US4313071A - Piezo-electric quartz resonator - Google Patents
Piezo-electric quartz resonator Download PDFInfo
- Publication number
- US4313071A US4313071A US06/073,559 US7355979A US4313071A US 4313071 A US4313071 A US 4313071A US 7355979 A US7355979 A US 7355979A US 4313071 A US4313071 A US 4313071A
- Authority
- US
- United States
- Prior art keywords
- plate
- axis
- resonator according
- active part
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010453 quartz Substances 0.000 title claims abstract description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 239000013078 crystal Substances 0.000 claims abstract description 32
- 238000001465 metallisation Methods 0.000 claims description 7
- 230000005684 electric field Effects 0.000 claims description 2
- 230000008878 coupling Effects 0.000 abstract description 4
- 238000010168 coupling process Methods 0.000 abstract description 4
- 238000005859 coupling reaction Methods 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 abstract description 4
- 230000001419 dependent effect Effects 0.000 abstract description 3
- 230000010355 oscillation Effects 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- GNLJOAHHAPACCT-UHFFFAOYSA-N 4-diethoxyphosphorylmorpholine Chemical compound CCOP(=O)(OCC)N1CCOCC1 GNLJOAHHAPACCT-UHFFFAOYSA-N 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02015—Characteristics of piezoelectric layers, e.g. cutting angles
- H03H9/02023—Characteristics of piezoelectric layers, e.g. cutting angles consisting of quartz
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02157—Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders or supports
- H03H9/0595—Holders or supports the holder support and resonator being formed in one body
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/15—Constructional features of resonators consisting of piezoelectric or electrostrictive material
- H03H9/17—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
- H03H9/19—Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz
Definitions
- the present invention relates to a piezo-electric resonator comprising at least one quartz crystal in the form of a rectangular thin plate, of which the length l is directed according to an axis X', the width w according to an axis Y' and the thickness t according to an axis Z', and vibrating in a contour mode.
- a contour mode resonator is realized in the form of a thin plate with displacement in the plane of the plate.
- the thickness has to be sufficiently small, so that the forces of inertia caused by the displacement outside the plane of the plate, due to crossed elastic constants, have a negligible influence on the energy of deformation.
- the shape which is most usually adopted is the rectangle, which implies the existence of four geometrical parameters:
- the GT-cut is that which provides the most favorable thermal properties. What is involved here is a rectangular plate, of which the dimensional ratio is equal to 0.86, and which is obtained by a rotation about the electrical axis X of the crystal, followed by a rotation of ⁇ 45° about the normal.
- the GT-cut resonator oscillates in accordance with a contour mode and more particularly in a width-extensional mode.
- the frequency temperature coefficients of the first order and of the second order are zero, and the coefficient of the third order is very small.
- the inconvenience arising from this cut is due to the fact that the thermal properties of the resonator are dependent in a critical manner on the dimensional ratio of the plate.
- the temperature coefficient of the first order ⁇ is equal to ⁇ 0.1.10 -6 /°C.
- the coefficient of the second order ⁇ is equal to ⁇ 1.10 -6 /°C. 2
- the coefficient of the third order ⁇ is smaller than 30.10 -12 /°C. 3 .
- the variation of the temperature coefficient of the first order is equal to 2.5.10 -6 /°C. This implies that the temperature coefficient of a GT-cut quartz crystal necessarily has to be adjusted after fitting of the resonator.
- DT-cut which consists of a generally square plate, obtained by a rotation about the electrical axis X and vibrating in face-shear mode.
- the DT-cut resonators have the advantage, relatively to those of GT-cut, of showing very little sensitivity to the variations of the dimensional ratio.
- their thermal properties are less satisfactory.
- the temperature coefficient of the first order ⁇ is zero
- the temperature coefficient of the second order ⁇ is equal to -(15 to 20). 10 -9 /°C. 2
- the temperature coefficient of the third order ⁇ is approximately equal to 45.10 -12 /°C. 3 .
- AT-cut quartz crystals are also known, which are in the form of a plate obtained by a rotation about the electrical axis X of the crystal.
- the data concerning these quartz crystals are to be more particularly found in the publication "Quartz vibrators and their applications", by Pierre Vigoureux, edited by "His Majesty's Stationery Office", London, 1950.
- Two types of AT-cut quartz crystals, oscillating at a frequency of 4 MHz, are marketed at the present time. These are the AT-cut quartz crystal of Nihon Dempa Cie, of which the thermal properties at 25° C. are as follows:
- the AT-cut quartz crystals have a frequency four times higher for a comparable size.
- the temperature coefficient of the first order is more sensitive to the differences in values of the angle of cut, e.g. for a variation ⁇ of the angle ⁇ , equal to 1°, the corresponding variation ⁇ of the temperature coefficient of the first order is equal to 4.7.10 -6 /°C.
- the AT-cut quartz crystal of Nihon Dempa Cie has a complicated shape, presenting a bevelling at each end of the bar and an inclination of the lateral faces. This involves the necessity of an individual metallization after complete machining.
- the AT quartz of SSIH has a considerable length, i.e. of about 11 mm.
- An object of the present invention is to overcome the aforementioned disadvantages of the quartz crystals of known cuts and to provide a resonator of the type as initially indicated, which satisfies all the following conditions:
- the resonator according to the invention is characterized in that the axis Z', normal to the large faces of the plate, is situated in the plane of the electrical axis X and optical axis Z of the crystal and forms with the axis Z an angle ⁇ such that
- FIG. 1 is a perspective view showing the orientation of a resonator according to the invention in the system of axes X, Y, Z;
- FIG. 2 is a graph representing the geometrical location of the values ⁇ and ⁇ for which the temperature coefficient of first order of the resonator is zero:
- FIGS. 3 to 7 are plan views of five different forms of piezo-electric plates for the resonator
- FIG. 8 is a perspective view of a resonator in the form of a rectangular plate, showing the location of the electrodes.
- the plate which is hereafter referred to as ZT-cut plate, is preferably obtained from a substrate of Z section, i.e. a plate having for its normal the optical axis Z of the quartz crystal.
- a first rotation of angle ⁇ about the axis Y representing the mechanical axis of the crystal brings the optical axis Z into Z' and the electrical axis X into X 1 .
- a second rotation of angle ⁇ about the axis Z brings the axis X 1 into X' and the axis Y into Y'.
- the principal directions X', Y', Z' correspond respectively to the length l, the width w and the thickness t of the plate of ZT cut.
- such a cut is noted as (z x w t) ⁇ , ⁇ , which is interpreted in the following manner:
- z indicates the direction of the thickness of the initial plate (substrate of cut Z);
- x indicates the direction of the large dimension of the initial plate
- w signifies that the first rotation of angle ⁇ is effected about the axis bearing the width of the initial plate
- t indicates that the second rotation of angle ⁇ is effected about the direction of the thickness of the final plate (normal to the surface of the large faces).
- the thickness is a free parameter, as in all the contour modes. It has to be chosen in such a way as to avoid any troublesome coupling with the modes having movements outside the plane. Close to this combination of angles, it is found that the frequency/temperature relation is a cubic curve, of which the point of inflection can be varied by the appropriate choice of the dimensional ratio.
- the temperature coefficient of the first order at the point of inflection depends on the angle and can be cancelled.
- the temperature coefficient of the second order depends on the dimensional ratio and can be cancelled for w/l ⁇ 2/3.
- the temperature coefficient of the third order may only amount to about 55.10 -12 /°C. 3 , that is to say, substantially less than that of a quartz crystal of cut AT.
- the frequency constant, related to the width, is 2823 KHz.mm.
- the curve of FIG. 2 which represents the geometrical position of the points for which the temperature coefficient of the first order is zero, illustrates very well the fact that this coefficient varies strongly with the angle ⁇ , but shows very little sensitivity to small variations of the angle ⁇ .
- a ZT-cut resonator consists in using a rectangular quartz plate, such as that which is defined in FIG. 1, suspended by means of one or two wires, preferably placed at the centre.
- a rectangular quartz plate such as that which is defined in FIG. 1
- suspended by means of one or two wires preferably placed at the centre.
- other possibilities do exist, which avoid the use of suspension wires or threads.
- a ZT-cut quartz crystal piezo-electric resonator in accordance with the invention may comprise a rectangular quartz plate having the following dimensions:
- angles of cut ⁇ and ⁇ having the following values:
- the value of the resonance frequency of the resonator is equal to 2 20 Herz, i.e. about 1049 KHz.
- the ZT-cut quartz crystal shown therein comprises an interior active part 10 of length l and width w, enclosed by a frame 11 and fixed to this frame by two feet 12 and 13.
- the frame 11 and the feet 12 and 13 form the passive part of the crystal.
- the active part vibrates in the direction of the width, as indicated by the arrows 15.
- FIG. 4 illustrates another embodiment of a ZT-cut plate, which comprises a rectangular active part 20 of length l and width w, prolonged from each side of its longitudinal dimension by an extension 21, 22 which is triangular in shape.
- the plate vibrates in the direction of the arrows 23 and may as a result be easily fixed on two fixed supports 24 and 25, by the points of the respective triangles 21 and 22.
- the central plate 32 disposed between the plates 31 and 33 and vibrating in counterphase, comprises for example two extensions 34 and 35 which are provided for fixing the assembly on a support (not shown).
- FIG. 7 shows another embodiment of a ZT-cut plate, comprising an active part 50 connected to a passive part 51.
- the active part is formed by a rectangular plate having dimensions l and w which are such that the ratio w/l is equal to 0.5 to 0.8, as in the preceding Examples.
- the active part oscillates according to the arrows 52.
- FIG. 8 illustrates one form of metallization of the ZT-cut plate.
- the low-consumption integrated oscillators have a negative resistance which is inversely proportional to the frequency. If an operation under linear running conditions is accepted, it is necessary for the quartz resonator to satisfy the following condition: ##EQU2##
- the ZT resonator has in particular a shearing mode at lower frequency, for which this condition does not seem to be capable of being achieved if the plate is entirely metallized. It will therefore be necessary to have recourse to a partial metallization, chosen in such a way as to increase the ratio: ##EQU3##
- This metallisation is formed by longitudinal strips 61 and 62, partially covering the large faces of the plate 60.
- the strips 61 and 62 are necessarily offset relatively to the central plane perpendicular to the large faces of the plate in such a way that, if one of the metallisations, for example, the layer 61, is positively polarised and if the other 62 is negatively polarised, the resultant electric field presents one component along Y', which is opposite to its component along Z'.
- the resonator which is shown in FIG. 8 is mounted by means of short suspension wires 63 and 64 which are electrical conductors, soldered perpendicularly at the centre of the two large faces of the quartz plate. These suspension wires also assure the electrical connection between the excitation circuits (not shown) and the respective metallised layers 61 and 62 of the quartz plate 60.
- the ZT-cut plate is simple to manufacture and does not require any adjustment of its thermal properties after it has been mounted. As possible adjustment of the frequency could be achieved simply by a uniform deposit of material, either over its entire surface, or preferably on a strip close to the edges which are parallel to the length of the plate, without the thermal properties being modified.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH944278A CH623690A5 (ja) | 1978-09-08 | 1978-09-08 | |
CH9442/78 | 1978-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4313071A true US4313071A (en) | 1982-01-26 |
Family
ID=4352043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/073,559 Expired - Lifetime US4313071A (en) | 1978-09-08 | 1979-09-07 | Piezo-electric quartz resonator |
Country Status (9)
Country | Link |
---|---|
US (1) | US4313071A (ja) |
JP (1) | JPS5538799A (ja) |
CA (1) | CA1141445A (ja) |
CH (1) | CH623690A5 (ja) |
DE (1) | DE2936225A1 (ja) |
FR (1) | FR2435855A1 (ja) |
GB (1) | GB2032685B (ja) |
HK (1) | HK23088A (ja) |
NL (1) | NL190593C (ja) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4450378A (en) * | 1982-02-16 | 1984-05-22 | Centre Electronique Horloger S.A. | ZT-Cut piezo-electric resonator |
US4486682A (en) * | 1983-03-17 | 1984-12-04 | The United States Of America As Represented By The Secretary Of The Army | Stress compensated quartz resonator having ultra-linear frequency-temperature response |
US4499395A (en) * | 1983-05-26 | 1985-02-12 | The United States Of America As Represented By The Secretary Of The Air Force | Cut angles for quartz crystal resonators |
US4542355A (en) * | 1984-11-07 | 1985-09-17 | The United States Of America As Represented By The Secretary Of The Army | Normal coordinate monolithic crystal filter |
US4772130A (en) * | 1985-06-17 | 1988-09-20 | Yokogawa Electric Corporation | Quartz thermometer |
US4900971A (en) * | 1988-03-10 | 1990-02-13 | Seiko Electronic Components Ltd. | Face shear mode quartz crystal resonator |
US4926086A (en) * | 1988-07-07 | 1990-05-15 | Centre Suisse D'electronique Et De Microtechnique S.A. | Piezoelectric resonator |
US5274297A (en) * | 1991-06-04 | 1993-12-28 | Centre Suisse D'electronique Et De Microtechnique Sa | Quartz resonator vibrating in a fundamental torsion mode |
US5399997A (en) * | 1992-03-30 | 1995-03-21 | Murata Manufacturing Co., Ltd. | Oscillation circuit |
WO2000031807A1 (en) * | 1998-11-24 | 2000-06-02 | Cts Corporation | Quartz crystal resonator with improved temperature performance and method therefor |
US6590315B2 (en) * | 2000-05-26 | 2003-07-08 | William D. Beaver | Surface mount quartz crystal resonators and methods for making same |
US20030169130A1 (en) * | 2002-03-06 | 2003-09-11 | Hirofumi Kawashima | Electronic apparatus |
US20030222735A1 (en) * | 2002-03-06 | 2003-12-04 | Hirofumi Kwashima | Electronic apparatus |
US6707234B1 (en) * | 2002-09-19 | 2004-03-16 | Piedek Technical Laboratory | Quartz crystal unit, its manufacturing method and quartz crystal oscillator |
US6744182B2 (en) | 2001-05-25 | 2004-06-01 | Mark Branham | Piezoelectric quartz plate and method of cutting same |
US20090167117A1 (en) * | 2007-12-28 | 2009-07-02 | Epson Toyocom Corporation | Quartz crystal resonator element, quartz crystal device, and method for producing quartz crystal resonator element |
US20110191996A1 (en) * | 2002-04-23 | 2011-08-11 | Hirofumi Kawashima | Method for manufacturing quartz crystal resonator, quartz crystal unit and quartz crystal oscillator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH650897GA3 (ja) * | 1982-07-14 | 1985-08-30 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4178566A (en) * | 1975-12-19 | 1979-12-11 | Kabushiki Kaisha Daini Seikosha | Quartz crystal tuning fork vibrator for a crystal oscillator |
-
1978
- 1978-09-08 CH CH944278A patent/CH623690A5/fr not_active IP Right Cessation
-
1979
- 1979-09-06 NL NL7906675A patent/NL190593C/xx not_active IP Right Cessation
- 1979-09-07 DE DE19792936225 patent/DE2936225A1/de active Granted
- 1979-09-07 CA CA000335187A patent/CA1141445A/en not_active Expired
- 1979-09-07 JP JP11509479A patent/JPS5538799A/ja active Granted
- 1979-09-07 FR FR7922463A patent/FR2435855A1/fr active Granted
- 1979-09-07 US US06/073,559 patent/US4313071A/en not_active Expired - Lifetime
- 1979-09-10 GB GB7931387A patent/GB2032685B/en not_active Expired
-
1988
- 1988-03-24 HK HK230/88A patent/HK23088A/xx not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4178566A (en) * | 1975-12-19 | 1979-12-11 | Kabushiki Kaisha Daini Seikosha | Quartz crystal tuning fork vibrator for a crystal oscillator |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4450378A (en) * | 1982-02-16 | 1984-05-22 | Centre Electronique Horloger S.A. | ZT-Cut piezo-electric resonator |
US4486682A (en) * | 1983-03-17 | 1984-12-04 | The United States Of America As Represented By The Secretary Of The Army | Stress compensated quartz resonator having ultra-linear frequency-temperature response |
US4499395A (en) * | 1983-05-26 | 1985-02-12 | The United States Of America As Represented By The Secretary Of The Air Force | Cut angles for quartz crystal resonators |
US4542355A (en) * | 1984-11-07 | 1985-09-17 | The United States Of America As Represented By The Secretary Of The Army | Normal coordinate monolithic crystal filter |
US4772130A (en) * | 1985-06-17 | 1988-09-20 | Yokogawa Electric Corporation | Quartz thermometer |
US4900971A (en) * | 1988-03-10 | 1990-02-13 | Seiko Electronic Components Ltd. | Face shear mode quartz crystal resonator |
US4926086A (en) * | 1988-07-07 | 1990-05-15 | Centre Suisse D'electronique Et De Microtechnique S.A. | Piezoelectric resonator |
US5274297A (en) * | 1991-06-04 | 1993-12-28 | Centre Suisse D'electronique Et De Microtechnique Sa | Quartz resonator vibrating in a fundamental torsion mode |
US5399997A (en) * | 1992-03-30 | 1995-03-21 | Murata Manufacturing Co., Ltd. | Oscillation circuit |
WO2000031807A1 (en) * | 1998-11-24 | 2000-06-02 | Cts Corporation | Quartz crystal resonator with improved temperature performance and method therefor |
US6172443B1 (en) * | 1998-11-24 | 2001-01-09 | Cts Corporation | Quartz crystal resonator with improved temperature performance and method therefor |
US6590315B2 (en) * | 2000-05-26 | 2003-07-08 | William D. Beaver | Surface mount quartz crystal resonators and methods for making same |
US7051728B2 (en) | 2001-05-25 | 2006-05-30 | Mark Branham | Piezoelectric quartz plate and method of cutting same |
US6744182B2 (en) | 2001-05-25 | 2004-06-01 | Mark Branham | Piezoelectric quartz plate and method of cutting same |
US20040189154A1 (en) * | 2001-05-25 | 2004-09-30 | Mark Branham | Piezoelectric quartz plate and method of cutting same |
US20030222735A1 (en) * | 2002-03-06 | 2003-12-04 | Hirofumi Kwashima | Electronic apparatus |
US6897743B2 (en) * | 2002-03-06 | 2005-05-24 | Piedek Technical Laboratory | Electronic apparatus with two quartz crystal oscillators utilizing different vibration modes |
US20030169130A1 (en) * | 2002-03-06 | 2003-09-11 | Hirofumi Kawashima | Electronic apparatus |
US20110191996A1 (en) * | 2002-04-23 | 2011-08-11 | Hirofumi Kawashima | Method for manufacturing quartz crystal resonator, quartz crystal unit and quartz crystal oscillator |
US8572824B2 (en) * | 2002-04-23 | 2013-11-05 | Piedek Technical Laboratory | Method for manufacturing quartz crystal unit and quartz crystal oscillator having the quartz crystal unit |
US6707234B1 (en) * | 2002-09-19 | 2004-03-16 | Piedek Technical Laboratory | Quartz crystal unit, its manufacturing method and quartz crystal oscillator |
US20090167117A1 (en) * | 2007-12-28 | 2009-07-02 | Epson Toyocom Corporation | Quartz crystal resonator element, quartz crystal device, and method for producing quartz crystal resonator element |
US8026652B2 (en) * | 2007-12-28 | 2011-09-27 | Epson Toyocom Corporation | Quartz crystal resonator element, quartz crystal device, and method for producing quartz crystal resonator element |
US8299689B2 (en) | 2007-12-28 | 2012-10-30 | Seiko Epson Corporation | Quartz crystal resonator element, quartz crystal device, and method for producing quartz crystal resonator element |
Also Published As
Publication number | Publication date |
---|---|
FR2435855A1 (fr) | 1980-04-04 |
FR2435855B1 (ja) | 1982-12-17 |
GB2032685B (en) | 1982-12-08 |
GB2032685A (en) | 1980-05-08 |
CH623690A5 (ja) | 1981-06-15 |
CA1141445A (en) | 1983-02-15 |
NL190593B (nl) | 1993-12-01 |
NL7906675A (nl) | 1980-03-11 |
DE2936225C2 (ja) | 1988-01-28 |
NL190593C (nl) | 1994-05-02 |
DE2936225A1 (de) | 1980-03-20 |
JPH0232807B2 (ja) | 1990-07-24 |
HK23088A (en) | 1988-03-31 |
JPS5538799A (en) | 1980-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4313071A (en) | Piezo-electric quartz resonator | |
US4365181A (en) | Piezoelectric vibrator with damping electrodes | |
US10873315B2 (en) | Piezoelectric vibrating piece and piezoelectric device | |
US4418299A (en) | Face-shear mode quartz crystal vibrators and method of manufacture | |
US4139793A (en) | Integral resonant support arms for piezoelectric microresonators | |
US6362561B1 (en) | Piezoelectric vibration device and piezoelectric resonance component | |
US5548180A (en) | Vibrator resonator and resonance component utilizing width expansion mode | |
US5307034A (en) | Ultrathin multimode quartz crystal filter element | |
JP2000278080A (ja) | 圧電デバイス | |
US4926086A (en) | Piezoelectric resonator | |
US6849991B2 (en) | Quartz resonating piece, quartz resonator, and quartz device | |
JP3102869B2 (ja) | 超薄板圧電共振子の構造 | |
JPS58141022A (ja) | 厚みすべり水晶振動子 | |
JP3221609B2 (ja) | 超薄板圧電共振子の固定部構造 | |
JPS6357967B2 (ja) | ||
JPH0214608A (ja) | 圧電共振子 | |
US5196758A (en) | High frequency piezoelectric resonator | |
US4617488A (en) | Composite piezoelectric vibrator with trapezoidal cross section | |
JPS58136125A (ja) | 結合水晶振動子 | |
JPS5824503Y2 (ja) | 幅すべり結晶振動子 | |
JPH05243889A (ja) | 厚みすべり圧電振動素子 | |
JPS5912810Y2 (ja) | 圧電振動子 | |
JPH043612A (ja) | 圧電振動子 | |
KR960016344B1 (ko) | 압전진동자 | |
JPS587702Y2 (ja) | 幅すべり結晶振動子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CENTRE ELECTRONIQUE HORLOGER S.A., RUE A.-L., BREG Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:BOURGEOIS CLAUDE;HERMANN JEAN;REEL/FRAME:003832/0643 Effective date: 19810216 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |