US4467801A - Method and apparatus for shaping a proximal tibial surface - Google Patents
Method and apparatus for shaping a proximal tibial surface Download PDFInfo
- Publication number
- US4467801A US4467801A US06/473,464 US47346483A US4467801A US 4467801 A US4467801 A US 4467801A US 47346483 A US47346483 A US 47346483A US 4467801 A US4467801 A US 4467801A
- Authority
- US
- United States
- Prior art keywords
- handle
- tibia
- long axis
- guide
- central long
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000007493 shaping process Methods 0.000 title abstract description 11
- 210000002303 tibia Anatomy 0.000 claims abstract description 80
- 210000003127 knee Anatomy 0.000 claims description 19
- 210000000988 bone and bone Anatomy 0.000 claims description 12
- 208000014674 injury Diseases 0.000 claims description 4
- 230000008733 trauma Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 238000009966 trimming Methods 0.000 claims description 2
- 210000000689 upper leg Anatomy 0.000 description 7
- 238000002513 implantation Methods 0.000 description 6
- 230000001054 cortical effect Effects 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000007943 implant Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 230000000994 depressogenic effect Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002271 resection Methods 0.000 description 2
- 241001227561 Valgus Species 0.000 description 1
- 241000469816 Varus Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 210000001264 anterior cruciate ligament Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 210000000838 condylus lateralis tibialis Anatomy 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 238000013150 knee replacement Methods 0.000 description 1
- 210000003041 ligament Anatomy 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000002967 posterior cruciate ligament Anatomy 0.000 description 1
- 230000002784 sclerotic effect Effects 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/16—Instruments for performing osteoclasis; Drills or chisels for bones; Trepans
- A61B17/17—Guides or aligning means for drills, mills, pins or wires
- A61B17/1739—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
- A61B17/1764—Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the knee
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/16—Instruments for performing osteoclasis; Drills or chisels for bones; Trepans
- A61B17/1659—Surgical rasps, files, planes, or scrapers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/16—Instruments for performing osteoclasis; Drills or chisels for bones; Trepans
- A61B17/1662—Instruments for performing osteoclasis; Drills or chisels for bones; Trepans for particular parts of the body
- A61B17/1675—Instruments for performing osteoclasis; Drills or chisels for bones; Trepans for particular parts of the body for the knee
Definitions
- This invention relates to a method and apparatus for shaping the proximal surface of a human tibia to receive a proximal tibial knee prosthesis employing a reamer/alignment guide in combination with a plateau planer instrument which cooperatively engages the guide.
- the planer instrument modifies the proximal tibial surface transversely with respect to the central long axis of the guide and the central long axis of the shaft of the tibia.
- each prosthesis which is implanted be attached to the femur and tibia in such a manner that it approximates as closely as possible the natural portion of the knee which the prosthesis replaces. For example, if the proximal tibial prosthesis is not properly affixed with respect to the central long axis of the tibial shaft, an unnatural gait or other complications can result.
- the long central axis of the femur as an alignment guide to determine the proper manner in which a distal femoral prosthesis is to be attached to the femur.
- the central long axis of the shaft of the tibia is then located and the proximal surface of the tibia is horizontally resected and prepared to receive a proximal tibial prosthesis which typically is chosen to lie in the plane of the transverse axis of the knee. If the tibial surface does not lie in the plane chosen, the implanted prosthesis may not properly align with the distal femoral prosthesis and complications can result.
- External alignment instruments have a disadvantage in that the surgeon is relying upon visual and tactile means for positioning the alignment means since the patients's skin covers the major portion of the tibia and screens it from view. Locating the shaft of the tibia of an obese person or of a person having a deformity of the tibia which may somewhat alter its true central axis can present further difficulties.
- One object of the present invention is to provide a means by which the central long axis of the shaft of the tibia can be more accurately determined through the use of an instrument passing through the center of the shaft of the tibia.
- a method which comprises preparing the proximal tibial surface; determining the approximate location where the central long axis of the tibia (lying along the center of the interior of the tibial shaft) passes through the proximal tibial surface; advancing a reamer/alignment guide through that location for a sufficient distance along the interior of the tibial shaft to allow the central long axis of the tibia to correspond to that of the reamer/alignment guide; attaching a plateau planer to the handle of the reamer/alignment guide; modifying the proximal tibial surface using the plateau planer; trimming any remaining bone from the proximal tibial surface to obtain a smooth flat surface on which a tibial prosthesis can be affixed; and removing the reamer/alignment guide.
- This invention also provides a reamer/alignment guide in combination with a plateau planer which cooperatively engages with the reamer/alignment guide and enables the proximal tibial surface to be shaped in a planer fashion transverse to the central long axis of the tibia.
- the invention also provides a plateau planer having a planer abrading surface, a handle and a shaft connecting the two.
- FIG. 1 is an exploded plan view of a preferred reamer/alignment guide and its handle.
- FIG. 2 is a cross-section taken along section line 2--2 of FIG. 1.
- FIG. 3 is a side view of a preferred plateau planer.
- FIG. 4 is a view of FIG. 3 taken from below.
- FIG. 5 is a plan view of a tibial reamer insertion guide.
- FIG. 6 is a perspective view of the tibia and femur being separated.
- FIG. 7 is a perspective view showing the marking of the approximate location for the entry of the reamer/alignment guide.
- FIG. 8 is a perspective view from the side showing the advancement of reamer/alignment guide into the tibial shaft.
- FIG. 9 is a perspective view of the reamer/alignment guide fully advanced into the tibial shaft.
- FIG. 10 is a frontal perspective view showing the plateau planer in place.
- FIG. 11 is an exploded perspective view taken from the side showing placement of a proximal tibial prosthesis in the hole left by the reamer/alignment guide.
- FIG. 1 depicts a preferred form of a reamer/alignment guide 10 which is a rod having a first portion 12 which is intended to enter the interior of the tubluar shaft of the tibia which is an interior region bounded by hard compact (cortical) bone.
- Portion 12 has a plurality of cutting ridges 13 situated about its circumference.
- Portion 12 has an outer diameter (including the cutting ridges) of such a dimension that it approximates the narrowest portion of the interior of the tibial shaft.
- FIG. 2 shows the portion 12 and the cutting ridges 13 in cross-section.
- reamer/alignment guide 10 is preferably a smooth portion 11 of a slightly larger diameter than portion 12 which is intended to contact the proximal tibial surface and thereby indicate when the reamer is fully inserted within the interior of the tibial shaft as will be described infra.
- the end of portion 11 contains threads 14 or some other means by which opening 16 of handle 15 may be fitted over and secured to the end of portion 11 as a means to enable a twisting motion to be imparted to reamer/alignment guide 10 during use.
- portion 12 is 10" (254 mm) in length and 0.359" (9.12 mm) in outer diameter from the top at one cutting ridge to the ridge opposite it) and portion 11 is about 3.6" (91 mm) in length and 0.495" (12.6 mm) in outer diameter where the symbol " means inches and the symbol mm means millimeters.
- a reamer wherein portion 12 is 7" (178 mm) can be used.
- Portion 11 also serves a second purpose as a guide handle for the hereinafter described plateau planer.
- Portion 11 (hereinafter -guide handle 11")is concentric with first portion 12 of guide 10 and when guide 10 is advanced a sufficient distance through the interior of the tibial shaft until portion 12 is aligned with the long central axis of the tibia, the long central axis of guide handle 11 also lies along the long central axis of the tibia.
- other instruments for the guiding of shaping instruments or for use in directly shaping the proximal tibial surface can also be attached to guide handle 11 such that shaping operations using such instruments can be carried out relative to the central long axis of the tibia.
- FIG. 3 shows a plateau planer having a planar abrading surface 31 which, in the preferred embodiment shown, possesses a plurality of spaced cutting ridges 32 which are planar and are situated transverse to the central long axis of guide handle 11 (not shown).
- Guide handle 11 is inserted through passage 35 which is adapted to cooperatively engage handle 11 thereby enabling the plateau planer 30 to be freely rotated against the proximal tibial surface (not shown) about the central long axis of the guide handle 11 and thus rotated about the central long axis of the shaft of the tibia.
- Planar abrading surface 121 is rotated about the proximal tibial surface by imparting a twisting motion to handle 33 which is attached to abrading surface 121 by means of shaft 124.
- Passage 35 preferably has a 0.500" (12.7 mm) diameter when preferred guide handle 11 having a 0.495" (12.6 mm) outer diameter is employed.
- FIG. 4 shows plateau planer 30 from below and more clearly shows the preferred configuration of cutting ridges 32 found on abrading surface 31 and their relationship to passage 35 and handle 33. Also shown is recessed area 36 in plateau planer 120 which is included to avoid trauma to anatomical members found about the intercondylar fossa of the proximal tibial surface.
- plateau planer is the one shown in FIGS. 3 and 4 wherein (a) handle 33 is situated above and parallel to planar abrading surface 31, (b) shaft 34 is transverse to both planar abrading surface 31 and to handle 33 and (c) passage 35 extends through the centers a planar abrading surface 31, shaft 24 and handle 33.
- the above described reamer/alignment guide, plateau planer and components thereof are all preferably manufactured from a suitable surgical grade of stainless steel of the type commonly employed by those skilled in the art to construct surgical tools for use in contact with the body.
- the exact composition of the metal from which the guide, planer and components thereof are constructed forms no part of the present invention and other metals suitable for use within the body and for the intended uses of the guide, planer and the like may be used without altering the nature of the invention.
- Fig. 5 shows a proximal tibial surface reamer insertion guide 50 having handle 51 and guideplate 53 interconnected by means of arm 52.
- Guideplate 53 is of such a configuration that it is designed to approximate the outline of the superior proximal surface of the tibia and to rest thereon such that when guideplate 53 is placed on that superior surface, the surface of guideplate 53 opposite handle 51 is lined up with the posterior aspects of the medial and lateral tibial condyles and recess 55 corresponds to the posterior intercondyloid fossa of the tibia.
- Hole 54 is of the same diameter as is portion 12 of guide 10 and is placed on guideplate 53 during its manufacture in a location which is such the the approximate central long axis of the tibia passes through hole 53. Since tibias differ in size, several guideplates of varying sizes may be provided and the one which most closely corresponds to the outline of the proximal tibial surface to be shaped is used. The exact center of hole 54 need not correspond exactly to that of the central long axis of the tibia since the reamer/alignment guide will adjust the entry point to correspond to that axis as will be described infra. Guide 50 can be manufactured from the same type of metals previously described for the reamer/alignment guide.
- the proximal tibial surface is most often reshaped pursuant to the implantation of a total knee implant involving prostheses which are attached to the distal femoral surface and the proximal tibial surface.
- the present method and apparatus for shaping the proximal tibial surface described herein is advantageously and preferably employed in conjunction with the method and apparatus described in my copending U.S. patent application Ser. No. 473,465 entitled “Method and Apparatus For Shaping a Distal Femoral Surface" which is being filed concurrently herewith in the name of Leo Allen Whiteside (which application is hereby incorporated by reference).
- the method described in that patent application can be combined with that of the present invention to produce appropriately shaped distal femoral and proximal tibial surfaces to which the appropriate prostheses can be attached during total knee implantation surgery.
- the usual surgical approach is made. After the anterior aspect of the knee is exposed, the knee is flexed to 100° so that the posterior curved surfaces of both femoral condyles can be visualized. Partial excision of the fatpad may be necessary.
- the preceding operative approach is not illustrated and for the purposes of clarity, soft tissue, ligaments and other nonessential elements have been eliminated from FIGS. 6-11.
- the distal femoral surface is shaped first in accordance with the procedure described in my aforementioned patent application if a total knee prosthesis is to be implanted. The details of that method are found in that patent application which is incorporated by reference and will not be repeated here.
- FIG. 6 shows distal femur 61 which was shaped in accordance with that method.
- the shaping of the proximal tibial surface is begun by using an oscillating saw to resect a small amount of the superior proximal surface of the tibia to form an approximately planar surface 62 as is generally shown in FIG. 6.
- the surface 62 need not be absolutely planar because the purpose is to provide a relatively flat surface upon which the plateau planer will be placed to produce a planar surface as described infra. Care should be taken to remove as little bone as is appropriate.
- varus knees with a depressed proximal medial tibial plateau the hard cortical bone is left intact and the surface of the proximal lateral tibial plateau is removed with an oscillating saw.
- the lateral cortical weight bearing surface is left intact and the proximal medial tibial surface is removed with the oscillating saw.
- the anterior cruciate ligament and the posterior segments of the menisci are removed from the upper tibial surface.
- a lever type retractor 64 is inserted just lateral to the tibial attachment of the posterior cruciate ligament and the retractor 64 is placed in the intercondylar notch 63 of the right femur 61.
- the roughly flattened superior proximal surface 62 of right tibia 60 is levered forward to expose the entire superior proximal tibial surface 62.
- Guideplate 53 of tibial reaming guide 50 is placed on surface 62 as shown in FIG. 7.
- the bottom of guideplate 53 may have small pins or some other means extending away from its lower surface (not shown) which engage surface 62 and hold guideplate 53 in place.
- the distal tip of portion 12 of reamer/alignment guide 10 is inserted into hole 54 and portion 12 is used to mark the location at which reamer/alignment guide 10 is to be advanced into the tibia 60 by turning guide 10 from side to side or by striking it with a mallet.
- portion 12 of reamer/alignment guide 10 is advanced through surface 62 into the interior of the shaft of the tibia as shown in FIG. 8. Insertion of reamer/alignment guide 10 often requires alternate turning of guide 10 and striking of the handle 15 with a mallet.
- Guide handle 11 is of a slightly larger outer diameter than that of portion 12 and the boundary between the two is shown as surface 17.
- FIG. 8 shows guide 10 advancing through surface 62 with the central long axis of portion 12 and handle 11 in a somewhat exaggerated fashion relative to the central long axis of the tibia 60.
- portion 12 will advance through the cancellous bone of the proximal tibial surface 62 as it is inserted. This occurs because the proximal surface of a tibia is not always aligned directly over the isthmus of a tibia and the location marked by hole 54 on guideplate 53 does not correspond to the central long axis of the tibia.
- the reamer/alignment guide engages the isthmus of a tibia, it will advance through the interior of the tibial shaft through the softer interior that is bounded by the harder compact bone of the tibial shaft if a reasonable, but not excessive, amount of force is used to turn the handle 15 of guide 10 and advance it. As portion 12 follows the interior of the tibial shaft, it is brought into alignment with the central long axis of the tibia.
- Portion 12 also exerts a lateral reaming action on the proximal tibial surface 62 such that the entry point is moved laterally until the central axis of guide 10 extends through surface 62 at a location which corresponds to the central long axis of tibia 60.
- the passage left in surface 62 upon later removal of guide 10 can then be used as a point for the insertion of the retention stem of a proximal tibial prosthesis.
- FIG. 9 shows guide 10 fully advanced into tibia 60 with surface 17 of handle 11 contacting proximal tibial surface 62.
- Handle 15 is removed from guide handle 11 and plateau planer 30 is inserted over guide handle 11 with planar abrading surface 31 having planar cutting ridges 32 placed against surface 62 of tibia 60 as shown in FIG. 10.
- Plateau planer 30 cooperatively engages handle 11 and aligns with the central long axis of reamer/alignment guide 10 which is shown in outline form as first portion 12 and guide handle 11, the latter of which passes through passage 35 of planer 30.
- Proximal tibial surface 62 is shaped to a smooth, planar surface which is transverse to the central long axis of the tibia by grasping handle 33 and twisting it from side to side as planar abrading surface 31 is held against surface 62 of tibia 60.
- This operation typically leaves hard cortical bone on either the medial or the lateral proximal tibial surfaces which may be removed with an oscillating saw. Occasionally it is necessary to use an oscillating saw to trim down the sclerotic proximal tibial surface in order to facilitate planing.
- proximal tibial surface After a smooth, planar, proximal tibial surface is obtained, the reamer/alignment guide is removed. In some cases it may be necessary to remove a small ridge of bone from the periphery of the planed proximal tibial surface 62. The implantation of one of a number of well known proximal tibial prostheses can then proceed along with the attachment of an appropriate distal femoral prosthesis.
- the plateau planer produces a much smoother and planar surface than is usually the case with an oscillating saw because such saws tend to ride over hard bone and cut into the softer areas on the tibial surface.
- the plateau planer cannot ride over the hard bone and results in a very level and accurately planed surface because the guide handle 11 holds planar abrading surface 31 in place.
- the resulting planar surface provides a firm mounting for a prosthesis and enables the maximum amount of proximal tibial surface to contact the surface of a proximal tibial prosthesis.
- the passage 114 in tibia 60 which is left when portion 12 is removed corresponds to the central long axis of tibia 60 and, as shown in FIG. 11, provides a convenient location in which the stem 111 of a proximal tibial prosthesis 110 having upper surface 112 whch articulates the distal femoral prosthesis and a lower surface 113 which rests against surface 62 of tibia 60.
- the wound is closed in the usual fashion.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Prostheses (AREA)
Abstract
Description
Claims (7)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/473,464 US4467801A (en) | 1983-03-09 | 1983-03-09 | Method and apparatus for shaping a proximal tibial surface |
CA000446633A CA1234031A (en) | 1983-02-09 | 1984-02-02 | Method and apparatus for shaping a proximal tibial surface |
DE8484102284T DE3466173D1 (en) | 1983-03-09 | 1984-03-03 | Apparatus for shaping a proximal tibial surface |
EP84102284A EP0120346B1 (en) | 1983-03-09 | 1984-03-03 | Apparatus for shaping a proximal tibial surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/473,464 US4467801A (en) | 1983-03-09 | 1983-03-09 | Method and apparatus for shaping a proximal tibial surface |
Publications (1)
Publication Number | Publication Date |
---|---|
US4467801A true US4467801A (en) | 1984-08-28 |
Family
ID=23879634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/473,464 Expired - Lifetime US4467801A (en) | 1983-02-09 | 1983-03-09 | Method and apparatus for shaping a proximal tibial surface |
Country Status (4)
Country | Link |
---|---|
US (1) | US4467801A (en) |
EP (1) | EP0120346B1 (en) |
CA (1) | CA1234031A (en) |
DE (1) | DE3466173D1 (en) |
Cited By (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4566448A (en) * | 1983-03-07 | 1986-01-28 | Rohr Jr William L | Ligament tensor and distal femoral resector guide |
US4587964A (en) * | 1985-02-05 | 1986-05-13 | Zimmer, Inc. | Rasp tool |
US4621637A (en) * | 1984-07-30 | 1986-11-11 | Meyer Fishbein | Surgical device for removing bone and tissue from joint members |
US4660557A (en) * | 1984-06-18 | 1987-04-28 | Collis Jr John S | Surgical instrument |
US4718413A (en) * | 1986-12-24 | 1988-01-12 | Orthomet, Inc. | Bone cutting guide and methods for using same |
US4791919A (en) * | 1985-01-25 | 1988-12-20 | Chas F Thackray Limited | Surgical instruments |
US4827928A (en) * | 1988-02-01 | 1989-05-09 | Collis Jr John S | Surgical instrument |
US4926847A (en) * | 1988-12-27 | 1990-05-22 | Johnson & Johnson Orthopaedics, Inc. | Surgical cutting block |
US4952213A (en) * | 1989-02-03 | 1990-08-28 | Boehringer Mannheim Corporation | Tibial cutting guide |
US4979949A (en) * | 1988-04-26 | 1990-12-25 | The Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US5002545A (en) * | 1989-01-30 | 1991-03-26 | Dow Corning Wright Corporation | Tibial surface shaping guide for knee implants |
US5035699A (en) * | 1990-01-09 | 1991-07-30 | Dow Corning Wright | Patella track cutter and guide |
US5047032A (en) * | 1987-10-21 | 1991-09-10 | Richards Medical Company | Method and apparatus for cutting joint surfaces |
US5053037A (en) * | 1991-03-07 | 1991-10-01 | Smith & Nephew Richards Inc. | Femoral instrumentation for long stem surgery |
US5100408A (en) * | 1991-03-07 | 1992-03-31 | Smith & Nephew Richards Inc. | Femoral instrumentation for long stem surgery |
US5122144A (en) * | 1989-09-26 | 1992-06-16 | Kirschner Medical Corporation | Method and instrumentation for unicompartmental total knee arthroplasty |
US5169401A (en) * | 1991-12-20 | 1992-12-08 | Zimmer, Inc. | Surgical reamer assembly |
US5171244A (en) * | 1990-01-08 | 1992-12-15 | Caspari Richard B | Methods and apparatus for arthroscopic prosthetic knee replacement |
US5176683A (en) * | 1991-04-22 | 1993-01-05 | Kimsey Timothy P | Prosthesis press and method of using the same |
US5207680A (en) * | 1992-05-11 | 1993-05-04 | Zimmer, Inc. | Front milling guide for use in orthopaedic surgery |
US5234433A (en) * | 1989-09-26 | 1993-08-10 | Kirschner Medical Corporation | Method and instrumentation for unicompartmental total knee arthroplasty |
US5275603A (en) * | 1992-02-20 | 1994-01-04 | Wright Medical Technology, Inc. | Rotationally and angularly adjustable tibial cutting guide and method of use |
US5306276A (en) * | 1991-12-10 | 1994-04-26 | Zimmer, Inc. | Tibial resector guide |
US5336226A (en) * | 1992-08-11 | 1994-08-09 | Chapman Lake Instruments, Inc. | Bone face cutter |
US5344423A (en) * | 1992-02-06 | 1994-09-06 | Zimmer, Inc. | Apparatus and method for milling bone |
US5403320A (en) * | 1993-01-07 | 1995-04-04 | Venus Corporation | Bone milling guide apparatus and method |
US5417695A (en) * | 1992-07-27 | 1995-05-23 | Pfizer Hospital Products Group, Inc. | Instrumentation for preparing a distal femur |
US5423822A (en) * | 1993-01-27 | 1995-06-13 | Biomet, Inc. | Method and apparatus for preparing a bone for receiving a prosthetic device |
US5431656A (en) * | 1994-02-04 | 1995-07-11 | Wright Medical Technology, Inc. | Intramedullary instrumentation to position means for preparing a tibial plateau with a posterior slope |
US5451228A (en) * | 1993-09-14 | 1995-09-19 | Zimmer, Inc. | Tibial resector guide |
US5462549A (en) * | 1992-05-01 | 1995-10-31 | Biomet, Inc. | Femoral sizing apparatus |
US5474559A (en) * | 1993-07-06 | 1995-12-12 | Zimmer, Inc. | Femoral milling instrumentation for use in total knee arthroplasty with optional cutting guide attachment |
US5514140A (en) * | 1991-03-07 | 1996-05-07 | Smith & Nephew Richards Inc. | Instrumentation for long stem surgery |
US5520694A (en) * | 1993-06-21 | 1996-05-28 | Dance; Mark N. | Apparatus and method for aligning knee prostheses |
US5522820A (en) * | 1993-01-15 | 1996-06-04 | Arthrotech | Method and apparatus for suturing tissue |
US5562673A (en) * | 1994-03-03 | 1996-10-08 | Howmedica Inc. | Awls for sizing bone canals |
US5593411A (en) * | 1995-03-13 | 1997-01-14 | Zimmer, Inc. | Orthopaedic milling guide for milling intersecting planes |
US5601566A (en) * | 1994-02-22 | 1997-02-11 | Osteonics Corp. | Method and apparatus for the alignment of a femoral knee prosthesis |
US5601563A (en) * | 1995-08-25 | 1997-02-11 | Zimmer, Inc. | Orthopaedic milling template with attachable cutting guide |
US5611353A (en) * | 1993-06-21 | 1997-03-18 | Osteonics Corp. | Method and apparatus for locating functional structures of the lower leg during knee surgery |
US5616146A (en) * | 1994-05-16 | 1997-04-01 | Murray; William M. | Method and apparatus for machining bone to fit an orthopedic surgical implant |
US5653714A (en) * | 1996-02-22 | 1997-08-05 | Zimmer, Inc. | Dual slide cutting guide |
US5658293A (en) * | 1995-10-10 | 1997-08-19 | Zimmer, Inc. | Guide platform associated with intramedullary rod |
US5683397A (en) * | 1995-02-15 | 1997-11-04 | Smith & Nephew, Inc. | Distal femoral cutting guide apparatus for use in knee joint replacement surgery |
US5743915A (en) * | 1993-07-06 | 1998-04-28 | Zimmer, Inc. | Femoral milling instrumentation for use in total knee arthoroplasty with optional cutting guide attachment |
US5782922A (en) * | 1997-02-07 | 1998-07-21 | Biomet, Inc. | Method and apparatus for replacing the capitellum |
US5997543A (en) * | 1997-02-21 | 1999-12-07 | Biomet Limited | Surgical instrumentation |
US20030100906A1 (en) * | 2001-11-28 | 2003-05-29 | Rosa Richard A. | Methods of minimally invasive unicompartmental knee replacement |
US20030100907A1 (en) * | 2001-11-28 | 2003-05-29 | Rosa Richard A. | Instrumentation for minimally invasive unicompartmental knee replacement |
WO2003017822A3 (en) * | 2001-08-23 | 2003-07-31 | Mark A Reiley | Intramedullary guidance systems for ankle replacements |
US20030236525A1 (en) * | 2002-06-21 | 2003-12-25 | Vendrely Timothy G. | Prosthesis removal cutting guide, cutting tool and method |
US20030236523A1 (en) * | 2001-06-14 | 2003-12-25 | Johnson Wesley D. | Apparatus and method for minimally invasive total joint replacement |
US20040117027A1 (en) * | 1999-10-22 | 2004-06-17 | Reiley Mark A. | Ankle replacement system |
US20050119664A1 (en) * | 2000-03-17 | 2005-06-02 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US20050137599A1 (en) * | 2003-12-19 | 2005-06-23 | Masini Michael A. | Instrumentation and methods for refining image-guided and navigation-based surgical procedures |
US20050209605A1 (en) * | 2002-12-20 | 2005-09-22 | Grimm James E | Navigated orthopaedic guide and method |
US20060122618A1 (en) * | 2004-03-08 | 2006-06-08 | Zimmer Technology, Inc. | Navigated cut guide locator |
US20060155293A1 (en) * | 2005-01-07 | 2006-07-13 | Zimmer Technology | External rotation cut guide |
US20070149977A1 (en) * | 2005-11-28 | 2007-06-28 | Zimmer Technology, Inc. | Surgical component positioner |
US20070173850A1 (en) * | 2006-01-10 | 2007-07-26 | Zimmer Technology, Inc. | Bone resection guide and method |
US20080015599A1 (en) * | 2006-06-21 | 2008-01-17 | Howmedica Osteonics Corp. | Unicondylar knee implants and insertion methods therefor |
US7520880B2 (en) | 2006-01-09 | 2009-04-21 | Zimmer Technology, Inc. | Adjustable surgical support base with integral hinge |
US20100023066A1 (en) * | 2002-06-21 | 2010-01-28 | Depuy Products, Inc. | Method for Removal of Bone |
US20100050773A1 (en) * | 2004-06-30 | 2010-03-04 | Depuy Products, Inc. | System and Method for Determining the Operating State of Orthopaedic Admixtures |
US7799084B2 (en) | 2002-10-23 | 2010-09-21 | Mako Surgical Corp. | Modular femoral component for a total knee joint replacement for minimally invasive implantation |
US7832405B1 (en) * | 2004-08-25 | 2010-11-16 | Biomet Manufacturing Corp. | Method and apparatus for assembling implants |
US7993341B2 (en) | 2004-03-08 | 2011-08-09 | Zimmer Technology, Inc. | Navigated orthopaedic guide and method |
US8460303B2 (en) | 2007-10-25 | 2013-06-11 | Otismed Corporation | Arthroplasty systems and devices, and related methods |
US8460302B2 (en) | 2006-12-18 | 2013-06-11 | Otismed Corporation | Arthroplasty devices and related methods |
US8480679B2 (en) | 2008-04-29 | 2013-07-09 | Otismed Corporation | Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices |
US8483469B2 (en) | 2008-04-30 | 2013-07-09 | Otismed Corporation | System and method for image segmentation in generating computer models of a joint to undergo arthroplasty |
US8532361B2 (en) | 2008-04-30 | 2013-09-10 | Otismed Corporation | System and method for image segmentation in generating computer models of a joint to undergo arthroplasty |
USD691719S1 (en) | 2007-10-25 | 2013-10-15 | Otismed Corporation | Arthroplasty jig blank |
US8617171B2 (en) | 2007-12-18 | 2013-12-31 | Otismed Corporation | Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide |
US8617175B2 (en) | 2008-12-16 | 2013-12-31 | Otismed Corporation | Unicompartmental customized arthroplasty cutting jigs and methods of making the same |
US8715291B2 (en) | 2007-12-18 | 2014-05-06 | Otismed Corporation | Arthroplasty system and related methods |
US8734455B2 (en) | 2008-02-29 | 2014-05-27 | Otismed Corporation | Hip resurfacing surgical guide tool |
US8737700B2 (en) | 2007-12-18 | 2014-05-27 | Otismed Corporation | Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide |
US8777875B2 (en) | 2008-07-23 | 2014-07-15 | Otismed Corporation | System and method for manufacturing arthroplasty jigs having improved mating accuracy |
US8801719B2 (en) | 2002-05-15 | 2014-08-12 | Otismed Corporation | Total joint arthroplasty system |
US8968320B2 (en) | 2007-12-18 | 2015-03-03 | Otismed Corporation | System and method for manufacturing arthroplasty jigs |
US9017336B2 (en) | 2006-02-15 | 2015-04-28 | Otismed Corporation | Arthroplasty devices and related methods |
US20160022278A1 (en) * | 2008-08-13 | 2016-01-28 | G. Lynn Rasmussen | Systems and methods for providing a bone milling device |
US9402637B2 (en) | 2012-10-11 | 2016-08-02 | Howmedica Osteonics Corporation | Customized arthroplasty cutting guides and surgical methods using the same |
US9649170B2 (en) | 2007-12-18 | 2017-05-16 | Howmedica Osteonics Corporation | Arthroplasty system and related methods |
US9808262B2 (en) | 2006-02-15 | 2017-11-07 | Howmedica Osteonics Corporation | Arthroplasty devices and related methods |
US10582934B2 (en) | 2007-11-27 | 2020-03-10 | Howmedica Osteonics Corporation | Generating MRI images usable for the creation of 3D bone models employed to make customized arthroplasty jigs |
US10743999B2 (en) | 1999-10-22 | 2020-08-18 | Inbone Technologies, Inc. | Systems and methods for installing ankle replacement prostheses |
USD1000614S1 (en) * | 2022-06-07 | 2023-10-03 | Virtamed Ag | Artificial knee prosthetics |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE442083B (en) * | 1984-03-14 | 1985-12-02 | Magnus Odensten | DEVICE FOR ALIGNMENT AND CONTROL OF A FRONT AND RELEASABLE DRILLING ROD FOR DRILLING A CIRCULAR HALL IN ATMINSTONE ONE OF TWO KNEELED MAKING RAILS AND LARBES |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4004581A (en) * | 1974-09-11 | 1977-01-25 | Friedrichsfeld Gmbh | Tool for forming a bed in a hip bone to receive an artificial acetabulum |
US4211228A (en) * | 1979-01-24 | 1980-07-08 | Cloutier Jean Marie | Multipurpose tibial template |
US4271849A (en) * | 1978-08-04 | 1981-06-09 | Orthoplant Orthopadische Implantate Gmbh & Co. | Apparatus for producing relief grooves in pan-shaped bones |
US4273117A (en) * | 1978-09-02 | 1981-06-16 | Neuhaeuser Hans G | Apparatus for drilling bone |
US4284080A (en) * | 1978-08-04 | 1981-08-18 | Orthoplant Orthopadische Implantate Gmbh & Co. Kg | Apparatus for the working of a bone which is to be provided with a shell prosthesis |
US4306550A (en) * | 1980-02-06 | 1981-12-22 | Minnesota Mining And Manufacturing Company | Combination including femoral rasp and calcar facing reamer |
US4421112A (en) * | 1982-05-20 | 1983-12-20 | Minnesota Mining And Manufacturing Company | Tibial osteotomy guide assembly and method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB634460A (en) * | 1947-10-18 | 1950-03-22 | Abraham Johannes Eijkman | Improvements in surgical apparatus |
US2785673A (en) * | 1952-05-06 | 1957-03-19 | Anderson Roger | Femoral prosthesis |
FR1443965A (en) * | 1965-04-06 | 1966-07-01 | Improvements made to the material used to perform osteosynthesis |
-
1983
- 1983-03-09 US US06/473,464 patent/US4467801A/en not_active Expired - Lifetime
-
1984
- 1984-02-02 CA CA000446633A patent/CA1234031A/en not_active Expired
- 1984-03-03 EP EP84102284A patent/EP0120346B1/en not_active Expired
- 1984-03-03 DE DE8484102284T patent/DE3466173D1/en not_active Expired
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4004581A (en) * | 1974-09-11 | 1977-01-25 | Friedrichsfeld Gmbh | Tool for forming a bed in a hip bone to receive an artificial acetabulum |
US4271849A (en) * | 1978-08-04 | 1981-06-09 | Orthoplant Orthopadische Implantate Gmbh & Co. | Apparatus for producing relief grooves in pan-shaped bones |
US4284080A (en) * | 1978-08-04 | 1981-08-18 | Orthoplant Orthopadische Implantate Gmbh & Co. Kg | Apparatus for the working of a bone which is to be provided with a shell prosthesis |
US4273117A (en) * | 1978-09-02 | 1981-06-16 | Neuhaeuser Hans G | Apparatus for drilling bone |
US4211228A (en) * | 1979-01-24 | 1980-07-08 | Cloutier Jean Marie | Multipurpose tibial template |
US4306550A (en) * | 1980-02-06 | 1981-12-22 | Minnesota Mining And Manufacturing Company | Combination including femoral rasp and calcar facing reamer |
US4421112A (en) * | 1982-05-20 | 1983-12-20 | Minnesota Mining And Manufacturing Company | Tibial osteotomy guide assembly and method |
Non-Patent Citations (24)
Title |
---|
"New Jersey Tricompartmental Total Knee Replacement Surgical Procedure by Frederick F. Buechel, M.D.," 13 pages, issue date 1/1981, Form No. 1280-32, DePuy, Div., Boehringer Mannheim Corporation, Warsaw, Ind. 46580. |
"The Howmedica® Universal™ Total Knee Instrumental System", Brochure No. H-2026-1 1/82 15MB (1980); Howmedica, Inc. Rutherford, N.J. 07070. |
Dow Corning Wright "Whiteside Ortholoc™ Total Knee System," 1983. |
Dow Corning Wright Whiteside Ortholoc Total Knee System, 1983. * |
Geo Patella /Geo Tibial Total Knee Alignment Instrument (Catalog No. 1348 54), Zimmer USA., Inc., Warsaw, Ind. 46580. * |
Geo-Patella™/Geo-Tibial™ Total Knee Alignment Instrument (Catalog No. 1348-54), Zimmer USA., Inc., Warsaw, Ind. 46580. |
Howmedica Kinematic Condylar Total Knee System Tibial Guide Assembly (Catalog No. 6737 7 630), Howmedica, Inc. Rutherford, N.J. 07070. * |
Howmedica® Kinematic™ Condylar Total Knee System Tibial Guide Assembly (Catalog No. 6737-7-630), Howmedica, Inc. Rutherford, N.J. 07070. |
Multi Radius Total Knee Tibial Alignment Guide (Catalog No. 1360 30) from Zimmer USA., Inc. Warsaw, Ind. 46580. * |
Multi-Radius Total Knee Tibial Alignment Guide (Catalog No. 1360-30) from Zimmer USA., Inc. Warsaw, Ind. 46580. |
New Jersey Tricompartmental Total Knee Replacement Surgical Procedure by Frederick F. Buechel, M.D., 13 pages, issue date 1/1981, Form No. 1280 32, DePuy, Div., Boehringer Mannheim Corporation, Warsaw, Ind. 46580. * |
Richards "RMC™ Total Knee System", 1978. |
Richards RMC Total Knee System , 1978. * |
T.A.R.A. Articular Replacement System for Hemi and Total Hip Arthroplasty, 6 pages, Form No. 779 29, issue date: 0601 44, DePuy Division of Boehringer Mannheim Corp., Warsaw, Ind. 46580. * |
T.A.R.A.™ Articular Replacement System for Hemi and Total Hip Arthroplasty, 6 pages, Form No. 779-29, issue date: 0601-44, DePuy Division of Boehringer Mannheim Corp., Warsaw, Ind. 46580. |
The Howmedica Universal Total Knee Instrumental System , Brochure No. H 2026 1 1/82 15MB (1980); Howmedica, Inc. Rutherford, N.J. 07070. * |
The Modified Austin Moore Design with Porocoat , Surgical Procedure, 4 pages, Form No. 281 9, issue date 2/81, DePuy Division, Warsaw, Ind. 46580. * |
The Modified Austin Moore Design with Porocoat™, Surgical Procedure, 4 pages, Form No. 281-9, issue date 2/81, DePuy Division, Warsaw, Ind. 46580. |
Total Condylar Total Knee System Tibial Cutter (Catalog No. 6737 6 300), Howmedica, Inc. Rutherford, N.J. 07070. * |
Total Condylar Total Knee System Tibial Cutter (Catalog No. 6737-6-300), Howmedica, Inc. Rutherford, N.J. 07070. |
Zimmer "Cloutier™" and Cloutier™ II, 1979, 1981. |
Zimmer "Eftekhar™ II Knee Prosthesis" 1980. |
Zimmer Cloutier and Cloutier II, 1979, 1981. * |
Zimmer Eftekhar II Knee Prosthesis 1980. * |
Cited By (159)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4566448A (en) * | 1983-03-07 | 1986-01-28 | Rohr Jr William L | Ligament tensor and distal femoral resector guide |
US4660557A (en) * | 1984-06-18 | 1987-04-28 | Collis Jr John S | Surgical instrument |
US4621637A (en) * | 1984-07-30 | 1986-11-11 | Meyer Fishbein | Surgical device for removing bone and tissue from joint members |
US4791919A (en) * | 1985-01-25 | 1988-12-20 | Chas F Thackray Limited | Surgical instruments |
US4587964A (en) * | 1985-02-05 | 1986-05-13 | Zimmer, Inc. | Rasp tool |
US4718413A (en) * | 1986-12-24 | 1988-01-12 | Orthomet, Inc. | Bone cutting guide and methods for using same |
US5047032A (en) * | 1987-10-21 | 1991-09-10 | Richards Medical Company | Method and apparatus for cutting joint surfaces |
US4827928A (en) * | 1988-02-01 | 1989-05-09 | Collis Jr John S | Surgical instrument |
US5571110A (en) * | 1988-04-26 | 1996-11-05 | Board Of Regents Of The University Of Washington | Orthopedic saw guide for use in a robot-aided system for surgery |
US4979949A (en) * | 1988-04-26 | 1990-12-25 | The Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US5236432A (en) * | 1988-04-26 | 1993-08-17 | Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US5403319A (en) * | 1988-04-26 | 1995-04-04 | Board Of Regents Of The University Of Washington | Bone imobilization device |
US5154717A (en) * | 1988-04-26 | 1992-10-13 | The Board Of Regents Of The University Of Washington | Robot-aided system for surgery |
US4926847A (en) * | 1988-12-27 | 1990-05-22 | Johnson & Johnson Orthopaedics, Inc. | Surgical cutting block |
US5002545A (en) * | 1989-01-30 | 1991-03-26 | Dow Corning Wright Corporation | Tibial surface shaping guide for knee implants |
US4952213A (en) * | 1989-02-03 | 1990-08-28 | Boehringer Mannheim Corporation | Tibial cutting guide |
US5122144A (en) * | 1989-09-26 | 1992-06-16 | Kirschner Medical Corporation | Method and instrumentation for unicompartmental total knee arthroplasty |
US5234433A (en) * | 1989-09-26 | 1993-08-10 | Kirschner Medical Corporation | Method and instrumentation for unicompartmental total knee arthroplasty |
US5263498A (en) * | 1990-01-08 | 1993-11-23 | Caspari Richard B | Method of arthroscopically preparing an articular bone surface |
US5171244A (en) * | 1990-01-08 | 1992-12-15 | Caspari Richard B | Methods and apparatus for arthroscopic prosthetic knee replacement |
US5395376A (en) * | 1990-01-08 | 1995-03-07 | Caspari; Richard B. | Method of implanting a prosthesis |
US5304181A (en) * | 1990-01-08 | 1994-04-19 | Caspari Richard B | Methods and apparatus for arthroscopic prosthetic knee replacement |
US5228459A (en) * | 1990-01-08 | 1993-07-20 | Caspari Richard B | Method of resecting bone |
US5035699A (en) * | 1990-01-09 | 1991-07-30 | Dow Corning Wright | Patella track cutter and guide |
US5282803A (en) * | 1991-03-07 | 1994-02-01 | Smith & Nephew Richards Inc. | Instrumentation for long stem surgery |
US5053037A (en) * | 1991-03-07 | 1991-10-01 | Smith & Nephew Richards Inc. | Femoral instrumentation for long stem surgery |
US5100408A (en) * | 1991-03-07 | 1992-03-31 | Smith & Nephew Richards Inc. | Femoral instrumentation for long stem surgery |
US5514140A (en) * | 1991-03-07 | 1996-05-07 | Smith & Nephew Richards Inc. | Instrumentation for long stem surgery |
US5176683A (en) * | 1991-04-22 | 1993-01-05 | Kimsey Timothy P | Prosthesis press and method of using the same |
US5306276A (en) * | 1991-12-10 | 1994-04-26 | Zimmer, Inc. | Tibial resector guide |
US5445640A (en) * | 1991-12-10 | 1995-08-29 | Zimmer, Inc. | Tibial resector guide |
US5169401A (en) * | 1991-12-20 | 1992-12-08 | Zimmer, Inc. | Surgical reamer assembly |
US5344423A (en) * | 1992-02-06 | 1994-09-06 | Zimmer, Inc. | Apparatus and method for milling bone |
US5486180A (en) * | 1992-02-06 | 1996-01-23 | Zimmer, Inc. | Apparatus for milling bone |
US5342367A (en) * | 1992-02-20 | 1994-08-30 | Wright Medical Technology, Inc. | Rotationally and angularly adjustable tibial cutting guide and method of use |
US5275603A (en) * | 1992-02-20 | 1994-01-04 | Wright Medical Technology, Inc. | Rotationally and angularly adjustable tibial cutting guide and method of use |
US5462549A (en) * | 1992-05-01 | 1995-10-31 | Biomet, Inc. | Femoral sizing apparatus |
US5207680A (en) * | 1992-05-11 | 1993-05-04 | Zimmer, Inc. | Front milling guide for use in orthopaedic surgery |
US5658292A (en) * | 1992-07-27 | 1997-08-19 | Pfizer Hospital Products Group, Inc. | Instrumentation for preparing a distal femur |
US5417695A (en) * | 1992-07-27 | 1995-05-23 | Pfizer Hospital Products Group, Inc. | Instrumentation for preparing a distal femur |
US5336226A (en) * | 1992-08-11 | 1994-08-09 | Chapman Lake Instruments, Inc. | Bone face cutter |
US5403320A (en) * | 1993-01-07 | 1995-04-04 | Venus Corporation | Bone milling guide apparatus and method |
US5522820A (en) * | 1993-01-15 | 1996-06-04 | Arthrotech | Method and apparatus for suturing tissue |
US5423822A (en) * | 1993-01-27 | 1995-06-13 | Biomet, Inc. | Method and apparatus for preparing a bone for receiving a prosthetic device |
US5611353A (en) * | 1993-06-21 | 1997-03-18 | Osteonics Corp. | Method and apparatus for locating functional structures of the lower leg during knee surgery |
US5520694A (en) * | 1993-06-21 | 1996-05-28 | Dance; Mark N. | Apparatus and method for aligning knee prostheses |
US5474559A (en) * | 1993-07-06 | 1995-12-12 | Zimmer, Inc. | Femoral milling instrumentation for use in total knee arthroplasty with optional cutting guide attachment |
US5860981A (en) * | 1993-07-06 | 1999-01-19 | Dennis W. Burke | Guide for femoral milling instrumention for use in total knee arthroplasty |
US5769855A (en) * | 1993-07-06 | 1998-06-23 | Zimmer Inc. | Femoral milling instrumentation for use in total knee arthroplasty with optional cutting guide attachment |
US5743915A (en) * | 1993-07-06 | 1998-04-28 | Zimmer, Inc. | Femoral milling instrumentation for use in total knee arthoroplasty with optional cutting guide attachment |
US5451228A (en) * | 1993-09-14 | 1995-09-19 | Zimmer, Inc. | Tibial resector guide |
US5431656A (en) * | 1994-02-04 | 1995-07-11 | Wright Medical Technology, Inc. | Intramedullary instrumentation to position means for preparing a tibial plateau with a posterior slope |
US5601566A (en) * | 1994-02-22 | 1997-02-11 | Osteonics Corp. | Method and apparatus for the alignment of a femoral knee prosthesis |
US5562673A (en) * | 1994-03-03 | 1996-10-08 | Howmedica Inc. | Awls for sizing bone canals |
US5616146A (en) * | 1994-05-16 | 1997-04-01 | Murray; William M. | Method and apparatus for machining bone to fit an orthopedic surgical implant |
US5683397A (en) * | 1995-02-15 | 1997-11-04 | Smith & Nephew, Inc. | Distal femoral cutting guide apparatus for use in knee joint replacement surgery |
US5593411A (en) * | 1995-03-13 | 1997-01-14 | Zimmer, Inc. | Orthopaedic milling guide for milling intersecting planes |
US5601563A (en) * | 1995-08-25 | 1997-02-11 | Zimmer, Inc. | Orthopaedic milling template with attachable cutting guide |
US5658293A (en) * | 1995-10-10 | 1997-08-19 | Zimmer, Inc. | Guide platform associated with intramedullary rod |
US5653714A (en) * | 1996-02-22 | 1997-08-05 | Zimmer, Inc. | Dual slide cutting guide |
US5782922A (en) * | 1997-02-07 | 1998-07-21 | Biomet, Inc. | Method and apparatus for replacing the capitellum |
US5997543A (en) * | 1997-02-21 | 1999-12-07 | Biomet Limited | Surgical instrumentation |
US6673116B2 (en) * | 1999-10-22 | 2004-01-06 | Mark A. Reiley | Intramedullary guidance systems and methods for installing ankle replacement prostheses |
US20080065227A1 (en) * | 1999-10-22 | 2008-03-13 | Inbone Technologies, Inc. | Ankle replacement prostheses |
US7641697B2 (en) | 1999-10-22 | 2010-01-05 | Inbone Technologies, Inc. | Systems and methods for installing ankle replacement prostheses |
US9629730B2 (en) | 1999-10-22 | 2017-04-25 | Inbone Technologies, Inc. | Ankle replacement system |
US20090240338A1 (en) * | 1999-10-22 | 2009-09-24 | Inbone Technologies, Inc. | Ankle replacement system |
US20070299533A1 (en) * | 1999-10-22 | 2007-12-27 | Reiley Mark A | Systems and methods for installing ankle replacement prostheses |
US20040117027A1 (en) * | 1999-10-22 | 2004-06-17 | Reiley Mark A. | Ankle replacement system |
US6860902B2 (en) | 1999-10-22 | 2005-03-01 | Advanced Total Ankles, Inc. | Ankle replacement system |
US6875236B2 (en) | 1999-10-22 | 2005-04-05 | Advanced Total Ankles, Inc. | Intramedullary guidance systems and methods for installing ankle replacement prostheses |
US10743999B2 (en) | 1999-10-22 | 2020-08-18 | Inbone Technologies, Inc. | Systems and methods for installing ankle replacement prostheses |
US20050124995A1 (en) * | 1999-10-22 | 2005-06-09 | Advanced Total Ankles, Inc. | Intramedullary guidance systems and methods for installing ankle replacement prostheses |
US20050125070A1 (en) * | 1999-10-22 | 2005-06-09 | Advanced Total Ankles, Inc. | Ankle replacement system |
US8034114B2 (en) | 1999-10-22 | 2011-10-11 | Inbone Technologies, Inc. | Systems and methods for installing ankle replacement prostheses |
US9308097B2 (en) | 1999-10-22 | 2016-04-12 | Inbone Technologies, Inc. | Ankle replacement system |
US8034115B2 (en) | 1999-10-22 | 2011-10-11 | Inbone Technologies, Inc. | Ankle replacement system |
US8048164B2 (en) | 1999-10-22 | 2011-11-01 | Inbone Technologies, Inc. | Ankle replacement system |
US11951013B2 (en) | 1999-10-22 | 2024-04-09 | Inbone Technologies, Inc. | Systems and methods for installing ankle replacement prostheses |
US7717920B2 (en) | 1999-10-22 | 2010-05-18 | Inbone Technologies, Inc. | Ankle replacement prostheses |
US20070112432A1 (en) * | 1999-10-22 | 2007-05-17 | Advanced Total Ankles, Inc. | Systems and methods for installing ankle replacement prostheses |
US7314488B2 (en) | 1999-10-22 | 2008-01-01 | Inbone Technologies, Inc. | Intramedullary guidance systems and methods for installing ankle replacement prostheses |
US8419741B2 (en) | 2000-03-17 | 2013-04-16 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US9393032B2 (en) * | 2000-03-17 | 2016-07-19 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US20140194997A1 (en) * | 2000-03-17 | 2014-07-10 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US20140194998A1 (en) * | 2000-03-17 | 2014-07-10 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US8936602B2 (en) * | 2000-03-17 | 2015-01-20 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US8936601B2 (en) * | 2000-03-17 | 2015-01-20 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US8961529B2 (en) | 2000-03-17 | 2015-02-24 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US8771281B2 (en) | 2000-03-17 | 2014-07-08 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US7935150B2 (en) | 2000-03-17 | 2011-05-03 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US20050119664A1 (en) * | 2000-03-17 | 2005-06-02 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US20080215059A1 (en) * | 2000-03-17 | 2008-09-04 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US7517365B2 (en) * | 2000-03-17 | 2009-04-14 | Kinamed, Inc. | Marking template for installing a custom replacement device for resurfacing a femur and associated installation method |
US20030236523A1 (en) * | 2001-06-14 | 2003-12-25 | Johnson Wesley D. | Apparatus and method for minimally invasive total joint replacement |
US7604637B2 (en) * | 2001-06-14 | 2009-10-20 | Alexandria Research Technologies, Llc | Apparatus and method for minimally invasive total joint replacement |
AU2002331634B2 (en) * | 2001-08-23 | 2008-01-17 | Inbone Technologies, Inc. | Intramedullary guidance systems for ankle replacements |
WO2003017822A3 (en) * | 2001-08-23 | 2003-07-31 | Mark A Reiley | Intramedullary guidance systems for ankle replacements |
US7141053B2 (en) | 2001-11-28 | 2006-11-28 | Wright Medical Technology, Inc. | Methods of minimally invasive unicompartmental knee replacement |
US20030100906A1 (en) * | 2001-11-28 | 2003-05-29 | Rosa Richard A. | Methods of minimally invasive unicompartmental knee replacement |
US7060074B2 (en) | 2001-11-28 | 2006-06-13 | Wright Medical Technology, Inc. | Instrumentation for minimally invasive unicompartmental knee replacement |
US20030100907A1 (en) * | 2001-11-28 | 2003-05-29 | Rosa Richard A. | Instrumentation for minimally invasive unicompartmental knee replacement |
US8801720B2 (en) | 2002-05-15 | 2014-08-12 | Otismed Corporation | Total joint arthroplasty system |
US8801719B2 (en) | 2002-05-15 | 2014-08-12 | Otismed Corporation | Total joint arthroplasty system |
US20030236525A1 (en) * | 2002-06-21 | 2003-12-25 | Vendrely Timothy G. | Prosthesis removal cutting guide, cutting tool and method |
US20110208199A1 (en) * | 2002-06-21 | 2011-08-25 | Depuy Products, Inc. | Prosthesis Removal Cutting Guide, Cutting Tool and Method |
US20100023066A1 (en) * | 2002-06-21 | 2010-01-28 | Depuy Products, Inc. | Method for Removal of Bone |
US8545507B2 (en) | 2002-06-21 | 2013-10-01 | DePuy Synthes Products, LLC | Prosthesis removal cutting guide, cutting tool and method |
US8491596B2 (en) | 2002-06-21 | 2013-07-23 | Depuy Products, Inc. | Method for removal of bone |
US7935118B2 (en) | 2002-06-21 | 2011-05-03 | Depuy Products, Inc. | Prosthesis removal cutting guide, cutting tool and method |
US7799084B2 (en) | 2002-10-23 | 2010-09-21 | Mako Surgical Corp. | Modular femoral component for a total knee joint replacement for minimally invasive implantation |
US20050209605A1 (en) * | 2002-12-20 | 2005-09-22 | Grimm James E | Navigated orthopaedic guide and method |
US20070282347A9 (en) * | 2002-12-20 | 2007-12-06 | Grimm James E | Navigated orthopaedic guide and method |
US20050137599A1 (en) * | 2003-12-19 | 2005-06-23 | Masini Michael A. | Instrumentation and methods for refining image-guided and navigation-based surgical procedures |
US7815644B2 (en) * | 2003-12-19 | 2010-10-19 | Masini Michael A | Instrumentation and methods for refining image-guided and navigation-based surgical procedures |
US20060122618A1 (en) * | 2004-03-08 | 2006-06-08 | Zimmer Technology, Inc. | Navigated cut guide locator |
US8114086B2 (en) | 2004-03-08 | 2012-02-14 | Zimmer Technology, Inc. | Navigated cut guide locator |
US7993341B2 (en) | 2004-03-08 | 2011-08-09 | Zimmer Technology, Inc. | Navigated orthopaedic guide and method |
US20100050773A1 (en) * | 2004-06-30 | 2010-03-04 | Depuy Products, Inc. | System and Method for Determining the Operating State of Orthopaedic Admixtures |
US7915046B2 (en) | 2004-06-30 | 2011-03-29 | Depuy Products, Inc. | System and method for determining the operating state of orthopaedic admixtures |
US8147498B2 (en) | 2004-08-25 | 2012-04-03 | Biomet Manufacturing Corp. | Method and apparatus for assembling implants |
US20110022053A1 (en) * | 2004-08-25 | 2011-01-27 | Biomet Manufacturing Corp. | Method and Apparatus for Assembling Implants |
US7832405B1 (en) * | 2004-08-25 | 2010-11-16 | Biomet Manufacturing Corp. | Method and apparatus for assembling implants |
US20060155293A1 (en) * | 2005-01-07 | 2006-07-13 | Zimmer Technology | External rotation cut guide |
US20070149977A1 (en) * | 2005-11-28 | 2007-06-28 | Zimmer Technology, Inc. | Surgical component positioner |
US7520880B2 (en) | 2006-01-09 | 2009-04-21 | Zimmer Technology, Inc. | Adjustable surgical support base with integral hinge |
US20070173850A1 (en) * | 2006-01-10 | 2007-07-26 | Zimmer Technology, Inc. | Bone resection guide and method |
US7744600B2 (en) | 2006-01-10 | 2010-06-29 | Zimmer Technology, Inc. | Bone resection guide and method |
US9017336B2 (en) | 2006-02-15 | 2015-04-28 | Otismed Corporation | Arthroplasty devices and related methods |
US9808262B2 (en) | 2006-02-15 | 2017-11-07 | Howmedica Osteonics Corporation | Arthroplasty devices and related methods |
US20080015599A1 (en) * | 2006-06-21 | 2008-01-17 | Howmedica Osteonics Corp. | Unicondylar knee implants and insertion methods therefor |
US8579905B2 (en) | 2006-06-21 | 2013-11-12 | Howmedica Osteonics Corp. | Unicondylar knee implants and insertion methods therefor |
US7678115B2 (en) | 2006-06-21 | 2010-03-16 | Howmedia Osteonics Corp. | Unicondylar knee implants and insertion methods therefor |
US20080015600A1 (en) * | 2006-06-21 | 2008-01-17 | Howmedica Osteonics Corp. | Unicondylar knee implants and insertion methods therefor |
US8377069B2 (en) | 2006-06-21 | 2013-02-19 | Howmedica Osteonics Corp. | Unicondylar knee cutting guide |
US20080015606A1 (en) * | 2006-06-21 | 2008-01-17 | Howmedica Osteonics Corp. | Unicondylar knee implants and insertion methods therefor |
US20080015607A1 (en) * | 2006-06-21 | 2008-01-17 | Howmedica Osteonics Corp. | Unicondylar knee implants and insertion methods therefor |
US8460302B2 (en) | 2006-12-18 | 2013-06-11 | Otismed Corporation | Arthroplasty devices and related methods |
US8460303B2 (en) | 2007-10-25 | 2013-06-11 | Otismed Corporation | Arthroplasty systems and devices, and related methods |
USD691719S1 (en) | 2007-10-25 | 2013-10-15 | Otismed Corporation | Arthroplasty jig blank |
US10582934B2 (en) | 2007-11-27 | 2020-03-10 | Howmedica Osteonics Corporation | Generating MRI images usable for the creation of 3D bone models employed to make customized arthroplasty jigs |
US8715291B2 (en) | 2007-12-18 | 2014-05-06 | Otismed Corporation | Arthroplasty system and related methods |
US8968320B2 (en) | 2007-12-18 | 2015-03-03 | Otismed Corporation | System and method for manufacturing arthroplasty jigs |
US8737700B2 (en) | 2007-12-18 | 2014-05-27 | Otismed Corporation | Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide |
US9649170B2 (en) | 2007-12-18 | 2017-05-16 | Howmedica Osteonics Corporation | Arthroplasty system and related methods |
US8617171B2 (en) | 2007-12-18 | 2013-12-31 | Otismed Corporation | Preoperatively planning an arthroplasty procedure and generating a corresponding patient specific arthroplasty resection guide |
US8734455B2 (en) | 2008-02-29 | 2014-05-27 | Otismed Corporation | Hip resurfacing surgical guide tool |
US9408618B2 (en) | 2008-02-29 | 2016-08-09 | Howmedica Osteonics Corporation | Total hip replacement surgical guide tool |
US8480679B2 (en) | 2008-04-29 | 2013-07-09 | Otismed Corporation | Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices |
US9646113B2 (en) | 2008-04-29 | 2017-05-09 | Howmedica Osteonics Corporation | Generation of a computerized bone model representative of a pre-degenerated state and useable in the design and manufacture of arthroplasty devices |
US9208263B2 (en) | 2008-04-30 | 2015-12-08 | Howmedica Osteonics Corporation | System and method for image segmentation in generating computer models of a joint to undergo arthroplasty |
US8483469B2 (en) | 2008-04-30 | 2013-07-09 | Otismed Corporation | System and method for image segmentation in generating computer models of a joint to undergo arthroplasty |
US8532361B2 (en) | 2008-04-30 | 2013-09-10 | Otismed Corporation | System and method for image segmentation in generating computer models of a joint to undergo arthroplasty |
US8777875B2 (en) | 2008-07-23 | 2014-07-15 | Otismed Corporation | System and method for manufacturing arthroplasty jigs having improved mating accuracy |
US10398450B2 (en) * | 2008-08-13 | 2019-09-03 | G. Lynn Rasmussen | Systems and methods for providing a bone milling device |
US20160022278A1 (en) * | 2008-08-13 | 2016-01-28 | G. Lynn Rasmussen | Systems and methods for providing a bone milling device |
US8617175B2 (en) | 2008-12-16 | 2013-12-31 | Otismed Corporation | Unicompartmental customized arthroplasty cutting jigs and methods of making the same |
US9402637B2 (en) | 2012-10-11 | 2016-08-02 | Howmedica Osteonics Corporation | Customized arthroplasty cutting guides and surgical methods using the same |
USD1000614S1 (en) * | 2022-06-07 | 2023-10-03 | Virtamed Ag | Artificial knee prosthetics |
Also Published As
Publication number | Publication date |
---|---|
EP0120346A1 (en) | 1984-10-03 |
DE3466173D1 (en) | 1987-10-22 |
CA1234031A (en) | 1988-03-15 |
EP0120346B1 (en) | 1987-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4467801A (en) | Method and apparatus for shaping a proximal tibial surface | |
US4474177A (en) | Method and apparatus for shaping a distal femoral surface | |
US4502483A (en) | Method and apparatus for shaping a distal femoral surface | |
US6197064B1 (en) | Prosthetic implant | |
US9192391B2 (en) | Method for minimally invasive total knee arthroplasty | |
US9066804B2 (en) | Method and apparatus for femoral and tibial resection | |
US8603095B2 (en) | Apparatuses for femoral and tibial resection | |
US4721104A (en) | Femoral surface shaping apparatus for posterior-stabilized knee implants | |
US5179915A (en) | Anatomically matching intramedullary alignment rod | |
US7329260B2 (en) | Kit, guide and method for locating distal femoral resection plane | |
US20060015115A1 (en) | Methods and apparatus for pivotable guide surfaces for arthroplasty | |
JPH02239861A (en) | Shank surface shaping guide for knee implantation | |
JP2004130109A (en) | Foot joint fixation guide and method therefor | |
JPH08502681A (en) | Orthopedic cutting device and prosthesis | |
JPH0548699B2 (en) | ||
JPH07178114A (en) | Modular guide for femur cutting | |
JP2006158972A (en) | Bone shaping instrument and method for using the same | |
US20070051378A1 (en) | Minimally invasive knee arthroplasty | |
US7935120B2 (en) | Posterior femur rough cut guide for minimally invasive knee arthroplasty | |
US11872142B2 (en) | Gap balancing assembly for knee revision surgery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: WRIGHT MANUFACTURING COMPANY, ARLINGTON, TN A CORP Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WHITESIDE, LEO A.;REEL/FRAME:004242/0256 Effective date: 19830306 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: WRIGHT MEDICAL TECHNOLOGY, INC., TENNESSEE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DOW CORNING WRIGHT CORPORATION;REEL/FRAME:006726/0717 Effective date: 19930910 |
|
AS | Assignment |
Owner name: BANCBOSTON TRUST CO. OF NEW YORK, MASSACHUSETTS Free format text: SECURITY INTEREST;ASSIGNOR:WRIGHT MEDICAL TECHNOLOGY, INC.;REEL/FRAME:006975/0668 Effective date: 19940311 |
|
FEPP | Fee payment procedure |
Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: STATE STREET BANK AND TRUST COMPANY, N.A., MASSACH Free format text: SECURITY INTEREST;ASSIGNOR:WRIGHT MEDICAL TECHNOLOGY, INC.;REEL/FRAME:008650/0778 Effective date: 19970806 |
|
AS | Assignment |
Owner name: CHASE MANHATTAN BANK, AS COLLATERAL AGENT, THE, NE Free format text: SECURITY INTEREST;ASSIGNOR:WRIGHT MEDICAL TECHNOLOGY, INC., A DELAWARE CORPORATION;REEL/FRAME:010506/0341 Effective date: 19991220 |
|
AS | Assignment |
Owner name: DOW CORNING WRIGHT CORPORATION, TENNESSEE Free format text: CHANGE OF NAME;ASSIGNOR:WRIGHT MANUFACTURING COMPANY;REEL/FRAME:010609/0797 Effective date: 19840612 |
|
AS | Assignment |
Owner name: WRIGHT MEDICAL TECHNOLOGY, INC., TENNESSEE Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST;ASSIGNOR:STATE STREET BANK AND TRUST COMPANY, N.A.;REEL/FRAME:011571/0989 Effective date: 19991220 |
|
AS | Assignment |
Owner name: WRIGHT MEDICAL TECHNOLOGY, INC., TENNESSEE Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST;ASSIGNOR:FIRST NATIONAL BANK OF BOSTON, THE, SUCCESSOR IN INTEREST TO BANCBOSTON TRUST CO. OF NEW YORK;REEL/FRAME:011571/0303 Effective date: 19991220 |
|
AS | Assignment |
Owner name: CHASE MANHATTAN BANK, AS COLLATERAL AGENT FOR SECU Free format text: GUARANTEE AND COLLATERAL AGREEMENT;ASSIGNOR:WRIGHT MEDICAL TECHNOLOGY, INC.;REEL/FRAME:012066/0233 Effective date: 20010801 |
|
AS | Assignment |
Owner name: WRIGHT MEDICAL TECHNOLOGY, INC., TENNESSEE Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST;ASSIGNOR:CHASE MANHATTAN BANK, AS COLLATERAL AGENT FOR SECURED PARTIES, THE;REEL/FRAME:012066/0327 Effective date: 20010801 |