US4351931A - Polyethylene copolymers - Google Patents
Polyethylene copolymers Download PDFInfo
- Publication number
- US4351931A US4351931A US05/164,074 US16407471A US4351931A US 4351931 A US4351931 A US 4351931A US 16407471 A US16407471 A US 16407471A US 4351931 A US4351931 A US 4351931A
- Authority
- US
- United States
- Prior art keywords
- copolymer
- ethylene
- acid
- composition
- aluminum foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/02—Ethene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31692—Next to addition polymer from unsaturated monomers
Definitions
- This invention relates to ethylene copolymers, and, more particularly, to copolymers of ethylene and certain acid comonomers.
- a further object is to provide ethylene copolymers which are especially well suited for adhesive and coating purposes.
- Still another object is to provide new copolymers of ethylene with certain acid comonomers.
- the objects of the present invention are accomplished by a copolymer of ethylene and 0.1 to 10 weight percent of an ⁇ , ⁇ -ethylenically unsaturated acid selected from the class consisting of acrylic acid and methacrylic acid, said copolymers having a melt index in the range of 0.01 to 30 g/10 min., as determined by ASTM-D-1238-57T.
- the copolymers of the present invention combine superior adhesion, toughness, flexibility and printability with low permeability, high rigidity and stiffness, and good solvent and moisture resistance.
- One of the surprising features of the resins of the present invention is the increase of adhesion obtained in the range of comonomer concentrations stated combined with the retention of desirable properties of polyethylene, such as rigidity and solvent and moisture resistance.
- the copolymers of the present invention can be readily handled at temperatures below their melting points, 110°-120° C., at which they show little or no tendency to stick and can also be fabricated in standard polyethylene equipment.
- the resins of the present invention are extremely useful as adhesives in such uses as the production of nonwoven fabrics, as binders in such uses as the preparation of laminates, and as coating resins in such uses as the coating of paper products.
- Polyethylene homopolymers have low adhesive properties, poor printability and are not suitable without special treatment as adhesives or as laminating resins.
- the introduction in accord with the process of this invention of as little as 0.1 weight percent, based on the copolymer, of the acid comonomer greatly increases the adhesive properties of the polymer. Acid component contents greater than about 10 weight percent do not significantly add to the adhesiveness or the printability of the copolymer.
- such increases in comonomer content cause some properties, which are inherent in high molecular weight polyethylene and which are desirable in an adhesive, to decrease.
- Acid comonomers such as are employed in the formation of the copolymers of the present invention act as telogens in the polymerization of ethylene, and, hence, if employed in high concentrations result only in low molecular weight products which do not have the toughness and flexibility, particularly at low temperatures, for which polyethylene is so well known.
- the incorporation of acid comonomers in excess of about 10 weight percent causes a significant decrease in the rigidity of the polymer product, which rigidity is often needed, particularly in laminating applications.
- the addition of more than 8 mole percent of acid comonomer causes a significant decrease in organic solvent resistance and moisture resistance, which are highly desirable in an adhesive or in a coating resin.
- the greatly surprising feature of the copolymers of the present invention is that the introduction of the acid comonomer in the indicated concentrations and in the uniformly random manner of this invention results in a tremendous increase in adhesiveness combined with an unusually small decrease in the mechanical properties as compared to polyethylene.
- the copolymers of the present invention are also extremely useful starting materials for the preparation of polymer derivatives.
- the acid copolymers can be reacted with metal salts of mono- and divalent metals, which are soluble in aqueous media, under conditions at which the by-product formed from the hydrogen ion and the salt anion is removed to give rise to ionically linked materials which have properties of crosslinked resins at temperatures below their melting points and yet are melt-fabricable at temperatures above their melting points.
- a particularly outstanding property of the ion-linked copolymers is their transparency.
- copolymers of the present invention may also be reacted with diamines to give rise to weather-resistant, transparent polymer compositions.
- the surprising feature of the latter copolymers is the fact that the copolymer remains substantially unchanged in its melt flow properties despite the reaction of the diamine with the acid groups of the copolymer.
- copolymers of the present invention may be reacted with phosphorus pentachloride to produce acid halide copolymers which can be reacted with hydroxyl group- or amino group-containing surfaces to form coatings which are chemically bonded to the substrate. Additionally, such acid halide copolymers can be reacted with compounds which contain an active hydrogen group, such as a hydroxyl group or an amino group, and which modify the properties of polymers to which they are added by imparting resistance to oxidative degradation, improved light stability, and anti-static properties. These improved properties are retained on reaction of the additive with the acid halide copolymer. As a result, highly effective nonexuding polymeric modifiers are obtained which when incorporated into other polymers, are compatible therewith and do not exude.
- copolymers of the present invention are as blending components for condensation polymers such as polyamides and polyesters where the addition of the ethylene/acid copolymers causes bonding of the acid group to the hydroxyl groups of the polyester or the amino groups of the polyamide, thereby improving the toughness of the condensation polymers.
- the ethylene/acid copolymers of the present invention may also be crosslinked by reaction with metal oxides giving rise to intractable compositions having good mechanical properties at elevated temperatures.
- telogenic nature of the comonomer acids it is not only necessary to employ conditions which result in high-molecular weight polymers in the homopolymerization, but conditions which result in high-molecular weight polymers in the presence of telogens.
- Conditions which result in high-molecular weight copolymers wherein the acid component is a major constituent are readily available since, as between the unsaturated acid and ethylene, the unsaturated acid is a substantially more active monomer which polymerizes more readily than ethylene and over a substantially wider range of conditions.
- copolymerization of ethylene and the described unsaturated acids to result in high-molecular weight copolymers i.e., copolymers having a melt index in the range of 0.01 to 30 g/10 min., as determined by ASTM-D-1238-57T, wherein the ethylene content is at least 90 weight percent requires high ethylene pressures of at least 1000 atmospheres, and preferably from 1500 to 3000 atmospheres, and a substantially telogen-free (aside from the comonomer) single phase polymerization environment in which both monomers are soluble and in which preferably the copolymer is also soluble. At low polymerization temperatures controlled small amounts of telogen may be added to make copolymers in the high end of the melt index range.
- Solvent systems which are suitable for the process comprise solvent systems heretofore used for polyethylene, such as benzene or chlorobenzene, or tertiary butanol. Bulk polymerization in the substantial absence of added solvent, except as necessary to dissolve the initiator added, is also a very satisfactory procedure. Where the comonomer is not sufficiently soluble to allow a single phase polymerization, a suitable comonomer solvent (i.e., benzene) is added.
- the reaction temperature is in the range of 90° C. to 280° C., and preferably, in the range of 150° C. to 240° C.
- copolymers of the present invention requires a copolymer which contains the acid comonomer randomly dispersed throughout the entire polymer molecule in all molecules of the polymer, i.e., a uniformly random, homogeneous copolymer.
- a copolymer which contains the acid comonomer randomly dispersed throughout the entire polymer molecule in all molecules of the polymer, i.e., a uniformly random, homogeneous copolymer.
- the polymer-forming reactivity of the unsaturated acid monomer is from 5 to 10 times that of the ethylene.
- the difference in reactivities of the comonomers results in a copolymerization in which polymers with a very high acid content are formed initially and, if permitted to continue, the acid monomer will be substantially used up, following which the polymerization becomes substantially a homopolymerization of ethylene.
- the heterogeneous product comprises a spectrum of polymer molecules ranging all the way from essentially homopolymers of the unsaturated acid to polyethylene.
- the nonuniform structure of ethylene-methacrylic acid copolymers produced in a tubular or batch process is particularly well illustrated in Table A.
- This table can be used to compare the composition of an ethylene-methacrylic acid copolymer, such as is obtained by using a tubular or batch process, with the composition of an ethylene-methacrylic acid copolymer of this invention made using the continuous, constant environment process of the present invention, in which both copolymers have the same average methacrylic acid comonomer content.
- a residence time of 0.5 minutes, an 85 percent conversion of the methacrylic acid and a 10 percent conversion of the ethylene to result in a 10 percent by weight copolymer the appropriate rate constants were calculated.
- the substantially homogeneous copolymer obtained by the continuous constant environment process of this invention consists essentially of polymer molecules in which the uniformly randomly distributed acid comonomer content is from 9.0 to 11.0 percent by weight. This range is the result of the practical inability to operate the equipment at an absolutely constant environment due to the limitations inherent in the equipment employed.
- the comonomer distribution of the batch copolymer as calculated from the rate constants, is shown in Table A.
- the use of uniformly random ethylene/acid copolymers is particularly important in the production of the derivatives described above. Unless the acid group has a uniformly random distribution, the derivatives will not have their derivative groups randomly dispersed throughout the copolymer. This, in turn will mean that the properties resulting from the formation of the derivatives will not be uniform throughout the copolymer thereby decreasing the utility of such derivatives. Nonuniformity in the distribution of derivative groups is particularly noticeable in those derivatives which impart transparency.
- copolymers heretofore prepared tend to reflect the unsatisfactory properties obtained by making the derivative of an acid homopolymer and then blending such with polyethylene. This is particularly noticeable in two applications.
- the copolymers of the present invention can be reacted with diamines to give rise to weather-resistant transparent polyolefins which retain their melt flow properties.
- a nonuniformly random copolymer of the prior art i.e., a copolymer which contains fractions with very high acid content and fractions with very low acid content
- the diamine-reacted product has intractable portions as a result of the high concentration of acid in a number of molecules and also other portions which remain unchanged as compared to polyethylene.
- copolymers are used as outstanding adhesives.
- the copolymers heretofore prepared cannot be made into dispersions since the acid-containing molecules of the copolymer are insoluble in nonmiscible organic solvents.
- the solubility characteristics of the uniformly random homogeneous copolymers of this invention distinguishes them from the copolymers of the prior art.
- the copolymers of the present invention are substantially insoluble ( ⁇ 1 weight percent) in boiling methanol and substantially completely soluble (>99 weight percent) in n-octanol at 125° C. and on extraction with methanol show no significant change in acid concentrations.
- a nonuniformly random copolymer containing greater than 2 mole percent of acid on the other hand, has significant solubility in boiling methanol (>20 percent) and is only partially soluble ( ⁇ 90 percent soluble) in octanol.
- extraction of nonuniform copolymers with methanol causes a significant change in the acid concentration of the copolymer.
- the polymerization of the comonomers is initiated by the free radical forming compounds known to the art for polymerizing ethylene, such as oxygen, a peroxide or an azo-bis compound.
- Suitable peroxides include benzoyl peroxide, lauryl peroxide, t-butyl peracetate.
- a suitable azo initiator is azo-bis(isobutyronitrile). The quantity and preferred type of initiator is in accordance with the art established for the homopolymerization of ethylene.
- the polymerization is preferably carried out in a stirred autoclave, agitated at high rates such as 250 rpm and higher to maintain a constant environment.
- Ethylene, the acid comonomer, which may be dissolved in ethylene or another suitable solvent, and initiator, also dissolved in a suitable solvent, are injected into the autoclave.
- the agitator is started and the feed is continued until the desired pressure is reached, at which time a discharge valve is opened to maintain the desired pressure.
- the temperature of the reactants is then built up to the "light off" state by any suitable means, such as for example, by the use of a heating jacket surrounding the autoclave, the use of internal or external electrical type heaters or the like.
- the reaction temperature within narrow limits, is then maintained by controlling the amount of exothermic polymerization which also maintains a definite monomer to polymer ratio within the autoclave.
- the temperature within the reactor is allowed to build up to the exact temperature that will produce that type of polymer. This is accomplished by regulating the rate at which the initiator is fed to the reactor.
- the exothermicity of the reaction and, therefore, the molecular properties of the polymer desired are therefore controlled by the amount of heating applied to the feed streams and the amount of initiator introduced.
- the resulting polymer solution is passed through a pressure let-down valve into a vessel maintained at a substantially reduced pressure, as compared to the polymerization autoclave, and at a temperature well above the melting point of the polymer; in this vessel, every reagent except the polymer is flashed off.
- the polymer is isolated and cooled to room temperature.
- Run 10 a constant environment reactor having a volume of approximately one cu. ft., agitated at 1800 rpm, was employed. The reagents were fed as separate streams at a temperature of 40° C. The catalyst employed in Run 10 was tertiary butyl perisobutyrate.
- the quantity of solvent, ethylene, methacrylic acid and copolymer discharged from the reactor corresponded to the quantity of solvent, ethylene and methacrylic acid charged.
- the ratio of the ethylene to methacrylic acid polymerized and unpolymerized corresponded to the ratio of ethylene to methacrylic acid charged. Table I also shows some of the physical properties of the comonomer obtained.
- Stiffness was determined by ASTM-D-747-58T. The Elemendorf Tear Strength and Shore Hardness are well known tests. The percent ink removed was measured by the " ⁇ Scotch ⁇ tape test" in which ink is applied to a film of the material and after drying, pressure-sensitive tape is applied to the inked material and then stripped off and the percentage of ink removed is calculated.
- adhesion as measured by peel strength, was obtained at a separation rate of 6"/min.
- the test samples were prepared by placing a 1 to 5 mil compression molded film of the acid copolymer between two layers of the foil to which adhesion was tested. The sandwich was placed in the jaws of the heat sealer to give a seal 1" ⁇ 4" at 250° C. under 60 psi. pressure with a dwell time of 0.15 seconds. The force required to peel the laminate was measured.
- the novel ethylene copolymers of the present invention are useful as coating resins and as adhesives. They can be employed in the melt-coating of cardboard, paper, metal foil, other plastic films, such as poly(ethyleneterephthalate) films, regenerated cellulose films (cellophane), and many other surfaces. Thus, cellophane can be rendered both moistureproof and heat sealable by applying a thin coating of the copolymers of this invention to one or both sides of the cellophane foil using standard melt-coating apparatus and procedures. They also are useful as laminating resins to bond such hydrocarbon polymers as polyethylene and polypropylene to the aforementioned substrates. In the adhesive field the copolymers of the present invention are particularly useful as binders for fibers. As indicated above, the uniformly random copolymers may also be employed as starting material for the formation of acid copolymer derivatives which have properties not generally associated with polyethylene.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
High molecular weight uniformly random copolymers of ethylene and acrylic or methacrylic acid containing up to 10 weight percent of the acid.
Description
This invention relates to ethylene copolymers, and, more particularly, to copolymers of ethylene and certain acid comonomers. This application is a continuation-in-part of application Ser. No. 349,759 filed Mar. 5, 1964, now abandoned which in turn is a continuation-in-part of application Ser. No. 119,265, filed June 26, 1961 and now abandoned.
It is an object of the present invention to provide new ethylene copolymers. A further object is to provide ethylene copolymers which are especially well suited for adhesive and coating purposes. Still another object is to provide new copolymers of ethylene with certain acid comonomers. Other objects will become apparent hereinafter.
The objects of the present invention are accomplished by a copolymer of ethylene and 0.1 to 10 weight percent of an α,β-ethylenically unsaturated acid selected from the class consisting of acrylic acid and methacrylic acid, said copolymers having a melt index in the range of 0.01 to 30 g/10 min., as determined by ASTM-D-1238-57T.
The copolymers of the present invention combine superior adhesion, toughness, flexibility and printability with low permeability, high rigidity and stiffness, and good solvent and moisture resistance. One of the surprising features of the resins of the present invention is the increase of adhesion obtained in the range of comonomer concentrations stated combined with the retention of desirable properties of polyethylene, such as rigidity and solvent and moisture resistance. Additionally, the copolymers of the present invention can be readily handled at temperatures below their melting points, 110°-120° C., at which they show little or no tendency to stick and can also be fabricated in standard polyethylene equipment. Thus, the resins of the present invention are extremely useful as adhesives in such uses as the production of nonwoven fabrics, as binders in such uses as the preparation of laminates, and as coating resins in such uses as the coating of paper products.
Polyethylene homopolymers have low adhesive properties, poor printability and are not suitable without special treatment as adhesives or as laminating resins. However, the introduction in accord with the process of this invention of as little as 0.1 weight percent, based on the copolymer, of the acid comonomer greatly increases the adhesive properties of the polymer. Acid component contents greater than about 10 weight percent do not significantly add to the adhesiveness or the printability of the copolymer. On the other hand, such increases in comonomer content cause some properties, which are inherent in high molecular weight polyethylene and which are desirable in an adhesive, to decrease. Acid comonomers such as are employed in the formation of the copolymers of the present invention act as telogens in the polymerization of ethylene, and, hence, if employed in high concentrations result only in low molecular weight products which do not have the toughness and flexibility, particularly at low temperatures, for which polyethylene is so well known. The incorporation of acid comonomers in excess of about 10 weight percent causes a significant decrease in the rigidity of the polymer product, which rigidity is often needed, particularly in laminating applications. Furthermore, the addition of more than 8 mole percent of acid comonomer causes a significant decrease in organic solvent resistance and moisture resistance, which are highly desirable in an adhesive or in a coating resin. The greatly surprising feature of the copolymers of the present invention is that the introduction of the acid comonomer in the indicated concentrations and in the uniformly random manner of this invention results in a tremendous increase in adhesiveness combined with an unusually small decrease in the mechanical properties as compared to polyethylene.
The copolymers of the present invention are also extremely useful starting materials for the preparation of polymer derivatives. Thus, the acid copolymers can be reacted with metal salts of mono- and divalent metals, which are soluble in aqueous media, under conditions at which the by-product formed from the hydrogen ion and the salt anion is removed to give rise to ionically linked materials which have properties of crosslinked resins at temperatures below their melting points and yet are melt-fabricable at temperatures above their melting points. A particularly outstanding property of the ion-linked copolymers is their transparency.
The copolymers of the present invention may also be reacted with diamines to give rise to weather-resistant, transparent polymer compositions. The surprising feature of the latter copolymers is the fact that the copolymer remains substantially unchanged in its melt flow properties despite the reaction of the diamine with the acid groups of the copolymer.
The copolymers of the present invention may be reacted with phosphorus pentachloride to produce acid halide copolymers which can be reacted with hydroxyl group- or amino group-containing surfaces to form coatings which are chemically bonded to the substrate. Additionally, such acid halide copolymers can be reacted with compounds which contain an active hydrogen group, such as a hydroxyl group or an amino group, and which modify the properties of polymers to which they are added by imparting resistance to oxidative degradation, improved light stability, and anti-static properties. These improved properties are retained on reaction of the additive with the acid halide copolymer. As a result, highly effective nonexuding polymeric modifiers are obtained which when incorporated into other polymers, are compatible therewith and do not exude.
Other uses for the copolymers of the present invention are as blending components for condensation polymers such as polyamides and polyesters where the addition of the ethylene/acid copolymers causes bonding of the acid group to the hydroxyl groups of the polyester or the amino groups of the polyamide, thereby improving the toughness of the condensation polymers. The ethylene/acid copolymers of the present invention may also be crosslinked by reaction with metal oxides giving rise to intractable compositions having good mechanical properties at elevated temperatures.
The outstanding utility of ethylene/acid copolymers in these applications is made feasible only by the use of the copolymers of the present invention and is due to the particular, unique, homogeneous structure of the copolymers of the present invention, as described hereinbelow in greater detail.
Most ethylene copolymers with polar comonomers produced heretofore have been produced either in an aqueous system, at low pressures, i.e., up to 500 atmospheres, in batch processes, or at high pressures in tubular reactors with changing concentration profiles. However, these conditions do not result in the novel, high-molecular weight, uniformly random copolymers of the present invention. It will be readily recognized that in order to achieve high molecular weight in the copolymers of the present invention, it is necessary to employ polymerization conditions which result in high-molecular weight homopolymers of ethylene, since ethylene is the major component, particularly when considered on a molar basis. In view of the telogenic nature of the comonomer acids, however, it is not only necessary to employ conditions which result in high-molecular weight polymers in the homopolymerization, but conditions which result in high-molecular weight polymers in the presence of telogens. Conditions which result in high-molecular weight copolymers wherein the acid component is a major constituent are readily available since, as between the unsaturated acid and ethylene, the unsaturated acid is a substantially more active monomer which polymerizes more readily than ethylene and over a substantially wider range of conditions. The copolymerization of ethylene and the described unsaturated acids to result in high-molecular weight copolymers, i.e., copolymers having a melt index in the range of 0.01 to 30 g/10 min., as determined by ASTM-D-1238-57T, wherein the ethylene content is at least 90 weight percent requires high ethylene pressures of at least 1000 atmospheres, and preferably from 1500 to 3000 atmospheres, and a substantially telogen-free (aside from the comonomer) single phase polymerization environment in which both monomers are soluble and in which preferably the copolymer is also soluble. At low polymerization temperatures controlled small amounts of telogen may be added to make copolymers in the high end of the melt index range.
Solvent systems which are suitable for the process comprise solvent systems heretofore used for polyethylene, such as benzene or chlorobenzene, or tertiary butanol. Bulk polymerization in the substantial absence of added solvent, except as necessary to dissolve the initiator added, is also a very satisfactory procedure. Where the comonomer is not sufficiently soluble to allow a single phase polymerization, a suitable comonomer solvent (i.e., benzene) is added. The reaction temperature is in the range of 90° C. to 280° C., and preferably, in the range of 150° C. to 240° C.
The utility of the copolymers of the present invention requires a copolymer which contains the acid comonomer randomly dispersed throughout the entire polymer molecule in all molecules of the polymer, i.e., a uniformly random, homogeneous copolymer. In order to achieve such a copolymer, it is necessary in addition to the aforementioned conditions, to employ a continuous polymerization process which provides a constant environment for the polymerization. Thus, it was discovered that the polymer-forming reactivity of the unsaturated acid monomer is from 5 to 10 times that of the ethylene. Because of this substantial difference in reactivities, it is not only necessary to reduce the concentration of the comonomer in the feed in accordance with the reactivity ratio, in order to obtain a copolymer of the desired acid content, but it is also essential to employ a continuous process in which the conversion is controlled to maintain a substantially constant temperature. In concentrated ethylene polymerization systems, a practical conversion of 3 to 20 percent is employed. In dilute systems, considerably higher conversions are attainable. It has been discovered that by maintaining a high ratio in line with the reciprocal of the reactivity ratio of ethylene to comonomer fed to the polymerization reactor, maintaining a constant environment in the reactor, and removing a total of polymerized and unpolymerized monomers corresponding to the charged monomers, it is possible to obtain the uniformly random, homogeneous copolymers of this invention. Depending upon other conditions and the particular concentration of acid comonomer units desired in the copolymer, the monomers are fed to the autoclave in a ratio of ethylene to comonomer of about 10,000 to 1 to about 50 to 1, by weight. A constant environment in the reactor can be achieved by rapid end-over-end mixing.
In contrast, in a batch or tubular process the difference in reactivities of the comonomers results in a copolymerization in which polymers with a very high acid content are formed initially and, if permitted to continue, the acid monomer will be substantially used up, following which the polymerization becomes substantially a homopolymerization of ethylene. As a result the heterogeneous product comprises a spectrum of polymer molecules ranging all the way from essentially homopolymers of the unsaturated acid to polyethylene. On the other hand, the use of a continuous process under conditions above described results in an entirely different product, one which has uniformly random comonomer distribution and substantially uniform comonomer content in each polymer molecule and is, therefore, substantially homogeneous in contrast to the batch produced product, which is highly heterogeneous.
The nonuniform structure of ethylene-methacrylic acid copolymers produced in a tubular or batch process is particularly well illustrated in Table A. This table can be used to compare the composition of an ethylene-methacrylic acid copolymer, such as is obtained by using a tubular or batch process, with the composition of an ethylene-methacrylic acid copolymer of this invention made using the continuous, constant environment process of the present invention, in which both copolymers have the same average methacrylic acid comonomer content. Using the experimental equipment described in the examples, a residence time of 0.5 minutes, an 85 percent conversion of the methacrylic acid and a 10 percent conversion of the ethylene to result in a 10 percent by weight copolymer, the appropriate rate constants were calculated. These constants were then used to determine the composition of a copolymer made in a batch reactor allowed to run for two minutes at constant ethylene pressure to give an average of 10 weight percent of methacrylic acid in the resultant product. The substantially homogeneous copolymer obtained by the continuous constant environment process of this invention consists essentially of polymer molecules in which the uniformly randomly distributed acid comonomer content is from 9.0 to 11.0 percent by weight. This range is the result of the practical inability to operate the equipment at an absolutely constant environment due to the limitations inherent in the equipment employed. The comonomer distribution of the batch copolymer as calculated from the rate constants, is shown in Table A.
TABLE A ______________________________________ Comonomer Concentration in Percent of Copolymer such Fraction in percent (wt.) ______________________________________ 1.8218 68.7158-71.5789 1.5809 65.8526-68.7158 1.3957 62.9895-65.8526 1.2509 60.1263-62.9895 1.1362 57.2632-60.1263 1.0445 54.4000-57.2632 0.9709 51.5368-54.4000 0.9119 48.6737-51.5368 0.8650 45.8105-48.6737 0.8284 42.9474-45.8105 0.8009 40.0842-42.9474 0.7818 37.2111-40.0842 0.7708 34.3579-37.2211 0.7678 31.4947-34.3579 0.7735 28.6316-31.4947 0.7891 25.7684-28.6316 0.8166 22.9053-25.7684 0.8594 20.0421-22.9053 0.9234 17.1789-20.0421 1.0191 14.3158-17.1789 1.1664 11.4526-14.3158 1.4091 8.5895-11.4526 1.8643 5.7263-8.5895 2.9951 2.8632-5.7263 1.2013 2.1474-2.8632 1.6683 1.4316-2.1474 2.8099 0.7158-1.4316 66.7770 0-.7158 ______________________________________
From the foregoing table it is apparent that the batch polymerization produces about one percent of copolymer molecules having a 10 percent acid concentration, even though the overall concentration of all the polymer molecules is 10 percent. It will be apparent that although one percent of the batch produced polymer molecules are essentially the same as the polymer molecules produced by the process of the present invention, it is not possible to separate this particular fraction from the remainder, about 65% of which is substantially homopolymer.
The use of uniformly random ethylene/acid copolymers is particularly important in the production of the derivatives described above. Unless the acid group has a uniformly random distribution, the derivatives will not have their derivative groups randomly dispersed throughout the copolymer. This, in turn will mean that the properties resulting from the formation of the derivatives will not be uniform throughout the copolymer thereby decreasing the utility of such derivatives. Nonuniformity in the distribution of derivative groups is particularly noticeable in those derivatives which impart transparency.
Thus, copolymers heretofore prepared tend to reflect the unsatisfactory properties obtained by making the derivative of an acid homopolymer and then blending such with polyethylene. This is particularly noticeable in two applications. Thus as indicated hereinabove, the copolymers of the present invention can be reacted with diamines to give rise to weather-resistant transparent polyolefins which retain their melt flow properties. If a nonuniformly random copolymer of the prior art is employed, i.e., a copolymer which contains fractions with very high acid content and fractions with very low acid content, the diamine-reacted product has intractable portions as a result of the high concentration of acid in a number of molecules and also other portions which remain unchanged as compared to polyethylene.
Another example of the importance of having a homogeneous copolymer is provided in the use of the acid copolymers as outstanding adhesives. In many adhesive applications, it is preferred to apply the copolymers in the form of a dispersion which is obtained by emulsifying a polymer solution in a nonmiscible solvent in water and removing the organic solvent. The copolymers heretofore prepared cannot be made into dispersions since the acid-containing molecules of the copolymer are insoluble in nonmiscible organic solvents.
The solubility characteristics of the uniformly random homogeneous copolymers of this invention distinguishes them from the copolymers of the prior art. Thus, the copolymers of the present invention are substantially insoluble (<1 weight percent) in boiling methanol and substantially completely soluble (>99 weight percent) in n-octanol at 125° C. and on extraction with methanol show no significant change in acid concentrations. A nonuniformly random copolymer containing greater than 2 mole percent of acid, on the other hand, has significant solubility in boiling methanol (>20 percent) and is only partially soluble (<90 percent soluble) in octanol. Furthermore, extraction of nonuniform copolymers with methanol causes a significant change in the acid concentration of the copolymer.
In general the polymerization of the comonomers is initiated by the free radical forming compounds known to the art for polymerizing ethylene, such as oxygen, a peroxide or an azo-bis compound. Suitable peroxides include benzoyl peroxide, lauryl peroxide, t-butyl peracetate. A suitable azo initiator is azo-bis(isobutyronitrile). The quantity and preferred type of initiator is in accordance with the art established for the homopolymerization of ethylene.
The polymerization is preferably carried out in a stirred autoclave, agitated at high rates such as 250 rpm and higher to maintain a constant environment. Ethylene, the acid comonomer, which may be dissolved in ethylene or another suitable solvent, and initiator, also dissolved in a suitable solvent, are injected into the autoclave. The agitator is started and the feed is continued until the desired pressure is reached, at which time a discharge valve is opened to maintain the desired pressure. The temperature of the reactants is then built up to the "light off" state by any suitable means, such as for example, by the use of a heating jacket surrounding the autoclave, the use of internal or external electrical type heaters or the like. At these pressures and temperatures the reagents exist as a uniform phase. "Light off" occurs when the temperature is reached at which the polymerization initiator begins to generate free radicals at an appreciable rate. The free radicals induce the polymerization of the monomers and since this reaction is exothermic, the temperature is observed to rise. When the temperature rises slightly the initiator produces free radicals at a faster rate and the exothermic polymerization of ethylene proceeds still faster. For this reason a marked temperature surge is observed as the reaction "lights off". Once "light off" is obtained, the application of heat through jackets into the reaction mixture and/or feed streams may be discontinued. The reaction temperature, within narrow limits, is then maintained by controlling the amount of exothermic polymerization which also maintains a definite monomer to polymer ratio within the autoclave. In accord with the type of polymer it is desired to produce, the temperature within the reactor is allowed to build up to the exact temperature that will produce that type of polymer. This is accomplished by regulating the rate at which the initiator is fed to the reactor. The exothermicity of the reaction and, therefore, the molecular properties of the polymer desired are therefore controlled by the amount of heating applied to the feed streams and the amount of initiator introduced. The resulting polymer solution is passed through a pressure let-down valve into a vessel maintained at a substantially reduced pressure, as compared to the polymerization autoclave, and at a temperature well above the melting point of the polymer; in this vessel, every reagent except the polymer is flashed off. The polymer is isolated and cooled to room temperature.
The synthesis of the resins of the present invention and some fundamental properties of the resulting resins are further illustrated by the Examples described in Table I. In Runs 1-9, the polymerization was carried out in a two-liter, stirred autoclave. All reagent streams were maintained at a temperature of 25° C. The initiator employed was t-butyl peracetate unless otherwise indicated. Ethylene was charged to the reactor as a separate stream. Catalyst and comonomer were charged as separate streams as solutions in benzene.
In Run 10 a constant environment reactor having a volume of approximately one cu. ft., agitated at 1800 rpm, was employed. The reagents were fed as separate streams at a temperature of 40° C. The catalyst employed in Run 10 was tertiary butyl perisobutyrate. The quantity of solvent, ethylene, methacrylic acid and copolymer discharged from the reactor corresponded to the quantity of solvent, ethylene and methacrylic acid charged. The ratio of the ethylene to methacrylic acid polymerized and unpolymerized corresponded to the ratio of ethylene to methacrylic acid charged. Table I also shows some of the physical properties of the comonomer obtained.
TABLE I __________________________________________________________________________ Reactor Conditions Cat. Demand Feed Streams in pph Press. Temp lb cat/1000# Catalyst Run Copolymer Atms. °C. of polymer Ethylene Comonomer × 10.sup.-6 Benzene Cosolvent __________________________________________________________________________ 1 Ethylene/Acrylic Acid 1100 235 0.088 10 0.001 141 7.35 1.0(toluene)* 2 Ethylene/Acrylic Acid 1200 238 0.0895 10 0.01 136 6.82 1.05(toluene)* 3 Ethylene/Acrylic Acid 1400 230 0.131 10 0.06 208 7.75 0.9(toluene)* 4 Ethylene/Acrylic Acid 1450 213 0.177 10 0.128 270 6.82 1.0(toluene)* 5 Ethylene 1200 233 0.073 10 -- 7.0 -- 6 Ethylene/Methacrylic Acid 1200 230 0.096 10 0.01 140 7.63 -- 7 Ethylene/Methacrylic Acid 1200 231 0.108 10 0.02 163 7.75 -- 8 Ethylene/Methacrylic Acid 1350 224 0.113 10 0.058 179 7.23 -- 9 Ethylene/Methacrylic Acid 1350 202 0.185 10 0.127 286 8.96 -- 10 Ethylene/Methacrylic Acid 1520 226 0.9 1220 12.6 -- 23.4 None __________________________________________________________________________ Reactor Polymer Comonomer Solvent/Total Residence Yield Content Melt Index Stiffness Density Run Copolymer Monomer Ratio Time/min pph in wt. % g/10 min** psi*** g/cc**** __________________________________________________________________________ 1 Ethylene/Acrylic Acid 0.735 7.4 1.60 0.12 3.0-5.5 15,040 0.915 2 Ethylene/Acrylic Acid 0.682 7.6 1.52 0.45 3.8-7.8 14,636 0.917 3 Ethylene/Acrylic Acid 0.77 7.8 1.59 2.5 4.0-5.3 16,521 0.923 4 Ethylene/Acrylic Acid 0.673 8.5 1.53 5.7 1.7-2.0 -- 0.932 5 Ethylene 7.5 1.5 -- 0.9-2.1 18,895 0.916 6 Ethylene/Methacrylic Acid 0.761 7.5 1.46 0.48 1.3-2.5 19,415 0.913 7 Ethylene/Methacrylic Acid 0.772 7.5 1.49 1.18 4.4-5.2 19,294 0.915 8 Ethylene/Methacrylic Acid 0.72 7.3 1.58 2.29 2.9-3.6 19,651 0.918 9 Ethylene/Methacrylic Acid 0.875 7.5 1.55 5.21 4.3-5.7 19.820 0.927 10 Ethylene/Methacrylic Acid -- ˜1 160 4.8 1.0 -- 0.9268 __________________________________________________________________________ *Added after polymerization to facilitate polymer purification **ASTM D1238-57T ***ASTM D 74758T ****D792-50
The surprising combination of properties obtained with the copolymers of the present invention is shown in Table II where the retention of desirable polyethylene properties, such as stiffness and tear strength of films, is compared with the improvement in adhesive properties obtained with increasing concentrations of the acid comonomers when the copolymers are employed as the binders in the preparation of laminated structures with metal foils (illustrated by aluminum) or with plastic films (illustrated by "Mylar" poly(ethyleneterephthalate) film), and when printing ink is applied to films of the copolymers:
TABLE II __________________________________________________________________________ Wt. Film Film Adhesion (gm/inch width) % Comonomer Stiffness Elemendorf "Mylar", Poly- Copolymer Content in psi Tear in g/ml Shore Hardness % Ink Removed Aluminum ester __________________________________________________________________________ Film Ethylene/Acrylic 0.12 15,040 175 52(D) 95 -- -- Acid Copolymer 0.45 14,636 170 51(D) -- 1600 -- 2.5 16,525 227 52(D) -- 2500 -- 5.7 14,961 425 55(D) 0 2700 -- Ethylene/Meth- 0.48 19,415 200 47(D) 100 -- -- Acrylic Acid 1.18 19,294 210 49(D) 90 1400 -- Copolymer 2.29 19,651 225 51(D) -- 2500 40 5.21 19,820 406 50(D) 60 2700 60 __________________________________________________________________________
Stiffness was determined by ASTM-D-747-58T. The Elemendorf Tear Strength and Shore Hardness are well known tests. The percent ink removed was measured by the "`Scotch` tape test" in which ink is applied to a film of the material and after drying, pressure-sensitive tape is applied to the inked material and then stripped off and the percentage of ink removed is calculated. For the laminates, adhesion, as measured by peel strength, was obtained at a separation rate of 6"/min. The test samples were prepared by placing a 1 to 5 mil compression molded film of the acid copolymer between two layers of the foil to which adhesion was tested. The sandwich was placed in the jaws of the heat sealer to give a seal 1"×4" at 250° C. under 60 psi. pressure with a dwell time of 0.15 seconds. The force required to peel the laminate was measured.
The novel ethylene copolymers of the present invention are useful as coating resins and as adhesives. They can be employed in the melt-coating of cardboard, paper, metal foil, other plastic films, such as poly(ethyleneterephthalate) films, regenerated cellulose films (cellophane), and many other surfaces. Thus, cellophane can be rendered both moistureproof and heat sealable by applying a thin coating of the copolymers of this invention to one or both sides of the cellophane foil using standard melt-coating apparatus and procedures. They also are useful as laminating resins to bond such hydrocarbon polymers as polyethylene and polypropylene to the aforementioned substrates. In the adhesive field the copolymers of the present invention are particularly useful as binders for fibers. As indicated above, the uniformly random copolymers may also be employed as starting material for the formation of acid copolymer derivatives which have properties not generally associated with polyethylene.
Claims (31)
1. A uniformly random, homogeneous copolymer of ethylene and an α, β-ethylenically unsaturated acid selected from the class consisting of acrylic acid and methacrylic acid, said copolymer exhibiting improved adhesion to solid metallic substrates and being composed of at least about 90% by weight ethylene and having at least 0.45% by weight of said unsaturated acid copolymerized therewith and uniformly randomly distributed along the copolymer chains, and said copolymer having a melt index of 0.01 to 30 g/10 min.
2. The copolymer of claim 1 in which the acid comonomer copolymerized with ethylene in the copolymer is acrylic acid.
3. The copolymer of claim 2 in which the melt index is 3.8 to 7.8 g/10 minutes and the acrylic acid content is 0.45 weight percent.
4. The copolymer of claim 2 in which the melt index is 4.0 to 5.3 g/10 minutes and the acrylic acid content is 2.5 weight percent.
5. The copolymer of claim 2 in which the melt index is 1.7 to 2.0 g/10 minutes and the acrylic acid content is 5.7 weight percent.
6. The copolymer of claim 1 in which the acid comonomer copolymerized with ethylene in the copolymer is methacrylic acid .
7. The copolymer of claim 6 in which the melt index is 1.3 to 2.5 g/10 minutes and the methacrylic acid content is 0.48 weight percent.
8. The copolymer of claim 6 in which the melt index is 4.4 to 5.2 g/10 minutes and the methacrylic acid content is 1.18 weight percent.
9. The copolymer of claim 6 in which the melt index is 2.9 to 3.6 g/10 minutes the methacrylic acid content is 2.29 weight percent.
10. The copolymer of claim 6 in which the melt index is 4.3 to 5.7 g/10 minutes and the methacrylic acid content is 5.21.
11. The copolymer of claim 10 in the form of a self-supporting film.
12. A laminated structure in which the binder is the copolymer of claim 10.
13. Metal foil coated with the copolymer of claim 1.
14. The coated metal foil of claim 13 in which the metal is aluminum.
15. Aluminum foil coated with the composition of claim 2.
16. Aluminum foil coated with the composition of claim 3.
17. Aluminum foil coated with the composition of claim 4.
18. Aluminum foil coated with the composition of claim 5.
19. Aluminum foil coated with the composition of claim 6.
20. Aluminum foil coated with the composition of claim 7.
21. Aluminum foil coated with the composition of claim 8.
22. Aluminum foil coated with the composition of claim 9.
23. Aluminum foil coated with the composition of claim 10.
24. A copolymer according to claim 2 in the form of a thin sheet consisting essentially thereof.
25. A copolymer according to claim 2 in the form of a layer in a consolidated laminar structure of at least two dissimilar laminar layers.
26. The process of preparing a uniformly random homogeneous copolymer of ethylene and an α,β-ethylenically unsaturated acid, selected from the class consisting of acrylic acid and methacrylic acid, said copolymer being composed of at least about 90% by weight ethylene, based on copolymer, and having at least 0.45% by weight of said unsaturated acid uniformly randomly distributed along the copolymer chains, by continuously charging ethylene, said unsaturated acid and a free radical initiator, selected from the group consisting of oxygen, peroxide and azo-bis compounds, into a single phase reaction zone stirred at a high rate and maintained at a preselected pressure of at least 1000 atmospheres of ethylene and at a preselected temperature maintained within narrow limits at a value between 90° and 280° C., the ratio of ethylene to unsaturated acid charged being in the range of 10,000/1 to 50/1 by weight, and maintaining a definite monomer to polymer ratio in the reaction zone and regulating the concentration of initiator fed into the reactor at a predetermined value while allowing said unsaturated acid and ethylene to copolymerize in said reaction zone, and continuously removing from reactor a stream consisting of unreacted ethylene, unreacted unsaturated acid, and the copolymer at a rate such that the reactor residence time permits conversion of 3 to 20% of the ethylene to polymer, through a pressure let-down valve to a zone maintained at substantially reduced pressure from which all reagents are flashed off leaving the copolymer product.
27. The process as set forth in claim 26 wherein the temperature is from 150° to 240° C. and the pressure from 1500 to 3000 atmospheres.
28. The process as set forth in claim 26 wherein the initiator is a peroxide.
29. The process as set forth in claim 26 wherein the polymerization is carried out in an inert solvent.
30. The process as set forth in claim 29 wherein the solvent is benzene.
31. The process of claim 26 wherein the acid comonomer is acrylic acid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/164,074 US4351931A (en) | 1961-06-26 | 1971-07-19 | Polyethylene copolymers |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11926561A | 1961-06-26 | 1961-06-26 | |
US34975964A | 1964-03-05 | 1964-03-05 | |
US05/164,074 US4351931A (en) | 1961-06-26 | 1971-07-19 | Polyethylene copolymers |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US34975964A Continuation-In-Part | 1961-06-26 | 1964-03-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4351931A true US4351931A (en) | 1982-09-28 |
Family
ID=27382274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/164,074 Expired - Lifetime US4351931A (en) | 1961-06-26 | 1971-07-19 | Polyethylene copolymers |
Country Status (1)
Country | Link |
---|---|
US (1) | US4351931A (en) |
Cited By (152)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1984004926A1 (en) * | 1983-06-13 | 1984-12-20 | Dow Chemical Co | Interpolymers of ethylene and unsaturated carboxylic acids |
US4579918A (en) * | 1984-02-10 | 1986-04-01 | Basf Aktiengesellschaft | Preparation of copolymers of ethylene with carboxyl-containing comonomers in a 2-zone reactor under more than 500 bar |
US4601948A (en) * | 1983-09-12 | 1986-07-22 | The Dow Chemical Company | High-frequency heatable plastics |
US4680357A (en) * | 1985-05-28 | 1987-07-14 | The Dow Chemical Company | Interpolymers of ethylene and alkenyl pyridines and preparation thereof |
US4731504A (en) * | 1986-08-13 | 1988-03-15 | The Dow Chemical Company | Multi-layer film structure and electrical cable incorporating same |
US4870128A (en) * | 1988-03-18 | 1989-09-26 | W. R. Grace & Co.-Conn. | Hot melt gaskets |
US4874819A (en) * | 1987-12-21 | 1989-10-17 | Shell Oil Company | Polymer blend |
US4874801A (en) * | 1987-12-21 | 1989-10-17 | Shell Oil Company | Polymer blend |
US4904728A (en) * | 1988-08-31 | 1990-02-27 | Shell Oil Company | Polymer blends |
EP0360038A2 (en) * | 1988-09-03 | 1990-03-28 | BASF Aktiengesellschaft | Process for the manufacture of amine-modified copolymers of ethylene and carboxylic acids, these copolymers and their use in coupling agents and cable-insulating materials |
US4988781A (en) * | 1989-02-27 | 1991-01-29 | The Dow Chemical Company | Process for producing homogeneous modified copolymers of ethylene/alpha-olefin carboxylic acids or esters |
US4992486A (en) * | 1989-11-14 | 1991-02-12 | E. I. Du Pont De Nemours And Company | White-pigmented, melt-stable ethylene/carboxylic acid copolymer compositions |
EP0447988A1 (en) * | 1990-03-23 | 1991-09-25 | W.R. Grace & Co.-Conn. | Multilayer thermosealing film for packaging |
US5057593A (en) * | 1990-06-11 | 1991-10-15 | E. I. Du Pont De Nemours And Company | Free radical copolymerization of ethylene and CO with acetone |
US5082697A (en) * | 1988-02-17 | 1992-01-21 | The Dow Chemical Company | Polymer salt complex for fiber or fabric treatment |
US5092952A (en) * | 1990-06-01 | 1992-03-03 | General Electric Company | Bonding aluminum cladding to random glass mat reinforced polypropylene sheet |
WO1992013013A1 (en) * | 1989-02-27 | 1992-08-06 | The Dow Chemical Company | Process for producing homogeneous modified copolymers of ethylene/alpha-olefin carboxylic acids or esters |
US5210150A (en) * | 1991-11-22 | 1993-05-11 | E. I. Du Pont De Nemours And Company | Moisture-curable melt-processible ethylene copolymer adhesives |
US5326629A (en) * | 1985-09-16 | 1994-07-05 | The Dow Chemical Company | Porous polymer fiber filters |
US5344902A (en) * | 1991-06-18 | 1994-09-06 | Occidental Research Corporation | Polymerization with initiator and quaternary ammonium salt |
US5504167A (en) * | 1994-09-28 | 1996-04-02 | E. I. Du Pont De Nemours And Company | Process for the preparation of polyethylene copolymers |
US5508366A (en) * | 1994-10-18 | 1996-04-16 | S. C. Johnson & Son, Inc. | Continuous production of reduced gel content hydroxylated addition polymers |
EP0713887A1 (en) * | 1994-11-24 | 1996-05-29 | Basf Aktiengesellschaft | Process for the production of ethylene-alkene carboxylic acid copolymers |
US5543477A (en) * | 1991-09-24 | 1996-08-06 | Chevron Chemical Company | Copolymers of ethylene and alkyl acrylate with improved melt-point temperatures |
WO1997035670A1 (en) * | 1996-03-28 | 1997-10-02 | E.I. Du Pont De Nemours And Company | Polymer coating for low electrically conductive materials |
US5698663A (en) * | 1995-09-26 | 1997-12-16 | Shell Oil Company | Polyketone polymer powder coatings |
US5700890A (en) * | 1996-03-22 | 1997-12-23 | E. I. Du Pont De Nemours And Company | Ionomers based on copolymers of ethylene with both mono-and dicarboxylic acids |
US5741889A (en) * | 1996-04-29 | 1998-04-21 | International Paper Company | Modified rosin emulsion |
EP0842954A1 (en) * | 1996-11-18 | 1998-05-20 | Basf Aktiengesellschaft | Process for preparing ethylene-(meth)acrylic acid copolymers |
US5789048A (en) * | 1992-02-22 | 1998-08-04 | E. I. Du Pont De Nemours And Company | Package consumable in melt processing |
US5827559A (en) * | 1996-02-02 | 1998-10-27 | E. I. Du Pont De Nemours And Company | Cook-in packaging and methods relating thereto |
US5859137A (en) * | 1997-02-28 | 1999-01-12 | E. I. Du Pont De Nemours And Company | Ionomers based on copolymers of ethylene with both mono- and dicarboxylic acids and polyamide blends containing these ionomers |
US6060565A (en) * | 1996-10-24 | 2000-05-09 | Basf Aktiengesellschaft | Process for preparing oxidized polyethylene waxes |
US6090454A (en) * | 1996-03-28 | 2000-07-18 | E.I. Du Pont De Nemours And Company | Polymer coating for low electrically conductive materials |
WO2000044801A1 (en) * | 1999-01-29 | 2000-08-03 | E.I. Du Pont De Nemours And Company | Aqueous dispersions of low mfi ethylene-copolymers |
US6100321A (en) * | 1997-04-15 | 2000-08-08 | E. I. Du Pont De Nemours And Company | Stearic-modified ionomers for golf balls |
US6100340A (en) * | 1997-01-16 | 2000-08-08 | Acushnet Company | Golf ball compositions containing high crystalline acid copolymers and their ionomer derivatives |
US6399684B1 (en) | 1998-08-26 | 2002-06-04 | E. I. Du Pont De Nemours & Company | Polymer-polyamide blends having a phosphorous containing additive |
US6465107B1 (en) | 1996-09-13 | 2002-10-15 | Dupont Canada Inc. | Silicone-containing polyolefin film |
US6469095B1 (en) * | 1996-12-19 | 2002-10-22 | Basf Aktiengesellschaft | Flame-proofed molding materials |
US6518365B1 (en) | 1999-07-28 | 2003-02-11 | E. I. Du Pont De Nemours And Company | High melt swell polymer |
US6555239B1 (en) * | 1996-08-06 | 2003-04-29 | The University Of Connecticut | Polymer-coated metal composites by dip autopolymerization |
US6562779B2 (en) * | 2000-02-25 | 2003-05-13 | Basf Aktiengesellschaft | Preparation of emulsifiable ethylene polymers |
US6569947B1 (en) | 2002-01-25 | 2003-05-27 | E. I. Du Pont De Nemours And Company | Ionomer/high density polyethylene blends with improved impact |
US20030114565A1 (en) * | 2001-03-29 | 2003-06-19 | Chen John Chu | Soft and resilient ethylene copolymers and their use in golf balls |
US6581359B1 (en) | 1999-10-13 | 2003-06-24 | Van Den Broek Adrianus Theodorus Josephus | Process and polymer films for fresh meat packaging |
US6590037B1 (en) * | 1994-03-29 | 2003-07-08 | Saint-Gobain Performance Plastics Corporation | Acrylate blends and laminates using acrylate blends |
US20030130434A1 (en) * | 1999-10-21 | 2003-07-10 | Statz Robert Joseph | Highly-neutralized ethylene copolymers and their use in golf balls |
US6596815B1 (en) | 2002-01-25 | 2003-07-22 | E. I. Du Pont De Nemours And Company | Ionomer/high density polyethylene blends with improved flow |
US6630528B2 (en) | 2000-08-10 | 2003-10-07 | E. I. Du Pont De Nemours And Company | Antistatic ionomer blend |
US6632518B1 (en) | 1998-10-14 | 2003-10-14 | E. I. Du Pont De Nemours And Company | Fluoropolymer film structures and laminates produced therefrom |
US6680082B2 (en) | 1998-07-27 | 2004-01-20 | E. I. Du Pont De Nemours And Company | Mixed-metal-neutralized-copolymer-resins for metal coating powder applications |
US6716920B2 (en) | 1999-11-08 | 2004-04-06 | E. I. Du Pont De Nemours And Company | Moisture curable, melt processible graft ethylene copolymers |
US6756443B2 (en) | 2002-01-25 | 2004-06-29 | E. I. Du Pont De Nemours And Company | Ionomer/polyamide blends with improved flow and impact properties |
US20040267050A1 (en) * | 2003-06-30 | 2004-12-30 | Decourcy Michael Stanley | Process for manufacturing high purity methacrylic acid |
US6852792B1 (en) | 2000-04-13 | 2005-02-08 | E. I. Du Pont De Nemours And Company | Coating composition containing a low MFI ethylene acrylic acid copolymer |
US20050074623A1 (en) * | 2003-10-07 | 2005-04-07 | Vogel Randall Allen | Multi-layer lonomer sheet having improved weathering |
US20050074622A1 (en) * | 2003-10-07 | 2005-04-07 | Vogel Randall Allen | Multi-layer sheet comprising an ionomer layer |
US20050084697A1 (en) * | 2003-10-07 | 2005-04-21 | Smillie Benjamin A. | Multi-layer sheet having a weatherable surface layer |
US20050106386A1 (en) * | 2003-10-07 | 2005-05-19 | Vogel Randall A. | Thermoformable multi-layer sheet |
US20050137306A1 (en) * | 2003-11-25 | 2005-06-23 | Karlheinz Hausmann | Flame retardant, halogen-free compositions |
US20050187315A1 (en) * | 2004-02-19 | 2005-08-25 | Dean David M. | Composite compositions comprising cellulose and polymeric components |
US20050239964A1 (en) * | 2002-05-23 | 2005-10-27 | Chou Richard T | Toughened thermoplastic polamide compositions |
US20050267240A1 (en) * | 1999-10-21 | 2005-12-01 | Chen John C | Moisture resistant highly-neutralized ethylene copolymers and their use in golf balls |
US20060025527A1 (en) * | 2004-07-29 | 2006-02-02 | Chou Richard T | Adhesive compositions derived from highly functionalized ethylene copolymers |
US20060057392A1 (en) * | 2003-10-07 | 2006-03-16 | Smillie Benjamin A | Multi-layer sheet having a weatherable surface layer |
US20060074192A1 (en) * | 2004-09-15 | 2006-04-06 | Jacques Roulin | Polymer composition having elastomeric features |
US20060084743A1 (en) * | 2004-10-20 | 2006-04-20 | Chen John C | Composition comprising polymer and silicone rubber |
US20060106145A1 (en) * | 2005-02-23 | 2006-05-18 | Kennedy Iii Thomas J | Golf Ball and Thermoplastic Material |
US20060148988A1 (en) * | 2004-10-06 | 2006-07-06 | Chou Richard T | Miscible blends of ethylene copolymers with improved temperature resistance |
US20060166759A1 (en) * | 2005-01-26 | 2006-07-27 | Callaway Golf Company | Golf Ball with Thermoplastic Material |
US20060211518A1 (en) * | 2001-06-26 | 2006-09-21 | Sullivan Michael J | Multi-Layer Golf Balls Comprising Ionomers with a Percent Neutralization Gradient |
US20060267774A1 (en) * | 2005-03-24 | 2006-11-30 | Feinberg Stewart C | Transponder overmolded with ethylene copolymers |
US20060281585A1 (en) * | 2005-06-09 | 2006-12-14 | Acushnet Company | Use of nucleating agents to increase the flexural modulus of ionomers |
US20060293452A1 (en) * | 2004-12-07 | 2006-12-28 | Chou Richard T | Thermoplastic elastomer compositions |
US20070003675A1 (en) * | 2005-06-30 | 2007-01-04 | Rau Allen H | Packaging materials and structures for compositions including an exothermic agent and a volatile agent |
US7175543B2 (en) | 2005-01-26 | 2007-02-13 | Callaway Golf Company | Golf ball and thermoplastic material |
US20070073003A1 (en) * | 2005-09-26 | 2007-03-29 | Sheehan Michael T | Random copolymers of ethylene and 4-vinylphenyl esters and method for preparing the same |
US7312267B2 (en) | 2005-02-23 | 2007-12-25 | Callaway Golf Company | Golf ball and thermoplastic material |
US20080058451A1 (en) * | 2006-02-17 | 2008-03-06 | Callaway Golf Company | Golf ball and thermoplastic material |
US20080081710A1 (en) * | 2006-10-03 | 2008-04-03 | John Chu Chen | Phase transition golf ball and method of use |
US20080276497A1 (en) * | 2006-02-28 | 2008-11-13 | Chou Richard T | Modification of polymeric materials for increased adhesion |
US20090274856A1 (en) * | 2008-05-01 | 2009-11-05 | Chou Richard T | Compositions comprising ethylene acid copolymers and functional ethylene copolymers |
US20090325733A1 (en) * | 2008-06-30 | 2009-12-31 | Morken Peter A | Golf balls containing ionomers and polyamines or tertiary polyamides |
US7695381B1 (en) | 2008-12-12 | 2010-04-13 | Acushnet Company | Golf ball with high moisture barrier properties |
US20100126557A1 (en) * | 2008-11-24 | 2010-05-27 | E. I. Du Pont De Nemours And Company | Solar cell modules comprising an encapsulant sheet of a blend of ethylene copolymers |
US20100129665A1 (en) * | 2008-11-24 | 2010-05-27 | E.I. Du Pont De Nemours And Company | Laminated articles comprising a sheet of a blend of ethylene copolymers |
US20100151969A1 (en) * | 2008-12-12 | 2010-06-17 | Sullivan Michael J | Golf ball with high moisture barrier properties |
US20100190577A1 (en) * | 2009-01-29 | 2010-07-29 | Murali Rajagopalan | Casing layer for polyurethane-covered and polyurea-covered golf balls |
US20100190579A1 (en) * | 2009-01-29 | 2010-07-29 | Murali Rajagopalan | Casing layer for polyurethane-covered and polyurea-covered golf balls |
US20100304893A1 (en) * | 2009-05-26 | 2010-12-02 | E.I. Du Pont De Nemours And Company | Golf balls with cores or intermediate layers prepared from highly-neutralized ethylene terpolymers and organic acids |
US7879949B2 (en) | 2004-10-06 | 2011-02-01 | E.I. Du Pont De Nemours And Company | Blends of ethylene copolymers with high-frequency weldability |
WO2011084448A1 (en) | 2009-12-16 | 2011-07-14 | E. I. Du Pont De Nemours And Company | Non-porous moisture and gas permeable films |
WO2011153389A1 (en) | 2010-06-03 | 2011-12-08 | E. I. Du Pont De Nemours And Company | Non-porous moisture and gas permeable films |
WO2011156577A1 (en) | 2010-06-11 | 2011-12-15 | E. I. Du Pont De Nemours And Company | Enhanced flexible lightweight ballistic, stab and spike resistant materials |
WO2011156305A1 (en) | 2010-06-07 | 2011-12-15 | E. I. Du Pont De Nemours And Company | Method for preparing transparent multilayer film structures having a perfluorinated copolymer resin layer |
WO2011156308A1 (en) | 2010-06-07 | 2011-12-15 | E. I. Du Pont De Nemours And Company | Method for preparing multilayer structures containing a perfluorinated copolymer resin layer |
WO2012015727A1 (en) | 2010-07-30 | 2012-02-02 | E. I. Du Pont De Nemours And Company | Multilayer structures containing a fluorinated copolymer resin layer and an ethylene terpolymer layer |
US8119235B1 (en) | 2000-04-14 | 2012-02-21 | E. I. Du Pont De Nemours And Company | Multilayer, co-extruded, ionomeric decorative surfacing |
WO2012047972A1 (en) | 2010-10-08 | 2012-04-12 | E. I. Du Pont De Nemours And Company | Ionomers modified with imidized acrylic resins |
WO2012061468A1 (en) | 2010-11-03 | 2012-05-10 | E. I. Du Pont De Nemours And Company | Compositions of dicarboxylic acid modified ionomers |
US20120121919A1 (en) * | 2009-07-31 | 2012-05-17 | Coloplast A/S | Medical device of polyolefin |
WO2012118518A1 (en) | 2010-06-11 | 2012-09-07 | E. I. Du Pont De Nemours And Company | Polymeric blends useful in ballistic applications |
WO2012122270A1 (en) | 2011-03-07 | 2012-09-13 | E. I. Du Pont De Nemours And Company | Multilayer protective liner |
WO2013015867A1 (en) | 2011-07-27 | 2013-01-31 | E. I. Du Pont De Nemours And Company | Multilayer films for reclosable packaging |
US8444508B2 (en) | 2010-11-12 | 2013-05-21 | Acushnet Company | Golf balls comprising highly- and partially-neutralized alternate copolymers |
US8492470B1 (en) | 2007-11-01 | 2013-07-23 | E.I. Du Pont De Nemours And Company | Golf balls with cores or intermediate layers prepared from highly-neutralized ethylene copolymers and organic acids |
CN103265652A (en) * | 2013-06-08 | 2013-08-28 | 山东省泰和水处理有限公司 | Continuous production method for water-soluble polymer |
WO2013126739A1 (en) | 2012-02-23 | 2013-08-29 | E. I. Du Pont De Nemours And Company | A fiber-resin composite sheet and article comprising the same |
WO2014105110A2 (en) | 2012-12-28 | 2014-07-03 | Dow Global Technologies Llc | Method to reduce the crystallization temperature of carboxylic acid comonomer at elevated pressures, and to improve the copolymerization of the same |
US8946358B2 (en) | 2010-03-22 | 2015-02-03 | E I Du Pont De Nemours And Company | Cure acceleration of polymeric structures |
WO2015073968A1 (en) | 2013-11-18 | 2015-05-21 | E. I. Du Pont De Nemours And Company | Method to produce ballistic and stab resistant structures for garments and structures produced by the method |
WO2015123190A1 (en) | 2014-02-11 | 2015-08-20 | E. I. Du Pont De Nemours And Company | Sound-deadening multilayer polymeric structures |
US9353262B2 (en) | 2010-08-18 | 2016-05-31 | Vertellus Specialties Inc. | Compositions, methods and articles produced by compounding polyamides with olefin-maleic anhydride polymers |
US9441100B2 (en) | 2013-12-20 | 2016-09-13 | E. I. Du Pont De Nemours And Company | Blends of ethylene copolymers with high-frequency weldability |
WO2016182781A1 (en) | 2015-05-08 | 2016-11-17 | E I Du Pont De Nemours And Company | Ballistic and stab resistant composite |
US9643062B1 (en) | 2016-03-17 | 2017-05-09 | Acushnet Company | Golf ball incorporating at least three adjacent ionomeric and/or HNP-based layers having multiple related property gradients there between |
US20170157885A1 (en) * | 2014-07-08 | 2017-06-08 | Sig Technology Ag | A sheet-like composite, especially for containers, with an adhesion-promoting layer characterised by different c=o group absorption maxima |
US9777181B2 (en) | 2013-12-20 | 2017-10-03 | E. I. Du Pont De Nemours And Company | Antistatic ethylene copolymer compositions |
US9777145B2 (en) | 2013-12-20 | 2017-10-03 | E. I. Du Pont De Nemours And Company | Anti-fogging films based on ethylene copolymer compositions |
US9925425B2 (en) | 2016-03-17 | 2018-03-27 | Acushnet Company | Golf ball incorporating at least three adjacent ionomeric and/or HNP-based layers having multiple related property gradients there between |
US10011718B2 (en) | 2013-03-15 | 2018-07-03 | Vertellus Holdings Llc | Impact-modified polyamide compositions |
US10150011B2 (en) | 2016-03-17 | 2018-12-11 | Acushnet Company | Golf ball incorporating at least three adjacent ionomeric and/or HNP-based layers having multiple related property gradients there between |
US10150012B2 (en) | 2016-03-17 | 2018-12-11 | Acushnet Company | Golf ball incorporating at least three adjacent ionomeric and/or HNP-based layers having multiple related property gradients there between |
CN109312005A (en) * | 2016-06-24 | 2019-02-05 | 陶氏环球技术有限责任公司 | The method for being used to prepare high-pressure free radical ethylene copolymer |
WO2019101693A1 (en) * | 2017-11-24 | 2019-05-31 | Sabic Global Technologies B.V. | Ethylene copolymers and process for the production thereof |
WO2019126129A1 (en) | 2017-12-22 | 2019-06-27 | E. I. Du Pont De Nemours And Company | Thermoplastic adhesive composition |
WO2019126189A1 (en) | 2017-12-22 | 2019-06-27 | E. I. Du Pont De Nemours And Company | Thermoplastic adhesive composition |
WO2019152830A1 (en) | 2018-02-01 | 2019-08-08 | Dow Silicones Corporation | Composition, polymer composite article formed therewith, and method of preparing same |
US10435550B2 (en) | 2013-12-20 | 2019-10-08 | Performance Materials Na, Inc. | Variable vapor barrier for humidity control |
WO2020028159A2 (en) | 2018-07-31 | 2020-02-06 | E. I. Du Pont De Nemours And Company | Ionomers of ethylene acid copolymers with enhanced creep resistance |
WO2020028023A1 (en) | 2018-07-31 | 2020-02-06 | E. I. Du Pont De Nemours And Company | Ionomer compositions |
US10569517B2 (en) | 2013-12-20 | 2020-02-25 | Performance Materials Na, Inc. | Selectively permeable ethylene copolymer compositions |
WO2020223137A1 (en) | 2019-05-02 | 2020-11-05 | Dow Global Technologies Llc | Printing systems and methods including multilayer films |
WO2021021551A1 (en) | 2019-08-01 | 2021-02-04 | Dow Global Technologies Llc | Multilayer structures having improved recyclability |
CN112409521A (en) * | 2019-11-20 | 2021-02-26 | 山东诺尔生物科技有限公司 | Film coating agent and preparation method and application thereof |
WO2021055335A1 (en) | 2019-09-16 | 2021-03-25 | Dow Global Technologies Llc | Pressure sensitive adhesive article |
WO2021207046A1 (en) | 2020-04-08 | 2021-10-14 | Dow Global Technologies Llc | Polymer compositions and foams comprising polymer compositions |
WO2021225764A1 (en) | 2020-05-05 | 2021-11-11 | Dow Global Technologies Llc | Paper coated with a functional polyolefin film |
FR3114102A1 (en) | 2020-09-15 | 2022-03-18 | Dow Global Technologies Llc | ACRYLIC ADHESIVE COMPOSITION WITH ETHYLENE/ESTER COPOLYMER |
WO2022060788A1 (en) | 2020-09-15 | 2022-03-24 | Dow Global Technologies Llc | Acrylic-based adhesive composition with ethylene-based polymer |
WO2022132663A1 (en) | 2020-12-17 | 2022-06-23 | Dow Global Technologies Llc | A talc-filled polycarbonate composition and method for making same |
WO2023122126A1 (en) | 2021-12-23 | 2023-06-29 | Dow Global Technologies Llc | Asphalt compositions including asphaltene and epoxy-functionalized ethylene copolymer |
WO2023147465A1 (en) | 2022-01-31 | 2023-08-03 | Dow Global Technologies Llc | Carboxylic acid cosolvents in the production of ethylene acid copolymer |
WO2024044585A1 (en) | 2022-08-22 | 2024-02-29 | Dow Global Technologies Llc | Ionomer dispersant for making aqueous polyolefin dispersions |
WO2024073542A1 (en) | 2022-09-30 | 2024-04-04 | Dow Global Technologies Llc | Process to produce ionomers |
WO2024073565A1 (en) | 2022-09-29 | 2024-04-04 | Dow Global Technologies Llc | Tert-butanol cosolvent in the production of ethylene acid copolymer |
US12024621B2 (en) | 2018-06-29 | 2024-07-02 | Dow Global Technologies Llc | Foam bead and sintered foam structure |
US12083389B2 (en) | 2013-12-31 | 2024-09-10 | Acushnet Company | Non-conforming golf balls made from plasticized thermoplastic materials |
WO2024206435A1 (en) | 2023-03-31 | 2024-10-03 | Dow Global Technologies Llc | Ethylene copolymers for hydrocarbon applications |
WO2025049135A1 (en) | 2023-08-30 | 2025-03-06 | Dow Global Technologies Llc | Aqueous polyolefin dispersions with ionomer dopants and methods of production thereof |
WO2025049107A1 (en) | 2023-08-31 | 2025-03-06 | Dow Global Technologies Llc | Ionomers of ethylene acid copolymers with improved melt flow and enhanced creep resistance |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2395381A (en) * | 1943-02-25 | 1946-02-19 | Du Pont | Process of preparing ethylene polymers |
US2851372A (en) * | 1956-08-14 | 1958-09-09 | Sun Steel Company | Coated metal sheet and method of making the same |
US2953551A (en) * | 1958-06-16 | 1960-09-20 | Union Carbide Corp | Ethylene-alkyl acrylate copolymer and process of producing same |
CA655298A (en) | 1963-01-01 | B. Armitage John | Polyethylene copolymers | |
US3132120A (en) * | 1961-02-03 | 1964-05-05 | Du Pont | Method for the preparation of ethylene copolymers |
US3198776A (en) * | 1960-05-19 | 1965-08-03 | American Cyanamid Co | Method for producing copolymers of ethylene and t-butyl acrylate |
US3239370A (en) * | 1962-05-14 | 1966-03-08 | Dow Chemical Co | Hot-melt extrusion coating of random copolymer of ethylene and mono-carboxylic acid |
US3350372A (en) * | 1960-08-22 | 1967-10-31 | Gulf Oil Corp | Ethylene/acrylate ester copolymers |
US3436363A (en) * | 1960-07-25 | 1969-04-01 | Gulf Oil Corp | Polymerization of ethylene in aqueous system |
US3437626A (en) * | 1960-01-02 | 1969-04-08 | Gulf Oil Corp | Stabile,aqueous emulsions of ethylene copolymers |
US3520861A (en) * | 1968-12-26 | 1970-07-21 | Dow Chemical Co | Copolymers of ethylene |
-
1971
- 1971-07-19 US US05/164,074 patent/US4351931A/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA655298A (en) | 1963-01-01 | B. Armitage John | Polyethylene copolymers | |
US2395381A (en) * | 1943-02-25 | 1946-02-19 | Du Pont | Process of preparing ethylene polymers |
US2851372A (en) * | 1956-08-14 | 1958-09-09 | Sun Steel Company | Coated metal sheet and method of making the same |
US2953551A (en) * | 1958-06-16 | 1960-09-20 | Union Carbide Corp | Ethylene-alkyl acrylate copolymer and process of producing same |
US3437626A (en) * | 1960-01-02 | 1969-04-08 | Gulf Oil Corp | Stabile,aqueous emulsions of ethylene copolymers |
US3198776A (en) * | 1960-05-19 | 1965-08-03 | American Cyanamid Co | Method for producing copolymers of ethylene and t-butyl acrylate |
US3436363A (en) * | 1960-07-25 | 1969-04-01 | Gulf Oil Corp | Polymerization of ethylene in aqueous system |
US3350372A (en) * | 1960-08-22 | 1967-10-31 | Gulf Oil Corp | Ethylene/acrylate ester copolymers |
US3132120A (en) * | 1961-02-03 | 1964-05-05 | Du Pont | Method for the preparation of ethylene copolymers |
US3239370A (en) * | 1962-05-14 | 1966-03-08 | Dow Chemical Co | Hot-melt extrusion coating of random copolymer of ethylene and mono-carboxylic acid |
US3520861A (en) * | 1968-12-26 | 1970-07-21 | Dow Chemical Co | Copolymers of ethylene |
Non-Patent Citations (1)
Title |
---|
Billmeyer, Textbook of Polymer Chemistry, (1957), Interscience Publisher, Inc., N.Y., p. 239. |
Cited By (229)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0318058A3 (en) * | 1983-06-13 | 1991-05-15 | The Dow Chemical Company | Interpolymers of ethylene and unsaturated carboxylic acids |
EP0318058A2 (en) * | 1983-06-13 | 1989-05-31 | The Dow Chemical Company | Interpolymers of ethylene and unsaturated carboxylic acids |
WO1984004926A1 (en) * | 1983-06-13 | 1984-12-20 | Dow Chemical Co | Interpolymers of ethylene and unsaturated carboxylic acids |
JPH02103115A (en) * | 1983-06-13 | 1990-04-16 | Dow Chem Co:The | Melt extruded film |
US4601948A (en) * | 1983-09-12 | 1986-07-22 | The Dow Chemical Company | High-frequency heatable plastics |
US4579918A (en) * | 1984-02-10 | 1986-04-01 | Basf Aktiengesellschaft | Preparation of copolymers of ethylene with carboxyl-containing comonomers in a 2-zone reactor under more than 500 bar |
US4680357A (en) * | 1985-05-28 | 1987-07-14 | The Dow Chemical Company | Interpolymers of ethylene and alkenyl pyridines and preparation thereof |
US5326629A (en) * | 1985-09-16 | 1994-07-05 | The Dow Chemical Company | Porous polymer fiber filters |
US4731504A (en) * | 1986-08-13 | 1988-03-15 | The Dow Chemical Company | Multi-layer film structure and electrical cable incorporating same |
US5384373A (en) * | 1987-04-30 | 1995-01-24 | The Dow Chemical Company | Modified copolymers of ethylene-alpha olefin carboxylic acids |
US4874819A (en) * | 1987-12-21 | 1989-10-17 | Shell Oil Company | Polymer blend |
US4874801A (en) * | 1987-12-21 | 1989-10-17 | Shell Oil Company | Polymer blend |
US5082697A (en) * | 1988-02-17 | 1992-01-21 | The Dow Chemical Company | Polymer salt complex for fiber or fabric treatment |
US4870128A (en) * | 1988-03-18 | 1989-09-26 | W. R. Grace & Co.-Conn. | Hot melt gaskets |
US4904728A (en) * | 1988-08-31 | 1990-02-27 | Shell Oil Company | Polymer blends |
EP0360038A2 (en) * | 1988-09-03 | 1990-03-28 | BASF Aktiengesellschaft | Process for the manufacture of amine-modified copolymers of ethylene and carboxylic acids, these copolymers and their use in coupling agents and cable-insulating materials |
EP0360038A3 (en) * | 1988-09-03 | 1992-02-12 | BASF Aktiengesellschaft | Process for the manufacture of amine-modified copolymers of ethylene and carboxylic acids, these copolymers and their use in coupling agents and cable-insulating materials |
WO1992013013A1 (en) * | 1989-02-27 | 1992-08-06 | The Dow Chemical Company | Process for producing homogeneous modified copolymers of ethylene/alpha-olefin carboxylic acids or esters |
US4988781A (en) * | 1989-02-27 | 1991-01-29 | The Dow Chemical Company | Process for producing homogeneous modified copolymers of ethylene/alpha-olefin carboxylic acids or esters |
US4992486A (en) * | 1989-11-14 | 1991-02-12 | E. I. Du Pont De Nemours And Company | White-pigmented, melt-stable ethylene/carboxylic acid copolymer compositions |
EP0447988A1 (en) * | 1990-03-23 | 1991-09-25 | W.R. Grace & Co.-Conn. | Multilayer thermosealing film for packaging |
US5092952A (en) * | 1990-06-01 | 1992-03-03 | General Electric Company | Bonding aluminum cladding to random glass mat reinforced polypropylene sheet |
US5057593A (en) * | 1990-06-11 | 1991-10-15 | E. I. Du Pont De Nemours And Company | Free radical copolymerization of ethylene and CO with acetone |
US5344902A (en) * | 1991-06-18 | 1994-09-06 | Occidental Research Corporation | Polymerization with initiator and quaternary ammonium salt |
US5543477A (en) * | 1991-09-24 | 1996-08-06 | Chevron Chemical Company | Copolymers of ethylene and alkyl acrylate with improved melt-point temperatures |
US5350803A (en) * | 1991-11-22 | 1994-09-27 | E. I. Du Pont De Nemours And Company | Moisture-curable melt-processible ethylene copolymer adhesives |
US5210150A (en) * | 1991-11-22 | 1993-05-11 | E. I. Du Pont De Nemours And Company | Moisture-curable melt-processible ethylene copolymer adhesives |
US5789048A (en) * | 1992-02-22 | 1998-08-04 | E. I. Du Pont De Nemours And Company | Package consumable in melt processing |
US6596400B1 (en) * | 1994-03-29 | 2003-07-22 | Saint-Gobain Performance Plastics Corporation | Acrylate blends and laminates using acrylate blends |
US6590037B1 (en) * | 1994-03-29 | 2003-07-08 | Saint-Gobain Performance Plastics Corporation | Acrylate blends and laminates using acrylate blends |
US5504167A (en) * | 1994-09-28 | 1996-04-02 | E. I. Du Pont De Nemours And Company | Process for the preparation of polyethylene copolymers |
US5508366A (en) * | 1994-10-18 | 1996-04-16 | S. C. Johnson & Son, Inc. | Continuous production of reduced gel content hydroxylated addition polymers |
EP0713887A1 (en) * | 1994-11-24 | 1996-05-29 | Basf Aktiengesellschaft | Process for the production of ethylene-alkene carboxylic acid copolymers |
US5739242A (en) * | 1994-11-24 | 1998-04-14 | Basf Aktiengesellschaft | Preparation of copolymers of ethylene with alkenecarboxylic acids |
US5698663A (en) * | 1995-09-26 | 1997-12-16 | Shell Oil Company | Polyketone polymer powder coatings |
US5827559A (en) * | 1996-02-02 | 1998-10-27 | E. I. Du Pont De Nemours And Company | Cook-in packaging and methods relating thereto |
US5700890A (en) * | 1996-03-22 | 1997-12-23 | E. I. Du Pont De Nemours And Company | Ionomers based on copolymers of ethylene with both mono-and dicarboxylic acids |
US5902869A (en) * | 1996-03-22 | 1999-05-11 | E. I. Du Pont De Nemours And Company | Thermally stable ethylene/acid copolymers |
WO1997035670A1 (en) * | 1996-03-28 | 1997-10-02 | E.I. Du Pont De Nemours And Company | Polymer coating for low electrically conductive materials |
US6090454A (en) * | 1996-03-28 | 2000-07-18 | E.I. Du Pont De Nemours And Company | Polymer coating for low electrically conductive materials |
US6048439A (en) * | 1996-04-29 | 2000-04-11 | International Paper Company | Modified rosin emulsion |
US5741889A (en) * | 1996-04-29 | 1998-04-21 | International Paper Company | Modified rosin emulsion |
US6555239B1 (en) * | 1996-08-06 | 2003-04-29 | The University Of Connecticut | Polymer-coated metal composites by dip autopolymerization |
US6465107B1 (en) | 1996-09-13 | 2002-10-15 | Dupont Canada Inc. | Silicone-containing polyolefin film |
US6060565A (en) * | 1996-10-24 | 2000-05-09 | Basf Aktiengesellschaft | Process for preparing oxidized polyethylene waxes |
EP0842954A1 (en) * | 1996-11-18 | 1998-05-20 | Basf Aktiengesellschaft | Process for preparing ethylene-(meth)acrylic acid copolymers |
US5880233A (en) * | 1996-11-18 | 1999-03-09 | Basf Aktiengesellschaft | Process for the preparation of ethylene/(meth)acrylic acid copolymers |
US6469095B1 (en) * | 1996-12-19 | 2002-10-22 | Basf Aktiengesellschaft | Flame-proofed molding materials |
US6100340A (en) * | 1997-01-16 | 2000-08-08 | Acushnet Company | Golf ball compositions containing high crystalline acid copolymers and their ionomer derivatives |
US6197884B1 (en) | 1997-01-16 | 2001-03-06 | Acushnet Company | Golf ball compositions containing high crystalline acid copolymers and their ionomer derivatives |
US5859137A (en) * | 1997-02-28 | 1999-01-12 | E. I. Du Pont De Nemours And Company | Ionomers based on copolymers of ethylene with both mono- and dicarboxylic acids and polyamide blends containing these ionomers |
US6100321A (en) * | 1997-04-15 | 2000-08-08 | E. I. Du Pont De Nemours And Company | Stearic-modified ionomers for golf balls |
US6680082B2 (en) | 1998-07-27 | 2004-01-20 | E. I. Du Pont De Nemours And Company | Mixed-metal-neutralized-copolymer-resins for metal coating powder applications |
US6399684B1 (en) | 1998-08-26 | 2002-06-04 | E. I. Du Pont De Nemours & Company | Polymer-polyamide blends having a phosphorous containing additive |
US20030203190A1 (en) * | 1998-10-14 | 2003-10-30 | Schmidt James John | Fluoropolymer film structures and laminates produced therefrom |
US7070675B2 (en) | 1998-10-14 | 2006-07-04 | E. I. Du Pont De Nemours And Company | Fluoropolymer film structures and laminates produced therefrom |
US6632518B1 (en) | 1998-10-14 | 2003-10-14 | E. I. Du Pont De Nemours And Company | Fluoropolymer film structures and laminates produced therefrom |
WO2000044801A1 (en) * | 1999-01-29 | 2000-08-03 | E.I. Du Pont De Nemours And Company | Aqueous dispersions of low mfi ethylene-copolymers |
US6903163B2 (en) | 1999-07-28 | 2005-06-07 | E.I. Du Pont De Nemours And Company | High melt swell polymer |
US6518365B1 (en) | 1999-07-28 | 2003-02-11 | E. I. Du Pont De Nemours And Company | High melt swell polymer |
US6581359B1 (en) | 1999-10-13 | 2003-06-24 | Van Den Broek Adrianus Theodorus Josephus | Process and polymer films for fresh meat packaging |
US6953820B2 (en) | 1999-10-21 | 2005-10-11 | E. I. Du Pont De Nemours And Company | Highly-neutralized ethylene copolymers and their use in golf balls |
US20030130434A1 (en) * | 1999-10-21 | 2003-07-10 | Statz Robert Joseph | Highly-neutralized ethylene copolymers and their use in golf balls |
US20050267240A1 (en) * | 1999-10-21 | 2005-12-01 | Chen John C | Moisture resistant highly-neutralized ethylene copolymers and their use in golf balls |
US6716920B2 (en) | 1999-11-08 | 2004-04-06 | E. I. Du Pont De Nemours And Company | Moisture curable, melt processible graft ethylene copolymers |
US6562779B2 (en) * | 2000-02-25 | 2003-05-13 | Basf Aktiengesellschaft | Preparation of emulsifiable ethylene polymers |
US6852792B1 (en) | 2000-04-13 | 2005-02-08 | E. I. Du Pont De Nemours And Company | Coating composition containing a low MFI ethylene acrylic acid copolymer |
US8679619B2 (en) | 2000-04-14 | 2014-03-25 | E I Du Pont De Nemours And Company | Multilayer, co-extruded, ionomeric decorative surfacing |
US8119235B1 (en) | 2000-04-14 | 2012-02-21 | E. I. Du Pont De Nemours And Company | Multilayer, co-extruded, ionomeric decorative surfacing |
US6630528B2 (en) | 2000-08-10 | 2003-10-07 | E. I. Du Pont De Nemours And Company | Antistatic ionomer blend |
US20030114565A1 (en) * | 2001-03-29 | 2003-06-19 | Chen John Chu | Soft and resilient ethylene copolymers and their use in golf balls |
US20060211518A1 (en) * | 2001-06-26 | 2006-09-21 | Sullivan Michael J | Multi-Layer Golf Balls Comprising Ionomers with a Percent Neutralization Gradient |
US6756443B2 (en) | 2002-01-25 | 2004-06-29 | E. I. Du Pont De Nemours And Company | Ionomer/polyamide blends with improved flow and impact properties |
US6569947B1 (en) | 2002-01-25 | 2003-05-27 | E. I. Du Pont De Nemours And Company | Ionomer/high density polyethylene blends with improved impact |
US6596815B1 (en) | 2002-01-25 | 2003-07-22 | E. I. Du Pont De Nemours And Company | Ionomer/high density polyethylene blends with improved flow |
US20090227739A1 (en) * | 2002-05-23 | 2009-09-10 | E. I. Du Pont De Nemours And Company | Miscible Blends of Ethylene Copolymers With Improved Temperature Resistance |
US8062757B2 (en) | 2002-05-23 | 2011-11-22 | E.I. Du Pont De Nemours And Company | Toughened thermoplastic polyamide compositions |
US8057910B2 (en) | 2002-05-23 | 2011-11-15 | E. I. Du Pont De Nemours And Company | Toughened thermoplastic polyamide compositions |
US20050239964A1 (en) * | 2002-05-23 | 2005-10-27 | Chou Richard T | Toughened thermoplastic polamide compositions |
US7935765B2 (en) | 2002-05-23 | 2011-05-03 | E. I. Du Pont De Nemours And Company | Miscible blends of ethylene copolymers with improved temperature resistance |
US20110086564A1 (en) * | 2002-05-23 | 2011-04-14 | E. I. Du Pont De Nemours And Company | Toughened thermoplastic polyamide compositions |
EP2371803A1 (en) | 2003-06-30 | 2011-10-05 | Rohm and Haas Company | Method for purifying a HIBA-containing methacrylic acid stream |
US20040267050A1 (en) * | 2003-06-30 | 2004-12-30 | Decourcy Michael Stanley | Process for manufacturing high purity methacrylic acid |
EP2377843A1 (en) | 2003-06-30 | 2011-10-19 | Rohm and Haas Company | Method for purifying methacrylic acid-containing streams |
US20070010690A1 (en) * | 2003-06-30 | 2007-01-11 | Decourcy Michael S | Process for manufacturing high purity methacrylic acid |
US7723541B2 (en) | 2003-06-30 | 2010-05-25 | Rohm And Haas Company | Process for manufacturing high purity methacrylic acid |
US20050106386A1 (en) * | 2003-10-07 | 2005-05-19 | Vogel Randall A. | Thermoformable multi-layer sheet |
US20050074622A1 (en) * | 2003-10-07 | 2005-04-07 | Vogel Randall Allen | Multi-layer sheet comprising an ionomer layer |
US7488399B2 (en) | 2003-10-07 | 2009-02-10 | E. I. Du Pont De Nemours And Company | Multi-layer sheet having a weatherable surface layer |
US20080026228A1 (en) * | 2003-10-07 | 2008-01-31 | E. I. Du Pont De Nemours And Company | Multi-Layer Sheet Having a Weatherable Surface Layer |
US7303793B2 (en) | 2003-10-07 | 2007-12-04 | E. I. Du Pont De Nemours And Company | Multi-layer sheet having a weatherable surface layer |
US20050074623A1 (en) * | 2003-10-07 | 2005-04-07 | Vogel Randall Allen | Multi-layer lonomer sheet having improved weathering |
US20060057392A1 (en) * | 2003-10-07 | 2006-03-16 | Smillie Benjamin A | Multi-layer sheet having a weatherable surface layer |
US20050084697A1 (en) * | 2003-10-07 | 2005-04-21 | Smillie Benjamin A. | Multi-layer sheet having a weatherable surface layer |
US7279520B2 (en) | 2003-11-25 | 2007-10-09 | E. I. Du Pont De Nemours And Company | Flame retardant, halogen-free compositions |
US20050137306A1 (en) * | 2003-11-25 | 2005-06-23 | Karlheinz Hausmann | Flame retardant, halogen-free compositions |
US8455574B2 (en) | 2004-02-19 | 2013-06-04 | E I Du Pont De Nemours And Company | Composite compositions comprising cellulose and polymeric components |
US20050187315A1 (en) * | 2004-02-19 | 2005-08-25 | Dean David M. | Composite compositions comprising cellulose and polymeric components |
US7767311B2 (en) | 2004-07-29 | 2010-08-03 | E.I. Du Pont De Nemours And Company | Adhesive compositions derived from highly functionalized ethylene copolymers |
US20060025527A1 (en) * | 2004-07-29 | 2006-02-02 | Chou Richard T | Adhesive compositions derived from highly functionalized ethylene copolymers |
US20060074192A1 (en) * | 2004-09-15 | 2006-04-06 | Jacques Roulin | Polymer composition having elastomeric features |
US7879949B2 (en) | 2004-10-06 | 2011-02-01 | E.I. Du Pont De Nemours And Company | Blends of ethylene copolymers with high-frequency weldability |
US20060148988A1 (en) * | 2004-10-06 | 2006-07-06 | Chou Richard T | Miscible blends of ethylene copolymers with improved temperature resistance |
US20060084743A1 (en) * | 2004-10-20 | 2006-04-20 | Chen John C | Composition comprising polymer and silicone rubber |
US20060293452A1 (en) * | 2004-12-07 | 2006-12-28 | Chou Richard T | Thermoplastic elastomer compositions |
US7897685B2 (en) | 2004-12-07 | 2011-03-01 | E. I. Du Pont De Nemours And Company | Thermoplastic elastomer compositions |
US20060166759A1 (en) * | 2005-01-26 | 2006-07-27 | Callaway Golf Company | Golf Ball with Thermoplastic Material |
US7361101B2 (en) | 2005-01-26 | 2008-04-22 | Callaway Golf Company | Golf ball and thermoplastic material |
US7156755B2 (en) | 2005-01-26 | 2007-01-02 | Callaway Golf Company | Golf ball with thermoplastic material |
US7175543B2 (en) | 2005-01-26 | 2007-02-13 | Callaway Golf Company | Golf ball and thermoplastic material |
US20070087864A1 (en) * | 2005-01-26 | 2007-04-19 | Kennedy Iii Thomas J | Golf Ball and Thermoplastic Material |
US7438650B2 (en) | 2005-01-26 | 2008-10-21 | Callaway Golf Company | Golf ball and thermoplastic material |
US20080032821A1 (en) * | 2005-01-26 | 2008-02-07 | Kennedy Thomas J Iii | Golf Ball And Thermoplastic Material |
US7612134B2 (en) | 2005-02-23 | 2009-11-03 | Callaway Golf Company | Golf ball and thermoplastic material |
US20060106145A1 (en) * | 2005-02-23 | 2006-05-18 | Kennedy Iii Thomas J | Golf Ball and Thermoplastic Material |
US20100048786A1 (en) * | 2005-02-23 | 2010-02-25 | Callaway Golf Company | Golf ball and thermoplastic material |
US7312267B2 (en) | 2005-02-23 | 2007-12-25 | Callaway Golf Company | Golf ball and thermoplastic material |
US20060267774A1 (en) * | 2005-03-24 | 2006-11-30 | Feinberg Stewart C | Transponder overmolded with ethylene copolymers |
US20090042668A1 (en) * | 2005-06-09 | 2009-02-12 | Jordan Michael D | Use of Nucleating Agents to Increase the Flexural Modulus of Ionomers |
US20060281585A1 (en) * | 2005-06-09 | 2006-12-14 | Acushnet Company | Use of nucleating agents to increase the flexural modulus of ionomers |
US7442736B2 (en) | 2005-06-09 | 2008-10-28 | Acushnet Company | Use of nucleating agents to increase the flexural modulus of ionomers |
US20100298068A1 (en) * | 2005-06-09 | 2010-11-25 | Jordan Michael D | Use of nucleating agents to increase the flexural modulus of ionomers |
US7776947B2 (en) | 2005-06-09 | 2010-08-17 | Acushnet Company | Use of nucleating agents to increase the flexural modulus of ionomers |
US20070003675A1 (en) * | 2005-06-30 | 2007-01-04 | Rau Allen H | Packaging materials and structures for compositions including an exothermic agent and a volatile agent |
US7534837B2 (en) | 2005-09-26 | 2009-05-19 | E.I. Du Pont De Nemours And Company | Random copolymers of ethylene and 4-vinylphenyl esters and method for preparing the same |
US20070073003A1 (en) * | 2005-09-26 | 2007-03-29 | Sheehan Michael T | Random copolymers of ethylene and 4-vinylphenyl esters and method for preparing the same |
US7612135B2 (en) | 2006-02-17 | 2009-11-03 | Callaway Golf Company | Golf ball and thermoplastic material |
US20080058451A1 (en) * | 2006-02-17 | 2008-03-06 | Callaway Golf Company | Golf ball and thermoplastic material |
US20080276497A1 (en) * | 2006-02-28 | 2008-11-13 | Chou Richard T | Modification of polymeric materials for increased adhesion |
US8088026B2 (en) | 2006-10-03 | 2012-01-03 | E. I. Du Pont De Nemours And Company | Phase transition golf ball and method of use |
US20080081710A1 (en) * | 2006-10-03 | 2008-04-03 | John Chu Chen | Phase transition golf ball and method of use |
US8492470B1 (en) | 2007-11-01 | 2013-07-23 | E.I. Du Pont De Nemours And Company | Golf balls with cores or intermediate layers prepared from highly-neutralized ethylene copolymers and organic acids |
US20090274856A1 (en) * | 2008-05-01 | 2009-11-05 | Chou Richard T | Compositions comprising ethylene acid copolymers and functional ethylene copolymers |
US20110159995A1 (en) * | 2008-06-30 | 2011-06-30 | E. I. Du Pont De Nemours And Company | Golf Balls Containing Ionomers and Polyamines or Tertiary Polyamides |
US8084541B2 (en) | 2008-06-30 | 2011-12-27 | E.I. Du Pont De Nemours And Company | Golf balls containing ionomers and polyamines or tertiary polyamides |
US7939602B2 (en) | 2008-06-30 | 2011-05-10 | E.I. Du Pont De Nemours And Company | Golf balls containing ionomers and polyamines or tertiary polyamides |
US20090325733A1 (en) * | 2008-06-30 | 2009-12-31 | Morken Peter A | Golf balls containing ionomers and polyamines or tertiary polyamides |
US8524820B2 (en) | 2008-06-30 | 2013-09-03 | E I Du Pont De Nemours And Company | Golf balls containing ionomers and polyamines or tertiary polyamides |
US8080727B2 (en) | 2008-11-24 | 2011-12-20 | E. I. Du Pont De Nemours And Company | Solar cell modules comprising an encapsulant sheet of a blend of ethylene copolymers |
US20100126557A1 (en) * | 2008-11-24 | 2010-05-27 | E. I. Du Pont De Nemours And Company | Solar cell modules comprising an encapsulant sheet of a blend of ethylene copolymers |
US20100129665A1 (en) * | 2008-11-24 | 2010-05-27 | E.I. Du Pont De Nemours And Company | Laminated articles comprising a sheet of a blend of ethylene copolymers |
US8084129B2 (en) | 2008-11-24 | 2011-12-27 | E. I. Du Pont De Nemours And Company | Laminated articles comprising a sheet of a blend of ethylene copolymers |
US20100151969A1 (en) * | 2008-12-12 | 2010-06-17 | Sullivan Michael J | Golf ball with high moisture barrier properties |
US7695381B1 (en) | 2008-12-12 | 2010-04-13 | Acushnet Company | Golf ball with high moisture barrier properties |
US8124681B2 (en) | 2008-12-12 | 2012-02-28 | Acushnet Company | Golf ball with high moisture barrier properties |
US8241146B2 (en) | 2009-01-29 | 2012-08-14 | Acushnet Company | Casing layer for polyurethane-covered and polyurea-covered golf balls |
US20100190577A1 (en) * | 2009-01-29 | 2010-07-29 | Murali Rajagopalan | Casing layer for polyurethane-covered and polyurea-covered golf balls |
US7976408B2 (en) | 2009-01-29 | 2011-07-12 | Acushnet Company | Casing layer for polyurethane-covered and polyurea-covered golf balls |
US20100190579A1 (en) * | 2009-01-29 | 2010-07-29 | Murali Rajagopalan | Casing layer for polyurethane-covered and polyurea-covered golf balls |
US20100190576A1 (en) * | 2009-01-29 | 2010-07-29 | Murali Rajagopalan | Casing layer for polyurethane-covered and polyurea-covered golf balls |
US8187121B2 (en) | 2009-01-29 | 2012-05-29 | Acushnet Company | Casing layer for polyurethane-covered and polyurea-covered golf balls |
US8177666B2 (en) | 2009-01-29 | 2012-05-15 | Acushnet Company | Casing layer for polyurethane-covered and polyurea-covered golf balls |
US20100304893A1 (en) * | 2009-05-26 | 2010-12-02 | E.I. Du Pont De Nemours And Company | Golf balls with cores or intermediate layers prepared from highly-neutralized ethylene terpolymers and organic acids |
US8202925B2 (en) | 2009-05-26 | 2012-06-19 | E. I. Du Pont De Nemours And Company | Golf balls with cores or intermediate layers prepared from highly-neutralized ethylene terpolymers and organic acids |
US8399549B2 (en) | 2009-05-26 | 2013-03-19 | E I Du Pont De Nemours And Company | Golf balls with cores or intermediate layers prepared from highly-neutralized ethylene terpolymers and organic acids |
US20120121919A1 (en) * | 2009-07-31 | 2012-05-17 | Coloplast A/S | Medical device of polyolefin |
WO2011084448A1 (en) | 2009-12-16 | 2011-07-14 | E. I. Du Pont De Nemours And Company | Non-porous moisture and gas permeable films |
US8946358B2 (en) | 2010-03-22 | 2015-02-03 | E I Du Pont De Nemours And Company | Cure acceleration of polymeric structures |
WO2011153389A1 (en) | 2010-06-03 | 2011-12-08 | E. I. Du Pont De Nemours And Company | Non-porous moisture and gas permeable films |
US8211265B2 (en) | 2010-06-07 | 2012-07-03 | E. I. Du Pont De Nemours And Company | Method for preparing multilayer structures containing a perfluorinated copolymer resin layer |
US8211264B2 (en) | 2010-06-07 | 2012-07-03 | E I Du Pont De Nemours And Company | Method for preparing transparent multilayer film structures having a perfluorinated copolymer resin layer |
WO2011156305A1 (en) | 2010-06-07 | 2011-12-15 | E. I. Du Pont De Nemours And Company | Method for preparing transparent multilayer film structures having a perfluorinated copolymer resin layer |
WO2011156308A1 (en) | 2010-06-07 | 2011-12-15 | E. I. Du Pont De Nemours And Company | Method for preparing multilayer structures containing a perfluorinated copolymer resin layer |
WO2012118518A1 (en) | 2010-06-11 | 2012-09-07 | E. I. Du Pont De Nemours And Company | Polymeric blends useful in ballistic applications |
WO2011156577A1 (en) | 2010-06-11 | 2011-12-15 | E. I. Du Pont De Nemours And Company | Enhanced flexible lightweight ballistic, stab and spike resistant materials |
US8409379B2 (en) | 2010-07-30 | 2013-04-02 | E I Du Pont De Nemours And Company | Multilayer structures containing a fluorinated copolymer resin layer and an ethylene terpolymer layer |
WO2012015727A1 (en) | 2010-07-30 | 2012-02-02 | E. I. Du Pont De Nemours And Company | Multilayer structures containing a fluorinated copolymer resin layer and an ethylene terpolymer layer |
US9353262B2 (en) | 2010-08-18 | 2016-05-31 | Vertellus Specialties Inc. | Compositions, methods and articles produced by compounding polyamides with olefin-maleic anhydride polymers |
US8691917B2 (en) | 2010-10-08 | 2014-04-08 | E I Du Pont De Nemours And Company | Ionomers modified with imidized acrylic resins |
WO2012047972A1 (en) | 2010-10-08 | 2012-04-12 | E. I. Du Pont De Nemours And Company | Ionomers modified with imidized acrylic resins |
WO2012061468A1 (en) | 2010-11-03 | 2012-05-10 | E. I. Du Pont De Nemours And Company | Compositions of dicarboxylic acid modified ionomers |
US8444508B2 (en) | 2010-11-12 | 2013-05-21 | Acushnet Company | Golf balls comprising highly- and partially-neutralized alternate copolymers |
WO2012122270A1 (en) | 2011-03-07 | 2012-09-13 | E. I. Du Pont De Nemours And Company | Multilayer protective liner |
US8932691B2 (en) | 2011-03-07 | 2015-01-13 | E I Du Pont De Nemours And Company | Multilayer protective liner |
WO2013015867A1 (en) | 2011-07-27 | 2013-01-31 | E. I. Du Pont De Nemours And Company | Multilayer films for reclosable packaging |
WO2013126739A1 (en) | 2012-02-23 | 2013-08-29 | E. I. Du Pont De Nemours And Company | A fiber-resin composite sheet and article comprising the same |
US9416209B2 (en) | 2012-12-28 | 2016-08-16 | Dow Global Technologies Llc | Method to improve the feeding of a carboxylic acid comonomer into a high pressure reactor |
WO2014105110A2 (en) | 2012-12-28 | 2014-07-03 | Dow Global Technologies Llc | Method to reduce the crystallization temperature of carboxylic acid comonomer at elevated pressures, and to improve the copolymerization of the same |
US10435559B2 (en) | 2013-03-15 | 2019-10-08 | Vertellus Holdings Llc | Impact-modified polyamide compositions |
US10011718B2 (en) | 2013-03-15 | 2018-07-03 | Vertellus Holdings Llc | Impact-modified polyamide compositions |
CN103265652A (en) * | 2013-06-08 | 2013-08-28 | 山东省泰和水处理有限公司 | Continuous production method for water-soluble polymer |
CN103265652B (en) * | 2013-06-08 | 2015-08-26 | 山东省泰和水处理有限公司 | A kind of continuous production method of water-soluble polymers |
WO2015073968A1 (en) | 2013-11-18 | 2015-05-21 | E. I. Du Pont De Nemours And Company | Method to produce ballistic and stab resistant structures for garments and structures produced by the method |
US9441100B2 (en) | 2013-12-20 | 2016-09-13 | E. I. Du Pont De Nemours And Company | Blends of ethylene copolymers with high-frequency weldability |
US10569517B2 (en) | 2013-12-20 | 2020-02-25 | Performance Materials Na, Inc. | Selectively permeable ethylene copolymer compositions |
US9777181B2 (en) | 2013-12-20 | 2017-10-03 | E. I. Du Pont De Nemours And Company | Antistatic ethylene copolymer compositions |
US9777145B2 (en) | 2013-12-20 | 2017-10-03 | E. I. Du Pont De Nemours And Company | Anti-fogging films based on ethylene copolymer compositions |
US10435550B2 (en) | 2013-12-20 | 2019-10-08 | Performance Materials Na, Inc. | Variable vapor barrier for humidity control |
US12083389B2 (en) | 2013-12-31 | 2024-09-10 | Acushnet Company | Non-conforming golf balls made from plasticized thermoplastic materials |
WO2015123190A1 (en) | 2014-02-11 | 2015-08-20 | E. I. Du Pont De Nemours And Company | Sound-deadening multilayer polymeric structures |
US20170157885A1 (en) * | 2014-07-08 | 2017-06-08 | Sig Technology Ag | A sheet-like composite, especially for containers, with an adhesion-promoting layer characterised by different c=o group absorption maxima |
US10323908B2 (en) | 2015-05-08 | 2019-06-18 | E I Du Pont De Nemours And Company | Ballistic and stab resistant composite |
WO2016182781A1 (en) | 2015-05-08 | 2016-11-17 | E I Du Pont De Nemours And Company | Ballistic and stab resistant composite |
US10150012B2 (en) | 2016-03-17 | 2018-12-11 | Acushnet Company | Golf ball incorporating at least three adjacent ionomeric and/or HNP-based layers having multiple related property gradients there between |
US10150011B2 (en) | 2016-03-17 | 2018-12-11 | Acushnet Company | Golf ball incorporating at least three adjacent ionomeric and/or HNP-based layers having multiple related property gradients there between |
US9925425B2 (en) | 2016-03-17 | 2018-03-27 | Acushnet Company | Golf ball incorporating at least three adjacent ionomeric and/or HNP-based layers having multiple related property gradients there between |
US9643062B1 (en) | 2016-03-17 | 2017-05-09 | Acushnet Company | Golf ball incorporating at least three adjacent ionomeric and/or HNP-based layers having multiple related property gradients there between |
CN109312005A (en) * | 2016-06-24 | 2019-02-05 | 陶氏环球技术有限责任公司 | The method for being used to prepare high-pressure free radical ethylene copolymer |
WO2019101693A1 (en) * | 2017-11-24 | 2019-05-31 | Sabic Global Technologies B.V. | Ethylene copolymers and process for the production thereof |
US11198746B2 (en) | 2017-11-24 | 2021-12-14 | Sabic Global Technologies B.V. | Ethylene copolymers and process for the production thereof |
WO2019126129A1 (en) | 2017-12-22 | 2019-06-27 | E. I. Du Pont De Nemours And Company | Thermoplastic adhesive composition |
WO2019126189A1 (en) | 2017-12-22 | 2019-06-27 | E. I. Du Pont De Nemours And Company | Thermoplastic adhesive composition |
WO2019152830A1 (en) | 2018-02-01 | 2019-08-08 | Dow Silicones Corporation | Composition, polymer composite article formed therewith, and method of preparing same |
WO2019152829A1 (en) | 2018-02-01 | 2019-08-08 | Dow Silicones Corporation | Composition, polymer composite article formed therewith, and method of preparing same |
US12024621B2 (en) | 2018-06-29 | 2024-07-02 | Dow Global Technologies Llc | Foam bead and sintered foam structure |
WO2020028023A1 (en) | 2018-07-31 | 2020-02-06 | E. I. Du Pont De Nemours And Company | Ionomer compositions |
US11926729B2 (en) | 2018-07-31 | 2024-03-12 | Dow Global Technologies Llc | Ionomer compositions |
WO2020028159A2 (en) | 2018-07-31 | 2020-02-06 | E. I. Du Pont De Nemours And Company | Ionomers of ethylene acid copolymers with enhanced creep resistance |
WO2020223137A1 (en) | 2019-05-02 | 2020-11-05 | Dow Global Technologies Llc | Printing systems and methods including multilayer films |
US11846912B2 (en) | 2019-05-02 | 2023-12-19 | Dow Global Technologies Llc | Printing systems and methods including multilayer films |
US11648757B2 (en) | 2019-08-01 | 2023-05-16 | Dow Global Technologies Llc | Multilayer structures having improved recyclability |
WO2021021551A1 (en) | 2019-08-01 | 2021-02-04 | Dow Global Technologies Llc | Multilayer structures having improved recyclability |
WO2021055335A1 (en) | 2019-09-16 | 2021-03-25 | Dow Global Technologies Llc | Pressure sensitive adhesive article |
CN112409521A (en) * | 2019-11-20 | 2021-02-26 | 山东诺尔生物科技有限公司 | Film coating agent and preparation method and application thereof |
WO2021207046A1 (en) | 2020-04-08 | 2021-10-14 | Dow Global Technologies Llc | Polymer compositions and foams comprising polymer compositions |
WO2021225764A1 (en) | 2020-05-05 | 2021-11-11 | Dow Global Technologies Llc | Paper coated with a functional polyolefin film |
US12173452B2 (en) | 2020-05-05 | 2024-12-24 | Dow Global Technologies Llc | Paper coated with a functional polyolefin film |
WO2022060788A1 (en) | 2020-09-15 | 2022-03-24 | Dow Global Technologies Llc | Acrylic-based adhesive composition with ethylene-based polymer |
WO2022060771A1 (en) | 2020-09-15 | 2022-03-24 | Dow Global Technologies Llc | Acrylic-based adhesive composition with ethylene/ester copolymer |
FR3114102A1 (en) | 2020-09-15 | 2022-03-18 | Dow Global Technologies Llc | ACRYLIC ADHESIVE COMPOSITION WITH ETHYLENE/ESTER COPOLYMER |
WO2022132663A1 (en) | 2020-12-17 | 2022-06-23 | Dow Global Technologies Llc | A talc-filled polycarbonate composition and method for making same |
WO2023122126A1 (en) | 2021-12-23 | 2023-06-29 | Dow Global Technologies Llc | Asphalt compositions including asphaltene and epoxy-functionalized ethylene copolymer |
WO2023147465A1 (en) | 2022-01-31 | 2023-08-03 | Dow Global Technologies Llc | Carboxylic acid cosolvents in the production of ethylene acid copolymer |
WO2024044585A1 (en) | 2022-08-22 | 2024-02-29 | Dow Global Technologies Llc | Ionomer dispersant for making aqueous polyolefin dispersions |
WO2024073565A1 (en) | 2022-09-29 | 2024-04-04 | Dow Global Technologies Llc | Tert-butanol cosolvent in the production of ethylene acid copolymer |
WO2024073542A1 (en) | 2022-09-30 | 2024-04-04 | Dow Global Technologies Llc | Process to produce ionomers |
WO2024206435A1 (en) | 2023-03-31 | 2024-10-03 | Dow Global Technologies Llc | Ethylene copolymers for hydrocarbon applications |
WO2025049135A1 (en) | 2023-08-30 | 2025-03-06 | Dow Global Technologies Llc | Aqueous polyolefin dispersions with ionomer dopants and methods of production thereof |
WO2025049107A1 (en) | 2023-08-31 | 2025-03-06 | Dow Global Technologies Llc | Ionomers of ethylene acid copolymers with improved melt flow and enhanced creep resistance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4351931A (en) | Polyethylene copolymers | |
US3520861A (en) | Copolymers of ethylene | |
US3201374A (en) | Terpolymers containing at least 65% ethylene | |
US3692723A (en) | Aqueous dispersion of a copolymer of ethylene and vinyl acetate and heat melting adhesive comprising same | |
US4822688A (en) | Adhesive compositions based on polypropylene modified by grafting an unsaturated monomer | |
US3132120A (en) | Method for the preparation of ethylene copolymers | |
US3677989A (en) | Ethylene/acrylic acid copolymer emulsions | |
JPS62227913A (en) | Alkyl methacrylate modified polypropylene | |
JPS58103569A (en) | Adhesive blend and composite structure | |
EP1543085B1 (en) | Improved polyolefin-based adhesive resins and method of making adhesive resins | |
CN106715629B (en) | Polyolefin-based compositions, adhesive and related multilayered structure prepared therefrom | |
KR910005563B1 (en) | Maleic Anhydride Graft Polymerization Mixture of Olefin Polymers | |
DE1520497B2 (en) | PROCESS FOR THE PREPARATION OF COPOLYMERS FROM AETHYLENE AND ALPHA BETA AETHYLENIC UNSATURIZED ACIDS | |
JPS62290706A (en) | Silane-modified ethylene copolymer, its production and adhesive comprising said copolymer | |
KR20140003469A (en) | Composition | |
US3239370A (en) | Hot-melt extrusion coating of random copolymer of ethylene and mono-carboxylic acid | |
FI88803B (en) | Ethylene polymer mixtures, method for production thereof and application for manufacture of industrial products | |
US4347341A (en) | Process for the production of ethylene graft copolymers containing anhydride or carboxyl groups | |
US3341621A (en) | Thermally degraded block copolymers of propylene and 1-butene | |
US4238579A (en) | Vinylamine aromatic copolymers and salts thereof | |
US3950209A (en) | Process for preparing carboxylated polymer composition | |
US3100758A (en) | Vinyl halide copolymers with oxirane-containing side groups having improved heat stability | |
DK145719B (en) | PROCEDURE FOR PREPARING QUATERNARY COPOLYMERIZES BASED ON ETHYLENE | |
US3737483A (en) | Graft copolymerization of maleic anhydride and an alpha olefin onto an ethylene-vinyl acetate copolymer | |
US3784502A (en) | Block copolymer compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |