168 so as to permit controlled recirculation of the suspended leukocytes around loop A in the manner indicated by the solid arrows.
- An optional heater 164 is also positioned in line 168 so as to provide for temperature control of the suspended leukocytes within the leukocyte treatment loop A.
- a laser irradiation head 172 is positioned so as to emit laser energy into the suspended leukocytes flowing through line 170.
- the laser device through which such energy is emitted is preferably a Gallium-Arsinide, helium-cadmium, helium-neon or argon type laser, emitting energy at 90.4 nm, 441.6 nm, 633 nm, or other wavelengths which are found to have desired effects.
- an ultraviolet light source 174 is positioned so as to emit ultraviolet energy into the suspended mononuclear leukocytes passing through line 170.
- the ultraviolet light source 174 is preferably of the type described by Gunn, A. et al., in: The Destruction of Peripheral-Blood Lymphocytes by Extracorporeal Exposure To Ultraviolet Radiation; Immunology 50:477-485 (1983) (e.g. transparent plastic tubes capable of emitting shortwave UVC radiation at a wavelength of 254 nm).
- an x-ray source 173 may be positioned within the extracorporeal circuit to subject the circulating leukocytes to the effects of x-ray radiation.
- the loop may be drained by opening clamp 160 and releasing the suspended leukocytes into the oxygenator outlet line 134 through Y-connector 163.
- the treated/irradiated mononuclear leukocytes are returned to the main extracorporeal loop wherein they may undergo further treatment(s) or be returned to the patient.
- any excess, physiologically incompatable, or undesired volume of extending agents which may have been added to the blood in the extracorporeal circuit may be separated and removed, wholly or in part, prior to returning the treated blood and/or blood cells to the patient.
- the extracorporeal apparatus diagrammed in FIG. 4 is operative to separately and/or simultaneously effect one or more of the treatment methods described in FIGS. 1-3.
- the manner in which such multimodal treatment is carried out may be most easily appreciated by referring directly to FIG. 4 in accordance with the following operative description.
- clamps 81 and 83 are initially open to permit drainage of blood from the cannula lumen 80 into the venous drainage line 82.
- Clamps 84 and 94 are initially opened and clamp 96 is initially closed to permit the freshly withdrawn blood to immediately enter the extracorporeal reservoir from which it can be pumped to oxygenation system supply line 92 through the angled segment of Y-connector 86 and to heater 132 through line 134.
- a desired amount of heparin may be added through injection port 88 to effect or maintain anticoagulation of the blood within the extracorporeal circuit.
- Roller pump 120 is energized and set at a slow flow rate to slowly pump the blood into the extracorporeal device as it is withdrawn from the patient.
- the multimodal extracorporeal treatment will be begun. Extending agents may be added as needed to adjust the blood volume within the extracorporeal circuit and to avoid excessive extraction of blood from the patient.
- the device of the present invention is designed to carry out up to three separate modes of treatment. Such treatment modalities may be conducted separately or concurrently. However, in order to limit the volume of blood required within the extracorporeal circuit at any given point in time, it is generally preferable to conduct the (a) hyperthermic, (b) mechanical shear, and (c) UV/laser/x-ray irradiation treatments separately but consecutively.
- the device of the present invention is capable of conducting the three separate treatments simultaneously and/or separately in any order.
- each of the three treatment modalities will be separately described herein. Accordingly, for the purposes of this description, the operative aspects of the "mechanical shear” treatment will be described first, followed by the "hyperthermic” and “irradiation” treatments.
- the induction of mechanical shear is accomplished by opening clamps 84, 96, 128, 130, and 144 while closing clamps 126, 160, and 142.
- Pump 120 is adjusted to a relatively high flow rate of approximately 500-1500 ml/min through the 0.25 inch IV tubing such that the blood will be continually recirculated through the membrane oxygenation bypass loop 124, and through lines 134, 140, and 92 in a repetitive, generally circuitous motion.
- Such recirculation of the blood will result in continuous frictional interaction between the flowing blood and the inner wall of the tubing.
- Such frictional interaction will create sufficient linear shear to disrupt some or all of the infected cells and/or to separate viral particles from host cells or potential host cells. This continuous recirculation of the blood will continue for a period of 60-240 minutes.
- this mechanical shear treatment will be performed while the temperature of the blood is held within an elevated temperature range, such as approximately 41.0°-42.5° C.
- the temperature of the recirculating blood will be initially raised by heater 132 to 41.0°-42.5° C. Thereafter, the oxygenator bypass loop 124 will be eliminated by closing clamps 128 and 130 while opening clamp 126. The recirculating blood will then be passed directly through the oxygenator 122 wherein the pCO 2 of the blood will be increased or decreased as required to achieve a pH of 7.2+/-0.1 at the elevated temperature.
- clamps 94 and 108 When the pH and temperature of the recirculating blood has stabilized, clamps 94 and 108 will be opened and clamps 96 and 116 will be closed. As a result, the temperature/pH adjusted blood will flow into reservoir 98.
- Additional blood may be drawn into the system and treated in accordance with the above method until the volume of blood within the extracorporeal system reaches approximately 0.5-1.0 L, depending upon the size and condition of the human subject.
- clamp 108 is opened and the flow rate of blood through the oxygenator is reduced to approximately 200 ml/min.
- the condition of blood within the reservoir 98 at any given point in time will be nearly static. Nonetheless, even such reduced flow rate will be sufficient to enable maintenance of the desired temperature and pH.
- such conditions will be maintained for a period of approximately 60-240 minutes.
- the third treatment modality which is accomplished by the device shown in FIG. 4 is the treatment of white blood cells or, even more specifically, mononuclear leukocytes, by x-ray and/or laser and/or UV radiation. Such is accomplished by opening clamp 116 permitting blood to drain from reservoir 98 through secondary outlet port 114 and into the pheresis system supply line 112. The pump 118 will supply the blood to a commercial pheresis system 150 which is used to accomplish separation of selected blood cells (mononuclear leukocytes) from the remaining blood.
- the remainder of the blood is then passed through return line 154 into the oxygenation system outlet line 134 and may be directly returned to the patient by closing clamp 144 and opening clamps 142 and 83, thereby permitting the plasma, red blood cells, and other elements of the blood to flow through the cannula lumen 80 back into the patient.
- the separated and isolated mononuclear leukocytes are suspended in blood plasma or some other suitable suspending agent and are passed from the pheresis system 150 into the mononuclear leukocyte recirculation loop A.
- clamps 152 and 160 are closed and pump 162 is energized so as to continually slowly recirculate the suspended white cells through lines 168 and 70 in a loop-like fashion.
- An optional heater 164 is provided such that the desired temperature of the suspended white cells may be maintained or increased during treatment.
- the circulating mononuclear leukocytes may be held within the temperature range of 41.5°-44.0° C. while the irradiation treatment(s) are carried out. Such elevated temperature in conjunction with the irradiation treatments will optimize the therapeutic effectiveness of the devices.
- a laser source 172 may be used to direct two types of laser energy into the circulating mononuclear leukocytes as they flow through line 170.
- the slowly circulating mononuclear leukocytes may be subjected to one laser treatment to effect immunostimulation (such as 633 nm) and another to effect immuno-suppression (such as 441.6 or 904.0 nm).
- Other wavelengths may, of course, be employed as well.
- an ultraviolet light source 174 is positioned so as to emit ultraviolet radiation into the circulating mononuclear leukocytes in line 170.
- the emission of ultraviolet radiation from light source 174 will be of sufficient intensity to selectively inhibit T lymphocytes or particularly infected mononuclear leukocytes. Such ultraviolet irradiation of the circulating white blood cells will be maintained for a period of 60-240 min.
- An x-ray source 173 is also positioned within the irradiation loop so as to emit x-ray radiation into the circulating mononuclear leukocytes.
- the cells are returned to the patient by opening valve 160 and permitting the suspended mononuclear leukocytes cells to flow through lines 134, 138, and 80 back into the venous circulation.
- the previously separated red cells, plasma, and other formed elements of the blood may be initially shunted into the reservoir 98 by way of the main circuit. Thereafter, upon completion of the laser and/or ultraviolet and/or x-ray mononuclear leukocytes, such irradiation of the cells may be also be sent into reservoir 98 by way of the main circuit thereby recombining the separated mononuclear leukocytes with the remainder of the blood.
- the reconstituted blood may then be recirculated through the membrane oxygenation system and heater, may be subjected to physical shear within the above-described shear inducing recirculation loop, or may returned to the patient as reconstituted whole blood.
- the three separate treatment modalities of the present invention may be employed singularly in any order or simultaneously in any combination.
- the order and use of each of the three separate treatment modalities will be determined by the treating physician and/or perfusionist on the basis of the desired therapeutic effects and various technical factors which may be present.
Landscapes
- Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Cardiology (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- External Artificial Organs (AREA)
Abstract
Description
Claims (3)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/247,767 US4950225A (en) | 1988-09-22 | 1988-09-22 | Method for extracorporeal blood shear treatment |
US07/555,097 US5104373A (en) | 1988-09-22 | 1990-07-19 | Method and apparatus for extracorporeal blood treatment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/247,767 US4950225A (en) | 1988-09-22 | 1988-09-22 | Method for extracorporeal blood shear treatment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/555,097 Division US5104373A (en) | 1988-09-22 | 1990-07-19 | Method and apparatus for extracorporeal blood treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
US4950225A true US4950225A (en) | 1990-08-21 |
Family
ID=22936287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/247,767 Expired - Lifetime US4950225A (en) | 1988-09-22 | 1988-09-22 | Method for extracorporeal blood shear treatment |
Country Status (1)
Country | Link |
---|---|
US (1) | US4950225A (en) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5116307A (en) * | 1990-07-09 | 1992-05-26 | Collins Harvey T | Method and system for treatment of AIDS |
WO1992011059A1 (en) * | 1990-12-20 | 1992-07-09 | Baxter International Inc. | Systems and methods for simultaneously removing free and entrained contaminants in fluids like blood using photoactive therapy and cellular separation techniques |
FR2686255A1 (en) * | 1992-01-17 | 1993-07-23 | Blanie Paul | Device for extra-corporeal circulation of a liquid with a view to a treatment by a physical agent |
US5261874A (en) * | 1991-09-16 | 1993-11-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Extra-corporeal blood access, sensing, and radiation methods and apparatuses |
US5263925A (en) * | 1991-07-22 | 1993-11-23 | Gilmore Jr Thomas F | Photopheresis blood treatment |
US5290221A (en) * | 1990-12-20 | 1994-03-01 | Baxter International Inc. | Systems for eradicating contaminants using photoactive materials in fluids like blood |
US5300019A (en) * | 1990-12-20 | 1994-04-05 | Baxter International Inc. | Systems and methods for eradicating contaminants using photoactive materials in fluids like blood |
US5322506A (en) * | 1989-07-31 | 1994-06-21 | C. R. Bard, Inc. | Irrigation system with high flow bypass for use with endoscopic procedure |
US5354277A (en) * | 1992-09-04 | 1994-10-11 | Biocontrol Technology, Inc. | Specialized perfusion protocol for whole-body hyperthermia |
US5476444A (en) * | 1992-09-04 | 1995-12-19 | Idt, Inc. | Specialized perfusion protocol for whole-body hyperthermia |
US5730720A (en) * | 1995-08-18 | 1998-03-24 | Ip Scientific, Inc. | Perfusion hyperthermia treatment system and method |
WO1999037335A1 (en) * | 1998-01-23 | 1999-07-29 | Hemotherm, Inc. | Apparatuses and processes for whole-body hyperthermia |
WO2000064510A1 (en) * | 1999-04-23 | 2000-11-02 | Nephros Therapeutics, Inc. | Extracorporeal circuit and related methods |
US6579496B1 (en) | 1999-05-25 | 2003-06-17 | Viacirq, Inc. | Apparatus for implementing hyperthermia |
US6653293B1 (en) | 1992-10-23 | 2003-11-25 | Hirohide Miwa | Methods, apparatuses and medicaments for treating body fluid related diseases |
US20040186410A1 (en) * | 2003-03-17 | 2004-09-23 | Davidner Alan A. | Apparatus and method for down-regulating immune system mediators in blood |
US20040182784A1 (en) * | 2003-03-17 | 2004-09-23 | Walker Kimberly A. | Concentrator and filter based blood treatment system |
US20040185426A1 (en) * | 2003-03-17 | 2004-09-23 | Mallett Scott R. | Ultraviolet light and filter apparatus for treatment of blood |
US20040186407A1 (en) * | 2003-03-17 | 2004-09-23 | Kimberly Walker | Concentrator and filter apparatus for treatment of blood |
US20040182783A1 (en) * | 2003-03-17 | 2004-09-23 | Walker Kimberly A. | Filter and concentrator device for treatment of blood |
US20040185041A1 (en) * | 2003-03-17 | 2004-09-23 | Henna Vation, Llc | Method for extracorporeal treatment of blood |
US20040186411A1 (en) * | 2003-03-17 | 2004-09-23 | Mallett Scott R. | Irradiation and filter device for treatment of blood |
US20040186412A1 (en) * | 2003-03-17 | 2004-09-23 | Mallett Scott R. | Extracorporeal blood treatment system using ultraviolet light and filters |
US6800432B1 (en) | 1994-12-06 | 2004-10-05 | Baxter International Inc. | Apparatus and method for inactivating viral contaminants in body fluids |
US6827898B1 (en) | 1999-05-25 | 2004-12-07 | Viacirq, Inc. | Hyperthermia method and apparatus |
US7201730B2 (en) | 2003-03-17 | 2007-04-10 | Hemavation, Llc | Device and method for reducing inflammatory mediators in blood |
US20100114061A1 (en) * | 2008-10-01 | 2010-05-06 | H R D Corporation | Applying shear stress for disease treatment |
US20110251544A1 (en) * | 2008-11-12 | 2011-10-13 | Marv Enterprises Llc | Utilization of Stents for the Treatment of Blood Borne Carcinomas |
US20110295175A1 (en) * | 2010-03-16 | 2011-12-01 | Marv Enterprises Llc | Sequential Extracoporeal Treatment of Bodily Fluids |
US20120197174A1 (en) * | 2004-04-27 | 2012-08-02 | Vital Therapies, Inc. | Metabolic Detoxification System and Method |
WO2013106443A1 (en) * | 2012-01-09 | 2013-07-18 | Somerset Group Enterprises, Inc. | Modular extracorporeal systems and methods for treating blood-borne diseases |
EP2859915A1 (en) | 2013-10-10 | 2015-04-15 | Wojewodzki Szpital Specjalistyczny we Wroclawiu | Device for blood photobiomodulation during the extracorporeal circulation |
US9199026B2 (en) | 2011-01-07 | 2015-12-01 | Somerset Group Enterprises, Inc. | Modular extracorporeal systems and methods for treating blood-borne diseases |
US9216386B2 (en) | 2009-03-17 | 2015-12-22 | Marv Enterprises, LLC | Sequential extracorporeal treatment of bodily fluids |
US20190125956A1 (en) * | 2012-03-27 | 2019-05-02 | Marv Enterprises, LLC | Treatment for Athersclerosis |
US20240033408A1 (en) * | 2022-07-28 | 2024-02-01 | Cardiacassist, Inc. | Extracorporeal life support system with blood recirculation pathway |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2886771A (en) * | 1955-06-14 | 1959-05-12 | George A Rubissow | Fluid-testing device |
US3482575A (en) * | 1967-02-16 | 1969-12-09 | Single Cell Research Foundatio | Method for the extracorporeal oxygenation of blood |
US4061141A (en) * | 1969-03-21 | 1977-12-06 | Viktor Holger Hyden | Apparatus and method for selectively separating amino acids and defined proteins in blood |
US4191182A (en) * | 1977-09-23 | 1980-03-04 | Hemotherapy Inc. | Method and apparatus for continuous plasmaphersis |
US4321918A (en) * | 1979-10-23 | 1982-03-30 | Clark Ii William T | Process for suppressing immunity to transplants |
US4322275A (en) * | 1980-01-10 | 1982-03-30 | Ionics Incorporated | Fractionation of protein mixtures |
US4381004A (en) * | 1981-01-15 | 1983-04-26 | Biomedics, Inc. | Extracorporeal system for treatment of infectious and parasitic diseases |
US4479798A (en) * | 1977-05-31 | 1984-10-30 | Research Against Cancer, Inc. | Subcutaneous implant useful in effecting hyperthermic treatment |
US4540401A (en) * | 1983-02-22 | 1985-09-10 | Applied Immune Sciences, Inc. | In vivo therapeutic apheresis using lipid vesicles |
US4563170A (en) * | 1982-07-30 | 1986-01-07 | Karl Aigner | Device for in vivo purification of blood |
US4576143A (en) * | 1984-10-05 | 1986-03-18 | Clark Iii William T | Method of immune modification by means of extracorporeal irradiation of the blood |
US4692188A (en) * | 1985-10-15 | 1987-09-08 | Xerox Corporation | Preparation of ink jet compositions |
-
1988
- 1988-09-22 US US07/247,767 patent/US4950225A/en not_active Expired - Lifetime
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2886771A (en) * | 1955-06-14 | 1959-05-12 | George A Rubissow | Fluid-testing device |
US3482575A (en) * | 1967-02-16 | 1969-12-09 | Single Cell Research Foundatio | Method for the extracorporeal oxygenation of blood |
US4061141A (en) * | 1969-03-21 | 1977-12-06 | Viktor Holger Hyden | Apparatus and method for selectively separating amino acids and defined proteins in blood |
US4479798A (en) * | 1977-05-31 | 1984-10-30 | Research Against Cancer, Inc. | Subcutaneous implant useful in effecting hyperthermic treatment |
US4191182A (en) * | 1977-09-23 | 1980-03-04 | Hemotherapy Inc. | Method and apparatus for continuous plasmaphersis |
US4321918A (en) * | 1979-10-23 | 1982-03-30 | Clark Ii William T | Process for suppressing immunity to transplants |
US4321918B1 (en) * | 1979-10-23 | 1984-09-04 | ||
US4322275A (en) * | 1980-01-10 | 1982-03-30 | Ionics Incorporated | Fractionation of protein mixtures |
US4381004A (en) * | 1981-01-15 | 1983-04-26 | Biomedics, Inc. | Extracorporeal system for treatment of infectious and parasitic diseases |
US4563170A (en) * | 1982-07-30 | 1986-01-07 | Karl Aigner | Device for in vivo purification of blood |
US4540401A (en) * | 1983-02-22 | 1985-09-10 | Applied Immune Sciences, Inc. | In vivo therapeutic apheresis using lipid vesicles |
US4576143A (en) * | 1984-10-05 | 1986-03-18 | Clark Iii William T | Method of immune modification by means of extracorporeal irradiation of the blood |
US4692188A (en) * | 1985-10-15 | 1987-09-08 | Xerox Corporation | Preparation of ink jet compositions |
Non-Patent Citations (8)
Title |
---|
"Inactivation of Lymphadenopathy-Associated Virus by Heat, etc.", by B. Spire et al., The Lancet, 188-189, Jan. 26, 1985. |
"The Destruction of Peripheral-Blood Lymphocytes By Extracorporeal Exposure To Ultraviolet Radiation", by A. Gunn et al., Immunology, 50:477-485 (Jun. 6, 1983). |
"The Effect of Nondamaging Intensity Laser Irradiation On the Immune System", by V. I. Kupin et al., Neoplasma, 34:3, 325-330, 1987. |
"Thermal Inactivation of Acquired Immunodeficiency Syndrome Virus, etc.", by J. S. McDougal et al., Journal of Clinical Investigation, 76:875-877 (Aug. 1985). |
Inactivation of Lymphadenopathy Associated Virus by Heat, etc. , by B. Spire et al., The Lancet, 188 189, Jan. 26, 1985. * |
The Destruction of Peripheral Blood Lymphocytes By Extracorporeal Exposure To Ultraviolet Radiation , by A. Gunn et al., Immunology, 50:477 485 (Jun. 6, 1983). * |
The Effect of Nondamaging Intensity Laser Irradiation On the Immune System , by V. I. Kupin et al., Neoplasma, 34:3, 325 330, 1987. * |
Thermal Inactivation of Acquired Immunodeficiency Syndrome Virus, etc. , by J. S. McDougal et al., Journal of Clinical Investigation, 76:875 877 (Aug. 1985). * |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5322506A (en) * | 1989-07-31 | 1994-06-21 | C. R. Bard, Inc. | Irrigation system with high flow bypass for use with endoscopic procedure |
US5116307A (en) * | 1990-07-09 | 1992-05-26 | Collins Harvey T | Method and system for treatment of AIDS |
WO1992011059A1 (en) * | 1990-12-20 | 1992-07-09 | Baxter International Inc. | Systems and methods for simultaneously removing free and entrained contaminants in fluids like blood using photoactive therapy and cellular separation techniques |
US5536238A (en) * | 1990-12-20 | 1996-07-16 | Baxter International Inc. | Systems and methods for simultaneously removing free and entrained contaminants in fluids like blood using photoactive therapy and cellular separation techniques |
US5290221A (en) * | 1990-12-20 | 1994-03-01 | Baxter International Inc. | Systems for eradicating contaminants using photoactive materials in fluids like blood |
US5300019A (en) * | 1990-12-20 | 1994-04-05 | Baxter International Inc. | Systems and methods for eradicating contaminants using photoactive materials in fluids like blood |
US5263925A (en) * | 1991-07-22 | 1993-11-23 | Gilmore Jr Thomas F | Photopheresis blood treatment |
US5261874A (en) * | 1991-09-16 | 1993-11-16 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Extra-corporeal blood access, sensing, and radiation methods and apparatuses |
FR2686255A1 (en) * | 1992-01-17 | 1993-07-23 | Blanie Paul | Device for extra-corporeal circulation of a liquid with a view to a treatment by a physical agent |
US5354277A (en) * | 1992-09-04 | 1994-10-11 | Biocontrol Technology, Inc. | Specialized perfusion protocol for whole-body hyperthermia |
US5476444A (en) * | 1992-09-04 | 1995-12-19 | Idt, Inc. | Specialized perfusion protocol for whole-body hyperthermia |
US6653293B1 (en) | 1992-10-23 | 2003-11-25 | Hirohide Miwa | Methods, apparatuses and medicaments for treating body fluid related diseases |
US6800432B1 (en) | 1994-12-06 | 2004-10-05 | Baxter International Inc. | Apparatus and method for inactivating viral contaminants in body fluids |
US6413233B1 (en) | 1995-08-18 | 2002-07-02 | Biothermics, Inc. | Perfusion hyperthermia treatment system and method |
US5730720A (en) * | 1995-08-18 | 1998-03-24 | Ip Scientific, Inc. | Perfusion hyperthermia treatment system and method |
WO1999037335A1 (en) * | 1998-01-23 | 1999-07-29 | Hemotherm, Inc. | Apparatuses and processes for whole-body hyperthermia |
US6264680B1 (en) | 1998-01-23 | 2001-07-24 | Viacirq, Inc. | Apparatuses and processes for whole-body hyperthermia |
AU759854B2 (en) * | 1999-04-23 | 2003-05-01 | Cytopherx, Inc. | Extracorporeal circuit and related methods |
US6561997B1 (en) | 1999-04-23 | 2003-05-13 | The Regents Of The University Of Michigan | Extracorporeal fluid circuit and related methods |
AU759854C (en) * | 1999-04-23 | 2004-01-08 | Cytopherx, Inc. | Extracorporeal circuit and related methods |
US6913588B2 (en) | 1999-04-23 | 2005-07-05 | Nephros Therapeutics, Inc. | Extracorporeal fluid circuit and related methods |
WO2000064510A1 (en) * | 1999-04-23 | 2000-11-02 | Nephros Therapeutics, Inc. | Extracorporeal circuit and related methods |
US6579496B1 (en) | 1999-05-25 | 2003-06-17 | Viacirq, Inc. | Apparatus for implementing hyperthermia |
US6827898B1 (en) | 1999-05-25 | 2004-12-07 | Viacirq, Inc. | Hyperthermia method and apparatus |
US20040186411A1 (en) * | 2003-03-17 | 2004-09-23 | Mallett Scott R. | Irradiation and filter device for treatment of blood |
US7753869B2 (en) | 2003-03-17 | 2010-07-13 | Hemavation, Llc | Removal and deactivation of viruses from blood |
US20040185041A1 (en) * | 2003-03-17 | 2004-09-23 | Henna Vation, Llc | Method for extracorporeal treatment of blood |
US20040186407A1 (en) * | 2003-03-17 | 2004-09-23 | Kimberly Walker | Concentrator and filter apparatus for treatment of blood |
US20040186412A1 (en) * | 2003-03-17 | 2004-09-23 | Mallett Scott R. | Extracorporeal blood treatment system using ultraviolet light and filters |
US20040185426A1 (en) * | 2003-03-17 | 2004-09-23 | Mallett Scott R. | Ultraviolet light and filter apparatus for treatment of blood |
US20040182784A1 (en) * | 2003-03-17 | 2004-09-23 | Walker Kimberly A. | Concentrator and filter based blood treatment system |
US20040186410A1 (en) * | 2003-03-17 | 2004-09-23 | Davidner Alan A. | Apparatus and method for down-regulating immune system mediators in blood |
US20060210424A1 (en) * | 2003-03-17 | 2006-09-21 | Mallett Scott R | Extracorporeal blood treatment system using ultraviolet light and filters |
US7201730B2 (en) | 2003-03-17 | 2007-04-10 | Hemavation, Llc | Device and method for reducing inflammatory mediators in blood |
US7207964B2 (en) | 2003-03-17 | 2007-04-24 | Hemavation, Llc | Apparatus and method for down-regulating immune system mediators in blood |
US7229427B2 (en) | 2003-03-17 | 2007-06-12 | Hemavation | Irradiation and filter device for treatment of blood |
US20070190050A1 (en) * | 2003-03-17 | 2007-08-16 | Hema Vation, Llc | Apparatus and method for down-regulating immune system mediators in blood |
US20040182783A1 (en) * | 2003-03-17 | 2004-09-23 | Walker Kimberly A. | Filter and concentrator device for treatment of blood |
US20110006004A1 (en) * | 2003-03-17 | 2011-01-13 | Hemavation, Llc | Apparatus and method for down-regulating immune system mediators in blood |
US8608953B2 (en) * | 2004-04-27 | 2013-12-17 | Vital Therapies, Inc. | Metabolic detoxification system and method |
US20120197174A1 (en) * | 2004-04-27 | 2012-08-02 | Vital Therapies, Inc. | Metabolic Detoxification System and Method |
US9067008B2 (en) | 2008-10-01 | 2015-06-30 | H R D Corporation | Applying shear stress for disease treatment |
KR20150127296A (en) * | 2008-10-01 | 2015-11-16 | 에이치 알 디 코포레이션 | Applying shear stress for disease treatment |
CN102170926A (en) * | 2008-10-01 | 2011-08-31 | Hrd有限公司 | Applying shear stress for disease treatment |
US8317742B2 (en) | 2008-10-01 | 2012-11-27 | H R D Corporation | Applying shear stress for disease treatment |
US20120323223A1 (en) * | 2008-10-01 | 2012-12-20 | H R D Corporation | Applying shear stress for disease treatment |
US8475429B2 (en) * | 2008-10-01 | 2013-07-02 | H R D Corporation | Method of applying shear stress to treat brain disorders |
US20100114061A1 (en) * | 2008-10-01 | 2010-05-06 | H R D Corporation | Applying shear stress for disease treatment |
WO2010039970A3 (en) * | 2008-10-01 | 2010-07-01 | H R D Corporation | Applying shear stress for disease treatment |
US20110251544A1 (en) * | 2008-11-12 | 2011-10-13 | Marv Enterprises Llc | Utilization of Stents for the Treatment of Blood Borne Carcinomas |
US8758287B2 (en) * | 2008-11-12 | 2014-06-24 | Marv Enterprises, LLC | Utilization of stents for the treatment of blood borne carcinomas |
US9216386B2 (en) | 2009-03-17 | 2015-12-22 | Marv Enterprises, LLC | Sequential extracorporeal treatment of bodily fluids |
US20110295175A1 (en) * | 2010-03-16 | 2011-12-01 | Marv Enterprises Llc | Sequential Extracoporeal Treatment of Bodily Fluids |
US9199026B2 (en) | 2011-01-07 | 2015-12-01 | Somerset Group Enterprises, Inc. | Modular extracorporeal systems and methods for treating blood-borne diseases |
WO2013106443A1 (en) * | 2012-01-09 | 2013-07-18 | Somerset Group Enterprises, Inc. | Modular extracorporeal systems and methods for treating blood-borne diseases |
US9375525B2 (en) | 2012-01-09 | 2016-06-28 | Somerset Group Enterprises, Inc. | Modular extracorporeal systems and methods for treating blood-borne diseases |
US20190125956A1 (en) * | 2012-03-27 | 2019-05-02 | Marv Enterprises, LLC | Treatment for Athersclerosis |
EP2859915A1 (en) | 2013-10-10 | 2015-04-15 | Wojewodzki Szpital Specjalistyczny we Wroclawiu | Device for blood photobiomodulation during the extracorporeal circulation |
US20240033408A1 (en) * | 2022-07-28 | 2024-02-01 | Cardiacassist, Inc. | Extracorporeal life support system with blood recirculation pathway |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4950225A (en) | Method for extracorporeal blood shear treatment | |
US5104373A (en) | Method and apparatus for extracorporeal blood treatment | |
US4838852A (en) | Active specific immune suppression | |
US5984887A (en) | Photopheresis treatment of leukocytes | |
US7207964B2 (en) | Apparatus and method for down-regulating immune system mediators in blood | |
US4321919A (en) | Method and system for externally treating human blood | |
US7201730B2 (en) | Device and method for reducing inflammatory mediators in blood | |
WO1997036581A9 (en) | Photopheresis treatment of leukocytes | |
US5817045A (en) | Apparatus and method for enabling extracorporeal therapy of up to at least one half of a living patient's entire circulating blood supply during a continuous time interval | |
EP0910428B1 (en) | Photopheresis treatment of chronic hcv infections | |
Perotti et al. | Feasibility and safety of a new technique of extracorporeal photochemotherapy: experience of 240 procedures | |
US11571504B2 (en) | Apparatus and method for batch photoactivation of mononuclear cells | |
US20190224494A1 (en) | Apparatus and method for batch photoactivation of mononuclear cells with cryopreservation | |
US10556053B2 (en) | System for collecting mononuclear cells having a suitable hematocrit for extracorporeal photopheresis | |
Balda et al. | Extracorporeal photochemotherapy as an effective treatment modality in chronic graft‐versus‐host disease | |
US7229427B2 (en) | Irradiation and filter device for treatment of blood | |
Sniecinski | Extracorporeal photochemotherapy: a scientific overview | |
US11197924B2 (en) | Photochemical preparation method for autologous plasma inactivated vaccine for treating AIDS | |
US11364330B2 (en) | System and method for facilitating extracorporeal inactivation of pathogens of blood products | |
US11679193B2 (en) | System and method of collecting and infusing an apoptotic white blood cell component and a transplant component | |
Andrzejewski Jr et al. | Benefit of a 37° C extracorporeal circuit in plasma exchange therapy for selected cases with cold agglutinin disease | |
RU2152788C1 (en) | Method of extracorporal immunocorrection in children with suppurative-septic diseases | |
Snyder | Transfusion reactions: state-of-the-art 1994 | |
OA20067A (en) | Photochemical preparation method for autologous plasma inactivated vaccine for treating aids. | |
RU2228531C2 (en) | Method for applying therapeutic treatment to organism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AMERICAN IMMUNO TECH, INC., 159 BUTLER COURT, CLAR Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:DAVIDNER, ALAN A.;ROOHK, HENRY V.;LECHTMAN, MAX D.;REEL/FRAME:004977/0392 Effective date: 19881025 Owner name: AMERICAN IMMUNO TECH, INC., A CA CORP., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DAVIDNER, ALAN A.;ROOHK, HENRY V.;LECHTMAN, MAX D.;REEL/FRAME:004977/0392 Effective date: 19881025 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: AMERICAN IMMUNO TECH, L.L.C., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMERICAN IMMUNO TECH, INC.;REEL/FRAME:007779/0595 Effective date: 19960118 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
AS | Assignment |
Owner name: HEMAVATION, LLC, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AMERICAN IMMUNO TECH, INC.;REEL/FRAME:015766/0736 Effective date: 20040830 |