[go: up one dir, main page]

US3929062A - Closed chamber baler - Google Patents

Closed chamber baler Download PDF

Info

Publication number
US3929062A
US3929062A US470572A US47057274A US3929062A US 3929062 A US3929062 A US 3929062A US 470572 A US470572 A US 470572A US 47057274 A US47057274 A US 47057274A US 3929062 A US3929062 A US 3929062A
Authority
US
United States
Prior art keywords
chamber
bale
ram
wire
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US470572A
Inventor
Wallace M Thompson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harris Press and Shear Corp
Original Assignee
Harris Press and Shear Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harris Press and Shear Corp filed Critical Harris Press and Shear Corp
Priority to US470572A priority Critical patent/US3929062A/en
Application granted granted Critical
Publication of US3929062A publication Critical patent/US3929062A/en
Assigned to COTINENTAL BANK N.A. reassignment COTINENTAL BANK N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARRIS WASTE MANAGEMENT GROUP INC., THE, A CORP. OF MN
Assigned to CONTINENTAL BANK N.A. reassignment CONTINENTAL BANK N.A. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARRIS WASTE MANAGEMENT GROUP INC., THE, A CORP. OF MN
Anticipated expiration legal-status Critical
Assigned to HARRIS WASTE MANAGEMENT GROUP, INC., THE reassignment HARRIS WASTE MANAGEMENT GROUP, INC., THE RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA
Assigned to SANWA BUSINESS CREDIT CORPORATION reassignment SANWA BUSINESS CREDIT CORPORATION SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARRIS WASTE MANAGEMENT GROUP, INC., THE
Assigned to HARRIS WASTE MANAGEMENT GROUP, INC. reassignment HARRIS WASTE MANAGEMENT GROUP, INC. RELEASE AND REASSIGNMENT OF A CONTINUING SECURITY INTEREST AND COLLATERAL ASSIGNMENT OF PATENTS, TRADEMARKS, COPYRIGHTS AND LICENSES Assignors: SANWA BUSINESS CREDIT CORPORATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B27/00Bundling particular articles presenting special problems using string, wire, or narrow tape or band; Baling fibrous material, e.g. peat, not otherwise provided for
    • B65B27/12Baling or bundling compressible fibrous material, e.g. peat

Definitions

  • An improved closed chamber baler includes a hopper PP NOJ 470,572 into which is fed waste paper or other compressible materials to be baled.
  • the material to be baled is 52 US. Cl 100 3; 100/26 100/98 R- forced into a We by means of a P 9 10O/2l8 100/249 ated ram. Means are provided for sequentially guiding 51 Int. (:1. B6 5B 13 20 a Strappmg about the i per'Phery of the [58] Field of Search 100/3, 26,98 R 49 249 Fompressed material at a Plurahty 100/4 intervals along the compressed material.
  • the strapping wire is tensioned and then twisted or knotted together to form a continuous strap about the compressed ma- [56] SEIF E IZ FENTS terial, thereby forming a bale.
  • the compression ram is retracted 1,985,438 l2/l934 Bethel 100/3 and an output gate is opened, The bale is then ejected f iz-" 586 2 from the bale chamben
  • the invention is dis- 352l'550 7/1970 2: jg z'' g loojn closed in connection with baling waste paper, the 3:528:364 9 1970 Freund I: II
  • 100 3 baler cfipable f i uses the 3,587,448 6/1971 Hemphill 1 100 3 i apparatus embodymg the prmcples of W 3 13 10/1971 Wright et alw 100/3 ent lnvention may be found useful in connection with 3,643,590 2/1972 Aluot
  • This invention broadly relates to a closed chamber baler for baling compressible materials and more specifically is related to a closed chamber baler for-baling compressible materials such as waste paper wherein multiple strapping loops are sequentially applied at vertically spaced intervals about the bale while the bale is under relatively high compression.
  • bales produced are on the order of several feet square in a transverse direction and between five and six feet long in a longitudinal direction with the bales generally having a rectangular shape.
  • baling machines have been provided which include a hopper, a baling chamber and a ram which is actuated to compress material in the chamber.
  • Accessory equipment such as strapping, banding and tying devices, have been utilized to form the bale, examples of such strapping devices being disclosed in U.S. Pat. Nos. 2,768,574, 2,827,926, 2,763,297 and 2,853,885.
  • baling devices have had a number of drawbacks including the fact that they are of exceedingly complex structure and are not capable of rapidly applying a sequence of bands about the compacted waste material to form a bale.
  • An example of a prior art baling device is illustrated in U.S. Pat. No. 3,528,364 which discloses an apparatus wherein waste material is compressed in a chamber and straps are positioned about the external periphery thereof in sequential order.
  • This patent does not disclose a method or apparatus for sequentially guiding wire about the outside periphery of a bale, binding the wire and then ejecting the bale from the baler.
  • Other baling apparatus has been designed such as disclosed in US. Pat. Nos.
  • this invention relates to a closed chamber baler which includes a hopper into which is fed a compressible material which is to be baled.
  • a piston operated ram forces the material into a bale chamber wherein the material is formed into a bale.
  • the ram is held in its end of stroke position, and a means is provided for sequentially guiding a plurality of strapping loops about the outside periphery of the compressed material at a plurality of vertically spaced intervals.
  • the strapping wire is tensioned and then tied together to form a continuous strap which extends about the outside periphery of the bale.
  • the compression ram is retracted to thereby release the pressure on the bale.
  • the gate is raised and the bale is ejected from the chamber.
  • the gate is then lowered and a new bale is formed.
  • FIG. 1 is a longitudinal center section view taken in elevation of the closed chamber baler of the present invention
  • FIG. 2 is a plan view of the bale chamber, wire track and strapper mechanism of the present invention
  • FIG. 3 is a fragmentary section view of the wire tracks in the compression ram of the present invention.
  • FIG. 4 is a section view of the wire track in the compression ram taken along the lines 44 of FIG. 3;
  • FIG. 5 is a fragmentary plan view of the tension pin arrangement utilized in the present invention.
  • FIG. 6 is an end view of the tension pin arrangement of FIG. 5;
  • FIG. 7 is a section view taken along the lines 77 of FIG. 2;
  • FIG. 8 is an elevation view of the ejector mechanism of the present invention.
  • FIG. 9 is a plan view of the ejector mechanism of the present invention shown in its normal inactive position.
  • FIG. 10 is a plan view of the ejector mechanism in position for grasping and ejecting a bale from the baler of the present invention.
  • FIG. 1 where there is disclosed a longitudinal center section view taken in elevation of the closed chamber baler of the present invention.
  • a hopper 11 is disclosed into which the material to be baled is dumped.
  • the material may include waste paper or other shredded materials which are compressible or may include an agricultural product such as cotton.
  • the hopper which, is illustrated, is in the form of a box but which may preferably be in the form of a funnel, leads into a waste material receiving chamber 13.
  • a compression ram 15 Positioned to one side of chamber 13 is a compression ram 15 having a compression face 17 and a wire track assembly generally designated by the numeral 19.
  • the compression ram 15 is reciprocated within chamber 13 by means of a piston and cylinder arrangement including a cylinder 21 and a piston rod 23.
  • the piston and cylinder arrangement is capable of providing at least a nine foot stroke and for generating an operating pressure of at least 2400 psi.
  • a shearing knife 25 which cooperates with a shearing beam knife 27 which is secured to the compression chamber at the junction of the hopper and the chamber 13.
  • the shearing beam knife 27 is arranged so that its leading edge is formed diagonally with respect to the knife 25 so that the shearing force is sequentially distributed along the knife as the ram 15 passes the shearing beam knife 27.
  • a horizontal shield plate 29 is provided, which extends across the width of the chamber and is at least as long as the length of the chamber 13 so that when the compression ram 15 is forcing waste paper into the baling chamber 31, waste paper being dumped into the hopper will not fall behind the ram 15.
  • an abrasive resistant wear plate 33 which is formed of known abrasive resistant materials. This plate is secured to the base plate 35 of the compression chamber 13.
  • a photodetector system including a light source 37 and a photodetector of conventional design 39 which provide a ram actuating signal when the waste paper in the hopper intercepts the light beam passing from the light source 37 to the detector 39.
  • the baling chamber 31 includes an output or gate 41 which has a plurality of strapper guides 43 (shown schematically) extending transversely therethrough.
  • the gate 41 is opened by means of a hydraulic cylinder 44 which raises the gate vertically after a bale has been formed in the baling chamber 31.
  • the opposite end of the chamber 31 is normally open, but when material is being compressed therein, the ram compression face 17 forms the second end of the baling chamber 31.
  • the two sides of the baling chamber 31 each includes a plurality of straper wire tracks 71 for guiding the strapper wire about the outside periphery of the material compressed within the chamber.
  • the wire tracks 71 terminate in mating guide tracks in the gate 41 and in the ram 15 each of which, as aforementioned, having parallel wire tracks extending from one side of the chamber to the other.
  • the process of strapping the wire about the compressed material takes place in sequential steps.
  • a first strapping wire is guided about the periphery of the compressed material through lowest level wire tracks including the elevator wire tracks 52 and 53, the lower curved wire tracks 71, the lower ram track 19, the straight wire track 51 and the lower gate wire track 43'.
  • a strapper elevator 129 which includes the strapper elevator cylinder 55, raises the strapping mechanism (not shown) to the next level, thereby stripping the wire strap from elevator tension pins 106.
  • the wire is again passed around the outside periphery of the compressed material through the wire tracks which include curved tracks 71", ram wire track 19", elevator wire tracks 52 and 53, straight wire track 51" and gate wire track 43" until the wire has completely surrounded the compressed material.
  • the wire is then tensioned and tied, and then the strapper is moved to the next succeeding level and so on.
  • the strapper elevator raises a predetermined distance, preferably on the order of an inch, to strip the top wire strap from elevator tension pins 106.
  • the ram retracts to reduce bale friction force on gate, the gate raises with respect to the baling chamber 31 and straps are released from outboard tension pins.
  • bale ejector cylinder 61 which, as will be explained, causes the ejector to grasp the bale and eject it from the baling chamber 31.
  • the gate 41 is returned to its closed position and the compression ram 15 continues to force waste paper into the baling chamber 31 until the pressure of the hydraulic fluid in the rear of the cylinder 21 is at least 1800 psi at the end of the compression stroke.
  • the ram 15 remains fixed at its end of stroke position so that the compression face 17 forms an end wall of the baling chamber 31.
  • the strapping process is again repeated and at the conclusion thereof, the gate 41 is raised and the ram 15 retracted to begin another cycle.
  • FIG. 2 is a plan view of strapper arrangement including a partial section of the baling chamber 31 of the baler mechanism.
  • the baling chamber is closed at the bottom thereof by means of a floor 63 which may be of any suitable type such as for exam ple, a steel plate.
  • the chamber includes a first longitudinal side wall 65.
  • On the opposite side of the chamber is formed a second side wall 69.
  • a curved wire track 71 At each corner of the chamber is a curved wire track 71, each of which is in the form of a quarter circle. These curved wire tracks are fixedly secured to the baling chamber and to vertical columns 73.
  • a gate 41 which includes a plurality of wire guide tracks therein which mate with the curved wire tracks 71.
  • the gate 41 is movable in a vertical direction by means of a piston and cylinder arrangement 44 with the gate being guided vertically by means of gate guides 75 positioned to each side of the gate.
  • an opening 77 At the opposite end of the chamber is an opening 77 into which the ram 15 forces the material to be compressed and baled.
  • the strapping mechanism 30 includes a drive roller 79 and a feed roller 81, wherein the rollers feed wire from a spool (not shown) to the wire tracks which surround the external periphery of the baling chamber 31.
  • the rollers 79 and 81 grip and feed a suitable wire 87, such as for example, a 12 gauge wire, from the spool (not shown) through a gripping and twisting machine 83 and then through elevator wire track 52, the curved wire track 71, the wire track in gate 41, the curved wire track 71, the wire track 51, the curved wire track 71, the wire track in the ram 15, the curved wire track 71, the elevator wire track 53 and then to the gripping and twisting machine 83.
  • a suitable wire 87 such as for example, a 12 gauge wire
  • the drive roller 79 is reversed so that the wire in the tracks extending about the outside periphery of the chamber is tensioned. This pulls the wire 87 from the guide tracks to the position shown by the solid lines of the figure. As illustrated, the wire is forced against tension pins 103 and 106 positioned on the outside periphery of the baling chamber 31and against the compressed material at each end of the chamber. At this time the drive roller is stopped and the gripping and twisting machine 83 twists the wire upon itself to form a completed loop. The wire is then cut and the strapping mechanism is raised by means of the elevator cylinder 55 to the next strapping level, stripping the strap off tension pins 106.
  • the specific strapping mechanism 83 is of conventional design.
  • One such strapping device is commercially available from the US. Steel Supply Co., Division of United States Steel Corporation.
  • the disclosure of the strapping mechanism is more or less schematic in form.
  • the ram includes a compression face 17 which has a plurality of plates 18 fixedly secured to the ram by a suitable means known in the art, such as for example, a weld or a nut and bolt arrangement 20.
  • the plates 18 are spaced with respect to the rear support base 22 of the ram by means of a plurality of ribs 24.
  • the plates 18' are not joined contiguously to one another but are spaced to permit the strapping wire 87 to pass between the plates to the position illustrated adjacent the dotted lines in FIG. 3.
  • a bottom support plate 35 upon which is secured an abrasive resistant wear plate 33 which is formed of a conventional known abrasive resistant material.
  • This plate is for the purpose of increasing the lifetime of the bottom surface of the baler and prevents wear and tear due to the sliding of the ram bottom thereon.
  • wire tracks 19, 19", etc. These tracks include a first fixed plate 91 which is fixedly secured to the bracket 26 and a second movable guide plate 93 which has a groove 95 extending therethrough.
  • the movable guide 93 is biased into contact with the fixed plate 91 by means of a spring 97.
  • the wire 87 is initially threaded through the groove 95 and remains therein until the tensioning mechanism of the strapper pulls the wire 87 of the groove 95 against the bias of spring 97 and through the slot 96 separating the plates 18. After the wire has been tensioned, the wire is positioned against the compressed material 10, as illustrated in FIG. 3 by the dotted lines.
  • the curved track 71 is shown having the wire 87 passing therethrough in one of its guide tracks.
  • the wire is guided into the wire track 19 of the ram 15 by means of a funnel-shaped entry 98.
  • the spring 97 is shown forcing the guide plate 93 against the fixed guide support 91.
  • the movable plate 93 is shown separated from the ram compression face plate 18 by a relatively short distance so that when the wire is tensioned, the wire is pulled from the groove 95 and from the groove in the curved track 71, past the ram compression face to the position illustrated adjacent dotted lines in FIG. 3 and solid lines in FIG. 2.
  • FIGS. 5 and 6 illustrate the tension pin arrangement of the closed chamber baler of the present invention. While only one specific tension pin arrangement is disclosed in FIGS. 5 and 6, it should be understood that each of the tension pins operates in a similar fashion and is of similar design.
  • the curved track 71 is shown fixedly secured to a vertical support column 73.
  • a stripping plate 101 Positioned above the wire track 71 is a stripping plate 101 which also is fixedly secured to the column 73.
  • a tension pin 103 Positioned in front of the stripping plate 101 and the wire track 71 is a tension pin 103 which is rotatably secured to a movable bracket 105 which in turn is fixedly secured to a movable vertical support column 67.
  • the movable support column 67 is raised and lowered with respect to the column 73 and the stripping plate 101 by means of a cylinder shown in FIG. 7.
  • a wire track 51 Positioned between the pin 103 and the column 67 is a wire track 51 having a fixed base plate 109 fixedly secured to a support bracket 111 which in turn is secured to the column 67.
  • a guide plate 113 is movably positioned with respect to the plate 109 and is biased thereagainst by means of a spring (not shown).
  • the wire 87 is threaded through a groove 95 in the movable guide plate 113. After the wire has passed completely about the baling chamber through the groove 95 in the wire tracks, the wire is tensioned, thereby forcing the wire out of the groove 95 and against the tension pin 103. In forcing the wire 87 of the groove 95, the movable guide plate 113 is raised against the bias of the spring so that the wire can slip between the plates 109 and 113. The wire then temporarily remains positioned against the tension pin 103. After the wire has been cut and twisted by the knotting mechanism 83, the wire 87 remains positioned against the tension pin 103 but is pressed against the bale of compressed waste material at the ends of the bale since there are no tension pins associated with the gate 41 and the ram 15.
  • the tension pins 103 are raised by means of the cylinder 100 which raises the column 67.
  • the wire 87 will then be stripped from the pin by the stripping plate 101, thereby forcing the wire downwardly with respect to the pin 103 and inwardly against the bale.
  • FIG. 7 is a section view of the baling chamber taken along the lines 77 of FIG. 2.
  • the base of the chamber includes a floor 63 upon which the bale of compressed material rests.
  • a roof 64 for preventing the vertical expansion of the compacted material as it is compressed within the chamber.
  • Fixed wire tracks designated by the numerals 71 and 51 are shown having a plurality, e.g., four, of wire guide grooves 95- therein with each of the guide grooves 95 including at least two wire release mechanisms along the longitudinal length thereof including a tension pin 103 of the type illustrated in FIGS. 5 and 6.
  • a piston and cylinder arrangement is provided wherein one end of the cylinder 100 is secured to an upper mount 102.
  • the piston rod 104 is secured by an appropriate mechanical means to the column 67.
  • the piston rod travels within the cylinder with a H inch stroke so that when fluid under pressure is coupled to the lower part of the cylinder 100, the pins 103 are raised 1 /2 inches with respect to the stripping plate 101 to thereby strip the strapping wire 87 from the pins 103.
  • Support plates 1 11 are provided for preventing the wire 87 once tensioned out of track from immediately sliding off the end of pin 103.
  • three parallel aligned tubes 65 are provided which are fixedly secured to the gate column forward and compression chamber aft. These tubes are separated from one another by a relatively small distance on the "order of l or 2 inches to thereby provide adequate room for the wire 87 to slide therebetween and against the material being compressed and formed into a bale.
  • Tubes 69 form a compacting surface for the chamber 31 against which the waste material being formed into a bale is contained.
  • the tubes 69 are separated from one another by a relatively small distance on the order of one or two inches to permit the wire 87 to contact the material being formed into a bale.
  • This elevator apparatus Positioned adjacent the side tubes 69 is an elevator mechanism for raising the strapping mechanism sequentially from one wire track to the next.
  • This elevator apparatus includes a cylinder 125 having a 25 /2 inch stroke to which is slidably connected a piston rod 127.
  • the piston rod at its lower end is connected to a platform 129 upon which is positioned the strapping mechanism (not shown) which includes the knotter, the gripper, the drive roll 79 and the feed roller 81.
  • the platform 129 is stabilized laterally by means of a tube 131 which is slidably positioned about a column 133.
  • the column 133 is fixedly secured to the bottom and top of the chamber 31 so that the tube 131 is restricted to movement in the vertical plane. Hence, platform 129 can move only in a vertical plane.
  • the cylinder 125 initially positions the strapping mechanism so that wire is passed through the lowest wire guides 51'. After the wire has been appropriately knotted and cut, the cylinder 125 raises the platform 129 and hence the strapping mechanism to the second wire guide level 51", and so on until the strapping mechanism has been raised to the uppermost wire guide level. When the wire strapping operation has been completed, the cylinder 125 raises the platform 129 another inch or so to strip the strap from tension pins 106. The ram retracts, the gate raises and the outboard tension pins 103 release the straps. The bale is then ready to be ejected from the chamber.
  • the bale is initially ejected by means of a new charge of waste paper forcing the bale outwardly.
  • a limit switch is energized for actuating the ejector mechanism.
  • FIG. 8 is a section view of the ejector mechanism looking inwardly toward the gate 41 and the baling chamber 31 from the outside thereof.
  • the ejector mechanism includes a bale support surface 141 on each side thereof which in its simplest form includes a pair of parallel oriented angles. These angles rest upon a slide support surface 143 which forms the upper surface of ejector base 145.
  • Fixedly secured to each of the ejector base members 145 is an ejector guide 147 which limits the lateral movement of the bale support members 141.
  • a first lever arm weldment 149 Secured to the bale support member on the left side by means of a cap screw is a first lever arm weldment 149 which at its other end is secured to a pin 151.
  • the weldment extends past the pin 151 for a short distance at the end of which is formed a limit pin engaging shoulder 153, as best seen in FIGS. 9 and 10.
  • a second lever arm weldment 155 is provided which is rotatably secured to the right side bale support surface 141 by means of a cap screw 154. This lever arm is secured to the pin 151 at its other end.
  • lever arm weldment 155 Below the lever arm weldment 155 is a lower lever arm weldment 157 which is secured to the cap screw 154 at one end and has the pin 151 extending therethrough proximate the other end. However, this weldment extends past the pin 151 for a short distance and is terminated in a limit pin engaging shoulder 159. As will be seen, limit pin engaging shoulders 153 and 159 limit the movement of the lever arms 157 and 149 when being pulled in a reverse direction. In order to inhibit lateral movement of the pin 151, a pin guide 161 is provided through which the pin 151 moves in a longitudinal direction.
  • FIG. 9 where the ejector mechanism is shown in its initial position.
  • the bale supporting surfaces 141 are shown expanded in a transverse direction so the bale can slide easily onto the surfaces 141.
  • a cylinder and piston and rod assembly 61 is provided for moving the pin 151 in the longitudinal direction.
  • the ejector mechanism is energized by conducting fluid under pressure to the cylinder 61.
  • the piston rod 169 is accordingly forced forward, as illustrated in FIG. 10, which causes the support members 141 to move inwardly toward each other so that the side walls 140 of the bale support members 141 grip the bale.
  • the piston rod 169 acting on the ejector mechanism via pin 151, forces the bale to move outwardly a predetermined distance, such as for example, a distance of 3 or 4 feet.
  • the piston rod is then reciprocated in the opposite direction, thereby opening or separating the bale support members 141 from one another so that the support members 141 and the lever arm weldments 157 and 149 are in the general position shown in FIG. 9. It is in this position that the limit pins 171 and 173 prevent the lever arm weldments 149 and 157 from further rotation so that the piston rod 169, when further retracted, pulls the bale support members 141 back to their initial position.
  • the ejector mechanism is then set for a second cycle.
  • the hydraulic system for operating the various hydraulic piston and cylinder arrangements is of conventional design and the timing of the operation of various hydraulically operated cylinders is as set forth hereinabove in connection with the description of various features of the present invention.
  • a closed chamber baler for forming compressible material into generally rectangular bales and including a hopper and a bale chamber in which said material is compressed and formed into bales, the method comprising the steps of:
  • said forcing step including the step of reciprocating a ram with respect to said hopper and said chamber to force said compressible material from said hopper into said bale chamber,
  • said ejecting step including the steps of gripping said bale, moving said bale outside of said chamber, and releasing said bale after said bale has moved a predetermined distance outside of said chamber.
  • a closed chamber baler for forming bales of compressed material into a generally rectangular form comprising in combination:
  • bale chamber in which said material is compressed and formed into said bales, said bale chamber including side walls and a gate,
  • said means including a ram having a face which forms one end of said compression chamber,
  • a closed chamber baler comprising in combination:
  • bale chamber in which said material is compressed and formed into bales
  • said forcing means including a ram having a substantially flat compression surface, said compression surface forming one wall of said bale chamber after a predetermined quantity of material has been forced into said chamber,
  • cutter means for separating said compressible material partially extending into the path of movement of said ram for said hopper as said ram forces said material into said bale chamber, said cutting including a blade portion positioned on said ram and a complementary diagonally aligned blade positioned on said compression chamber, said blades sliding past one another as said ram forces said material from said hopper into said bale chamber wherein said diagonal alignment of said complementary blade reduces the back pressure on said ram created by said material being cut.
  • bale chamber includes a gate and means for opening said gate after said bale of compressed material is formed.
  • said means for moving said bale outside of said chamber through said opened gate includes said ram forcing a new batch of compressible material into said chamber after said bale is formed, said new batch of material forcing said bale partially out of said chamber through said gate, detector means for detecting when said bale has been forced a predetermined distance out of said chamber, and hydraulic means for moving said gripping means and said bale away from said gate wherein said gate is closed after said bale has been moved past said gate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Basic Packing Technique (AREA)

Abstract

An improved closed chamber baler includes a hopper into which is fed waste paper or other compressible materials to be baled. The material to be baled is forced into a bale chamber by means of a piston operated ram. Means are provided for sequentially guiding a strapping wire about the outside periphery of the compressed material at a plurality of vertically spaced intervals along the compressed material. The strapping wire is tensioned and then twisted or knotted together to form a continuous strap about the compressed material, thereby forming a bale. When the bale has been completely strapped, the compression ram is retracted and an output gate is opened. The bale is then ejected from the bale chamber. While the invention is disclosed in connection with baling waste paper, the closed chamber baler is capable of other uses, e.g., the baling apparatus embodying the principles of the present invention may be found useful in connection with the strapping of a wide variety of other articles to which multiple strapping loops are applied sequentially at vertically spaced intervals thereabout.

Description

United States Patent Thompson 1 Dec. 30, 1975 1 CLOSED CHAMBER BALER Primary Examiner-Billy J. Wilhite [75] Inventor: Wallace M. Thompson, Cordele, Ga. g Agent or Firm cushman Darby &
us man [73] Assignee: Harris Press & Shear Corporation,
Cordele, Ga. 22] Filed- M 16 1974 [57] ABSTRACT ay An improved closed chamber baler includes a hopper PP NOJ 470,572 into which is fed waste paper or other compressible materials to be baled. The material to be baled is 52 US. Cl 100 3; 100/26 100/98 R- forced into a We by means of a P 9 10O/2l8 100/249 ated ram. Means are provided for sequentially guiding 51 Int. (:1. B6 5B 13 20 a Strappmg about the i per'Phery of the [58] Field of Search 100/3, 26,98 R 49 249 Fompressed material at a Plurahty 100/4 intervals along the compressed material. The strapping wire is tensioned and then twisted or knotted together to form a continuous strap about the compressed ma- [56] SEIF E IZ FENTS terial, thereby forming a bale. When the bale has been completely strapped, the compression ram is retracted 1,985,438 l2/l934 Bethel 100/3 and an output gate is opened, The bale is then ejected f iz-" 586 2 from the bale chamben While the invention is dis- 352l'550 7/1970 2: jg z'' g loojn closed in connection with baling waste paper, the 3:528:364 9 1970 Freund I: II 100 3 baler cfipable f i uses the 3,587,448 6/1971 Hemphill 1 100 3 i apparatus embodymg the prmcples of W 3 13 10/1971 Wright et alw 100/3 ent lnvention may be found useful in connection with 3,643,590 2/1972 Aluotto 100/3 x the pp g of a Wide variety of other articles to 3,720,158 3/1973 Sauer et a1 100/26 X which multiple strapping loops are applied sequen- 5/1973 Van Doorn 100/26 UX tially at vertically spaced intervals thereabout. 8/l974 Gilman 100/3 X l ii 10 Claims, 10 Drawing Figures US. Patent Dec.30,1975 She et10f7 3,929,062
US. Patent Dec. 30, 1975 Sheet 2 of7 3,2,062
US. Patent Dec. 30, 1975 Sheet 3 of 7 3,929,Q62
US. Patent Dec.30,1975 Sheet4of7 3,929,062
Sheet 5 of 7 3,929,062
U.S. Patent Dec. 30, 1975 [III III.
US. Patent Dec. 30, 1975 Sheet 6 of7 3,929,062
US. Patent Dec. 30, 1975 Sheet70f7 3,929,062
CLOSED CHAMBER'BALER BACKGROUND OF THE INVENTION This invention broadly relates to a closed chamber baler for baling compressible materials and more specifically is related to a closed chamber baler for-baling compressible materials such as waste paper wherein multiple strapping loops are sequentially applied at vertically spaced intervals about the bale while the bale is under relatively high compression.
Increased quantities of waste materials, such as paper and other shredded materials, can most easily be disposed of by bunching or baling the material so that a relatively large volume of the material is compressed into a relatively small volume for transportation and handling purposes. Typically these waste materials are shredded into fragments which are small in comparison with the overall dimensions of the bale. The bales produced are on the order of several feet square in a transverse direction and between five and six feet long in a longitudinal direction with the bales generally having a rectangular shape. In the past baling machines have been provided which include a hopper, a baling chamber and a ram which is actuated to compress material in the chamber. Accessory equipment, such as strapping, banding and tying devices, have been utilized to form the bale, examples of such strapping devices being disclosed in U.S. Pat. Nos. 2,768,574, 2,827,926, 2,763,297 and 2,853,885.
These prior art baling devices have had a number of drawbacks including the fact that they are of exceedingly complex structure and are not capable of rapidly applying a sequence of bands about the compacted waste material to form a bale. An example of a prior art baling device is illustrated in U.S. Pat. No. 3,528,364 which discloses an apparatus wherein waste material is compressed in a chamber and straps are positioned about the external periphery thereof in sequential order. This patent, however, does not disclose a method or apparatus for sequentially guiding wire about the outside periphery of a bale, binding the wire and then ejecting the bale from the baler. Other baling apparatus has been designed such as disclosed in US. Pat. Nos. 3,720,158 and 3,521,550 wherein bales of cotton are formed by utilizing a sequential bale strapping apparatus. The sequential bale strapping apparatus disclosed in these patents, however, are quite complex and therefore are subject to mechanical failure. In addition, these patents do not disclose a baling apparatus which automatically receives the material to be compressed, forms bales from the compressed material and then automatically ejects the formed bales in a continuous and efficient operation.
It therefore is an object of this invention to provide a closed chamber baler for efficiently and economically forming compressible material into bales.
SHORT STATEMENT OF THE INVENTION Accordingly, this invention relates to a closed chamber baler which includes a hopper into which is fed a compressible material which is to be baled. A piston operated ram forces the material into a bale chamber wherein the material is formed into a bale. When the pressure exerted by the ram against the compressed bale of material reaches a predetermined level, the ram is held in its end of stroke position, and a means is provided for sequentially guiding a plurality of strapping loops about the outside periphery of the compressed material at a plurality of vertically spaced intervals. The strapping wire is tensioned and then tied together to form a continuous strap which extends about the outside periphery of the bale. After the bale has been strapped, the compression ram is retracted to thereby release the pressure on the bale. The gate is raised and the bale is ejected from the chamber. The gate is then lowered and a new bale is formed.
BRIEF DESCRIPTION OF THE DRAWINGS Other objects, features and advantages of the invention will become more fully apparent from the following detailed description of the preferred embodiment, the appended claims and the accompanying drawings in which:
FIG. 1 is a longitudinal center section view taken in elevation of the closed chamber baler of the present invention;
FIG. 2 is a plan view of the bale chamber, wire track and strapper mechanism of the present invention;
FIG. 3 is a fragmentary section view of the wire tracks in the compression ram of the present invention;
FIG. 4 is a section view of the wire track in the compression ram taken along the lines 44 of FIG. 3;
FIG. 5 is a fragmentary plan view of the tension pin arrangement utilized in the present invention;
FIG. 6 is an end view of the tension pin arrangement of FIG. 5;
FIG. 7 is a section view taken along the lines 77 of FIG. 2;
FIG. 8 is an elevation view of the ejector mechanism of the present invention;
FIG. 9 is a plan view of the ejector mechanism of the present invention shown in its normal inactive position; and
FIG. 10 is a plan view of the ejector mechanism in position for grasping and ejecting a bale from the baler of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Refer now to FIG. 1 where there is disclosed a longitudinal center section view taken in elevation of the closed chamber baler of the present invention. A hopper 11 is disclosed into which the material to be baled is dumped. The material may include waste paper or other shredded materials which are compressible or may include an agricultural product such as cotton. However, in the preferred embodiment, the operation of the invention will be discussed in connection with the compression and baling of waste paper. The hopper which, is illustrated, is in the form of a box but which may preferably be in the form of a funnel, leads into a waste material receiving chamber 13. Positioned to one side of chamber 13 is a compression ram 15 having a compression face 17 and a wire track assembly generally designated by the numeral 19. The compression ram 15 is reciprocated within chamber 13 by means of a piston and cylinder arrangement including a cylinder 21 and a piston rod 23. The piston and cylinder arrangement is capable of providing at least a nine foot stroke and for generating an operating pressure of at least 2400 psi. At the top of the compression ram is secured a shearing knife 25 which cooperates with a shearing beam knife 27 which is secured to the compression chamber at the junction of the hopper and the chamber 13. The shearing beam knife 27 is arranged so that its leading edge is formed diagonally with respect to the knife 25 so that the shearing force is sequentially distributed along the knife as the ram 15 passes the shearing beam knife 27. In addition, a horizontal shield plate 29 is provided, which extends across the width of the chamber and is at least as long as the length of the chamber 13 so that when the compression ram 15 is forcing waste paper into the baling chamber 31, waste paper being dumped into the hopper will not fall behind the ram 15.
At the bottom of the compression chamber 13 is an abrasive resistant wear plate 33 which is formed of known abrasive resistant materials. This plate is secured to the base plate 35 of the compression chamber 13. Positioned on the end walls of the hopper 11 is a photodetector system including a light source 37 and a photodetector of conventional design 39 which provide a ram actuating signal when the waste paper in the hopper intercepts the light beam passing from the light source 37 to the detector 39.
The baling chamber 31 includes an output or gate 41 which has a plurality of strapper guides 43 (shown schematically) extending transversely therethrough. The gate 41 is opened by means of a hydraulic cylinder 44 which raises the gate vertically after a bale has been formed in the baling chamber 31. The opposite end of the chamber 31 is normally open, but when material is being compressed therein, the ram compression face 17 forms the second end of the baling chamber 31. The two sides of the baling chamber 31 each includes a plurality of straper wire tracks 71 for guiding the strapper wire about the outside periphery of the material compressed within the chamber. The wire tracks 71 terminate in mating guide tracks in the gate 41 and in the ram 15 each of which, as aforementioned, having parallel wire tracks extending from one side of the chamber to the other.
Also, as will be more fully explained hereinbelow, the process of strapping the wire about the compressed material takes place in sequential steps. Thus, when an appropriate quantity of compressible material has been compressed within the strapping or baling chamber 31, a first strapping wire is guided about the periphery of the compressed material through lowest level wire tracks including the elevator wire tracks 52 and 53, the lower curved wire tracks 71, the lower ram track 19, the straight wire track 51 and the lower gate wire track 43'. After the wire has been tensioned about the material and tied, a strapper elevator 129 which includes the strapper elevator cylinder 55, raises the strapping mechanism (not shown) to the next level, thereby stripping the wire strap from elevator tension pins 106. The wire is again passed around the outside periphery of the compressed material through the wire tracks which include curved tracks 71", ram wire track 19", elevator wire tracks 52 and 53, straight wire track 51" and gate wire track 43" until the wire has completely surrounded the compressed material. The wire is then tensioned and tied, and then the strapper is moved to the next succeeding level and so on. After all of the wires have been strapped about the compressed material and appropriately tied, the strapper elevator raises a predetermined distance, preferably on the order of an inch, to strip the top wire strap from elevator tension pins 106. The ram retracts to reduce bale friction force on gate, the gate raises with respect to the baling chamber 31 and straps are released from outboard tension pins.
More waste paper is then dropped from hopper 11 into chamber 13 and the compression ram 15 again forces the paper into the baling chamber 31. The addition of waste paper to the chamber 31 forces the previously formed bale out through gate 41. After the formed bale has been pushed a predetermined distance out through the gate 41, such as for example, two feet, a limit switch 59 is actuated which energizes the bale ejector system. Thus, hydraulic fluid under pressure is coupled to the bale ejector cylinder 61 which, as will be explained, causes the ejector to grasp the bale and eject it from the baling chamber 31. When the ejection process has been completed, the gate 41 is returned to its closed position and the compression ram 15 continues to force waste paper into the baling chamber 31 until the pressure of the hydraulic fluid in the rear of the cylinder 21 is at least 1800 psi at the end of the compression stroke. When this occurs, the ram 15 remains fixed at its end of stroke position so that the compression face 17 forms an end wall of the baling chamber 31. The strapping process is again repeated and at the conclusion thereof, the gate 41 is raised and the ram 15 retracted to begin another cycle.
Refer now to FIG. 2 which is a plan view of strapper arrangement including a partial section of the baling chamber 31 of the baler mechanism. The baling chamber is closed at the bottom thereof by means of a floor 63 which may be of any suitable type such as for exam ple, a steel plate. The chamber includes a first longitudinal side wall 65. On the opposite side of the chamber is formed a second side wall 69. At each corner of the chamber is a curved wire track 71, each of which is in the form of a quarter circle. These curved wire tracks are fixedly secured to the baling chamber and to vertical columns 73. At the output end of the chamber is a gate 41 which includes a plurality of wire guide tracks therein which mate with the curved wire tracks 71. The gate 41 is movable in a vertical direction by means of a piston and cylinder arrangement 44 with the gate being guided vertically by means of gate guides 75 positioned to each side of the gate. At the opposite end of the chamber is an opening 77 into which the ram 15 forces the material to be compressed and baled. When the appropriate amount of material has been forced into the chamber 31, as is determined by the pressure at the rear of the cylinder 21, the compression face 17 of the ram is held in the position illustrated in the figure. The ram face, as aforementioned, has a plurality of parallel wire tracks therein which mate with the curved wire tracks 71.
To the one side of the baling chamber 31 is positioned a strapping mechanism 30. The strapping mechanism includes a drive roller 79 and a feed roller 81, wherein the rollers feed wire from a spool (not shown) to the wire tracks which surround the external periphery of the baling chamber 31. Thus, for example, when a strap is being positioned around the external periphery of the baling chamber at the lowest wire track level, the rollers 79 and 81 grip and feed a suitable wire 87, such as for example, a 12 gauge wire, from the spool (not shown) through a gripping and twisting machine 83 and then through elevator wire track 52, the curved wire track 71, the wire track in gate 41, the curved wire track 71, the wire track 51, the curved wire track 71, the wire track in the ram 15, the curved wire track 71, the elevator wire track 53 and then to the gripping and twisting machine 83. When the free end of the wire is received in the gripping and twisting maching 83, a
cylinder 85 is energized which grips the end of the wire. When this occurs, the drive roller 79 is reversed so that the wire in the tracks extending about the outside periphery of the chamber is tensioned. This pulls the wire 87 from the guide tracks to the position shown by the solid lines of the figure. As illustrated, the wire is forced against tension pins 103 and 106 positioned on the outside periphery of the baling chamber 31and against the compressed material at each end of the chamber. At this time the drive roller is stopped and the gripping and twisting machine 83 twists the wire upon itself to form a completed loop. The wire is then cut and the strapping mechanism is raised by means of the elevator cylinder 55 to the next strapping level, stripping the strap off tension pins 106. The specific strapping mechanism 83 is of conventional design. One such strapping device is commercially available from the US. Steel Supply Co., Division of United States Steel Corporation. Thus, in the present application the disclosure of the strapping mechanism is more or less schematic in form. After all the straps of wire are in position about the bale of compressed material, the ram retracts, gate 41 raises and the tensioned straps are released from the tension pins 103, as will be more fully explained hereinbelow. The wires 87 then grip and retain the compressed material in the form of a bale. The bale is then pushed out through the outlet formed by the opened gate 41 by waste material being forced into the chamber 31 by the ram 15. After the bale has been pushed outwardly a preset distance, an ejector mechanism to be described pulls the bale completely out of the chamber and the gate 41 is then closed so that another bale can be formed.
Refer not to FIGS. 3 and 4 which illustrate the arrangement of the wire tracks in the ram 15. The ram includes a compression face 17 which has a plurality of plates 18 fixedly secured to the ram by a suitable means known in the art, such as for example, a weld or a nut and bolt arrangement 20. The plates 18 are spaced with respect to the rear support base 22 of the ram by means of a plurality of ribs 24. The plates 18'are not joined contiguously to one another but are spaced to permit the strapping wire 87 to pass between the plates to the position illustrated adjacent the dotted lines in FIG. 3. At the bottom of the baler is a bottom support plate 35 upon which is secured an abrasive resistant wear plate 33 which is formed of a conventional known abrasive resistant material. This plate is for the purpose of increasing the lifetime of the bottom surface of the baler and prevents wear and tear due to the sliding of the ram bottom thereon.
At spaced intervals of for example, 8 to 12 inches, are positioned wire tracks 19, 19", etc. These tracks include a first fixed plate 91 which is fixedly secured to the bracket 26 and a second movable guide plate 93 which has a groove 95 extending therethrough. The movable guide 93 is biased into contact with the fixed plate 91 by means of a spring 97. The wire 87 is initially threaded through the groove 95 and remains therein until the tensioning mechanism of the strapper pulls the wire 87 of the groove 95 against the bias of spring 97 and through the slot 96 separating the plates 18. After the wire has been tensioned, the wire is positioned against the compressed material 10, as illustrated in FIG. 3 by the dotted lines.
Referring to FIG. 4, the curved track 71 is shown having the wire 87 passing therethrough in one of its guide tracks. The wire is guided into the wire track 19 of the ram 15 by means of a funnel-shaped entry 98. The spring 97 is shown forcing the guide plate 93 against the fixed guide support 91. The movable plate 93 is shown separated from the ram compression face plate 18 by a relatively short distance so that when the wire is tensioned, the wire is pulled from the groove 95 and from the groove in the curved track 71, past the ram compression face to the position illustrated adjacent dotted lines in FIG. 3 and solid lines in FIG. 2.
Refer now to FIGS. 5 and 6 which illustrate the tension pin arrangement of the closed chamber baler of the present invention. While only one specific tension pin arrangement is disclosed in FIGS. 5 and 6, it should be understood that each of the tension pins operates in a similar fashion and is of similar design. The curved track 71 is shown fixedly secured to a vertical support column 73. Positioned above the wire track 71 is a stripping plate 101 which also is fixedly secured to the column 73. Positioned in front of the stripping plate 101 and the wire track 71 is a tension pin 103 which is rotatably secured to a movable bracket 105 which in turn is fixedly secured to a movable vertical support column 67. The movable support column 67 is raised and lowered with respect to the column 73 and the stripping plate 101 by means of a cylinder shown in FIG. 7. Positioned between the pin 103 and the column 67 is a wire track 51 having a fixed base plate 109 fixedly secured to a support bracket 111 which in turn is secured to the column 67. A guide plate 113 is movably positioned with respect to the plate 109 and is biased thereagainst by means of a spring (not shown).
In operation the wire 87 is threaded through a groove 95 in the movable guide plate 113. After the wire has passed completely about the baling chamber through the groove 95 in the wire tracks, the wire is tensioned, thereby forcing the wire out of the groove 95 and against the tension pin 103. In forcing the wire 87 of the groove 95, the movable guide plate 113 is raised against the bias of the spring so that the wire can slip between the plates 109 and 113. The wire then temporarily remains positioned against the tension pin 103. After the wire has been cut and twisted by the knotting mechanism 83, the wire 87 remains positioned against the tension pin 103 but is pressed against the bale of compressed waste material at the ends of the bale since there are no tension pins associated with the gate 41 and the ram 15. After each of the straps has been secured about the bale, the tension pins 103 are raised by means of the cylinder 100 which raises the column 67. The wire 87 will then be stripped from the pin by the stripping plate 101, thereby forcing the wire downwardly with respect to the pin 103 and inwardly against the bale.
Refer now to FIG. 7 which is a section view of the baling chamber taken along the lines 77 of FIG. 2. As illustrated, the base of the chamber includes a floor 63 upon which the bale of compressed material rests. At the top of the chamber is a roof 64 for preventing the vertical expansion of the compacted material as it is compressed within the chamber. Fixed wire tracks designated by the numerals 71 and 51 are shown having a plurality, e.g., four, of wire guide grooves 95- therein with each of the guide grooves 95 including at least two wire release mechanisms along the longitudinal length thereof including a tension pin 103 of the type illustrated in FIGS. 5 and 6. A piston and cylinder arrangement is provided wherein one end of the cylinder 100 is secured to an upper mount 102. The piston rod 104 is secured by an appropriate mechanical means to the column 67. The piston rod travels within the cylinder with a H inch stroke so that when fluid under pressure is coupled to the lower part of the cylinder 100, the pins 103 are raised 1 /2 inches with respect to the stripping plate 101 to thereby strip the strapping wire 87 from the pins 103. Support plates 1 11 are provided for preventing the wire 87 once tensioned out of track from immediately sliding off the end of pin 103.
In order to provide a bearing surface on the side of the baling chamber 31, three parallel aligned tubes 65 are provided which are fixedly secured to the gate column forward and compression chamber aft. These tubes are separated from one another by a relatively small distance on the "order of l or 2 inches to thereby provide adequate room for the wire 87 to slide therebetween and against the material being compressed and formed into a bale.
On the opposite side of the chamber 31 is a second set of wire tracks 71 and guide rails which are vertically spaced with respect to one another. The tensioning pins 106 on this side of the baling chamber 31 are fixed to the elevator to thereby strip the wire therefrom after each wire is appropriately knotted and the elevator raised. Tubes 69 form a compacting surface for the chamber 31 against which the waste material being formed into a bale is contained. The tubes 69 are separated from one another by a relatively small distance on the order of one or two inches to permit the wire 87 to contact the material being formed into a bale.
Positioned adjacent the side tubes 69 is an elevator mechanism for raising the strapping mechanism sequentially from one wire track to the next. This elevator apparatus includes a cylinder 125 having a 25 /2 inch stroke to which is slidably connected a piston rod 127. The piston rod at its lower end is connected to a platform 129 upon which is positioned the strapping mechanism (not shown) which includes the knotter, the gripper, the drive roll 79 and the feed roller 81. The platform 129 is stabilized laterally by means of a tube 131 which is slidably positioned about a column 133. The column 133 is fixedly secured to the bottom and top of the chamber 31 so that the tube 131 is restricted to movement in the vertical plane. Hence, platform 129 can move only in a vertical plane.
In operation, the cylinder 125 initially positions the strapping mechanism so that wire is passed through the lowest wire guides 51'. After the wire has been appropriately knotted and cut, the cylinder 125 raises the platform 129 and hence the strapping mechanism to the second wire guide level 51", and so on until the strapping mechanism has been raised to the uppermost wire guide level. When the wire strapping operation has been completed, the cylinder 125 raises the platform 129 another inch or so to strip the strap from tension pins 106. The ram retracts, the gate raises and the outboard tension pins 103 release the straps. The bale is then ready to be ejected from the chamber.
As aforementioned, the bale is initially ejected by means of a new charge of waste paper forcing the bale outwardly. However, after the bale has been ejected a predetermined distance through the gate, such as for example, two feet, a limit switch is energized for actuating the ejector mechanism.
Refer now to FIGS. 8-10 which illustrate the operation of the ejector mechanism. FIG. 8 is a section view of the ejector mechanism looking inwardly toward the gate 41 and the baling chamber 31 from the outside thereof. The ejector mechanism includes a bale support surface 141 on each side thereof which in its simplest form includes a pair of parallel oriented angles. These angles rest upon a slide support surface 143 which forms the upper surface of ejector base 145. Fixedly secured to each of the ejector base members 145 is an ejector guide 147 which limits the lateral movement of the bale support members 141. Secured to the bale support member on the left side by means of a cap screw is a first lever arm weldment 149 which at its other end is secured to a pin 151. The weldment extends past the pin 151 for a short distance at the end of which is formed a limit pin engaging shoulder 153, as best seen in FIGS. 9 and 10. At the right side, a second lever arm weldment 155 is provided which is rotatably secured to the right side bale support surface 141 by means of a cap screw 154. This lever arm is secured to the pin 151 at its other end. Below the lever arm weldment 155 is a lower lever arm weldment 157 which is secured to the cap screw 154 at one end and has the pin 151 extending therethrough proximate the other end. However, this weldment extends past the pin 151 for a short distance and is terminated in a limit pin engaging shoulder 159. As will be seen, limit pin engaging shoulders 153 and 159 limit the movement of the lever arms 157 and 149 when being pulled in a reverse direction. In order to inhibit lateral movement of the pin 151, a pin guide 161 is provided through which the pin 151 moves in a longitudinal direction.
Refer now to FIG. 9 where the ejector mechanism is shown in its initial position. The bale supporting surfaces 141 are shown expanded in a transverse direction so the bale can slide easily onto the surfaces 141. A cylinder and piston and rod assembly 61 is provided for moving the pin 151 in the longitudinal direction. After the bale has been moved onto the supporting surfaces 141 to a predetermined distance; the ejector mechanism is energized by conducting fluid under pressure to the cylinder 61. The piston rod 169 is accordingly forced forward, as illustrated in FIG. 10, which causes the support members 141 to move inwardly toward each other so that the side walls 140 of the bale support members 141 grip the bale. After the members 141 grip the bale, they cannot move inwardly any further, and accordingly, the piston rod 169, acting on the ejector mechanism via pin 151, forces the bale to move outwardly a predetermined distance, such as for example, a distance of 3 or 4 feet. The piston rod is then reciprocated in the opposite direction, thereby opening or separating the bale support members 141 from one another so that the support members 141 and the lever arm weldments 157 and 149 are in the general position shown in FIG. 9. It is in this position that the limit pins 171 and 173 prevent the lever arm weldments 149 and 157 from further rotation so that the piston rod 169, when further retracted, pulls the bale support members 141 back to their initial position. The ejector mechanism is then set for a second cycle.
The hydraulic system for operating the various hydraulic piston and cylinder arrangements is of conventional design and the timing of the operation of various hydraulically operated cylinders is as set forth hereinabove in connection with the description of various features of the present invention.
While applicants invention has been disclosed in connection with a preferred embodiment thereof, it should be understood that there may be other obvious variations of applicants invention which fall within the 9 spirit and scope of the invention as defined by the appended claims.
What is claimed is:
I. In a closed chamber baler for forming compressible material into generally rectangular bales and including a hopper and a bale chamber in which said material is compressed and formed into bales, the method comprising the steps of:
feeding said compressible material into said hopper,
forcing said material from said hopper into said bale chamber, said forcing step including the step of reciprocating a ram with respect to said hopper and said chamber to force said compressible material from said hopper into said bale chamber,
guiding strapping wires about the external periphery of said bale chamber after a predetermined quantity of material has been forced into said chamber, said wires being positioned about the outside of said chamber at a plurality of vertically spaced intervals,
tensioning said strapping wires about said compressed material,
releasing said strapping wires to engage said compressed material to thereby form a bale, and
ejecting said bale from said bale chamber, said ejecting step including the steps of gripping said bale, moving said bale outside of said chamber, and releasing said bale after said bale has moved a predetermined distance outside of said chamber.
2. A closed chamber baler for forming bales of compressed material into a generally rectangular form comprising in combination:
a hopper into which compressible material is fed,
a bale chamber in which said material is compressed and formed into said bales, said bale chamber including side walls and a gate,
means for forcing said material from said hopper into said bale chamber, said means including a ram having a face which forms one end of said compression chamber,
means for guiding strapping wires about the external periphery of said bale chamber after a predetermined quantity of material has been forced into said chamber, said wires being positioned about the outside of said chamber at a plurality of vertically spaced intervals,
means for tensioning said strapping wires about said compressed material,
means for releasing said strapping wires to engage said compressed material proximate said ram and said gate and for retaining said strapping wires from engaging said compressed material proximate to side walls of said compression chamber to thereby free said gate and said ram for movement with respect to said compressed material, and
means for ejecting said bale from said bale chamber.
3. A closed chamber baler comprising in combination:
a hopper into which compressible material is fed,
a bale chamber in which said material is compressed and formed into bales,
means for forcing said material from said hopper into said bale chamber, said forcing means including a ram having a substantially flat compression surface, said compression surface forming one wall of said bale chamber after a predetermined quantity of material has been forced into said chamber,
LII
means for reciprocating said ram to force said compressible material from said hopper into said bale chamber,
means for holding said ram at the end of its stroke when saidpredetermined quantity of material has been forced into said bale chamber,
means for guiding strapping wires about the periphery of said bale chamber after said predetermined quantity of material has been forced into said chamber, said wires being positioned about the outside of said chamber at a plurality of vertically spaced intervals,
means for tensioning said strapping wires about said compressed material,
means for releasing said strapping wires to engage said compressed material to thereby form a bale, and
means for ejecting said bale from said bale chamber.
4. The closed chamber baler of claim 3 further com prising:
cutter means for separating said compressible material partially extending into the path of movement of said ram for said hopper as said ram forces said material into said bale chamber, said cutting including a blade portion positioned on said ram and a complementary diagonally aligned blade positioned on said compression chamber, said blades sliding past one another as said ram forces said material from said hopper into said bale chamber wherein said diagonal alignment of said complementary blade reduces the back pressure on said ram created by said material being cut.
5. The closed chamber baler of claim 3 wherein said bale chamber includes a gate and means for opening said gate after said bale of compressed material is formed.
6. The closed chamber baler of claim 5 wherein said means for guiding a plurality of wire straps about said compression chamber comprises:
a plurality of parallel aligned wire guide tracks extending along the sides of said bale chamber at vertically spaced intervals,
a corresponding plurality of parallel wire guide tracks formed in said ram and in said gate, said guide tracks in said ram and gate being-aligned with said guide tracks along the sides of said chamber to thereby form a plurality of continuous vertically spaced wire tracks extending about said chamber, and
means for forcing the free end of said wire straps along said guide tracks about said chamber.
7. The closed chamber baler of claim 6 wherein said means for guiding a plurality of wire straps about said bale chamber further comprises:
means positioned proximate said wire guide tracks of said side walls for retaining said wire straps from contact with said bale of compressed material along the side walls of the outside periphery of said bale chamber,
means for releasing said wire straps from said wire guide tracks when said wire straps are tensioned, the portion of said wire straps extending along said side walls of said chamber being retained from contact with said compressed material by said retaining means, and
means for disabling said retaining means after all of said plurality of wires have been tensioned about said bale chamber, said wires thereby gripping and holding said compressed material in the form of a bale. 8. The closed chamber baler of claim 7 wherein said wire straps are sequentially forced about said chamber in said wire guide tracks.
9. The closed chamber baler of claim 8 wherein said ejector means includes:
means for gripping said bale of compressed material,
means for moving said bale outside of said chamber 10 through said opening gate, and means for releasing said bale after said bale has moved a predetermined distance outside of said chamber.
10. The closed chamber baler of claim 9, wherein said means for moving said bale outside of said chamber through said opened gate includes said ram forcing a new batch of compressible material into said chamber after said bale is formed, said new batch of material forcing said bale partially out of said chamber through said gate, detector means for detecting when said bale has been forced a predetermined distance out of said chamber, and hydraulic means for moving said gripping means and said bale away from said gate wherein said gate is closed after said bale has been moved past said gate.

Claims (10)

1. In a closed chamber baler for forming compressible material into generally rectangular bales and including a hopper and a bale chamber in which said material is compressed and formed into bales, the method comprising the steps of: feeding said compressible material into said hopper, forcing said material from said hopper into said bale chamber, said forcing step including the step of reciprocating a ram with respect to said hopper and said chamber to force said compressible material from said hopper into said bale chamber, guiding strapping wires about the external periphery of said bale chamber after a predetermined quantity of material has been forced into said chamber, said wires being positioned about the outside of said chamber at a plurality of vertically spaced intervals, tensioning said strapping wires about said compressed material, releasing said strapping wires to engage said compressed material to thereby form a bale, and ejecting said bale from said bale chamber, said ejecting step including the steps of gripping said bale, moving said bale outside of said chamber, and releasing said bale after said bale has moved a predetermined distance outside of said chamber.
2. A closed chamber baler for forming bales of compressed material into a generally rectangular form comprising in combination: a hopper into which compressible material is fed, a bale chamber in which said material is compressed and formed into said bales, said bale chamber including side walls and a gate, means for forcing said material from said hopper into said bale chaMber, said means including a ram having a face which forms one end of said compression chamber, means for guiding strapping wires about the external periphery of said bale chamber after a predetermined quantity of material has been forced into said chamber, said wires being positioned about the outside of said chamber at a plurality of vertically spaced intervals, means for tensioning said strapping wires about said compressed material, means for releasing said strapping wires to engage said compressed material proximate said ram and said gate and for retaining said strapping wires from engaging said compressed material proximate to side walls of said compression chamber to thereby free said gate and said ram for movement with respect to said compressed material, and means for ejecting said bale from said bale chamber.
3. A closed chamber baler comprising in combination: a hopper into which compressible material is fed, a bale chamber in which said material is compressed and formed into bales, means for forcing said material from said hopper into said bale chamber, said forcing means including a ram having a substantially flat compression surface, said compression surface forming one wall of said bale chamber after a predetermined quantity of material has been forced into said chamber, means for reciprocating said ram to force said compressible material from said hopper into said bale chamber, means for holding said ram at the end of its stroke when said predetermined quantity of material has been forced into said bale chamber, means for guiding strapping wires about the periphery of said bale chamber after said predetermined quantity of material has been forced into said chamber, said wires being positioned about the outside of said chamber at a plurality of vertically spaced intervals, means for tensioning said strapping wires about said compressed material, means for releasing said strapping wires to engage said compressed material to thereby form a bale, and means for ejecting said bale from said bale chamber.
4. The closed chamber baler of claim 3 further comprising: cutter means for separating said compressible material partially extending into the path of movement of said ram for said hopper as said ram forces said material into said bale chamber, said cutting including a blade portion positioned on said ram and a complementary diagonally aligned blade positioned on said compression chamber, said blades sliding past one another as said ram forces said material from said hopper into said bale chamber wherein said diagonal alignment of said complementary blade reduces the back pressure on said ram created by said material being cut.
5. The closed chamber baler of claim 3 wherein said bale chamber includes a gate and means for opening said gate after said bale of compressed material is formed.
6. The closed chamber baler of claim 5 wherein said means for guiding a plurality of wire straps about said compression chamber comprises: a plurality of parallel aligned wire guide tracks extending along the sides of said bale chamber at vertically spaced intervals, a corresponding plurality of parallel wire guide tracks formed in said ram and in said gate, said guide tracks in said ram and gate being aligned with said guide tracks along the sides of said chamber to thereby form a plurality of continuous vertically spaced wire tracks extending about said chamber, and means for forcing the free end of said wire straps along said guide tracks about said chamber.
7. The closed chamber baler of claim 6 wherein said means for guiding a plurality of wire straps about said bale chamber further comprises: means positioned proximate said wire guide tracks of said side walls for retaining said wire straps from contact with said bale of compressed material along the side walls of the outside periphery of said bale chamber, means for releasing said wire straps from said wire guide traCks when said wire straps are tensioned, the portion of said wire straps extending along said side walls of said chamber being retained from contact with said compressed material by said retaining means, and means for disabling said retaining means after all of said plurality of wires have been tensioned about said bale chamber, said wires thereby gripping and holding said compressed material in the form of a bale.
8. The closed chamber baler of claim 7 wherein said wire straps are sequentially forced about said chamber in said wire guide tracks.
9. The closed chamber baler of claim 8 wherein said ejector means includes: means for gripping said bale of compressed material, means for moving said bale outside of said chamber through said opening gate, and means for releasing said bale after said bale has moved a predetermined distance outside of said chamber.
10. The closed chamber baler of claim 9, wherein said means for moving said bale outside of said chamber through said opened gate includes said ram forcing a new batch of compressible material into said chamber after said bale is formed, said new batch of material forcing said bale partially out of said chamber through said gate, detector means for detecting when said bale has been forced a predetermined distance out of said chamber, and hydraulic means for moving said gripping means and said bale away from said gate wherein said gate is closed after said bale has been moved past said gate.
US470572A 1974-05-16 1974-05-16 Closed chamber baler Expired - Lifetime US3929062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US470572A US3929062A (en) 1974-05-16 1974-05-16 Closed chamber baler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US470572A US3929062A (en) 1974-05-16 1974-05-16 Closed chamber baler

Publications (1)

Publication Number Publication Date
US3929062A true US3929062A (en) 1975-12-30

Family

ID=23868140

Family Applications (1)

Application Number Title Priority Date Filing Date
US470572A Expired - Lifetime US3929062A (en) 1974-05-16 1974-05-16 Closed chamber baler

Country Status (1)

Country Link
US (1) US3929062A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4018146A (en) * 1976-04-16 1977-04-19 Evans Elferd L Strap snubber horn
US4024805A (en) * 1974-06-12 1977-05-24 Botalam Machine for compacting and tying coils
US4108061A (en) * 1977-01-24 1978-08-22 Simplimatic Engineering Co. Palletizer with tier sheet inserter and banding means
US4476779A (en) * 1978-10-03 1984-10-16 Tezuka Kosan Kabushiki Kaisha Compression bundling apparatus
US4718336A (en) * 1986-10-22 1988-01-12 Cives Corp. Modular automatic bale tier
US4991498A (en) * 1990-01-16 1991-02-12 Mccurdy Harold L Leaf baler
EP0562312A2 (en) * 1992-03-26 1993-09-29 Marathon Equipment Company Horizontal baler and method
US5363758A (en) * 1992-02-08 1994-11-15 Harris Waste Management Group, Inc. Baler for polystyrene material
US9339982B2 (en) 2010-12-16 2016-05-17 Sonoco Development Inc. Waste paper rebaler
US11623775B1 (en) 2022-02-15 2023-04-11 Accent Wire Holdings Llc Multiple strapping device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1985438A (en) * 1933-03-15 1934-12-25 Bethel Maywood Cotton baling machine
US2768574A (en) * 1952-04-15 1956-10-30 American Baler Co Automatic baler and banding mechanism therefor
US2920553A (en) * 1955-12-10 1960-01-12 Andriessen Tech Nv Apparatus for bundling a pile of articles, such as letters, newspapers, documents and the like
US3521550A (en) * 1968-09-25 1970-07-21 Lummus Cotton Gin Co Bale strapping apparatus
US3528364A (en) * 1968-07-25 1970-09-15 Munro Systems Corp Bale tying method and apparatus
US3587448A (en) * 1968-07-26 1971-06-28 Concentric Eng Co Method of baling material
US3613556A (en) * 1970-04-22 1971-10-19 American Hoist & Derrick Co Apparatus for horizontal baling
US3643590A (en) * 1970-09-29 1972-02-22 Aluotto Antonio Vertical-horizontal baling press
US3720158A (en) * 1971-10-18 1973-03-13 Signode Corp Bale strapping apparatus
US3733769A (en) * 1971-12-29 1973-05-22 Lummus Industries Process of wrapping and strapping bales of fibers
US3827349A (en) * 1972-04-28 1974-08-06 W Gilman Machine for conditioning waste material for recycling

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1985438A (en) * 1933-03-15 1934-12-25 Bethel Maywood Cotton baling machine
US2768574A (en) * 1952-04-15 1956-10-30 American Baler Co Automatic baler and banding mechanism therefor
US2920553A (en) * 1955-12-10 1960-01-12 Andriessen Tech Nv Apparatus for bundling a pile of articles, such as letters, newspapers, documents and the like
US3528364A (en) * 1968-07-25 1970-09-15 Munro Systems Corp Bale tying method and apparatus
US3587448A (en) * 1968-07-26 1971-06-28 Concentric Eng Co Method of baling material
US3521550A (en) * 1968-09-25 1970-07-21 Lummus Cotton Gin Co Bale strapping apparatus
US3613556A (en) * 1970-04-22 1971-10-19 American Hoist & Derrick Co Apparatus for horizontal baling
US3643590A (en) * 1970-09-29 1972-02-22 Aluotto Antonio Vertical-horizontal baling press
US3720158A (en) * 1971-10-18 1973-03-13 Signode Corp Bale strapping apparatus
US3733769A (en) * 1971-12-29 1973-05-22 Lummus Industries Process of wrapping and strapping bales of fibers
US3827349A (en) * 1972-04-28 1974-08-06 W Gilman Machine for conditioning waste material for recycling

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024805A (en) * 1974-06-12 1977-05-24 Botalam Machine for compacting and tying coils
US4018146A (en) * 1976-04-16 1977-04-19 Evans Elferd L Strap snubber horn
US4108061A (en) * 1977-01-24 1978-08-22 Simplimatic Engineering Co. Palletizer with tier sheet inserter and banding means
US4476779A (en) * 1978-10-03 1984-10-16 Tezuka Kosan Kabushiki Kaisha Compression bundling apparatus
US4718336A (en) * 1986-10-22 1988-01-12 Cives Corp. Modular automatic bale tier
US4991498A (en) * 1990-01-16 1991-02-12 Mccurdy Harold L Leaf baler
US5363758A (en) * 1992-02-08 1994-11-15 Harris Waste Management Group, Inc. Baler for polystyrene material
EP0562312A3 (en) * 1992-03-26 1994-03-30 Marathon Equipment Co
US5353698A (en) * 1992-03-26 1994-10-11 Marathon Equipment Company Method for compacting material using a horizontal baler with movable bottom support ejector
EP0562312A2 (en) * 1992-03-26 1993-09-29 Marathon Equipment Company Horizontal baler and method
US9339982B2 (en) 2010-12-16 2016-05-17 Sonoco Development Inc. Waste paper rebaler
US10245800B2 (en) 2010-12-16 2019-04-02 Sonoco Development, Inc. Waste paper rebaler
US11623775B1 (en) 2022-02-15 2023-04-11 Accent Wire Holdings Llc Multiple strapping device

Similar Documents

Publication Publication Date Title
US3999476A (en) Closed chamber baler
US4158994A (en) Method for recompacting fibrous materials
CA2089911C (en) Horizontal baler and method
US3834297A (en) Bale strapping system
US3024719A (en) Apparatus for baling
US7690297B1 (en) Baler tie feed apparatus
US3613556A (en) Apparatus for horizontal baling
US4391186A (en) Cotton press
US3929062A (en) Closed chamber baler
CA1087028A (en) Baler for unshredded material
US5325770A (en) Apparatus and method for baling cut fibers and product
US3528364A (en) Bale tying method and apparatus
CH637342A5 (en) METHOD AND DEVICE FOR THE AUTOMATIC FILLING OF BAGS IN A FILLING STATION.
US4125068A (en) Baling presses for the production of bound bales
US3789751A (en) Bale tying device
US4324176A (en) Tow baling
US4718336A (en) Modular automatic bale tier
EP0536781A2 (en) Baler machine and method of baling
US4711078A (en) Baler and process for making bales or for operating the baler
GB986607A (en) Improved bundle strapping means
US3515055A (en) Method for applying straps to packages of compressed material
US3179038A (en) Wire tying machine
US3942429A (en) Method and apparatus for forming bales
US4102259A (en) Vertical closed chamber baler
GB2559155B (en) Bale press

Legal Events

Date Code Title Description
AS Assignment

Owner name: CONTINENTAL BANK N.A.

Free format text: SECURITY INTEREST;ASSIGNOR:HARRIS WASTE MANAGEMENT GROUP INC., THE, A CORP. OF MN;REEL/FRAME:005891/0795

Effective date: 19911023

Owner name: COTINENTAL BANK N.A.

Free format text: SECURITY INTEREST;ASSIGNOR:HARRIS WASTE MANAGEMENT GROUP INC., THE, A CORP. OF MN;REEL/FRAME:005891/0829

Effective date: 19911023

AS Assignment

Owner name: SANWA BUSINESS CREDIT CORPORATION, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNOR:HARRIS WASTE MANAGEMENT GROUP, INC., THE;REEL/FRAME:007297/0286

Effective date: 19940930

Owner name: HARRIS WASTE MANAGEMENT GROUP, INC., THE, CALIFORN

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA;REEL/FRAME:007297/0274

Effective date: 19940929

AS Assignment

Owner name: HARRIS WASTE MANAGEMENT GROUP, INC., GEORGIA

Free format text: RELEASE AND REASSIGNMENT OF A CONTINUING SECURITY INTEREST AND COLLATERAL ASSIGNMENT OF PATENTS, TRADEMARKS, COPYRIGHTS AND LICENSES;ASSIGNOR:SANWA BUSINESS CREDIT CORPORATION;REEL/FRAME:011333/0525

Effective date: 19950608