[go: up one dir, main page]

US4844514A - Rotary joint device for a cryogenic liquid - Google Patents

Rotary joint device for a cryogenic liquid Download PDF

Info

Publication number
US4844514A
US4844514A US06/812,400 US81240085A US4844514A US 4844514 A US4844514 A US 4844514A US 81240085 A US81240085 A US 81240085A US 4844514 A US4844514 A US 4844514A
Authority
US
United States
Prior art keywords
duct
stationary
annular duct
heat
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US06/812,400
Inventor
Jean-Michel Chauvin
Jean-Pierre R. F. Chilardi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entreprise D'equipements Mecaniques Et Hydrauliques Emh
ENTREPRISE EQUIPEMENTS MECAN HYDRAUL
Original Assignee
ENTREPRISE EQUIPEMENTS MECAN HYDRAUL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENTREPRISE EQUIPEMENTS MECAN HYDRAUL filed Critical ENTREPRISE EQUIPEMENTS MECAN HYDRAUL
Assigned to ENTREPRISE D'EQUIPEMENTS MECANIQUES ET HYDRAULIQUES E.M.H. reassignment ENTREPRISE D'EQUIPEMENTS MECANIQUES ET HYDRAULIQUES E.M.H. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CHAUVIN, JEAN-MICHEL, GHILARDI, JEAN P. R. F.
Application granted granted Critical
Publication of US4844514A publication Critical patent/US4844514A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/16Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
    • F16L59/18Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for joints
    • F16L59/185Adjustable joints; Joints allowing movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L39/00Joints or fittings for double-walled or multi-channel pipes or pipe assemblies
    • F16L39/04Joints or fittings for double-walled or multi-channel pipes or pipe assemblies allowing adjustment or movement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S285/00Pipe joints or couplings
    • Y10S285/904Cryogenic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S285/00Pipe joints or couplings
    • Y10S285/915Mastic

Definitions

  • the present invention relates generally to and has essentially for its fubject matter a divice forming a rotary or swivel joint for a cryogenic liquid in particular applicable for the transfer of liquefied natural gas for instance off-shore at sea.
  • the main object of the present invention is to provide a simple structure suitable for the transfer, in particular off-shore at sea, of cryogenic liquid in particular such as liquefied natural gas, using for instance between a ship and a refinery on shore, a single unit for mooring or fastening said ship comprising the swivel joint device.
  • a swivel joint device for a cryogenic liquid such as liquefied natural gas of the kind comprising at least a corresponding central duct suitable for the flow of said cryogencic liquid through the joint, characterized in that it further comprises at least one annular duct coaxially surrounding said central duct for the return of the cold gas originating from the vaporization or boil-off of the moving liquid, said annular duct comprising gas inlet and outlet pipes, respectively, a stationary portion and a portion mounted in rotary relation to the stationary portion by means of a ball or roller bearing operating at a temperature close to ambient temperature, a double set of sealing gaskets or packings also working at a temperature close to the ambient temperature and in that there are provided firest means for the heat insulation of at least the portions of said stationary and movable walls forming said annular duct and so arranged as to prevent any cooling down through convection or radiation of said sealing gaskets or packings contacted by said cold gas.
  • a cryogenic liquid such as liquefied natural gas of the
  • annular return of the cold gas is particularly simple and cost-saving
  • construction of the annular return is such that the sealing gaskets or packings of the joint and the ball or roller bearing operating at a temperature close to the ambient temperature may be selected among those existing already, thereby requiring no particular developmental work.
  • This new swivel joint may thus be associated with any existing monofluid rotary joint so as to form a two-stage assembly allowing the central issue of the liquefied natural gas and the annular back-flow or return of the cold gas.
  • FIG. 1 is a view in half cross-section showing the swivel joint device according to the present invention
  • FIG. 2A is a partial cross-sectional view showing in detail the gas inlet pipe according to the invention.
  • FIG. 2B is a partial cross-sectional view similar to FIG. 2A and showing another embodiment of the gas inlet pipe.
  • the device forming a swivel joint for a cryogenic liquid such as liquefied natural gas comprises a central duct 2 suitable for the flow of cryogenic liquid through the joint.
  • An annular duct 1 coaxially surrounds the central duct 2.
  • This annular duct allows the back-flow or return of cold gas originating from the vaporization or boil-off of the liquid, for instance moving liquefied natural gas.
  • the overall fluid-tightness of the annular return or back-flow is provided by two sealing gasket or packing system and a ball or roller bearin 7 makes possible its revolving.
  • the construction of this annular return has been chosen such that the sealing gaskets or packings and the ball or roller bearing are at a temperature close to the ambient temperature, thereby offering the advantage of retaining the state of the art for these elements.
  • This new swivel joint for cold gases return at a temperature for instance of -60° C. to -160° C. may be associated with the monofluid rotary joint such as the one described in applicant's prior French patent application No. 83.00 463 so as to form a two-stage assembly providing for the central issue of the liquefied natural gas and the annular return or back-flow of the cold gas originating from the vaporization or boil-off thereof, for instance, during its transfer.
  • the annular duct 1 comprises gas inlet and outlet ducts 3 and 4, respectively, a stationary portion 5 and a portion 6 mounted in rotary relation to the stationary portion 5 by means of the roller or ball bearing 7.
  • a heat-insulating system 8 is arranged so as to insulate at least the portions of the stationary and movable walls forming the annular duct 1 and likely to be contacted by the cold gas.
  • the sealing gaskets or packings and the ball or roller bearing 7 are heat-insulated, but also all those metal parts which are likely to be heat-conducting are covered or lined with the aforesaid thermal insulation system.
  • heat-insulating means 11 preferably selected to be or the same nature as the aforesaid first insulating means 8.
  • the heat insulation system 8 is made from a rigid cellular insulating material with closed cells to avoid gas absorption such for instance as expanded poly(vinyl chloride) of high density (of about 70 to 80 kg/m 3 ) wrapped in a protective lining or cover such as glass fibre fabric or cloth.
  • This lining is itself covered with a coating such as an elastomer with a great relative elongation in the cold state, i.e. which is not brittle in the cold condition, and preferably adhesive to allow the glass fibre fabric to be glued or stuck to the insulating material for the purpose of thus stopping the spreading out of possible cracks in the insulating material likely to build up thermal bridges.
  • the system of sealing gaskets or packings 15 on the stationary portion 5 is located for instance at the upper part to facilitate the access and accordingly the maintenance.
  • the stationary and movable insulations are secured for instance by being adhesively bonded, glued or stuck to the stationary and movable portions 5 and 6, respectively.
  • each pipe 3, 4 comprises a preferably metallic sleeve 12 inserted in coaxial relationship therein and projecting into the annular space of the duct 1.
  • the aforesaid deflector 13 may be constituted by a side outlet 14 of the sleeve, the end of which is then closed (FIG. 2B).
  • annular return path of the gaseous fluid which has just been described could possibly also serve as an annular passage-way for the liquid fluid (liquefied natural gas) in systems with liquid-conveying multiple passage-ways.
  • annular return path for the gaseous fluid avoids any transmission of cold through the joint, since all the metallic parts thereof likely to conduct the cold are thermally insulated.
  • Such a staggered arrangement of the insulation also advantageously prevents any cooling-down through convection or radiation of both sets of sealing gaskets or packings.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Joints Allowing Movement (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)
  • Thermal Insulation (AREA)

Abstract

A device forming a swivel joint for a cryogenic liquid with at least one central duct for the flow of said cryogenic liquid through the joint and comprising at least one annular duct co-axially surrounding said central duct for the return of the cold gas originating from the vaporization of the moving liquid, said annular duct comprising gas inlet and outlet pipes; a stationary portion and a portion mounted in rotating relation to said stationary portion by means of a ball or roller bearing operating at a temperature close to ambient temperature, a double set of sealing gaskets also operating at a temperature close to ambient temperature; and heat insulation of at least the parts of said stationary and movable portions forming said annular duct and contacted by said cold gas, so arranged as to prevent any cooling-down of said sealing gaskets through convection or radiation; the device being applicable in particular to the off-shore transfer of liquefied natural gas.

Description

BACKGROUND OF THE INVENTION
The present invention relates generally to and has essentially for its fubject matter a divice forming a rotary or swivel joint for a cryogenic liquid in particular applicable for the transfer of liquefied natural gas for instance off-shore at sea.
Devices forming rotary or swivel joints for a cryogenic fluid are already known. For instance, the French patent application No. 83.00 463 of the applicant discloses a device comprising a stationary part and a rotary part, each part carrying at least a corresponding duct suitable for the flow of cryogenic fluid through the joint. Moreover, such a device comprises fluid-tight or sealed heat insulating means for the vital portions of the joint in particular such as the portions located at the plane of junction between the stationary part and the rotary part in relation to the environmental medium. During off-shore transfer for instance, between a ship and a refinery unit on shore, some flowing portion of the cryogenic liquid undergoes a vaporization or boil-off. The gas thus evolved may not be rejected or exhausted to the open air and it is necessary to provide a duct for the return thereof.
Heretofore, to solve this problem, harbour appliances provided with two independent armas for the transfer of cryogenic liquid and for the return of the gas from the vaporized liquid have been designed. Such transfer constructions, however, are complicated an accordingly expensive.
SUMMARY OF THE INVENTION
The main object of the present invention is to provide a simple structure suitable for the transfer, in particular off-shore at sea, of cryogenic liquid in particular such as liquefied natural gas, using for instance between a ship and a refinery on shore, a single unit for mooring or fastening said ship comprising the swivel joint device. The approach provided by the present invention to solve the technical problem set consists in a swivel joint device for a cryogenic liquid such as liquefied natural gas of the kind comprising at least a corresponding central duct suitable for the flow of said cryogencic liquid through the joint, characterized in that it further comprises at least one annular duct coaxially surrounding said central duct for the return of the cold gas originating from the vaporization or boil-off of the moving liquid, said annular duct comprising gas inlet and outlet pipes, respectively, a stationary portion and a portion mounted in rotary relation to the stationary portion by means of a ball or roller bearing operating at a temperature close to ambient temperature, a double set of sealing gaskets or packings also working at a temperature close to the ambient temperature and in that there are provided firest means for the heat insulation of at least the portions of said stationary and movable walls forming said annular duct and so arranged as to prevent any cooling down through convection or radiation of said sealing gaskets or packings contacted by said cold gas. Thus such a desing of the annular return of the cold gas is particularly simple and cost-saving Moreover, the construction of the annular return is such that the sealing gaskets or packings of the joint and the ball or roller bearing operating at a temperature close to the ambient temperature may be selected among those existing already, thereby requiring no particular developmental work. This new swivel joint may thus be associated with any existing monofluid rotary joint so as to form a two-stage assembly allowing the central issue of the liquefied natural gas and the annular back-flow or return of the cold gas.
SUMMARY OF THE INVENTION
The invention will be better understood and further objects, characterizing features and advantages thereof will appear more clearly as the following explanatory description proceeds with reference to the accompanying diagrammatic drawings given by way of non-limiting examples only, illustrating several presently preferred specific embodiments of the invention and wherein:
FIG. 1 is a view in half cross-section showing the swivel joint device according to the present invention;
FIG. 2A is a partial cross-sectional view showing in detail the gas inlet pipe according to the invention; and
FIG. 2B is a partial cross-sectional view similar to FIG. 2A and showing another embodiment of the gas inlet pipe.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring to the accompanying drawings, the device forming a swivel joint for a cryogenic liquid such as liquefied natural gas according to the present invention comprises a central duct 2 suitable for the flow of cryogenic liquid through the joint. An annular duct 1 coaxially surrounds the central duct 2. This annular duct allows the back-flow or return of cold gas originating from the vaporization or boil-off of the liquid, for instance moving liquefied natural gas. The overall fluid-tightness of the annular return or back-flow is provided by two sealing gasket or packing system and a ball or roller bearin 7 makes possible its revolving. The construction of this annular return has been chosen such that the sealing gaskets or packings and the ball or roller bearing are at a temperature close to the ambient temperature, thereby offering the advantage of retaining the state of the art for these elements.
This new swivel joint for cold gases return at a temperature for instance of -60° C. to -160° C. may be associated with the monofluid rotary joint such as the one described in applicant's prior French patent application No. 83.00 463 so as to form a two-stage assembly providing for the central issue of the liquefied natural gas and the annular return or back-flow of the cold gas originating from the vaporization or boil-off thereof, for instance, during its transfer. Furthermore, the annular duct 1 comprises gas inlet and outlet ducts 3 and 4, respectively, a stationary portion 5 and a portion 6 mounted in rotary relation to the stationary portion 5 by means of the roller or ball bearing 7. A heat-insulating system 8 is arranged so as to insulate at least the portions of the stationary and movable walls forming the annular duct 1 and likely to be contacted by the cold gas. Thus not only the sealing gaskets or packings and the ball or roller bearing 7 are heat-insulated, but also all those metal parts which are likely to be heat-conducting are covered or lined with the aforesaid thermal insulation system.
Moreover, between the outer wall 9 or the central duct 2 and the inner wall 10 of the annular duct 1 are also arranged heat-insulating means 11 preferably selected to be or the same nature as the aforesaid first insulating means 8.
The heat insulation system 8 is made from a rigid cellular insulating material with closed cells to avoid gas absorption such for instance as expanded poly(vinyl chloride) of high density (of about 70 to 80 kg/m3) wrapped in a protective lining or cover such as glass fibre fabric or cloth. This lining is itself covered with a coating such as an elastomer with a great relative elongation in the cold state, i.e. which is not brittle in the cold condition, and preferably adhesive to allow the glass fibre fabric to be glued or stuck to the insulating material for the purpose of thus stopping the spreading out of possible cracks in the insulating material likely to build up thermal bridges.
The system of sealing gaskets or packings 15 on the stationary portion 5 is located for instance at the upper part to facilitate the access and accordingly the maintenance.
Furthermore, the stationary and movable insulations, respectively, are secured for instance by being adhesively bonded, glued or stuck to the stationary and movable portions 5 and 6, respectively.
For the purpose of insulating the metal structure of the swivel joint, in particular at the tappings and also to prevent the erosion of the insulation 8 through the contact with the cold gas flowing through the inlet and outlet pipes 3 and 4, respectively, each pipe 3, 4 comprises a preferably metallic sleeve 12 inserted in coaxial relationship therein and projecting into the annular space of the duct 1.
Moreover, to avoid the erosion of the stationary insulation 8 in front of the pipes 3 and 4 through direct impact of the gaseous jet, there is provided, in particular a metallic deflector 13 secured to the insulating material (FIG. 2A) or the sleeve. In the latter case, the aforesaid deflector 13 may be constituted by a side outlet 14 of the sleeve, the end of which is then closed (FIG. 2B).
The annular return path of the gaseous fluid which has just been described could possibly also serve as an annular passage-way for the liquid fluid (liquefied natural gas) in systems with liquid-conveying multiple passage-ways.
Moreover, such an annular return path for the gaseous fluid avoids any transmission of cold through the joint, since all the metallic parts thereof likely to conduct the cold are thermally insulated. There has also benn provided an uncrossing of the separation surfaces of the movable and stationary insulations at the ball or roller bearing 7 to avoid any transmission of cold therein.
Such a staggered arrangement of the insulation also advantageously prevents any cooling-down through convection or radiation of both sets of sealing gaskets or packings.

Claims (14)

What is claimed is:
1. A swivel joint device for the transfer of cryogenic liquid such as liquefied natural gas particularly between an off-shore station such as a ship and a on-station such as a refinery unit and the return flow of cold gas produced by vaporization or boil-off of said cryogenic liquid, said swivel joint device comprising
a central duct for the flow of said cryogenic liquid including a stationary central duct portion and a rotatable central duct portion, and cold gas return flow duct means,
wherein the improvement comprises
said cold gas return flow duct means comprising at least an annular duct portion mounted co-axially around said stationary central duct portion and including a stationary portion secured to said stationary central duct portion and a portion mounted in rotary relationship to said stationary duct portion, concentrically thereto, by means of a ball or roller bearing in a way to form therebetween said annular duct, and additionally comprising means for retaining said ball or roller bearing together,
said annular duct including inner walls and comprising inlet and outlet means for the flow of said cold gas through said annular duct provided respectively in said rotatable and stationary duct portions,
the entire face of said inner walls of the stationary and rotatable annular duct portions being covered by first heat-insulating means,
said stationary and rotatable annular duct portions having cylindrical outer surfaces which are axially aligned and said ball or roller bearing comprising two portions secured respectively to said cylindrical outer surfaces of said stationary and rotatable annular duct portions, so as to be heat-insulated from said coal gas flowing through said annular duct by said first heat-insulating means and to operate at a temperature close to ambient temperature, and
sealing gaskets being provided between said stationary and rotatable duct portions at locations heat-insulated from said cold gas flowing through said annular duct by said first heat-insulating means in a way to operate substantially at a temperature close to the ambient temperature.
2. A device according to claim 1 characterized in that there is provided between an outer wall of said central duct and the inner wall of said annular duct second heat-insulating means.
3. A device according to claim 2 wherein said second heat insulating means are of the same nature as said first insulating means.
4. A device according to claim 1, characterized in that said first heat-insulating means are made from a rigid cellular insulating material with closed cells wrapped in a protective lining covered with a bonding coating.
5. A device according to claim 4 wherein said rigid cellular insulating material with closed cells is formed of high-density expanded polyvinyl chloride.
6. A device according to claim 4 wherein said protective lining is formed of a glass fiber fabric.
7. A device according to claim 4 wherein said bonding coating is adhesively secured to said protective lining.
8. A device according to claim 1, wherein each of said cold gas inlet and outlet means comprise pipe means each including a metallic sleeve coaxially mounted in said pipe means with a radial clearance between said sleeve and said pipe means and projecting into said annular duct.
9. A device according to claim 8, wherein at each aforesaid pipe means are provided deflecting means for the ingoing or outgoing gas.
10. A device according to claim 9, wherein said deflecting means are secured to said sleeve.
11. A device according to claim 9, wherein said deflecting means are secured to said first insulating means.
12. A device according to claim 9, wherein said deflecting means are metallic.
13. A device according to claim 9, wherein said sleeve is closed at an end portion projecting into said annular duct and comprises a side or lateral outlet constituting said deflecting means.
14. A device according to claim 9, characterized in that said deflecting means are constituted by at least one side outlet of said sleeve, the end of which is then closed.
US06/812,400 1984-12-31 1985-12-23 Rotary joint device for a cryogenic liquid Expired - Lifetime US4844514A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8420119A FR2575533B1 (en) 1984-12-31 1984-12-31 ROTATING JOINT DEVICE FOR CRYOGENIC LIQUID
FR8420119 1984-12-31

Publications (1)

Publication Number Publication Date
US4844514A true US4844514A (en) 1989-07-04

Family

ID=9311153

Family Applications (1)

Application Number Title Priority Date Filing Date
US06/812,400 Expired - Lifetime US4844514A (en) 1984-12-31 1985-12-23 Rotary joint device for a cryogenic liquid

Country Status (7)

Country Link
US (1) US4844514A (en)
EP (1) EP0188161B1 (en)
JP (1) JPS61160694A (en)
AU (1) AU586212B2 (en)
DE (2) DE188161T1 (en)
FR (1) FR2575533B1 (en)
NO (1) NO168323C (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060108799A1 (en) * 2002-10-11 2006-05-25 Jean-Pierre Ghilardi Swivel joint system
US20080277928A1 (en) * 2005-10-25 2008-11-13 Jean-Pierre Queau Cyrogenic Swivel
US20120049510A1 (en) * 2010-08-31 2012-03-01 Hagay Cafri Pipe coupling assembly
CN102927389A (en) * 2012-11-19 2013-02-13 江苏长隆石化装备有限公司 Swivel joint for entrucking low-temperature LNG (liquefied natural gas)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2842277B1 (en) 2002-07-12 2004-10-01 Snecma Moteurs CRYOTECHNIC ROTATING FITTING AND APPLICATION IN PARTICULAR TO ARTICULATED FLUID SUPPLY LINES AND CRYOGENIC ERGOL DRIVE ENGINES
CN103867890A (en) * 2014-03-13 2014-06-18 江苏长隆石化装备有限公司 LNG (liquefied natural gas) fuel adding device for inland river boat
CN111692443B (en) * 2020-07-03 2023-07-25 大连华锐重工集团股份有限公司 Insulating rotary joint for connecting low-temperature fluid conveying pipeline

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB870269A (en) * 1957-08-14 1961-06-14 Garrett Corp Storage tank for liquefied gas
US3411526A (en) * 1967-03-09 1968-11-19 Smith Harvestore Products Hydraulic coupling
FR2251775A1 (en) * 1973-11-20 1975-06-13 Shell Int Research
US3921273A (en) * 1973-10-09 1975-11-25 Toyota Motor Co Ltd Method of filling a casing with heat insulating fibers
US4018059A (en) * 1975-04-30 1977-04-19 General Electric Company Cryogenic fluid transfer joint employing gaseous seals
US4103938A (en) * 1976-08-10 1978-08-01 Dover Corporation Swivel connector
FR2473675A1 (en) * 1980-01-11 1981-07-17 Creusot Loire Steel converter double rotary duct connector - where two stationary concentric ducts are bolted to bearing permitting rotation of two other concentric ducts connected to converter
US4323268A (en) * 1978-06-05 1982-04-06 E-Systems, Inc. Rotary pipe joint
FR2539481A1 (en) * 1983-01-13 1984-07-20 Emh Device forming a revolving joint for a cryogenic fluid, such as liquefied natural gas

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849086B2 (en) * 1976-09-28 1983-11-01 中国電力株式会社 Transmission signal abnormality detection device
JPS5849086U (en) * 1981-09-29 1983-04-02 理研精機株式会社 Rotary joint for ultra-high pressure liquid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB870269A (en) * 1957-08-14 1961-06-14 Garrett Corp Storage tank for liquefied gas
US3411526A (en) * 1967-03-09 1968-11-19 Smith Harvestore Products Hydraulic coupling
US3921273A (en) * 1973-10-09 1975-11-25 Toyota Motor Co Ltd Method of filling a casing with heat insulating fibers
FR2251775A1 (en) * 1973-11-20 1975-06-13 Shell Int Research
US4018059A (en) * 1975-04-30 1977-04-19 General Electric Company Cryogenic fluid transfer joint employing gaseous seals
US4103938A (en) * 1976-08-10 1978-08-01 Dover Corporation Swivel connector
US4323268A (en) * 1978-06-05 1982-04-06 E-Systems, Inc. Rotary pipe joint
FR2473675A1 (en) * 1980-01-11 1981-07-17 Creusot Loire Steel converter double rotary duct connector - where two stationary concentric ducts are bolted to bearing permitting rotation of two other concentric ducts connected to converter
FR2539481A1 (en) * 1983-01-13 1984-07-20 Emh Device forming a revolving joint for a cryogenic fluid, such as liquefied natural gas

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060108799A1 (en) * 2002-10-11 2006-05-25 Jean-Pierre Ghilardi Swivel joint system
US7338091B2 (en) 2002-10-11 2008-03-04 Societe Europeenne D'ingeniere Mecanique-Eurodim Swivel joint system
US20080277928A1 (en) * 2005-10-25 2008-11-13 Jean-Pierre Queau Cyrogenic Swivel
US20120049510A1 (en) * 2010-08-31 2012-03-01 Hagay Cafri Pipe coupling assembly
US8608208B2 (en) * 2010-08-31 2013-12-17 Heliofocus Ltd. Pipe coupling assembly
CN102927389A (en) * 2012-11-19 2013-02-13 江苏长隆石化装备有限公司 Swivel joint for entrucking low-temperature LNG (liquefied natural gas)

Also Published As

Publication number Publication date
FR2575533A1 (en) 1986-07-04
EP0188161B1 (en) 1989-07-19
NO168323C (en) 1992-02-05
DE3571684D1 (en) 1989-08-24
FR2575533B1 (en) 1987-03-20
JPH0368273B2 (en) 1991-10-25
NO855318L (en) 1986-07-01
JPS61160694A (en) 1986-07-21
EP0188161A1 (en) 1986-07-23
AU586212B2 (en) 1989-07-06
AU5174185A (en) 1986-07-10
DE188161T1 (en) 1986-12-18
NO168323B (en) 1991-10-28

Similar Documents

Publication Publication Date Title
US6695358B2 (en) Controlled leak cryogenic bayonet pipe spool and system
US3146005A (en) Vacuum insulated conduits and insulated joining means
US7143788B2 (en) High temperature line expansion installation with bellows
US7399002B2 (en) Cryogenic seal for vacuum-insulated pipe expansion bellows
US4844514A (en) Rotary joint device for a cryogenic liquid
RU2069286C1 (en) Flexible connecting member with heat insulation
US6978807B1 (en) Water stop for a line installation in a pre-insulated pipeline
US4673002A (en) Flexible fluid for transferring fluids
US9140386B2 (en) Anchor system for pre-insulated piping
AU695258B2 (en) Flexible joint
US7338091B2 (en) Swivel joint system
US4311166A (en) Valve assembly for use with high temperature and high pressure fluids
US4106796A (en) Connector for duct systems for low temperature fluids
US7028717B1 (en) Water stop for a loop installation in a pre-insulated pipeline
US5014752A (en) Nonfreezing pipe
JPS56113894A (en) Transporting pipeline for cold thermal fluid
CN103827568B (en) For the outer cover of heat transfer fluid conduit
PT84200B (en) LAMINAR THERMAL PROTECTION SYSTEM
EP1141609B1 (en) Insulated ball joint
US20120146324A1 (en) Watertight, Expandible and Contractible Pipe Joint for High Temperature Insulated Piping
US4239063A (en) Manifold insulated with knitted impregnated sleeve
CN102147038B (en) Compound type bidirectional compensator
CN212361077U (en) High leakproofness direct-burried insulating tube
JPH10311496A (en) Double pipe for high temperature and high pressure
RU95105145A (en) Thermally insulated column

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENTREPRISE D'EQUIPEMENTS MECANIQUES ET HYDRAULIQUE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:CHAUVIN, JEAN-MICHEL;GHILARDI, JEAN P. R. F.;REEL/FRAME:004498/0960

Effective date: 19851205

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12