US4936835A - Medical needle with bioabsorbable tip - Google Patents
Medical needle with bioabsorbable tip Download PDFInfo
- Publication number
- US4936835A US4936835A US07/288,858 US28885888A US4936835A US 4936835 A US4936835 A US 4936835A US 28885888 A US28885888 A US 28885888A US 4936835 A US4936835 A US 4936835A
- Authority
- US
- United States
- Prior art keywords
- tissue
- needle
- tip
- base portion
- hollow cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 108010010803 Gelatin Proteins 0.000 claims abstract description 50
- 229920000159 gelatin Polymers 0.000 claims abstract description 50
- 239000008273 gelatin Substances 0.000 claims abstract description 50
- 235000019322 gelatine Nutrition 0.000 claims abstract description 50
- 235000011852 gelatine desserts Nutrition 0.000 claims abstract description 50
- 238000005520 cutting process Methods 0.000 claims abstract description 35
- 210000001519 tissue Anatomy 0.000 claims description 55
- 239000000463 material Substances 0.000 claims description 32
- 239000002184 metal Substances 0.000 claims description 20
- 239000003814 drug Substances 0.000 claims description 16
- 229940079593 drug Drugs 0.000 claims description 16
- 238000002347 injection Methods 0.000 claims description 11
- 239000007924 injection Substances 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 8
- 239000008280 blood Substances 0.000 claims description 7
- 210000004369 blood Anatomy 0.000 claims description 7
- 238000003780 insertion Methods 0.000 claims description 7
- 230000037431 insertion Effects 0.000 claims description 7
- 206010033675 panniculitis Diseases 0.000 claims description 6
- 210000004304 subcutaneous tissue Anatomy 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- 235000013290 Sagittaria latifolia Nutrition 0.000 claims description 3
- 235000015246 common arrowhead Nutrition 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims 2
- 238000011065 in-situ storage Methods 0.000 abstract description 6
- 230000035515 penetration Effects 0.000 abstract description 4
- 239000011248 coating agent Substances 0.000 abstract description 2
- 238000000576 coating method Methods 0.000 abstract description 2
- 230000002439 hemostatic effect Effects 0.000 description 9
- 238000001574 biopsy Methods 0.000 description 8
- 230000036541 health Effects 0.000 description 6
- 210000001124 body fluid Anatomy 0.000 description 5
- 239000010839 body fluid Substances 0.000 description 5
- 230000002008 hemorrhagic effect Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 208000030507 AIDS Diseases 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 241000700605 Viruses Species 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 238000009877 rendering Methods 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 241001631457 Cannula Species 0.000 description 1
- 108090000190 Thrombin Proteins 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 235000015278 beef Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000006261 foam material Substances 0.000 description 1
- 239000002920 hazardous waste Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000002906 medical waste Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229960004072 thrombin Drugs 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000010891 toxic waste Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/0233—Pointed or sharp biopsy instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/0057—Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00004—(bio)absorbable, (bio)resorbable or resorptive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B2017/12004—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord for haemostasis, for prevention of bleeding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3904—Markers, e.g. radio-opaque or breast lesions markers specially adapted for marking specified tissue
- A61B2090/3908—Soft tissue, e.g. breast tissue
Definitions
- This invention relates generally to medical needles and more particularly to a needle construction which generally incorporates a bioabsorbable material as a part thereof.
- the invention is particularly applicable to biopsy and hypodermic needles and the like and will be described with particular reference thereto. However, it will be appreciated by those skilled in the art that the invention has broader application and in a broad sense is applicable to any instrument for use in any surgical procedure where the patient's tissue must be punctured.
- hypodermic needles and the like present a far greater health concern today than in the past.
- the presence of certain transmittable viruses, diseases, etc. such as AIDS have caused stringent procedures adopted by health professionals to avoid being inadvertently punctured by needles, specifically hypodermic needles, used to provide medication to AIDS inflicted patients.
- This problem is known to not only affect health professionals, but also drug addicts who typically "share" hypodermic needles and others who simply have to handle the needles during the disposal process.
- hospitals not only have had to take special precautions concerning the use of the needles and the like by its staff but also have had to take special precautions in the disposal of the needles which are a toxic and/or hazardous waste. Accordingly, there is a definitive need for a medical needle which, after it is initially used to inject medication into the patient, is rendered unusable in the sense that the needle is no longer capable of puncturing the skin.
- the needle is a hypodermic needle and includes a syringe, a hollow cylinder in communication with the syringe and a removable tip formed of bioabsorbable gelatin material so that the tip remains in the tissue after injection, thus rendering the hypodermic needle incapable of further puncture after use.
- the removable tip has a base portion adjacent to and larger than the distal end of the hollow cylinder.
- the cutting edge is opposite the base portion and the tip tapers radially outwardly from the cutting edge to the base portion.
- the tip is generally solid and thus closes the distal end of the hollow cylinder which has apertures or openings extending through the side for escape of the medication.
- the syringe is effective to force liquid medicant through the hollow cylinder to dislodge the tip therefrom during injection and the shape of the tip is such to insure that the tip remains in the tissue after the needle has been removed.
- the gelatin material is cast into the distal end of the hollow cylinder, and the tip is then sharpened into a cutting edge and a central hole provided therethrough to establish fluid communication with the hollow cylinder.
- the tip remains on the metal cylinder when the needle is removed after injection, but because body fluid and medication diluent is absorbed into the tip during injection, the sharp tip becomes soft and nonfunctional as a penetration device.
- the needle is dropped in a water bath which further dissolves the tip making the needle unusable.
- a biopsy needle or like instrument for taking a biopsy specimen from a patient.
- the needle has an unactuated position defined by the relative position of its parts prior to insertion in the patient, an actuated position defined by the relative position of its parts while the specimen is being taken and a retracted position defined by the relative position of its parts when the needle is removed from the site where the biopsy was taken.
- the needle includes an inner cutting cannula having a distal portion for insertion into the site and a contiguous proximal portion extending from the distal portion. The distal portion is defined as that length of the inner cannula which is inserted into the patient in the actuated position and includes means to sever the specimen from the patient.
- An outer hollow cannula which is coaxial with and receives the inner cannula has a proximal portion and a separable distal portion such that the distal portion is separated from the proximal portion and remains at the site in the retracted position of the needle.
- Any conventional positioning mechanism such as springs or the like associated with the proximal portions of the inner and the outer cannula may be provided to cause movement of one of the cannulas relative to the other to achieve the aforesaid positions.
- the distal portion of the outer cannula compresses the tissue of the patient at the site where the specimen was taken and remains at that site and the compression of the tissue is effective to prevent hemorrhaging complications.
- the distal portion or the sheath is constructed of a non-bioabsorbable material such as teflon and the like while remaining at the site to provide access thereto.
- a medical device for insertion at least into the subcutaneous tissue of a patient.
- the device comprises a hollow cylindrical member having a distal end which is formed into a cutting end and some portion of the cylindrical member comprises a bioabsorbable gelatin material such that when the device is inserted into the tissue, the body fluid and medical diluent acts to soften the bioabsorbable material.
- a portion of the material is removed or wiped off.
- the small amount of gelatin remaining at the tissue margin is quite sticky and produces adherence of the margins of the tissue so that leakage of air and/or blood does not occur, thus preventing or tending to prevent hemorrhagic complications.
- the bioabsorbable cutting end which is permanently affixed to the hollow metal cylinder will leave a small amount of gelatin at the tissue margin to achieve this effect.
- the bioabsorbable sheath can be permanently affixed to the proximal portion of the outer cannula and will deposit a small amount of gelatin at the site. In a more general sense, simply coating the hollow metal cylinder of the needle with a bioabsorbable gelatin material will achieve the effect.
- Yet another object of the invention is to provide a portion of a medical needle with a bioabsorbable gelatin material which material tends to dissolve and become sticky when inserted into the tissue of the patient leaving a small amount of material at the tissue margins of the puncture to avoid hemorrhaging complications.
- hemorrhaging complications arising from insertion of a medical needle and the like into a patient are minimized by the position of an in situ, non-bioabsorbable sheath which is effective to compress the tissue at the margins of the puncture.
- Still a further object of the invention is to provide a medical needle which is not likely to puncture the subcutaneous tissue of a body after it has been initially used.
- Yet a still further object of the invention is to provide a needle which alleviates the problems of transmissibility of viruses, diseases and the like, such as AIDS, unintentionally afflicting health professionals, drug addicts, etc. while also addressing the handling concerns present in the waste disposal of such needle.
- Still yet another object of the invention is to provide a medical needle which can be easily and economically constructed while effective in operation.
- FIG. 1 is a longitudinal, schematic view of a needle, partly in section, embodying the invention
- FIG. 2 is a schematic illustration of the needle of FIG. 1 inserted into the tissue of the patient;
- FIG. 3 is a schematic view of the needle of FIG. 1 shown retracted from the patient's tissue after injection;
- FIG. 4 is a longitudinal, schematic view, partially in section, of a needle similar to FIG. 1 employing an alternative embodiment of the invention
- FIG. 5 is a schematic, partial section view of the needle of FIG. 4 taken along lines 5--5 of FIG. 4;
- FIG. 6 is a schematic view of the needle of FIG. 4 shown inserted into the tissue of a patient;
- FIG. 7 is a view of the needle of FIG. 4 after it has been withdrawn from the tissue of a patient;
- FIG. 8 is a view similar to FIG. 5 of my prior patent application.
- FIG. 9 is a view similar to FIG. 6 of my prior patent application.
- FIGS. 8 and 9 which as noted above correspond respectively to FIGS. 5 and 6 of my prior patent application. Because my prior patent application, including the drawings, is incorporated by reference in the specifications hereof, reference numerals for FIGS. 8 and 9 are identical to indicate the same parts, surfaces, etc. which have been described in my prior patent application. Reference to the specifications of my prior patent application should be had for a more detailed explanation of the functioning of the device than that disclosed herein. In this application, reference numeral 36 in FIGS.
- hemostatic sheath 36 designates a removable hemostatic sheath which has a low coefficient of friction and is non-bioabsorbable in nature.
- teflon or any other suitable plastic having a low coefficient of friction could be used.
- hemostatic sheath 36 could be constructed exactly as shown in FIG. 5 of my prior patent application.
- I have chosen to show hemostatic sheath 36 as having a slightly larger outside diameter than the proximal portion 35 of outer cannula 13 and also, I have provided, optionally, a conically shaped entry end 43 for hemostatic sheath 36.
- FIG. 5 for purposes of this specification, I have chosen to show hemostatic sheath 36 as having a slightly larger outside diameter than the proximal portion 35 of outer cannula 13 and also, I have provided, optionally, a conically shaped entry end 43 for hemostatic sheath 36.
- cutting cannula 12 leaves a generally cylindrical void defined by tissue margin 51 (initially shown as the dot-dash line) and when non-bioabsorbable hemostatic sheath 36 is inserted in the void, the margin is expanded to a cylindrical edge shown as 49 and the tissue surrounding the void is compressed.
- tissue margin 51 initially shown as the dot-dash line
- the non-bioabsorbable hemostatic sheath 36 is inserted in the void, the margin is expanded to a cylindrical edge shown as 49 and the tissue surrounding the void is compressed.
- compression of the tissue by means of hemostatic sheath 36 is sufficient to avoid hemorrhaging complications and that a bioabsorbable sheath, while preferred, is not inherently necessary for all applications to prevent hemmorhaging.
- the non-bioabsorbable sheath could be coated with thrombin.
- a sheath simply fits over a hollow metal cylinder which can either have a puncturing end or receive a hollow cylinder having a cutting or puncturing end.
- Any conventional mechanism can be employed to slide the sheath over the hollow metal cylinder so that the sheath is deposited at a site within the patient.
- I showed a hand actuated mechanism.
- Conventional spring actuated mechanisms can be employed.
- the sheath compresses the margins of the tissue to alleviate hemorrhaging complications while also providing access to the site for further surgical procedures. After the surgical procedures requiring access to the site are completed, the sheath, being non-bioabsorbable is then removed from the site by any conventional procedure.
- sheath 36 is bioabsorbable and is not left at the puncture site. This could be accomplished, for example, by simply making the frangible connection shown at 78 in FIG. 7a of my parent patent application non-frangible.
- the medical needle could simply be coated with the bioabsorbable gelatin material or at least the distal penetrating portion of the hollow cylindrical end of a medical needle could be coated or formed with a bioabsorbable gelatin material. In such instances, the gelatin material upon contact with body fluids when the tissue is penetrated will become soft and partially dissolved.
- Hypodermic needle 100 is conventional in the sense that it includes a conventional syringe 101 in fluid communication with a hollow metal cylinder 103.
- Hollow metal cylinder 103 has a proximal portion 104 secured to syringe 101 in a conventional manner and a distal portion 106 to which is secured a bioabsorbable gelatin tip 107.
- Tip 107 has a base portion 108 at one end adjacent distal portion 106 and a cutting end 110 at its opposite end.
- Base portion 108 has a diameter greater than the outside diameter of hollow metal cylinder 103 and tapers in a frusto conical manner to cutting end 110 and thus resembles in configuration an arrow head.
- barb projections such as shown in my prior patent application could be incorporated in the frusto conical surface 111 extending between base portion 108 and cutting end 110.
- alternative configurations of gelatin tip 107 structured to fit within hollow metal cylinder 103 so as to be lacking a significant protruding base portion 108 would of necessity require such barbs for reasons which will be explained hereafter. It will be noted that gelatin tip 107 is solid and closes the longitudinal opening 113 in hollow metal cylinder 103 at its distal portion 106.
- small openings 115 are provided in hollow metal cylinder 103 just rearwardly of the tip's base portion 108.
- Base portion 108 of gelatin tip 107 is sized, both in length and diameter relative to the diameter of hollow metal cylinder 103 to snugly yet securely fit in place.
- hypodermic needle 100 With the detachable gelatin tip 107 of hypodermic needle 100 shown in FIGS. 1 through 3, hypodermic needle 100 would be conventionally inserted into the patient and the medication injected in the routine fashion. As gelatin tip enters tissue 120 and as noted in my prior patent application, body fluids in contact with gelatin tip 107 reduce the coefficient of friction of gelatin tip 107 permitting easy penetration. As syringe 101 is actuated and the medication is injected through cross openings 115, the medication will also exert pressure against gelatin tip 107 and in fact gelatin tip 107 will preferably detach slightly from distal portion 106 of hollow metal cylinder 103. When hypodermic needle 100 is removed, gelatin tip 107 will remain in the patient.
- hypodermic needle 100 is removed, it will no longer be “sharp" because the point of the needle has been detached and it is now only a metal cylinder. In this form, hypodermic needle can no longer puncture the skin, either intentionally, so as to prevent the reuse of such needles by drug addicts which might recover same from hospital waste, or unintentionally, in the case of health professionals which might inadvertently be punctured in the handling of used needles. In either event, the end result is the prevention of transmittable diseases of viruses such as AIDS through the blood stream.
- FIGS. 4 through 7 An alternative embodiment of hypodermic needle 100 is shown in FIGS. 4 through 7 and reference numerals in FIGS. 1 through 3 will identify like parts and surfaces with respect to hypodermic needle 100 of FIGS. 4 through 7.
- Gelatin tip 107 in the embodiment of FIGS. 4 through 7 is not removable.
- gelatin material is cast onto distal portion 106 and to some extent onto the outside (not shown) of distal portion 106 of hollow metal cylinder 103.
- An opening 130 is then provided into base portion 108 of tip 107 so that longitudinal opening 113 in hollow metal cylinder 103 remains open through its distal portion 106.
- the gelatin material is hardened, it is sharpened to have the cutting end 110 not entirely dissimilar to that of an end cutting biopsy needle such as shown in FIGS.
- bioabsorbable material discussed herein is made with conventionally available bioabsorbable gelatin with either a pork or a beef base and conventional additives are added to the base material depending on the dissolution time desired for the gelatin material.
- An acceptable gelatin material is available in a foam or a sponge form from the Upjohn Company under the trademark GEL-FOAM.
- the GEL-FOAM material would have to be made in hardened form by the means of conventional additives to be used in this invention.
- An acceptable hardened thiolated gelatin material which could also be used is described in U.S. Letters Pat. No. 3,106,483 dated Oct. 8, 1963 which has been incorporated by reference herein.
- bioabsorbable is used herein in the sense that the gelatin is absorbed by the normal chemical substances and reactions occurring within the body and is equivalent somewhat to the term "biodegradable”.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Cardiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
An improved medical needle is disclosed which has a bioabsorbable gelatin cutting or puncturing tip formed therein. The gelatin characteristic renders the needle incapable of penetration after initial use. Additionally, the gelatin partially dissolves to leave a coating on the punctured tissue margin which acts to minimize hemorrhaging complications. Hemorrhaging complications are alternatively addressed by a non-bioabsorbable in situ sheath positioned at the punctured tissue site which compresses the tissue.
Description
This is a continuation-in-part application of my prior U.S. patent application Ser. No. 199,130 filed May 26, 1988 and entitled "Hemostatic Sheath For A Biopsy Needle" which issued Jun. 13, 1989 as U.S. Pat. No. 4,848,280.
This invention relates generally to medical needles and more particularly to a needle construction which generally incorporates a bioabsorbable material as a part thereof.
The invention is particularly applicable to biopsy and hypodermic needles and the like and will be described with particular reference thereto. However, it will be appreciated by those skilled in the art that the invention has broader application and in a broad sense is applicable to any instrument for use in any surgical procedure where the patient's tissue must be punctured.
My patent application, U.S. Ser. No. 199,130 filed May 26, 1988 which issued on Jun. 13, 1989 as U.S. Pat. No. 4,838,280 in its entirety and including the drawings thereof is incorporated herein by reference. In addition, all references incorporated by reference in my prior patent application are likewise incorporated in their entirety by reference herein. Such material specifically includes as a part and parcel of this specification, U.S. Pat. Nos. 4,708,147 dated Nov. 24, 1987; 3,358,684 dated Dec. 19, 1967 and 3,106,483 dated Oct. 8, 1963.
In my prior patent application I disclosed the concept of a bioabsorbable, hemostatic sheath to be used with any suitable mechanism for in situ positioning of the sheath which would prevent hemorrhagic complications arising from the puncturing/cutting operation performed by the surgical instrument to which the sheath was attached. Since that discovery, further experimentation has disclosed further extensions and modifications of the sheath concept which will be subsequently disclosed and also, further adaptations and utilization of the bioabsorbable gelatin material discussed in my prior application.
More specifically, in today's hospital environment used hypodermic needles and the like present a far greater health concern today than in the past. The presence of certain transmittable viruses, diseases, etc. such as AIDS have caused stringent procedures adopted by health professionals to avoid being inadvertently punctured by needles, specifically hypodermic needles, used to provide medication to AIDS inflicted patients. This problem is known to not only affect health professionals, but also drug addicts who typically "share" hypodermic needles and others who simply have to handle the needles during the disposal process. To avoid this, hospitals not only have had to take special precautions concerning the use of the needles and the like by its staff but also have had to take special precautions in the disposal of the needles which are a toxic and/or hazardous waste. Accordingly, there is a definitive need for a medical needle which, after it is initially used to inject medication into the patient, is rendered unusable in the sense that the needle is no longer capable of puncturing the skin.
With respect to the in situ bioabsorbable sheath disclosed in my prior patent application, there are applications where either the organ or tissue punctured by the surgical instrument cannot tolerate the presence of a foreign object (or the presence of a foreign object is not advisable), even a bioabsorbable one. On the other hand, there are other surgical applications which not only can tolerate the presence of a foreign object but which must use the foreign object to provide an access to the organ or the tissue punctured by the needle or surgical instrument. The bioabsorbable sheath cannot provide such an access. While both applications are somewhat unrelated, there is always present hemorrhagic concerns resulting from the puncture of the tissue and/or organ by the needle or surgical instrument.
It is one of the principal features of the present invention to provide a medical needle or like instrument whose cutting or puncturing edge is rendered incapable of further puncture after initial usage.
This feature is achieved in a medical needle and the like used for injecting a liquid medication into the subcutaneous tissue of a patient where the needle has a cutting tip for puncturing the tissue formed of a bioabsorbable gelatin material which at least partially dissolves after initial use of the needle rendering the needle useless for tissue or skin puncture thereafter. In accordance with one particular feature of the invention, the needle is a hypodermic needle and includes a syringe, a hollow cylinder in communication with the syringe and a removable tip formed of bioabsorbable gelatin material so that the tip remains in the tissue after injection, thus rendering the hypodermic needle incapable of further puncture after use. In accordance with a more specific aspect of the invention, the removable tip has a base portion adjacent to and larger than the distal end of the hollow cylinder. The cutting edge is opposite the base portion and the tip tapers radially outwardly from the cutting edge to the base portion. The tip is generally solid and thus closes the distal end of the hollow cylinder which has apertures or openings extending through the side for escape of the medication. The syringe is effective to force liquid medicant through the hollow cylinder to dislodge the tip therefrom during injection and the shape of the tip is such to insure that the tip remains in the tissue after the needle has been removed.
In accordance with another aspect of the invention, the gelatin material is cast into the distal end of the hollow cylinder, and the tip is then sharpened into a cutting edge and a central hole provided therethrough to establish fluid communication with the hollow cylinder. The tip remains on the metal cylinder when the needle is removed after injection, but because body fluid and medication diluent is absorbed into the tip during injection, the sharp tip becomes soft and nonfunctional as a penetration device. Preferably, after use, the needle is dropped in a water bath which further dissolves the tip making the needle unusable.
In accordance with another aspect of the invention, a biopsy needle or like instrument for taking a biopsy specimen from a patient is provided. The needle has an unactuated position defined by the relative position of its parts prior to insertion in the patient, an actuated position defined by the relative position of its parts while the specimen is being taken and a retracted position defined by the relative position of its parts when the needle is removed from the site where the biopsy was taken. The needle includes an inner cutting cannula having a distal portion for insertion into the site and a contiguous proximal portion extending from the distal portion. The distal portion is defined as that length of the inner cannula which is inserted into the patient in the actuated position and includes means to sever the specimen from the patient. An outer hollow cannula which is coaxial with and receives the inner cannula has a proximal portion and a separable distal portion such that the distal portion is separated from the proximal portion and remains at the site in the retracted position of the needle. Any conventional positioning mechanism such as springs or the like associated with the proximal portions of the inner and the outer cannula may be provided to cause movement of one of the cannulas relative to the other to achieve the aforesaid positions. The distal portion of the outer cannula compresses the tissue of the patient at the site where the specimen was taken and remains at that site and the compression of the tissue is effective to prevent hemorrhaging complications. Specifically, the distal portion or the sheath is constructed of a non-bioabsorbable material such as teflon and the like while remaining at the site to provide access thereto.
In accordance with a still further aspect of the invention, a medical device for insertion at least into the subcutaneous tissue of a patient is provided. The device comprises a hollow cylindrical member having a distal end which is formed into a cutting end and some portion of the cylindrical member comprises a bioabsorbable gelatin material such that when the device is inserted into the tissue, the body fluid and medical diluent acts to soften the bioabsorbable material. When the device is withdrawn from the tissue, a portion of the material is removed or wiped off. The small amount of gelatin remaining at the tissue margin is quite sticky and produces adherence of the margins of the tissue so that leakage of air and/or blood does not occur, thus preventing or tending to prevent hemorrhagic complications. In the hypodermic needle embodiment discussed above, the bioabsorbable cutting end which is permanently affixed to the hollow metal cylinder will leave a small amount of gelatin at the tissue margin to achieve this effect. In the biopsy needle embodiment, the bioabsorbable sheath can be permanently affixed to the proximal portion of the outer cannula and will deposit a small amount of gelatin at the site. In a more general sense, simply coating the hollow metal cylinder of the needle with a bioabsorbable gelatin material will achieve the effect.
It is thus one of the objects of the invention to provide a needle having a bioabsorbable cutting end which upon insertion into the tissue becomes moist thus reducing its coefficient of friction of the substance and rendering the needle more easily penetrable into the tissue.
Yet another object of the invention is to provide a portion of a medical needle with a bioabsorbable gelatin material which material tends to dissolve and become sticky when inserted into the tissue of the patient leaving a small amount of material at the tissue margins of the puncture to avoid hemorrhaging complications.
In accordance with another object of the invention, hemorrhaging complications arising from insertion of a medical needle and the like into a patient are minimized by the position of an in situ, non-bioabsorbable sheath which is effective to compress the tissue at the margins of the puncture.
Still a further object of the invention is to provide a medical needle which is not likely to puncture the subcutaneous tissue of a body after it has been initially used.
Yet a still further object of the invention is to provide a needle which alleviates the problems of transmissibility of viruses, diseases and the like, such as AIDS, unintentionally afflicting health professionals, drug addicts, etc. while also addressing the handling concerns present in the waste disposal of such needle.
Still yet another object of the invention is to provide a medical needle which can be easily and economically constructed while effective in operation.
These and other objects of the invention will become apparent to those skilled in the art upon a reading and understanding of the following detailed description of various embodiments of the invention.
Reference may now be had to the drawings which illustrate various embodiments that the invention may take in physical form and in certain parts and arrangement of parts wherein:
FIG. 1 is a longitudinal, schematic view of a needle, partly in section, embodying the invention;
FIG. 2 is a schematic illustration of the needle of FIG. 1 inserted into the tissue of the patient;
FIG. 3 is a schematic view of the needle of FIG. 1 shown retracted from the patient's tissue after injection;
FIG. 4 is a longitudinal, schematic view, partially in section, of a needle similar to FIG. 1 employing an alternative embodiment of the invention;
FIG. 5 is a schematic, partial section view of the needle of FIG. 4 taken along lines 5--5 of FIG. 4;
FIG. 6 is a schematic view of the needle of FIG. 4 shown inserted into the tissue of a patient;
FIG. 7 is a view of the needle of FIG. 4 after it has been withdrawn from the tissue of a patient;
FIG. 8 is a view similar to FIG. 5 of my prior patent application; and
FIG. 9 is a view similar to FIG. 6 of my prior patent application.
Referring now to the drawings wherein the showings are for the purpose of illustrating preferred embodiments of the invention only and not for the purpose of limiting the same, reference is first had to FIGS. 8 and 9 which as noted above correspond respectively to FIGS. 5 and 6 of my prior patent application. Because my prior patent application, including the drawings, is incorporated by reference in the specifications hereof, reference numerals for FIGS. 8 and 9 are identical to indicate the same parts, surfaces, etc. which have been described in my prior patent application. Reference to the specifications of my prior patent application should be had for a more detailed explanation of the functioning of the device than that disclosed herein. In this application, reference numeral 36 in FIGS. 8 and 9 designates a removable hemostatic sheath which has a low coefficient of friction and is non-bioabsorbable in nature. For example, teflon or any other suitable plastic having a low coefficient of friction could be used. While non-bioabsorbable, hemostatic sheath 36 could be constructed exactly as shown in FIG. 5 of my prior patent application. For purposes of this specification, I have chosen to show hemostatic sheath 36 as having a slightly larger outside diameter than the proximal portion 35 of outer cannula 13 and also, I have provided, optionally, a conically shaped entry end 43 for hemostatic sheath 36. As discussed in my prior patent application and as shown in FIG. 9, cutting cannula 12 leaves a generally cylindrical void defined by tissue margin 51 (initially shown as the dot-dash line) and when non-bioabsorbable hemostatic sheath 36 is inserted in the void, the margin is expanded to a cylindrical edge shown as 49 and the tissue surrounding the void is compressed. I have discovered that compression of the tissue by means of hemostatic sheath 36 is sufficient to avoid hemorrhaging complications and that a bioabsorbable sheath, while preferred, is not inherently necessary for all applications to prevent hemmorhaging. Optionally, the non-bioabsorbable sheath could be coated with thrombin. In the broad aspects of this feature of the invention, a sheath simply fits over a hollow metal cylinder which can either have a puncturing end or receive a hollow cylinder having a cutting or puncturing end. Any conventional mechanism can be employed to slide the sheath over the hollow metal cylinder so that the sheath is deposited at a site within the patient. In my prior patent application, I showed a hand actuated mechanism. Conventional spring actuated mechanisms can be employed. The sheath compresses the margins of the tissue to alleviate hemorrhaging complications while also providing access to the site for further surgical procedures. After the surgical procedures requiring access to the site are completed, the sheath, being non-bioabsorbable is then removed from the site by any conventional procedure.
In accordance with another aspect of the invention, sheath 36 is bioabsorbable and is not left at the puncture site. This could be accomplished, for example, by simply making the frangible connection shown at 78 in FIG. 7a of my parent patent application non-frangible. Alternatively, and without having reference to a biopsy needle, the medical needle could simply be coated with the bioabsorbable gelatin material or at least the distal penetrating portion of the hollow cylindrical end of a medical needle could be coated or formed with a bioabsorbable gelatin material. In such instances, the gelatin material upon contact with body fluids when the tissue is penetrated will become soft and partially dissolved. When the needle is removed from the site of the tissue puncture, a small amount of the gelatin material will remain behind on the margins of the tissue. This small amount of gelatin is quite "sticky" and it will produce adherence of the margins of the tissue so that leakage of blood and/or air does not occur.
Referring now to FIGS. 1 through 3, there is schematically illustrated, partially in section, a medical needle 100 and more specifically, a hypodermic needle. Hypodermic needle 100 is conventional in the sense that it includes a conventional syringe 101 in fluid communication with a hollow metal cylinder 103. Hollow metal cylinder 103 has a proximal portion 104 secured to syringe 101 in a conventional manner and a distal portion 106 to which is secured a bioabsorbable gelatin tip 107. Tip 107 has a base portion 108 at one end adjacent distal portion 106 and a cutting end 110 at its opposite end. Base portion 108 has a diameter greater than the outside diameter of hollow metal cylinder 103 and tapers in a frusto conical manner to cutting end 110 and thus resembles in configuration an arrow head. If desired, barb projections such as shown in my prior patent application could be incorporated in the frusto conical surface 111 extending between base portion 108 and cutting end 110. In fact, alternative configurations of gelatin tip 107 structured to fit within hollow metal cylinder 103 so as to be lacking a significant protruding base portion 108 would of necessity require such barbs for reasons which will be explained hereafter. It will be noted that gelatin tip 107 is solid and closes the longitudinal opening 113 in hollow metal cylinder 103 at its distal portion 106. In order to provide means for syringe 101 to draw and inject medication (liquid medium) into and from hypodermic needle 100, small openings 115 are provided in hollow metal cylinder 103 just rearwardly of the tip's base portion 108. Base portion 108 of gelatin tip 107 is sized, both in length and diameter relative to the diameter of hollow metal cylinder 103 to snugly yet securely fit in place. In this connection, it is possible to provide a circular protrusion in the interior of base portion 108 which could snap over a circular groove provided in distal portion 106 of hollow metal cylinder 103 (not shown) to insure attachment. It is also possible, and perhaps preferable, to cast gelatin tip 107 in place and then sharpen cutting end 110 and trim off any "flashing" to produce the appropriate length of base portion 108.
With the detachable gelatin tip 107 of hypodermic needle 100 shown in FIGS. 1 through 3, hypodermic needle 100 would be conventionally inserted into the patient and the medication injected in the routine fashion. As gelatin tip enters tissue 120 and as noted in my prior patent application, body fluids in contact with gelatin tip 107 reduce the coefficient of friction of gelatin tip 107 permitting easy penetration. As syringe 101 is actuated and the medication is injected through cross openings 115, the medication will also exert pressure against gelatin tip 107 and in fact gelatin tip 107 will preferably detach slightly from distal portion 106 of hollow metal cylinder 103. When hypodermic needle 100 is removed, gelatin tip 107 will remain in the patient. This occurs because gelatin tip 107 is broad at base portion 108 and subcutaneous tissue 120 will resist its exit. Gelatin tip 107 being bioabsorbable will dissolve over a period of several days. Once hypodermic needle 100 is removed, it will no longer be "sharp" because the point of the needle has been detached and it is now only a metal cylinder. In this form, hypodermic needle can no longer puncture the skin, either intentionally, so as to prevent the reuse of such needles by drug addicts which might recover same from hospital waste, or unintentionally, in the case of health professionals which might inadvertently be punctured in the handling of used needles. In either event, the end result is the prevention of transmittable diseases of viruses such as AIDS through the blood stream.
An alternative embodiment of hypodermic needle 100 is shown in FIGS. 4 through 7 and reference numerals in FIGS. 1 through 3 will identify like parts and surfaces with respect to hypodermic needle 100 of FIGS. 4 through 7. Gelatin tip 107 in the embodiment of FIGS. 4 through 7 is not removable. With this embodiment, gelatin material is cast onto distal portion 106 and to some extent onto the outside (not shown) of distal portion 106 of hollow metal cylinder 103. An opening 130 is then provided into base portion 108 of tip 107 so that longitudinal opening 113 in hollow metal cylinder 103 remains open through its distal portion 106. When the gelatin material is hardened, it is sharpened to have the cutting end 110 not entirely dissimilar to that of an end cutting biopsy needle such as shown in FIGS. 8 and 9 of my prior patent application. When needle 100, after injection of the medication, is removed from tissue 120, gelatin tip 107 remains attached to hollow metal cylinder 103. Because body fluid and medication diluent is absorbed into distal tip 107 during injection, the cutting end 110 becomes soft and distorted as illustrated in FIG. 7 and no longer is functional as a penetration device. After use, hypodermic needle 100 is dropped into a water bath which further dissolves the tip making the needle unusable in its later form. It should also be noted with respect to the alternative embodiment of FIGS. 4 through 7, that as needle 100 is removed from tissue 120, a small portion of gelatin tip 107 will dissolve as described with reference to the bioabsorbable hemostatic sheath 36 discussed above and a small amount of the material will remain behind on the margins of the tissue punctured by the needle. The stickiness of the gelatin left behind will promote adherence of the margins of the tissue tending to prevent leakage of blood and/or air.
As noted in my prior patent application, the bioabsorbable material discussed herein is made with conventionally available bioabsorbable gelatin with either a pork or a beef base and conventional additives are added to the base material depending on the dissolution time desired for the gelatin material. An acceptable gelatin material is available in a foam or a sponge form from the Upjohn Company under the trademark GEL-FOAM. The GEL-FOAM material would have to be made in hardened form by the means of conventional additives to be used in this invention. An acceptable hardened thiolated gelatin material which could also be used is described in U.S. Letters Pat. No. 3,106,483 dated Oct. 8, 1963 which has been incorporated by reference herein. Also to avoid any confusion in terminology, "bioabsorbable" is used herein in the sense that the gelatin is absorbed by the normal chemical substances and reactions occurring within the body and is equivalent somewhat to the term "biodegradable".
The invention has been described with reference to my prior patent application as a further extension and modification of several of the concepts disclosed therein. One of the essential features of my prior patent application was to avoid hemorrhagic complication resulting from the surgical procedure using a needle or like instrument. In this invention, the avoidance of hemorrhagic complications resulting from the compression of the tissue by an in situ non-bioabsorbable sheath is realized. Further, by this invention, it is realized that a bioabsorbable gelatin sheath need not be deposited in situ to realize the benefits of the gelatin material preventing leakage of air, gas and/or blood from, to or through the puncture site. Finally, and importantly, recognizing the bioabsorbable qualities of the gelatin material, medical needles have been developed which render their sharpened end useless after initial injection to minimize health risks. It is my intention to include all modifications and alterations of the device disclosed herein insofar as they come within the scope of the present invention.
Claims (3)
1. A hypodermic needle for injecting liquid medicant into the subcutaneous tissue of a patient comprising a syringe and a hollow metal cylinder, said cylinder having a proximal end in fluid communication with said syringe and its opposite, distal end sharpened to a pointed, cutting end for puncturing said tissue, said cutting end formed of a hardened bioabsorbable gelatin material said cutting edge moistened by said liquid medicant to reduce its coefficient of friction when puncturing said tissue while depositing a portion of said bioabsorbable material at the margin of said tissue when said needle is removed from said tissue to produce adherence of the margins of said tissue and prevent leakage of blood from the needle puncture, said cutting edge, being biodegradable, rendered useless for tissue puncture after its initial tissue puncture; and
said gelatin base cutting end comprises a tip having a base portion adjacent the distal end of said hollow cylinder and a pointed cutting edge opposite said base portion, said tip tapering radially outwardly from said cutting edge to said base portion larger than the outside diameter of said hollow cylinder to form an arrow head configuration such that said tissue contacts said base portion adjacent said hollow cylinder after insertion and is effective to remove said tip from said hollow cylinder prior to disintegration when said needle is withdrawn after injection.
2. A hypodermic needle for injecting liquid medicant into the subcutaneous tissue of a patient comprising a syringe and a hollow metal cylinder, said cylinder having a proximal end in fluid communication with said syringe and its opposite, distal end sharpened to a pointed, cutting end for puncturing said tissue, said cutting end formed of a hardened bioabsorbable gelatin material said cutting edge moistened by said liquid medicant to reduce its coefficient of friction when puncturing said tissue while depositing a portion of said bioabsorbable material at the margin of said tissue when said needle is removed from said tissue to produce adherence of the margins of said tissue and prevent leakage of blood from the needle puncture, said cutting edge, being biodegradable, rendered useless for tissue puncture after its initial tissue puncture;
said gelatin base cutting end comprises a tip having a base portion adjacent the distal end of said hollow cylinder and a pointed cutting edge opposite said base portion, said tip tapering radially outwardly from said cutting edge to said base portion larger than the outside diameter of said hollow cylinder to form an arrow head configuration such that said tissue contacts said base portion adjacent said hollow cylinder after insertion and is effective to remove said tip from said hollow cylinder prior to disintegration when said needle is withdrawn after injection; and
said tip portion is generally solid, and closes said distal end of said hollow cylinder, said distal end having at least one small aperture extending through the side thereof, said syringe effective to force said liquid medication through said aperture while simultaneously slightly dislodging said top from said hollow cylinder and means in said base portion for initially retaining said to to said hollow cylinder prior to injection of said medication into the patient.
3. The needle of claim 2 wherein said tip has a barb protrusion formed in said frusto conical surface between said cutting edge and said base portion and shaped to permit said top to enter said tissue while resisting exit therefrom.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/288,858 US4936835A (en) | 1988-05-26 | 1988-12-23 | Medical needle with bioabsorbable tip |
US07/514,769 US5080655A (en) | 1988-05-26 | 1990-04-26 | Medical biopsy needle |
US07/787,518 US5195988A (en) | 1988-05-26 | 1991-11-04 | Medical needle with removable sheath |
US07/896,588 US5254105A (en) | 1988-05-26 | 1992-06-10 | Sheath for wound closure caused by a medical tubular device |
US08/084,135 US5330445A (en) | 1988-05-26 | 1993-07-01 | Sheath for wound closure caused by a medical tubular device |
US08/219,169 US5447502A (en) | 1988-05-26 | 1994-03-28 | Sheath for wound closure caused by a medical tubular device |
US08/415,331 US5573518A (en) | 1988-05-26 | 1995-04-03 | Sheath for wound closure caused by a medical tubular device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/199,130 US4838280A (en) | 1988-05-26 | 1988-05-26 | Hemostatic sheath for a biopsy needle and method of use |
US07/288,858 US4936835A (en) | 1988-05-26 | 1988-12-23 | Medical needle with bioabsorbable tip |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/199,130 Continuation-In-Part US4838280A (en) | 1988-05-26 | 1988-05-26 | Hemostatic sheath for a biopsy needle and method of use |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/514,769 Division US5080655A (en) | 1988-05-26 | 1990-04-26 | Medical biopsy needle |
Publications (1)
Publication Number | Publication Date |
---|---|
US4936835A true US4936835A (en) | 1990-06-26 |
Family
ID=26894493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/288,858 Expired - Fee Related US4936835A (en) | 1988-05-26 | 1988-12-23 | Medical needle with bioabsorbable tip |
Country Status (1)
Country | Link |
---|---|
US (1) | US4936835A (en) |
Cited By (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4976704A (en) * | 1989-07-17 | 1990-12-11 | Mclees Donald J | Moisture disabled needle |
US4981149A (en) * | 1989-05-16 | 1991-01-01 | Inbae Yoon | Method for suturing with a bioabsorbable needle |
US5049138A (en) * | 1989-11-13 | 1991-09-17 | Boston Scientific Corporation | Catheter with dissolvable tip |
US5066278A (en) * | 1989-08-09 | 1991-11-19 | Siemens Aktiengesellschaft | Implantable injection body |
US5290310A (en) * | 1991-10-30 | 1994-03-01 | Howmedica, Inc. | Hemostatic implant introducer |
US5401257A (en) * | 1993-04-27 | 1995-03-28 | Boston Scientific Corporation | Ureteral stents, drainage tubes and the like |
WO1995009664A1 (en) * | 1993-10-01 | 1995-04-13 | Biosys Corp. | Catheter having imperforate protective barrier |
US5431639A (en) * | 1993-08-12 | 1995-07-11 | Boston Scientific Corporation | Treating wounds caused by medical procedures |
US5477862A (en) * | 1994-03-14 | 1995-12-26 | Haaga; John R. | Cutting tip for biopsy needle |
US5478352A (en) * | 1990-10-01 | 1995-12-26 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5487392A (en) * | 1993-11-15 | 1996-01-30 | Haaga; John R. | Biopxy system with hemostatic insert |
EP0708625A1 (en) * | 1993-07-12 | 1996-05-01 | The Regents Of The University Of California | Soft tissue augmentation apparatus |
US5531761A (en) * | 1989-05-16 | 1996-07-02 | Yoon; Inbae | Methods for suturing tissue sections |
EP0693300A3 (en) * | 1994-06-20 | 1997-03-26 | Minimed Inc | Side slit catheter |
US5643318A (en) * | 1994-03-31 | 1997-07-01 | Boston Scientific Corporation | Vascular plug with vessel locator |
US5716391A (en) * | 1995-08-23 | 1998-02-10 | Medtronic, Inc. | Medical electrical lead having temporarily rigid fixation |
US5749376A (en) * | 1993-10-18 | 1998-05-12 | Wilk; Peter J. | Medical treatment and waste disposal method |
US5779686A (en) * | 1993-04-19 | 1998-07-14 | Olympus Optical Co., Ltd. | Disposable medical instrument |
US5931776A (en) * | 1998-03-09 | 1999-08-03 | Dotolo Research Corporation | Speculum having dissolvable tip |
US6019733A (en) * | 1997-09-19 | 2000-02-01 | United States Surgical Corporation | Biopsy apparatus and method |
US6050955A (en) * | 1997-09-19 | 2000-04-18 | United States Surgical Corporation | Biopsy apparatus and method |
US6071301A (en) * | 1998-05-01 | 2000-06-06 | Sub Q., Inc. | Device and method for facilitating hemostasis of a biopsy tract |
US6077275A (en) * | 1998-04-09 | 2000-06-20 | Boston Scientific Corporation | Speedband intubation plug |
US6113581A (en) * | 1998-09-08 | 2000-09-05 | Levy; Orlev Nissenbaum | Infusion needle with a bio-degradable/absorbable needle tip |
US6142955A (en) * | 1997-09-19 | 2000-11-07 | United States Surgical Corporation | Biopsy apparatus and method |
US6162192A (en) * | 1998-05-01 | 2000-12-19 | Sub Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US6162203A (en) * | 1999-01-11 | 2000-12-19 | Haaga; John R. | Cargo delivery needle |
US6183497B1 (en) | 1998-05-01 | 2001-02-06 | Sub-Q, Inc. | Absorbable sponge with contrasting agent |
US6193673B1 (en) | 1998-02-20 | 2001-02-27 | United States Surgical Corporation | Biopsy instrument driver apparatus |
US6200328B1 (en) | 1998-05-01 | 2001-03-13 | Sub Q, Incorporated | Device and method for facilitating hemostasis of a biopsy tract |
US6315753B1 (en) | 1998-05-01 | 2001-11-13 | Sub-Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US6332877B1 (en) * | 1998-05-12 | 2001-12-25 | Novartis Ag | Ostomy tube placement tip |
US20020016612A1 (en) * | 1998-05-01 | 2002-02-07 | Mark Ashby | Device and method for facilitating hemostasis of a biopsy tract |
US6368341B1 (en) | 1996-08-06 | 2002-04-09 | St. Jude Medical Puerto Rico, B.V. | Insertion assembly and method of inserting a hemostatic closure device into an incision |
US6436054B1 (en) | 1998-11-25 | 2002-08-20 | United States Surgical Corporation | Biopsy system |
US20020156495A1 (en) * | 1995-09-15 | 2002-10-24 | Rodney Brenneman | Apparatus and method for percutaneous sealing of blood vessel punctures |
US20020190226A1 (en) * | 2001-03-12 | 2002-12-19 | Mark Ashby | Methods for sterilizing cross-linked gelatin compositions |
US20030028140A1 (en) * | 2001-03-12 | 2003-02-06 | Greff Richard J. | Cross-linked gelatin composition comprising a wetting agent |
US6540735B1 (en) | 2000-05-12 | 2003-04-01 | Sub-Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US6544236B1 (en) | 1999-02-10 | 2003-04-08 | Sub-Q, Incorporated | Device, system and method for improving delivery of hemostatic material |
US6610026B2 (en) | 1998-05-01 | 2003-08-26 | Sub-Q, Inc. | Method of hydrating a sponge material for delivery to a body |
WO2004002340A1 (en) * | 2002-06-26 | 2004-01-08 | Scimed Life Systems, Inc. | Delivery cannula with detachable tip and sealing plunger for selectively sealing side apertures |
US20040010237A1 (en) * | 2000-06-05 | 2004-01-15 | D'ussel Bernard | Novel needle for medical device and device comprising same |
US20040019330A1 (en) * | 2001-11-08 | 2004-01-29 | Sub-Q, Inc., A California Corporation | Sheath based blood vessel puncture locator and depth indicator |
US6712773B1 (en) | 2000-09-11 | 2004-03-30 | Tyco Healthcare Group Lp | Biopsy system |
US20040102730A1 (en) * | 2002-10-22 | 2004-05-27 | Davis Thomas P. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US20040158287A1 (en) * | 2000-07-14 | 2004-08-12 | Cragg Andrew H. | Sheath-mounted arterial plug delivery device |
US20040176723A1 (en) * | 2001-11-08 | 2004-09-09 | Sing Eduardo Chi | Pledget-handling system and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US20040199103A1 (en) * | 2002-06-25 | 2004-10-07 | Sung-Yun Kwon | Solid solution perforator for drug delivery and other applications |
US20050033360A1 (en) * | 2001-11-08 | 2005-02-10 | Sing Eduardo Chi | Pledget-handling system and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US6860860B2 (en) | 2000-11-27 | 2005-03-01 | Tyco Healthcare Group, Lp | Tissue sampling and removal apparatus and method |
US6863680B2 (en) | 2001-11-08 | 2005-03-08 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US20050251088A1 (en) * | 2002-09-16 | 2005-11-10 | Sung-Yun Kwon | Solid micro-perforators and methods of use |
US6984219B2 (en) | 1999-09-23 | 2006-01-10 | Mark Ashby | Depth and puncture control for blood vessel hemostasis system |
US7008440B2 (en) | 2001-11-08 | 2006-03-07 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US7029489B1 (en) | 2001-05-18 | 2006-04-18 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site |
US7037322B1 (en) | 2001-11-08 | 2006-05-02 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture with a staging tube |
US20060116704A1 (en) * | 2004-07-15 | 2006-06-01 | Boston Scientific Scimed, Inc. | Tissue tract lancet |
US7201725B1 (en) | 2000-09-25 | 2007-04-10 | Sub-Q, Inc. | Device and method for determining a depth of an incision |
WO2007087862A1 (en) * | 2006-01-11 | 2007-08-09 | Karl-Otto Launicke | Resorbable acupuncture needle |
US20080004578A1 (en) * | 2006-06-30 | 2008-01-03 | Jessica Hixon | Stent Having Time-Release Indicator |
US20080045922A1 (en) * | 1997-10-17 | 2008-02-21 | Micro Therapeutics, Inc. | Device and method for controlling injection of liquid embolic composition |
US7335219B1 (en) | 2002-11-04 | 2008-02-26 | Sub-Q, Inc. | Hemostatic device including a capsule |
US20090035446A1 (en) * | 2005-09-06 | 2009-02-05 | Theraject, Inc. | Solid Solution Perforator Containing Drug Particle and/or Drug-Adsorbed Particles |
US20090118672A1 (en) * | 2002-10-07 | 2009-05-07 | Gonnelli Robert R | Microneedle array patch |
WO2009121632A1 (en) * | 2008-04-02 | 2009-10-08 | Werth Implantat Therapie Center S.L.U. | Implant for long-term acupuncture |
US7625352B1 (en) | 1998-05-01 | 2009-12-01 | Sub-Q, Inc. | Depth and puncture control for system for hemostasis of blood vessel |
US20100049165A1 (en) * | 2008-08-19 | 2010-02-25 | Micro Therapeutics, Inc | Detachable tip microcatheter |
US7695492B1 (en) | 1999-09-23 | 2010-04-13 | Boston Scientific Scimed, Inc. | Enhanced bleed back system |
US20100183582A1 (en) * | 2003-08-07 | 2010-07-22 | Ethicon, Inc. | Hemostatic compositions containing sterile thrombin |
US7875043B1 (en) | 2003-12-09 | 2011-01-25 | Sub-Q, Inc. | Cinching loop |
US20110121486A1 (en) * | 2008-05-21 | 2011-05-26 | Sea-Jin Oh | Method of manufacturing solid solution peforator patches and uses thereof |
US7955353B1 (en) | 2002-11-04 | 2011-06-07 | Sub-Q, Inc. | Dissolvable closure device |
US8317821B1 (en) | 2002-11-04 | 2012-11-27 | Boston Scientific Scimed, Inc. | Release mechanism |
WO2013057204A1 (en) * | 2011-10-20 | 2013-04-25 | Digital Endoscopy Gmbh | Disposable insertion tip, endoscopy system and cooling system |
CN104023760A (en) * | 2011-10-28 | 2014-09-03 | 普莱萨格生命科学公司 | Methods for drug delivery |
US9265858B2 (en) | 2012-06-12 | 2016-02-23 | Ferrosan Medical Devices A/S | Dry haemostatic composition |
EP2882474A4 (en) * | 2012-08-08 | 2016-05-11 | Presage Biosciences Inc | Extrusion methods and devices for drug delivery |
US9533069B2 (en) | 2008-02-29 | 2017-01-03 | Ferrosan Medical Devices A/S | Device for promotion of hemostasis and/or wound healing |
US9724078B2 (en) | 2013-06-21 | 2017-08-08 | Ferrosan Medical Devices A/S | Vacuum expanded dry composition and syringe for retaining same |
WO2018140371A1 (en) * | 2017-01-25 | 2018-08-02 | Rmvidlund Llc | Blood vessel access and closure devices and related methods of use |
US10111980B2 (en) | 2013-12-11 | 2018-10-30 | Ferrosan Medical Devices A/S | Dry composition comprising an extrusion enhancer |
US10124087B2 (en) | 2012-06-19 | 2018-11-13 | Covidien Lp | Detachable coupling for catheter |
US10451643B2 (en) * | 2014-05-21 | 2019-10-22 | Hitachi High-Technologies Corporation | Sample dispensing device and nozzle tip for sample dispensing device |
US10653837B2 (en) | 2014-12-24 | 2020-05-19 | Ferrosan Medical Devices A/S | Syringe for retaining and mixing first and second substances |
US10668258B1 (en) | 2018-12-31 | 2020-06-02 | J.D. Franco & Co., Llc | Intravascular devices, systems, and methods to address eye disorders |
CN111514407A (en) * | 2020-05-14 | 2020-08-11 | 南京市江宁医院 | Injection and infusion needle capable of reducing occupational exposure risk |
US10751215B2 (en) | 2012-08-03 | 2020-08-25 | J.D. Franco & Co., Llc | Systems and methods for treating eye diseases |
WO2020264527A1 (en) * | 2019-06-28 | 2020-12-30 | Endiatx | Ingestible device with manipulation capabilities |
US10918796B2 (en) | 2015-07-03 | 2021-02-16 | Ferrosan Medical Devices A/S | Syringe for mixing two components and for retaining a vacuum in a storage condition |
US11046818B2 (en) | 2014-10-13 | 2021-06-29 | Ferrosan Medical Devices A/S | Dry composition for use in haemostasis and wound healing |
US11109849B2 (en) | 2012-03-06 | 2021-09-07 | Ferrosan Medical Devices A/S | Pressurized container containing haemostatic paste |
US20220175385A1 (en) * | 2020-12-04 | 2022-06-09 | Phoenix Children's Hospital, Inc. | Anti-Reflux Plug Forming Detachable Tip Microcatheter |
US11701255B2 (en) | 2017-10-06 | 2023-07-18 | J.D. Franco & Co., Llc | Treating eye diseases by deploying a stent |
US11759218B2 (en) | 2017-12-15 | 2023-09-19 | J.D. Franco & Co., Llc | Medical systems, devices, and related methods |
US11801324B2 (en) | 2018-05-09 | 2023-10-31 | Ferrosan Medical Devices A/S | Method for preparing a haemostatic composition |
EP4279015A3 (en) * | 2019-05-30 | 2023-12-27 | Devicor Medical Products, Inc. | Apparatus for direct marking |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2603217A (en) * | 1952-07-15 | mcshirley | ||
US2691373A (en) * | 1951-11-15 | 1954-10-12 | Julien A Bried | Colon flushing nozzle with dissolvable tip |
US2814296A (en) * | 1954-04-15 | 1957-11-26 | S & R J Everett & Co Ltd | Surgical needles |
US3106483A (en) * | 1961-07-27 | 1963-10-08 | Us Catheter & Instr Corp | Synthetic blood vessel grafts |
US3358684A (en) * | 1965-03-12 | 1967-12-19 | Marshall Gerald | Parenteral injection devices |
US3396727A (en) * | 1964-01-06 | 1968-08-13 | Nolte Albert C Jr | Drainage tube for body fluids provided with filtering means coated with bacterial preventive material |
US3736939A (en) * | 1972-01-07 | 1973-06-05 | Kendall & Co | Balloon catheter with soluble tip |
US4306563A (en) * | 1979-11-28 | 1981-12-22 | Firma Pfrimmer & Co. Pharmazeutische Werke Erlangen Gmbh | Catheter for introduction into body cavities |
US4564361A (en) * | 1975-11-18 | 1986-01-14 | Hiroshi Akiyama | Catheter |
US4650488A (en) * | 1984-05-16 | 1987-03-17 | Richards Medical Company | Biodegradable prosthetic device |
US4708147A (en) * | 1985-02-25 | 1987-11-24 | Haaga John R | Universal biopsy needle |
US4710181A (en) * | 1985-06-11 | 1987-12-01 | Genus Catheter Technologies, Inc. | Variable diameter catheter |
US4827940A (en) * | 1987-04-13 | 1989-05-09 | Cardiac Pacemakers, Inc. | Soluble covering for cardiac pacing electrode |
-
1988
- 1988-12-23 US US07/288,858 patent/US4936835A/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2603217A (en) * | 1952-07-15 | mcshirley | ||
US2691373A (en) * | 1951-11-15 | 1954-10-12 | Julien A Bried | Colon flushing nozzle with dissolvable tip |
US2814296A (en) * | 1954-04-15 | 1957-11-26 | S & R J Everett & Co Ltd | Surgical needles |
US3106483A (en) * | 1961-07-27 | 1963-10-08 | Us Catheter & Instr Corp | Synthetic blood vessel grafts |
US3396727A (en) * | 1964-01-06 | 1968-08-13 | Nolte Albert C Jr | Drainage tube for body fluids provided with filtering means coated with bacterial preventive material |
US3358684A (en) * | 1965-03-12 | 1967-12-19 | Marshall Gerald | Parenteral injection devices |
US3736939A (en) * | 1972-01-07 | 1973-06-05 | Kendall & Co | Balloon catheter with soluble tip |
US4564361A (en) * | 1975-11-18 | 1986-01-14 | Hiroshi Akiyama | Catheter |
US4306563A (en) * | 1979-11-28 | 1981-12-22 | Firma Pfrimmer & Co. Pharmazeutische Werke Erlangen Gmbh | Catheter for introduction into body cavities |
US4650488A (en) * | 1984-05-16 | 1987-03-17 | Richards Medical Company | Biodegradable prosthetic device |
US4708147A (en) * | 1985-02-25 | 1987-11-24 | Haaga John R | Universal biopsy needle |
US4710181A (en) * | 1985-06-11 | 1987-12-01 | Genus Catheter Technologies, Inc. | Variable diameter catheter |
US4827940A (en) * | 1987-04-13 | 1989-05-09 | Cardiac Pacemakers, Inc. | Soluble covering for cardiac pacing electrode |
Non-Patent Citations (2)
Title |
---|
Article from The New York Times, Aug. 15 or 16, 1989, issue entitled "How About a Self-Destruct Needle?" |
Article from The New York Times, Aug. 15 or 16, 1989, issue entitled How About a Self Destruct Needle * |
Cited By (185)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5531761A (en) * | 1989-05-16 | 1996-07-02 | Yoon; Inbae | Methods for suturing tissue sections |
US4981149A (en) * | 1989-05-16 | 1991-01-01 | Inbae Yoon | Method for suturing with a bioabsorbable needle |
US4976704A (en) * | 1989-07-17 | 1990-12-11 | Mclees Donald J | Moisture disabled needle |
US5066278A (en) * | 1989-08-09 | 1991-11-19 | Siemens Aktiengesellschaft | Implantable injection body |
US5049138A (en) * | 1989-11-13 | 1991-09-17 | Boston Scientific Corporation | Catheter with dissolvable tip |
US5478352A (en) * | 1990-10-01 | 1995-12-26 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5591205A (en) * | 1990-10-01 | 1997-01-07 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5716375A (en) * | 1990-10-01 | 1998-02-10 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5601602A (en) * | 1990-10-01 | 1997-02-11 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US5290310A (en) * | 1991-10-30 | 1994-03-01 | Howmedica, Inc. | Hemostatic implant introducer |
US5324306A (en) * | 1991-10-30 | 1994-06-28 | Howmedica, Inc. | Hemostatic implant introducer |
US5779686A (en) * | 1993-04-19 | 1998-07-14 | Olympus Optical Co., Ltd. | Disposable medical instrument |
US5401257A (en) * | 1993-04-27 | 1995-03-28 | Boston Scientific Corporation | Ureteral stents, drainage tubes and the like |
US5941910A (en) * | 1993-07-12 | 1999-08-24 | The Regents Of The University Of California | Soft tissue augmentation apparatus |
EP0708625A1 (en) * | 1993-07-12 | 1996-05-01 | The Regents Of The University Of California | Soft tissue augmentation apparatus |
EP0708625B1 (en) * | 1993-07-12 | 2003-01-02 | The Regents of the University of California | Soft tissue augmentation kit |
US5607477A (en) * | 1993-07-12 | 1997-03-04 | The Regents Of The University Of California | Soft tissue augmentation apparatus |
US5782913A (en) * | 1993-07-12 | 1998-07-21 | The Regents Of The University Of California | Soft tissue augmentation apparatus |
AU686206B2 (en) * | 1993-07-12 | 1998-02-05 | Regents Of The University Of California, The | Soft tissue augmentation apparatus |
US5431639A (en) * | 1993-08-12 | 1995-07-11 | Boston Scientific Corporation | Treating wounds caused by medical procedures |
US5474542A (en) * | 1993-10-01 | 1995-12-12 | Gandi; Robert A. | Catheter having imperforate protective barrier and method for making and using the same |
WO1995009664A1 (en) * | 1993-10-01 | 1995-04-13 | Biosys Corp. | Catheter having imperforate protective barrier |
US5749376A (en) * | 1993-10-18 | 1998-05-12 | Wilk; Peter J. | Medical treatment and waste disposal method |
US5718237A (en) * | 1993-11-15 | 1998-02-17 | Haaga; John R. | Biopsy needle |
US5487392A (en) * | 1993-11-15 | 1996-01-30 | Haaga; John R. | Biopxy system with hemostatic insert |
US5477862A (en) * | 1994-03-14 | 1995-12-26 | Haaga; John R. | Cutting tip for biopsy needle |
US5643318A (en) * | 1994-03-31 | 1997-07-01 | Boston Scientific Corporation | Vascular plug with vessel locator |
EP0693300A3 (en) * | 1994-06-20 | 1997-03-26 | Minimed Inc | Side slit catheter |
US5716391A (en) * | 1995-08-23 | 1998-02-10 | Medtronic, Inc. | Medical electrical lead having temporarily rigid fixation |
US7175646B2 (en) | 1995-09-15 | 2007-02-13 | Boston Scientific Scimed, Inc. | Apparatus and method for percutaneous sealing of blood vessel punctures |
US20020156495A1 (en) * | 1995-09-15 | 2002-10-24 | Rodney Brenneman | Apparatus and method for percutaneous sealing of blood vessel punctures |
US6368341B1 (en) | 1996-08-06 | 2002-04-09 | St. Jude Medical Puerto Rico, B.V. | Insertion assembly and method of inserting a hemostatic closure device into an incision |
US6019733A (en) * | 1997-09-19 | 2000-02-01 | United States Surgical Corporation | Biopsy apparatus and method |
US6050955A (en) * | 1997-09-19 | 2000-04-18 | United States Surgical Corporation | Biopsy apparatus and method |
US6488636B2 (en) | 1997-09-19 | 2002-12-03 | United States Surgical Corporation | Biopsy apparatus |
US6142955A (en) * | 1997-09-19 | 2000-11-07 | United States Surgical Corporation | Biopsy apparatus and method |
US7976527B2 (en) | 1997-10-17 | 2011-07-12 | Micro Therapeutics, Inc. | Device and method for controlling injection of liquid embolic composition |
US8454649B2 (en) | 1997-10-17 | 2013-06-04 | Covidien Lp | Device and method for controlling injection of liquid embolic composition |
US9358014B2 (en) | 1997-10-17 | 2016-06-07 | Covidien Lp | Device and method for controlling injection of liquid embolic composition |
US20080045922A1 (en) * | 1997-10-17 | 2008-02-21 | Micro Therapeutics, Inc. | Device and method for controlling injection of liquid embolic composition |
US6554779B2 (en) | 1998-02-20 | 2003-04-29 | United States Surgical Corporation | Biopsy instrument driver apparatus |
US6193673B1 (en) | 1998-02-20 | 2001-02-27 | United States Surgical Corporation | Biopsy instrument driver apparatus |
US5931776A (en) * | 1998-03-09 | 1999-08-03 | Dotolo Research Corporation | Speculum having dissolvable tip |
US6325809B1 (en) | 1998-04-09 | 2001-12-04 | Boston Scientific Corporation | Speedband intubation plug |
US6077275A (en) * | 1998-04-09 | 2000-06-20 | Boston Scientific Corporation | Speedband intubation plug |
US6200328B1 (en) | 1998-05-01 | 2001-03-13 | Sub Q, Incorporated | Device and method for facilitating hemostasis of a biopsy tract |
US8050741B2 (en) | 1998-05-01 | 2011-11-01 | Boston Scientific Scimed, Inc. | Device and method for facilitating hemostasis of a biopsy tract |
US6440151B1 (en) | 1998-05-01 | 2002-08-27 | Sub-Q, Inc. | Device and method for facilitating hemostasis of a biopsy tract |
US6440153B2 (en) | 1998-05-01 | 2002-08-27 | Sub-Q, Inc. | Device and method for facilitating hemostasis of a biopsy tract |
US6447534B2 (en) | 1998-05-01 | 2002-09-10 | Sub-Q, Inc. | Device and method for facilitating hemostasis of a biopsy tract |
US20020016612A1 (en) * | 1998-05-01 | 2002-02-07 | Mark Ashby | Device and method for facilitating hemostasis of a biopsy tract |
US6071301A (en) * | 1998-05-01 | 2000-06-06 | Sub Q., Inc. | Device and method for facilitating hemostasis of a biopsy tract |
US6315753B1 (en) | 1998-05-01 | 2001-11-13 | Sub-Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US7048710B1 (en) | 1998-05-01 | 2006-05-23 | Sub-Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US6086607A (en) * | 1998-05-01 | 2000-07-11 | Sub-Q, Inc. | Device and method for facilitating hemostasis of a biopsy tract |
US6527734B2 (en) | 1998-05-01 | 2003-03-04 | Sub-Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US20050113737A1 (en) * | 1998-05-01 | 2005-05-26 | Mark Ashby | Device and method for facilitating hemostasis of a biopsy tract |
US20050059080A1 (en) * | 1998-05-01 | 2005-03-17 | Sing Eduardo Chi | Absorbable sponge with contrasting agent |
US6183497B1 (en) | 1998-05-01 | 2001-02-06 | Sub-Q, Inc. | Absorbable sponge with contrasting agent |
US20030088271A1 (en) * | 1998-05-01 | 2003-05-08 | Cragg Andrew M. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US20030135237A1 (en) * | 1998-05-01 | 2003-07-17 | Cragg Andrew H. | Device, system and method for improving delivery of hemostatic material |
US6610026B2 (en) | 1998-05-01 | 2003-08-26 | Sub-Q, Inc. | Method of hydrating a sponge material for delivery to a body |
US7611479B2 (en) | 1998-05-01 | 2009-11-03 | Sub-Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US7618567B2 (en) | 1998-05-01 | 2009-11-17 | Boston Scientific Scimed, Inc. | Absorbable sponge with contrasting agent |
US6846320B2 (en) | 1998-05-01 | 2005-01-25 | Sub-Q, Inc. | Device and method for facilitating hemostasis of a biopsy tract |
US6162192A (en) * | 1998-05-01 | 2000-12-19 | Sub Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US7753872B2 (en) | 1998-05-01 | 2010-07-13 | Boston Scientific Scimed, Inc. | Device, system and method for improving delivery of hemostatic material |
US7625352B1 (en) | 1998-05-01 | 2009-12-01 | Sub-Q, Inc. | Depth and puncture control for system for hemostasis of blood vessel |
US20100036414A1 (en) * | 1998-05-01 | 2010-02-11 | Sub-Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US6332877B1 (en) * | 1998-05-12 | 2001-12-25 | Novartis Ag | Ostomy tube placement tip |
US6113581A (en) * | 1998-09-08 | 2000-09-05 | Levy; Orlev Nissenbaum | Infusion needle with a bio-degradable/absorbable needle tip |
US6436054B1 (en) | 1998-11-25 | 2002-08-20 | United States Surgical Corporation | Biopsy system |
US6162203A (en) * | 1999-01-11 | 2000-12-19 | Haaga; John R. | Cargo delivery needle |
US6544236B1 (en) | 1999-02-10 | 2003-04-08 | Sub-Q, Incorporated | Device, system and method for improving delivery of hemostatic material |
US7695492B1 (en) | 1999-09-23 | 2010-04-13 | Boston Scientific Scimed, Inc. | Enhanced bleed back system |
US6984219B2 (en) | 1999-09-23 | 2006-01-10 | Mark Ashby | Depth and puncture control for blood vessel hemostasis system |
US6540735B1 (en) | 2000-05-12 | 2003-04-01 | Sub-Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US6964658B2 (en) | 2000-05-12 | 2005-11-15 | Sub-Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US20040010237A1 (en) * | 2000-06-05 | 2004-01-15 | D'ussel Bernard | Novel needle for medical device and device comprising same |
US7621936B2 (en) | 2000-07-14 | 2009-11-24 | Boston Scientific Scimed, Inc. | Sheath-mounted arterial plug delivery device |
US20100049245A1 (en) * | 2000-07-14 | 2010-02-25 | Boston Scientific Scimed, Inc. | Sheath-mounted arterial plug delivery device |
US8696702B2 (en) | 2000-07-14 | 2014-04-15 | Boston Scientific Scimed, Inc. | Sheath-mounted arterial plug delivery device |
US20040158287A1 (en) * | 2000-07-14 | 2004-08-12 | Cragg Andrew H. | Sheath-mounted arterial plug delivery device |
US7189207B2 (en) | 2000-09-11 | 2007-03-13 | Tyco Healthcare Group Lp | Biopsy system having a single use loading unit operable with a trocar driver, a knife driver and firing module |
US8128577B2 (en) | 2000-09-11 | 2012-03-06 | Tyco Healthcare Group Lp | Biopsy system |
US6712773B1 (en) | 2000-09-11 | 2004-03-30 | Tyco Healthcare Group Lp | Biopsy system |
US7201725B1 (en) | 2000-09-25 | 2007-04-10 | Sub-Q, Inc. | Device and method for determining a depth of an incision |
US6860860B2 (en) | 2000-11-27 | 2005-03-01 | Tyco Healthcare Group, Lp | Tissue sampling and removal apparatus and method |
US7513877B2 (en) | 2000-11-27 | 2009-04-07 | Tyco Healthcare Group Lp | Tissue sampling and removal apparatus and method |
US20020190226A1 (en) * | 2001-03-12 | 2002-12-19 | Mark Ashby | Methods for sterilizing cross-linked gelatin compositions |
US7264772B2 (en) | 2001-03-12 | 2007-09-04 | Boston Scientific Scimed, Inc. | Methods for sterilizing cross-linked gelatin compositions |
US6849232B2 (en) | 2001-03-12 | 2005-02-01 | Sub-Q, Inc. | Methods for sterilizing cross-linked gelatin compositions |
US8187625B2 (en) | 2001-03-12 | 2012-05-29 | Boston Scientific Scimed, Inc. | Cross-linked gelatin composition comprising a wetting agent |
US8524270B2 (en) | 2001-03-12 | 2013-09-03 | Boston Scientific Scimed, Inc. | Cross-linked gelatin composition coated with a wetting agent |
US20030028140A1 (en) * | 2001-03-12 | 2003-02-06 | Greff Richard J. | Cross-linked gelatin composition comprising a wetting agent |
US8821918B2 (en) | 2001-03-12 | 2014-09-02 | Boston Scientific Scimed Inc. | Cross-linked gelatin composition comprising a wetting agent |
US7029489B1 (en) | 2001-05-18 | 2006-04-18 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site |
US20040176723A1 (en) * | 2001-11-08 | 2004-09-09 | Sing Eduardo Chi | Pledget-handling system and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US7037323B2 (en) | 2001-11-08 | 2006-05-02 | Sub-Q, Inc. | Pledget-handling system and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US20040019330A1 (en) * | 2001-11-08 | 2004-01-29 | Sub-Q, Inc., A California Corporation | Sheath based blood vessel puncture locator and depth indicator |
US6863680B2 (en) | 2001-11-08 | 2005-03-08 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US7192436B2 (en) | 2001-11-08 | 2007-03-20 | Sub-Q, Inc. | Pledget-handling system and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US7025748B2 (en) | 2001-11-08 | 2006-04-11 | Boston Scientific Scimed, Inc. | Sheath based blood vessel puncture locator and depth indicator |
US7037322B1 (en) | 2001-11-08 | 2006-05-02 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture with a staging tube |
US7008440B2 (en) | 2001-11-08 | 2006-03-07 | Sub-Q, Inc. | System and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US20050033360A1 (en) * | 2001-11-08 | 2005-02-10 | Sing Eduardo Chi | Pledget-handling system and method for delivering hemostasis promoting material to a blood vessel puncture site by fluid pressure |
US7182747B2 (en) | 2002-06-25 | 2007-02-27 | Theraject, Inc. | Solid solution perforator for drug delivery and other applications |
US7211062B2 (en) | 2002-06-25 | 2007-05-01 | Theraject, Inc. | Solid solution perforator for drug delivery and other applications |
US6945952B2 (en) | 2002-06-25 | 2005-09-20 | Theraject, Inc. | Solid solution perforator for drug delivery and other applications |
US20060074376A1 (en) * | 2002-06-25 | 2006-04-06 | Theraject, Inc. | Solid solution perforator for drug delivery and other applications |
US20040199103A1 (en) * | 2002-06-25 | 2004-10-07 | Sung-Yun Kwon | Solid solution perforator for drug delivery and other applications |
US6730095B2 (en) | 2002-06-26 | 2004-05-04 | Scimed Life Systems, Inc. | Retrograde plunger delivery system |
US20040167532A1 (en) * | 2002-06-26 | 2004-08-26 | Scimed Life Systems, Inc. | Retrograde plunger delivery system |
WO2004002340A1 (en) * | 2002-06-26 | 2004-01-08 | Scimed Life Systems, Inc. | Delivery cannula with detachable tip and sealing plunger for selectively sealing side apertures |
US7591822B2 (en) | 2002-06-26 | 2009-09-22 | Boston Scientific Scimed, Inc. | Retrograde plunger delivery system |
US8062573B2 (en) | 2002-09-16 | 2011-11-22 | Theraject, Inc. | Solid micro-perforators and methods of use |
US20050251088A1 (en) * | 2002-09-16 | 2005-11-10 | Sung-Yun Kwon | Solid micro-perforators and methods of use |
US20090118672A1 (en) * | 2002-10-07 | 2009-05-07 | Gonnelli Robert R | Microneedle array patch |
US8162901B2 (en) * | 2002-10-07 | 2012-04-24 | Valeritas, Inc. | Microneedle array patch |
US20040102730A1 (en) * | 2002-10-22 | 2004-05-27 | Davis Thomas P. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US8317821B1 (en) | 2002-11-04 | 2012-11-27 | Boston Scientific Scimed, Inc. | Release mechanism |
US7335219B1 (en) | 2002-11-04 | 2008-02-26 | Sub-Q, Inc. | Hemostatic device including a capsule |
US7955353B1 (en) | 2002-11-04 | 2011-06-07 | Sub-Q, Inc. | Dissolvable closure device |
US20100183582A1 (en) * | 2003-08-07 | 2010-07-22 | Ethicon, Inc. | Hemostatic compositions containing sterile thrombin |
US9005609B2 (en) | 2003-08-07 | 2015-04-14 | Ethicon, Inc. | Hemostatic compositions containing sterile thrombin |
US7875043B1 (en) | 2003-12-09 | 2011-01-25 | Sub-Q, Inc. | Cinching loop |
US20060116704A1 (en) * | 2004-07-15 | 2006-06-01 | Boston Scientific Scimed, Inc. | Tissue tract lancet |
US9808278B2 (en) | 2004-07-15 | 2017-11-07 | Boston Scientific Scimed Inc. | Tissue tract lancet |
US20090035446A1 (en) * | 2005-09-06 | 2009-02-05 | Theraject, Inc. | Solid Solution Perforator Containing Drug Particle and/or Drug-Adsorbed Particles |
WO2007087862A1 (en) * | 2006-01-11 | 2007-08-09 | Karl-Otto Launicke | Resorbable acupuncture needle |
US9265865B2 (en) | 2006-06-30 | 2016-02-23 | Boston Scientific Scimed, Inc. | Stent having time-release indicator |
US20080004578A1 (en) * | 2006-06-30 | 2008-01-03 | Jessica Hixon | Stent Having Time-Release Indicator |
US9533069B2 (en) | 2008-02-29 | 2017-01-03 | Ferrosan Medical Devices A/S | Device for promotion of hemostasis and/or wound healing |
WO2009121632A1 (en) * | 2008-04-02 | 2009-10-08 | Werth Implantat Therapie Center S.L.U. | Implant for long-term acupuncture |
US20110121486A1 (en) * | 2008-05-21 | 2011-05-26 | Sea-Jin Oh | Method of manufacturing solid solution peforator patches and uses thereof |
US9381680B2 (en) | 2008-05-21 | 2016-07-05 | Theraject, Inc. | Method of manufacturing solid solution perforator patches and uses thereof |
US11457927B2 (en) | 2008-08-19 | 2022-10-04 | Covidien Lp | Detachable tip microcatheter |
US10512469B2 (en) | 2008-08-19 | 2019-12-24 | Covidien Lp | Detachable tip microcatheter |
US20100049165A1 (en) * | 2008-08-19 | 2010-02-25 | Micro Therapeutics, Inc | Detachable tip microcatheter |
US9468739B2 (en) | 2008-08-19 | 2016-10-18 | Covidien Lp | Detachable tip microcatheter |
US9486608B2 (en) | 2008-08-19 | 2016-11-08 | Covidien Lp | Detachable tip microcatheter |
WO2013057204A1 (en) * | 2011-10-20 | 2013-04-25 | Digital Endoscopy Gmbh | Disposable insertion tip, endoscopy system and cooling system |
EP2771043A4 (en) * | 2011-10-28 | 2015-04-29 | Presage Biosciences Inc | Methods for drug delivery |
US10478157B2 (en) | 2011-10-28 | 2019-11-19 | Presage Biosciences, Inc. | Methods for drug delivery |
CN104023760A (en) * | 2011-10-28 | 2014-09-03 | 普莱萨格生命科学公司 | Methods for drug delivery |
US11109849B2 (en) | 2012-03-06 | 2021-09-07 | Ferrosan Medical Devices A/S | Pressurized container containing haemostatic paste |
US9265858B2 (en) | 2012-06-12 | 2016-02-23 | Ferrosan Medical Devices A/S | Dry haemostatic composition |
US10799611B2 (en) | 2012-06-12 | 2020-10-13 | Ferrosan Medical Devices A/S | Dry haemostatic composition |
US9999703B2 (en) | 2012-06-12 | 2018-06-19 | Ferrosan Medical Devices A/S | Dry haemostatic composition |
US10124087B2 (en) | 2012-06-19 | 2018-11-13 | Covidien Lp | Detachable coupling for catheter |
US11654047B2 (en) | 2012-08-03 | 2023-05-23 | J.D. Franco & Co., Llc | Systems and methods for treating eye diseases |
US10751215B2 (en) | 2012-08-03 | 2020-08-25 | J.D. Franco & Co., Llc | Systems and methods for treating eye diseases |
EP2882474A4 (en) * | 2012-08-08 | 2016-05-11 | Presage Biosciences Inc | Extrusion methods and devices for drug delivery |
US9724078B2 (en) | 2013-06-21 | 2017-08-08 | Ferrosan Medical Devices A/S | Vacuum expanded dry composition and syringe for retaining same |
US10595837B2 (en) | 2013-06-21 | 2020-03-24 | Ferrosan Medical Devices A/S | Vacuum expanded dry composition and syringe for retaining same |
US11103616B2 (en) | 2013-12-11 | 2021-08-31 | Ferrosan Medical Devices A/S | Dry composition comprising an extrusion enhancer |
US10111980B2 (en) | 2013-12-11 | 2018-10-30 | Ferrosan Medical Devices A/S | Dry composition comprising an extrusion enhancer |
US10451643B2 (en) * | 2014-05-21 | 2019-10-22 | Hitachi High-Technologies Corporation | Sample dispensing device and nozzle tip for sample dispensing device |
US11046818B2 (en) | 2014-10-13 | 2021-06-29 | Ferrosan Medical Devices A/S | Dry composition for use in haemostasis and wound healing |
US10653837B2 (en) | 2014-12-24 | 2020-05-19 | Ferrosan Medical Devices A/S | Syringe for retaining and mixing first and second substances |
US10918796B2 (en) | 2015-07-03 | 2021-02-16 | Ferrosan Medical Devices A/S | Syringe for mixing two components and for retaining a vacuum in a storage condition |
US11925339B2 (en) | 2017-01-25 | 2024-03-12 | J.D. Franco & Co., Llc | Blood vessel access and closure devices and related methods of use |
WO2018140371A1 (en) * | 2017-01-25 | 2018-08-02 | Rmvidlund Llc | Blood vessel access and closure devices and related methods of use |
US11529130B2 (en) | 2017-01-25 | 2022-12-20 | J.D. Franco & Co., Llc | Blood vessel access and closure devices and related methods of use |
US11701255B2 (en) | 2017-10-06 | 2023-07-18 | J.D. Franco & Co., Llc | Treating eye diseases by deploying a stent |
US11759218B2 (en) | 2017-12-15 | 2023-09-19 | J.D. Franco & Co., Llc | Medical systems, devices, and related methods |
US11801324B2 (en) | 2018-05-09 | 2023-10-31 | Ferrosan Medical Devices A/S | Method for preparing a haemostatic composition |
US12161825B2 (en) | 2018-12-31 | 2024-12-10 | J.D. Franco & Co., Llc | Intravascular devices, systems, and methods to address eye disorders |
US10814109B2 (en) | 2018-12-31 | 2020-10-27 | J.D. Franco & Co., Llc | Intravascular devices, systems, and methods to address eye disorders |
US10695541B1 (en) | 2018-12-31 | 2020-06-30 | J.D. Franco & Co., Llc | Intravascular devices, systems, and methods to address eye disorders |
US10668258B1 (en) | 2018-12-31 | 2020-06-02 | J.D. Franco & Co., Llc | Intravascular devices, systems, and methods to address eye disorders |
US10765843B2 (en) | 2018-12-31 | 2020-09-08 | J.D. Franco & Co., Llc | Intravascular devices, systems, and methods to address eye disorders |
US10933226B2 (en) | 2018-12-31 | 2021-03-02 | J.D. Franco & Co., Llc | Intravascular devices, systems, and methods to address eye disorders |
US10792478B2 (en) | 2018-12-31 | 2020-10-06 | J.D. Franco & Co., Llc | Intravascular devices, systems, and methods to address eye disorders |
US10799688B2 (en) | 2018-12-31 | 2020-10-13 | J.D. Franco & Co., Llc | Intravascular devices, systems, and methods to address eye disorders |
EP4279015A3 (en) * | 2019-05-30 | 2023-12-27 | Devicor Medical Products, Inc. | Apparatus for direct marking |
WO2020264527A1 (en) * | 2019-06-28 | 2020-12-30 | Endiatx | Ingestible device with manipulation capabilities |
US11622754B2 (en) | 2019-06-28 | 2023-04-11 | Endiatx, Inc. | Ingestible device with propulsion and imaging capabilities |
US11045080B2 (en) | 2019-06-28 | 2021-06-29 | Endiatx | Ingestible device with propulsion capabilities |
US11986173B2 (en) | 2019-06-28 | 2024-05-21 | Endiatx, Inc. | Ingestible device with propulsion capabilities |
US12059134B2 (en) | 2019-06-28 | 2024-08-13 | Endiatx, Inc. | Ingestible device with manipulation capabilities |
US12201279B2 (en) | 2019-06-28 | 2025-01-21 | Endiatx, Inc. | Ingestible device with propulsion and imaging capabilities |
CN111514407A (en) * | 2020-05-14 | 2020-08-11 | 南京市江宁医院 | Injection and infusion needle capable of reducing occupational exposure risk |
US20220175385A1 (en) * | 2020-12-04 | 2022-06-09 | Phoenix Children's Hospital, Inc. | Anti-Reflux Plug Forming Detachable Tip Microcatheter |
US12220540B2 (en) * | 2020-12-04 | 2025-02-11 | Phoenix Children's Hospital, Inc. | Anti-reflux plug forming detachable tip microcatheter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4936835A (en) | Medical needle with bioabsorbable tip | |
US5080655A (en) | Medical biopsy needle | |
US5195988A (en) | Medical needle with removable sheath | |
US6887254B1 (en) | Disposable lancet device | |
JP4188560B2 (en) | Transplant device for subcutaneous implant | |
US5681323A (en) | Emergency cricothyrotomy tube insertion | |
US5713874A (en) | Camouflaged injection needle | |
AU686764B2 (en) | Bone marrow biopsy needle | |
US5407431A (en) | Intravenous catheter insertion device with retractable needle | |
KR100269567B1 (en) | Implantation device and method | |
JP4917538B2 (en) | Disposable pneumatic safety syringe with retractable needle | |
JP2739840B2 (en) | Needle assembly with one-handed needle barrier | |
CZ296796B6 (en) | Medical needle encapsulating safety apparatus | |
US6524284B1 (en) | Medical injection patch | |
JPH05505733A (en) | Anesthesia induction method and device | |
GB2218910A (en) | Hemostatic sheath for a biopsy needle | |
IL109294A (en) | Surgical instrument for impact insertion of an intraosseous trocar- needle | |
JP2002153557A (en) | Percutaneous syringe with selectively retractable needle | |
JP2008511349A5 (en) | ||
US20160287796A1 (en) | Cartridge system to which a syringe body can be attached | |
US20060122561A1 (en) | Auto-destructible syringe | |
JP2003325483A (en) | Needle holder for use with safety needle assembly | |
US6113581A (en) | Infusion needle with a bio-degradable/absorbable needle tip | |
GB2282760A (en) | Degradable surgical needle | |
WO2003061735A1 (en) | Housing for retractable needle with means for disinfecting the skin at the puncture site |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 19980701 |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |