US3917917A - Keyboard pushbutton switch assembly having multilayer contact and circuit structure - Google Patents
Keyboard pushbutton switch assembly having multilayer contact and circuit structure Download PDFInfo
- Publication number
- US3917917A US3917917A US499600A US49960074A US3917917A US 3917917 A US3917917 A US 3917917A US 499600 A US499600 A US 499600A US 49960074 A US49960074 A US 49960074A US 3917917 A US3917917 A US 3917917A
- Authority
- US
- United States
- Prior art keywords
- printed circuit
- push
- base board
- contact
- sheets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000000994 depressogenic effect Effects 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 7
- 230000000712 assembly Effects 0.000 claims description 33
- 238000000429 assembly Methods 0.000 claims description 33
- 238000005452 bending Methods 0.000 claims description 3
- 230000000149 penetrating effect Effects 0.000 claims description 2
- 230000000881 depressing effect Effects 0.000 abstract description 4
- 229920002799 BoPET Polymers 0.000 description 2
- 239000005041 Mylar™ Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000088 plastic resin Substances 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- IJJWOSAXNHWBPR-HUBLWGQQSA-N 5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]-n-(6-hydrazinyl-6-oxohexyl)pentanamide Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)NCCCCCC(=O)NN)SC[C@@H]21 IJJWOSAXNHWBPR-HUBLWGQQSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002991 molded plastic Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H13/00—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
- H01H13/70—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
- H01H13/78—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites
- H01H13/807—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites characterised by the spatial arrangement of the contact sites, e.g. superimposed sites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H13/00—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
- H01H13/70—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
- H01H13/702—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard with contacts carried by or formed from layers in a multilayer structure, e.g. membrane switches
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H13/00—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
- H01H13/70—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
- H01H13/78—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites
- H01H13/785—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by the contacts or the contact sites characterised by the material of the contacts, e.g. conductive polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2201/00—Contacts
- H01H2201/022—Material
- H01H2201/026—Material non precious
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2203/00—Form of contacts
- H01H2203/02—Interspersed fingers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2215/00—Tactile feedback
- H01H2215/034—Separate snap action
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2223/00—Casings
- H01H2223/03—Separate key housing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2223/00—Casings
- H01H2223/034—Bezel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2225/00—Switch site location
- H01H2225/002—Switch site location superimposed
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2229/00—Manufacturing
- H01H2229/024—Packing between substrate and membrane
- H01H2229/032—Screw
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2229/00—Manufacturing
- H01H2229/034—Positioning of layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2233/00—Key modules
- H01H2233/01—Key modules mounted on laykey
- H01H2233/014—Snap coupling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2233/00—Key modules
- H01H2233/05—Actuator part on body
- H01H2233/054—Snap coupling
- H01H2233/056—Snap coupling with limited freedom
Definitions
- a push-button switch having a plurality of depressable push buttons includes a resilient metal plate provided beneath each push button which is bent in a snapping manner thereby depressing a movable contact provided on a first printed circuit sheet toward a contact assembly provided on a second printed circuit sheet. Upon closure of the movable contact and the contact assembly, another movable contact provided on the rear side of the second printed circuit sheet is depressed toward another contact assembly provided on a printed circuit base board thereby closing the contact assembly.
- This invention relates to push-button switches and more particularly to a snap-acting, multicontact, multicircuit, push-button switch which can be used in a wide variety of applications, e.g. a key board, remote control of television receiver, and other appliances.
- a primary objective of the present invention is to provide a snap-acting, multicontact, multicircuit, pushbutton switch which can be constructed in an extremely thin and small size.
- Another objective of the invention is to provide a snap-acting, multicontact, multicircuit, push-button switch with totally enclosed contact portions so that any possibility of the intrusion of dust into the contact portions can be substantially eliminated.
- Still another objective of the invention is to provide a snap-acting, multicontact, multicircuit, push-button switch wherein insulation between the contacts is always maintained at a high value and the reliability of the operation thereof is also extremely high.
- a further objective of the invention is to provide a snap-acting, multicontact, multicircuit, push-button switch which is extremely versatile so that when a plurality of the switches are used on a key board, the arrangement of keys can be varied as desired.
- An additional objective of the invention is to provide a snap-acting, multicontact, multicircuit, push-button switch which is simple in construction and easy to assemble.
- a snapacting, multicontact, multicircuit, push-button switch comprised of:
- a printed circuit base board provided with a plurality of fixed contact assemblies thereon;
- a first printed circuit sheet made of an insulating flexible film, on the rear side of which are provided a plurality of disc-like movable contacts;
- a second printed circuit sheet interposed between the printed circuit base board and the first printed circuit sheet, and made of an insulating flexible film similar to the first printed circuit sheet;
- said second printed circuit sheet having on the front side thereof a plurality of contact assemblies similar to those provided on the printed circuit base board, and on the rear side thereof a plurality of disc-like movable contacts at positions corresponding to the contact assemblies on the front side thereof;
- said holes in the insulating sheets being aligned with said plurality of movable contacts and contact as semblies provided on the first and second printed circuit sheets and the printed circuit base board, so that a plurality of multilayer switches having contacts facing together through said holes are thereby provided;
- resilient plates for snap-action respectively provided under a plurality of push buttons arranged on the front side of the first printed circuit sheet in alignment with said plurality of movable contacts and contact assemblies;
- FIG. 1 is a top plan view of a snap-acting, multicontact, multicircuit, push-button switch constituting a preferred embodiment of the present invention
- FIG. 2 is an elevational view, in cross-section, by V-V line of the push-button switch shown in FIG. 1;
- FIG. 3(a) is an exploded perspective view showing an upper frame and a push-button assembly included in the switch of this embodiment
- FIG. 3(b) is an exploded perspective view of printed circuit sheets and a printed circuit base board included in this embodiment
- FIG. 4(a) is a cross-sectional elevational view by lV-IV line showing a push-button assembly in the non-operative state;
- FIG. 4(b) is a cross-sectional elevational view by IV-IV line showing the same push-button assembly in the operative state;
- FIG. 5 is a cross-sectional elevational view showing the separate printed circuit sheets and the printed circuit base board on an enlarged scale
- FIG. 6 is a plan view showing a contact assembly provided on the second printed circuit sheet and the printed circuit base board on an enlarged scale.
- FIGS. 1 through 6 there is indicated a snap-acting, multicontact, multicircuit, pushbutton switch according to the present invention.
- It comprises an upper frame 1 made of, for instance, a synthetic molded plastic resin such as nylon, ABS, etc. which receives a plurality of push button assemblies 2.
- Each assembly 2 comprises a push button 3, a casing 4, and a resilient plate 5. Each assembly 2 slides into its hole in frame 1.
- a first printed circuit sheet 6 I having a plurality of movable contacts on the rear side thereof is prov ded as is a second printed circuit sheet 8 having a plurality of contacts on both sides of the sheet.
- Insulating sheets 7 and 9 are inter-posed respectively between the first and the second printed circuit sheets 6 and 8, and between the second printed circuit sheet 8 and a printed circuit base board 10, on the front side of which board are provided a plurality of fixed contact assemblies.
- a required number of screws 11 are provided for securing the upper frame 1 onto the printed circuit base board 10 with all the sheets 6, 7, 8 and 9 held therebetween.
- the upper frame 1 is provided with a plurality of guide holes 12, arranged in a checkerboard manner, for receiving the push buttons which are freely slidable in the hole 12.
- stepped recesses (not shown) which are adapted to engage the stepped portions 17 of the casings 4, the casings 4 being of a rectangular cohfiguration.
- the two side ribs 13 are provided on either side of the upper frame 1 along its lower edge so that the sheets 6, 7, 8 and 9 and the printed circuit base board 10 are received therebetween.
- upper frame 1 is further provided with screw holes (not shown) for receiving the screws 11 when all the parts of the switch are assembled together.
- the casing 4 for the push-button assembly 2 is made of a synthetic plastic resin and is of a rectangular configuration. At the upper part of the casing, there is formed in an integral manner, a downwardly extending elastic rib 14 defining the central hole receiving the push button 3. As shown in FIG. 4(a), at the lower part of the casing 4, there are provided, also in an integral manner, two legs 15 each having a detent 16 engageable with a hole 46 provided through the base board 10 so that the casing 4 may be secured to the base board when desired. Before final assembly, however, the resilient plate 5 and the plurality of sheets are interposed between the lower surface of the casing 4 and the base board 10 as hereinafter described in more detail.
- the stepped portion 17 On the outside of the casing 4, there is provided the stepped portion 17 which is adapted to engage into the stepped recess (not shown) of the upper frame 1 in a tight manner.
- the casing 4 is further provided with pillar-like projections 18 (see FIG. 3(a)) downwardly extending from the'four comers of the casing 4.
- the pillat-like projections 18 pass through the four holes provided through each of the resilient plate 5, the sheets 6, 7, 8 and 9, and the base board 10, so that the push-button assembly 2, the resilient plate 5, and all of the contacts on the sheets and the base board are correctly aligned.
- the push button 3 is also made of a synthetic plastic resin, the lower part of which is formed integrally into a pair of stopper projections 19, which form a substantially triangular detent (seen in cross-section) projecting from both sides of the push button 3.
- the push button 3 is further provided with a downwardly projecting portion 20 at the center of its lower surface.
- the abovementioned pair of stopper projections 19 fit into the downwardly extending elastic ribs 14 of the casing 4 thereby securing the push button 3 in the casing 4.
- the resilient plate 5 is made of a thin metal plateof high resilience, from which two elongated slots are punched out in a spaced parallel relationship so that a central limb 21 and two side limbs 22 are thereby formed (see FIG. 3(a)).
- the side limbs 22 are then made shorter than the central limb 21 by forming, for
- the resilient plate 5 is further provided with four holes 23 at its four corners through which the four pillar-like projections 18 are passed.
- the first printed circuit sheet 6 is preferably made of an insulating film such as a polyester film having flexibility.
- a plurality of contacts 24 in the form of circular discs, for example of copper foil, are provided.
- holes 27 are provided at the four corners and a central portion of the first printed circuit sheet 6 for passing the mounting screws 11.
- the insulating sheet 7 is preferably made of a polyester film, for example Dupont Mylar, trademark. Sheet 7 is equal in size to that of the first printed circuit sheet 6. A plurality of holes 28 of a size substantially equal to the contacts 24 are provided at positions aligned with the contacts 24. Around each hole 28, two holes 29 (for passing the legs 15 of the casing 4) and four holes 30 (for passing the pillar-like projections 18) are provided. At the four corners and a central portion of the insulating sheet 7, holes 31 for passing the mounting screws 11 are provided.
- the second printed circuit sheet 8 is preferably made I of an insulating film of a polyester resin having a sufficient flexibility.
- a plurality of contact assemblies 32 are provided at positions vertically aligned with the plurality of holes 28 vided at positions vertically aligned with the contact assemblies 32 on the front side of the second printed cir-- cuit sheet 8. Since the second printed circuit sheet 8 is made from an insulating film, the contacts 35 on the rear side thereof will be electrically insulated from the contact assemblies 32 on the front side thereof.
- each contact assembly 32 On laterally opposite sides of each contact assembly 32, a pair of holes 36 are bored through the sheet 8 for receiving the legs 15 of the casing 4. In addition, around each of the contact assemblies 32, four holes 37 for passing the pillar-like projections 18 are provided through the second printed circuit sheet 8.
- the longitudinal ends of the second printed circuit sheet 8' are extended beyond the insulating sheet '7, and the leads 34 and the terminals 33 are provided by printing on these extended portions of the second printed circuit sheet 8.
- plurality of holes 38 for passing mounting screws 11 are further provided through the second printed circuit sheet 8, so that when the sheet 8 and the insulating sheet 7 are assembled by the mounting screws 11, the plurality of pairs of holes 36 and the set of guide holes 37 are vertically aligned with the plurality of holes 29 and the guide holes 30 of the insulating sheet 7.
- the insulating sheet 9 is also made of an insulating film such as Mylar, Duponts trademark for a polyester sheet, of a size equal to that of the second printed circuit sheet 8.
- a plurality of holes 39 are bored through the insulating sheet 9 in vertical alignment with the plurality of contacts provided on the rear side of the second printed circuit sheet 8.
- a pair of holes 40 are bored on the laterally opposite sides of each of the plurality of holes 39 for passing the legs 15 of the casing 4, and the set of four guide holes 41 are provided around each of the holes 39.
- a plurality of holes 42 for passing the mounting screws 11 are also provided through the insulating sheet 9.
- the printed circuit base board is made of an insulating plate, on the front surface of which are provided a plurality of fixed contact assemblies 43 each consisting of a pair of ratchet-wheel shaped contacts spaced apart from each other as shown in FIG. 6.
- a plurality of terminals 44 On both longitudinal end portions of the printed circuit base board 10 extending beyond the insulating sheet 9, a plurality of terminals 44, each of which is connected through a lead 45 to each of the ratchet-wheel shaped contacts of the contact assemblies 43.
- two holes 46 are provided for passing the legs of the casing 4, and a set of four guide holes 47 are provided around the contact assembly 43.
- a plurality of holes 48 for passing the mounting screws 11 are provided through the printed circuit base board 10.
- the push button switch according to the present invention is assembled as follows.
- the printed circuit base board 10, insulating sheet 9, second printed circuit sheet 8, insulating sheet 7, and the first printed circuit sheet 6 are placed in an overlapping manner in that named order from the bottom upward.
- the mounting screws 11 are inserted from the bottom upward through the holes 48, 42, 38, 31, and 27 of the base board 10, and sheets 9, 8,7, and 6, respectively.
- the plurality of pairs of holes 40, 36, 29, in their respective sheets are substantially aligned with the pair of holes 46 in the printed circuit base board 10, and the plurality of sets of holes 47, 41, 37, and 26 are also substantially brought into alignment.
- the pillar-like projections 18 on the rear side of the casing 4 of the push-button assembly 2 are inserted into the holes 23 of the resilient plate 5 so that the resilient plate is received on the rear side of the casing 4.
- the detents 16 at the ends of the legs 15 of the casing 4 are inserted into the pair of holes 25 in the first printed circuit sheet 6.
- the pillar-like projections 18 of the casing 4 are inserted through the set of four guide holes 26 in the same sheet 6, and then the casing 4 is depressed downwards until the pillar-like projections 18 are passed through the guide holes 26, 30, 37, 41 and 47 of the sheets and base board, and the legs 15 of the casing 4 are passed through the pairs of holes 25, 29, 36, and 46 of the same sheets and base board.
- the detents 16 at the ends of the legs 15 engage the edges of the holes 46 of the base board 10 so that the casing 4 is fixed to the base board 10 with the sheets 6, 7, 8 and 9 being interposed between the casing 4 and the base board 10.
- the upper frame 1 is then placed over the push buttons 3 such that the push buttons 3 pass through the guide holes 12 of the frame 1 and the casings 4 are secured in the stepped recesses on the rear side of the upper frame.
- the sheets 6, 7, 8, 9 and the base board 10 are held between the ribs 13 on both sides of the upper frame 1.
- the assembling of the push button switches is completed when the mounting screws 11 inserted from bottom upwardly through the sheets and the base board are driven into threaded holes (not shown) of the upper frame 1.
- the contact 32 shown in FIG. 6, has both of its lines to its different sides.
- the disc which is physically pressed against the contact 32 has itself no printed wires or leads leading to it. Rather the disc closes the two sides of the contact 32.
- the snap-acting, multicontact, multicircuit, pushbutton switch according to the invention operates as follows:
- the push-button switch thus assembled has' any one of the push buttons 3 in vertical alignment with the corresponding resilient plate 5, the contact 24 on the rear side of the first printed circuit sheet 6, the hole 28 in the insulating sheet 7, the contact assembly 32 on the front side, and the contact 35 on the rear side of the second printed circuit sheet 8, the hole in the insulating sheet 9, and the fixed contact assembly 43 on the printed circuit base board 10.
- the push button 3 is not depressed, i.e. when the users finger is removed from the button, the central limb 21 of the resilient plate 5 pushes the push button 3 upwards, and the contact 24 of the rear side of the first printed circuit sheet 6 and the contact assembly 32 on the second printed circuit sheet 8 are thereby kept apart.
- the contact 35 on the rear side of the second printed circuit sheet 8 and the fixed contact assembly 43 on the printed circuit base board 10 are kept apart; hence all of the switches are kept in the opened state.
- the central limb 21 of the resilient plate 5 When a push button is depressed, the central limb 21 of the resilient plate 5 is pushed downward by the projecting portion 20 of the rear surface of the push button 3, and when the downward movement thereof exceeds a predetermined position, the central limb 21 is bent in a snapping manner into a reversed arc position thereby forcing contact 24, located on the rear side of the first printed circuit sheet 6, onto the contact assembly 32, located on the first side of the second printed circuit sheet 8.
- the portion of the second printed circuit sheet 8 bearing the contact assembly 32 is further bent downward through the hole 39 of the insulating sheet 9 until the contact 35, located on the rear side of the second printed circuit 8 makes physical contact with the fixed contact assembly 43, located on the printed circuit base board 10.
- the snap-acting, multicontact, multicircuit, push-button switch can be operatedin snapping manner by means of the resilient plate, the thickness thereof which can be made extremely thin.
- all of the contacts are sealed from theouter atmosphere thereby preventing the intrusion of dust and the like from outside, and hence preventing any possibility of deteriorating the insulation.
- the number of contacts and the circuits in the push-button switch of this invention can be changed as desired, and the arrangement of the push buttons may also be changed as desired.
- a snap-acting, multicontact, multicircuit, pushbutton switch comprising:
- a printed circuit base board provided with a plurality of fixed contact assemblies each connected to one pair of a first set of terminals;
- a second printed circuit sheet interposed between said printed circuit base board and said first printed circuit sheet and made of an insulating flexible film, a plurality of movable contact assemblies fixed on the front side of said second printed circuit sheet each contact assembly connected to one pair of a second set of terminals, and a plurality of movable contacts at positions aligning with the contact assemblies on the front side thereof and fixed on the rear side of said second printed circuit sheet;
- a plurality of push buttons arranged on the front side of the first printed circuit sheet in alignment with said plurality of movable contacts and contact assemblies, and a plurality of snap-action resilient spring plates, with one resilient plate provided directly beneath each push button and without another metal spring for each push button,
- a push-button switch as set forth in claim 4 wherein said first and second printed circuit sheets, said printed circuit base board,- and two insulating sheets are all further provided with a plurality of sets each including four holes therethrough in vertically aligned positions so that when said four pillar-like projections of the casing pass through said four in one set of holes, said first and second printed circuit sheets, said printed circuit base board, and two insulating sheets are superimposed in far more precisely aligned manner.
- a push-button switch as set forth in claim 1 wherein said resilient plate is made of a thin metal sheet having three limbs, the central limb of which is longer than the two side limbs, whereby when the central limb is depressed by a push button, the bending state of the resilient plate is changed in a snapping manner into the reversely bent state.
- a push-button switch as set forth in claim 1 wherein an upper frame having a plurality of holes isfurther provided so that said plurality of push buttons are upwardly exposed through said plurality of holes.
- a push-button switch as set forth in claim 7 wherein a substantially rectangular recessed portion is formed around each of said plurality of holes on the rear side of said upper frame, and said plurality'of casings are tightly received in said recessed portions.
- a push-button switch as set forth in claim 7 wherein said upper frame is further provided with two side ribs along the lower side edges, and all of the first and second printed circuit sheets, said printed circuit base board, and two insulating sheets superimposed are received between said side ribs of the upper frame when the push-button switch is assembled.
- a push-button switch as set forth in claim 9 wherein a plurality of mounting screws are further driven from the rear side of the printed circuit base board to a plurality of threaded holes in the upper frame penetrating through the first and second printed circuit sheets and two insulating sheets.
- each of said casings has a stepped portion which fits into said recessed portion in a tight manner.
- a snap-acting, pushbutton switch comprising:
- a printed circuit base board provided with at least one fixed contact assembly
- a printed circuit sheet made of an insulating flexible film placed over the printed circuit base board and provided with at least one movable contact aligning with said fixed contact assembly;
- a flexible insulating sheet having at least one hole aligning with said contact and contact assembly and being interposed between the printed circuit sheet and the printed circuit base board;
- a push button arranged on the front side of the printed circuit sheet in alignment with the contact and contact assembly, a resilient plate provided beneath the push button;
Landscapes
- Push-Button Switches (AREA)
- Input From Keyboards Or The Like (AREA)
Abstract
A push-button switch having a plurality of depressable push buttons includes a resilient metal plate provided beneath each push button which is bent in a snapping manner thereby depressing a movable contact provided on a first printed circuit sheet toward a contact assembly provided on a second printed circuit sheet. Upon closure of the movable contact and the contact assembly, another movable contact provided on the rear side of the second printed circuit sheet is depressed toward another contact assembly provided on a printed circuit base board thereby closing the contact assembly.
Description
United States Patent 1 Murata [4 1 Nov. 4, 1975 221 Filed:
[ KEYBOARD PUSHBUTTON SWITCH ASSEMBLY HAVING MULTILAYER CONTACT AND CIRCUIT STRUCTURE [75] Inventor: Taneo Murata, Tokyo, Japan [73] Assignee: Alps Electric Co., Ltd., Tokyo,
Japan Aug. 22, 1974 [21] App]. No.: 499,600
[30] Foreign Application Priority Data Aug. 23, 1973 Japan 48-94577 [52] U.S. C1 200/5 A; 200/5 R; 200/83 N; 200/159 B; 200/307 [51] Int. Cl. H01H 13/26 [58] Field of Search 200/1 R, 5 R, 5 A, 83 N, 200/86 R, 275, 159 B, 294-296, 302,
365 S, 365 C, 365 E [56] References Cited UNITED STATES PATENTS 3,571,542 3/1971 Madden et a1 200/83 N 3,584,162 6/1971 Krakinowski 3,699,294 10/1972 Sudduth 200/5 A X 3,749,859 7/1973 Webb et a1. 200/5 A X 3,780,237 12/1973 Seeger, Jr. et al..... 200/5 A 3,811,025 5/1974 Bach 200/5 A X 3,860,771 l/1975 Lynn et a1 200/5 A OTHER PUBLICATIONS IBM Technical Disclosure Bulletin, 1. A. Taris, Keyboard Vol. 8, No. 8, l-l966, p. 1064.
Primary Examiner-James R. Scott Attorney, Agent, or Firm-Eliot S. Gerber; Guy W. Shoup [57] ABSTRACT A push-button switch having a plurality of depressable push buttons includes a resilient metal plate provided beneath each push button which is bent in a snapping manner thereby depressing a movable contact provided on a first printed circuit sheet toward a contact assembly provided on a second printed circuit sheet. Upon closure of the movable contact and the contact assembly, another movable contact provided on the rear side of the second printed circuit sheet is depressed toward another contact assembly provided on a printed circuit base board thereby closing the contact assembly.
16 Claims, 8 Drawing Figures US. Patent Nov. 4, 1975 Sheet 1 of 3 3,917,917
FIGZ
awawawwm U.S. Patent Nov. 4, 1975 Sheet 2 of3 3,917,917
U.S. Patent Nov. 4, 1975 Sheet3 0f3 3,917,917
KEYBOARD PUSIIBUTTON SWITCH ASSEMBLY HAVING MULTILAYER CONTACT AND CIRCUIT STRUCTURE BACKGROUND OF THE INVENTION This invention relates to push-button switches and more particularly to a snap-acting, multicontact, multicircuit, push-button switch which can be used in a wide variety of applications, e.g. a key board, remote control of television receiver, and other appliances.
Heretofore, various types of snap-actin g, push-button switches have been known. However, most of them are of a considerable size, and when a multicontact, multicircuit, push-button switch of snapping action is desired, the construction has been generally complicated, costly and sometimes prone to contact error.
SUMMARY OF THE INVENTION A primary objective of the present invention is to provide a snap-acting, multicontact, multicircuit, pushbutton switch which can be constructed in an extremely thin and small size.
Another objective of the invention is to provide a snap-acting, multicontact, multicircuit, push-button switch with totally enclosed contact portions so that any possibility of the intrusion of dust into the contact portions can be substantially eliminated.
Still another objective of the invention is to provide a snap-acting, multicontact, multicircuit, push-button switch wherein insulation between the contacts is always maintained at a high value and the reliability of the operation thereof is also extremely high.
A further objective of the invention is to provide a snap-acting, multicontact, multicircuit, push-button switch which is extremely versatile so that when a plurality of the switches are used on a key board, the arrangement of keys can be varied as desired.
An additional objective of the invention is to provide a snap-acting, multicontact, multicircuit, push-button switch which is simple in construction and easy to assemble.
The above described objectives and other objectives made apparent hereinafter can be achieved by a snapacting, multicontact, multicircuit, push-button switch comprised of:
a printed circuit base board provided with a plurality of fixed contact assemblies thereon;
a first printed circuit sheet made of an insulating flexible film, on the rear side of which are provided a plurality of disc-like movable contacts;
a second printed circuit sheet interposed between the printed circuit base board and the first printed circuit sheet, and made of an insulating flexible film similar to the first printed circuit sheet;
said second printed circuit sheet having on the front side thereof a plurality of contact assemblies similar to those provided on the printed circuit base board, and on the rear side thereof a plurality of disc-like movable contacts at positions corresponding to the contact assemblies on the front side thereof;
two insulating sheets each having a plurality of holes at positions corresponding to the contacts being interposted between the first and the second printed circuit sheets and between the second printed circuit sheet and the printed circuit base board, respectively;
said holes in the insulating sheets being aligned with said plurality of movable contacts and contact as semblies provided on the first and second printed circuit sheets and the printed circuit base board, so that a plurality of multilayer switches having contacts facing together through said holes are thereby provided; and
resilient plates for snap-action respectively provided under a plurality of push buttons arranged on the front side of the first printed circuit sheet in alignment with said plurality of movable contacts and contact assemblies;
whereby when any one of the push buttons is depressed, the resilient plate under the push button is snapped downwardly thereby depressing the movable contacts and the contact assemblies successively downward, thus closing the contacts in the contact assemblies, and when the push button is released, the button is brought back to its original position under the action of the resilient plate while the movable contacts are separated from the contact assemblies due to the flexibility of the printed circuit sheets.
The nature, principle, and utility of the present invention will be more clearly understood from the following detailed description of the invention when read in conjunction with the accompanying drawings wherein the various parts are designated by reference numerals.
BRIEF DESCRIPTION OF THE DRAWINGS In the drawings:
FIG. 1 is a top plan view of a snap-acting, multicontact, multicircuit, push-button switch constituting a preferred embodiment of the present invention;
FIG. 2 is an elevational view, in cross-section, by V-V line of the push-button switch shown in FIG. 1;
FIG. 3(a) is an exploded perspective view showing an upper frame and a push-button assembly included in the switch of this embodiment;
FIG. 3(b) is an exploded perspective view of printed circuit sheets and a printed circuit base board included in this embodiment;
FIG. 4(a) is a cross-sectional elevational view by lV-IV line showing a push-button assembly in the non-operative state;
FIG. 4(b) is a cross-sectional elevational view by IV-IV line showing the same push-button assembly in the operative state;
FIG. 5 is a cross-sectional elevational view showing the separate printed circuit sheets and the printed circuit base board on an enlarged scale; and
FIG. 6 is a plan view showing a contact assembly provided on the second printed circuit sheet and the printed circuit base board on an enlarged scale.
DETAILED DESCRIPTION Referring now to FIGS. 1 through 6, there is indicated a snap-acting, multicontact, multicircuit, pushbutton switch according to the present invention. It comprises an upper frame 1 made of, for instance, a synthetic molded plastic resin such as nylon, ABS, etc. which receives a plurality of push button assemblies 2. Each assembly 2 comprises a push button 3, a casing 4, and a resilient plate 5. Each assembly 2 slides into its hole in frame 1.
As shown in FIG. 3(b) a first printed circuit sheet 6 I having a plurality of movable contacts on the rear side thereof is prov ded as is a second printed circuit sheet 8 having a plurality of contacts on both sides of the sheet. Insulating sheets 7 and 9 are inter-posed respectively between the first and the second printed circuit sheets 6 and 8, and between the second printed circuit sheet 8 and a printed circuit base board 10, on the front side of which board are provided a plurality of fixed contact assemblies. A required number of screws 11 are provided for securing the upper frame 1 onto the printed circuit base board 10 with all the sheets 6, 7, 8 and 9 held therebetween. I
As shown in FIG. 3(b), the upper frame 1 is provided with a plurality of guide holes 12, arranged in a checkerboard manner, for receiving the push buttons which are freely slidable in the hole 12.
On the rear side of the upper frame 1, there are provided a corresponding number of stepped recesses (not shown) which are adapted to engage the stepped portions 17 of the casings 4, the casings 4 being of a rectangular cohfiguration. The two side ribs 13 are provided on either side of the upper frame 1 along its lower edge so that the sheets 6, 7, 8 and 9 and the printed circuit base board 10 are received therebetween. The
The casing 4 for the push-button assembly 2 is made of a synthetic plastic resin and is of a rectangular configuration. At the upper part of the casing, there is formed in an integral manner, a downwardly extending elastic rib 14 defining the central hole receiving the push button 3. As shown in FIG. 4(a), at the lower part of the casing 4, there are provided, also in an integral manner, two legs 15 each having a detent 16 engageable with a hole 46 provided through the base board 10 so that the casing 4 may be secured to the base board when desired. Before final assembly, however, the resilient plate 5 and the plurality of sheets are interposed between the lower surface of the casing 4 and the base board 10 as hereinafter described in more detail.
On the outside of the casing 4, there is provided the stepped portion 17 which is adapted to engage into the stepped recess (not shown) of the upper frame 1 in a tight manner. The casing 4 is further provided with pillar-like projections 18 (see FIG. 3(a)) downwardly extending from the'four comers of the casing 4. The pillat-like projections 18 pass through the four holes provided through each of the resilient plate 5, the sheets 6, 7, 8 and 9, and the base board 10, so that the push-button assembly 2, the resilient plate 5, and all of the contacts on the sheets and the base board are correctly aligned.
The push button 3 is also made of a synthetic plastic resin, the lower part of which is formed integrally into a pair of stopper projections 19, which form a substantially triangular detent (seen in cross-section) projecting from both sides of the push button 3. The push button 3 is further provided with a downwardly projecting portion 20 at the center of its lower surface. The abovementioned pair of stopper projections 19 fit into the downwardly extending elastic ribs 14 of the casing 4 thereby securing the push button 3 in the casing 4.
The resilient plate 5 is made of a thin metal plateof high resilience, from which two elongated slots are punched out in a spaced parallel relationship so that a central limb 21 and two side limbs 22 are thereby formed (see FIG. 3(a)). The side limbs 22 are then made shorter than the central limb 21 by forming, for
instance, a fold at the center of each limb 22, whereby the central limb 21 is bent into'an arc-shaped configuration. When the upwardly raised central limb 21 is depressed downwardly, the bending direction of the central limb 21 is reversed, and when the depressing force is released, the central limb is brought back to its original bent state. The resilient plate 5 is further provided with four holes 23 at its four corners through which the four pillar-like projections 18 are passed.
The first printed circuit sheet 6 is preferably made of an insulating film such as a polyester film having flexibility. On the rear side of the insulating film, a plurality of contacts 24 in the form of circular discs, for example of copper foil, are provided. Around each of the contacts 24, two holes 25 (for passing the legs 15 of the casing 4) and four holes 26 (for passing the four pillar- Like projections 18) are provided. Furthermore, holes 27 are provided at the four corners and a central portion of the first printed circuit sheet 6 for passing the mounting screws 11.
The insulating sheet 7 is preferably made of a polyester film, for example Dupont Mylar, trademark. Sheet 7 is equal in size to that of the first printed circuit sheet 6. A plurality of holes 28 of a size substantially equal to the contacts 24 are provided at positions aligned with the contacts 24. Around each hole 28, two holes 29 (for passing the legs 15 of the casing 4) and four holes 30 (for passing the pillar-like projections 18) are provided. At the four corners and a central portion of the insulating sheet 7, holes 31 for passing the mounting screws 11 are provided.
The second printed circuit sheet 8 is preferably made I of an insulating film of a polyester resin having a sufficient flexibility. On the front side of the insulating film, a plurality of contact assemblies 32, each consisting of two ratchet-wheel shaped contacts spaced apart from each other, as shown in FIG. 6, are provided at positions vertically aligned with the plurality of holes 28 vided at positions vertically aligned with the contact assemblies 32 on the front side of the second printed cir-- cuit sheet 8. Since the second printed circuit sheet 8 is made from an insulating film, the contacts 35 on the rear side thereof will be electrically insulated from the contact assemblies 32 on the front side thereof. On laterally opposite sides of each contact assembly 32, a pair of holes 36 are bored through the sheet 8 for receiving the legs 15 of the casing 4. In addition, around each of the contact assemblies 32, four holes 37 for passing the pillar-like projections 18 are provided through the second printed circuit sheet 8.
The longitudinal ends of the second printed circuit sheet 8'are extended beyond the insulating sheet '7, and the leads 34 and the terminals 33 are provided by printing on these extended portions of the second printed circuit sheet 8.
. plurality of holes 38 for passing mounting screws 11 are further provided through the second printed circuit sheet 8, so that when the sheet 8 and the insulating sheet 7 are assembled by the mounting screws 11, the plurality of pairs of holes 36 and the set of guide holes 37 are vertically aligned with the plurality of holes 29 and the guide holes 30 of the insulating sheet 7.
The insulating sheet 9 is also made of an insulating film such as Mylar, Duponts trademark for a polyester sheet, of a size equal to that of the second printed circuit sheet 8. A plurality of holes 39 are bored through the insulating sheet 9 in vertical alignment with the plurality of contacts provided on the rear side of the second printed circuit sheet 8. Through the insulating sheet 9, a pair of holes 40 are bored on the laterally opposite sides of each of the plurality of holes 39 for passing the legs 15 of the casing 4, and the set of four guide holes 41 are provided around each of the holes 39. Furthermore, a plurality of holes 42 for passing the mounting screws 11 are also provided through the insulating sheet 9.
The printed circuit base board is made of an insulating plate, on the front surface of which are provided a plurality of fixed contact assemblies 43 each consisting of a pair of ratchet-wheel shaped contacts spaced apart from each other as shown in FIG. 6. On both longitudinal end portions of the printed circuit base board 10 extending beyond the insulating sheet 9, a plurality of terminals 44, each of which is connected through a lead 45 to each of the ratchet-wheel shaped contacts of the contact assemblies 43. On the laterally opposite sides of each of the contact assemblies 43, two holes 46 are provided for passing the legs of the casing 4, and a set of four guide holes 47 are provided around the contact assembly 43. Likewise, a plurality of holes 48 for passing the mounting screws 11 are provided through the printed circuit base board 10.
The push button switch according to the present invention is assembled as follows.
Firstly, the printed circuit base board 10, insulating sheet 9, second printed circuit sheet 8, insulating sheet 7, and the first printed circuit sheet 6 are placed in an overlapping manner in that named order from the bottom upward. The mounting screws 11 are inserted from the bottom upward through the holes 48, 42, 38, 31, and 27 of the base board 10, and sheets 9, 8,7, and 6, respectively. Thus, the plurality of pairs of holes 40, 36, 29, in their respective sheets are substantially aligned with the pair of holes 46 in the printed circuit base board 10, and the plurality of sets of holes 47, 41, 37, and 26 are also substantially brought into alignment.
Then, the pillar-like projections 18 on the rear side of the casing 4 of the push-button assembly 2 are inserted into the holes 23 of the resilient plate 5 so that the resilient plate is received on the rear side of the casing 4. Then the detents 16 at the ends of the legs 15 of the casing 4 are inserted into the pair of holes 25 in the first printed circuit sheet 6. Simultaneous therewith, the pillar-like projections 18 of the casing 4 are inserted through the set of four guide holes 26 in the same sheet 6, and then the casing 4 is depressed downwards until the pillar-like projections 18 are passed through the guide holes 26, 30, 37, 41 and 47 of the sheets and base board, and the legs 15 of the casing 4 are passed through the pairs of holes 25, 29, 36, and 46 of the same sheets and base board. In this case, the detents 16 at the ends of the legs 15 engage the edges of the holes 46 of the base board 10 so that the casing 4 is fixed to the base board 10 with the sheets 6, 7, 8 and 9 being interposed between the casing 4 and the base board 10.
In a similar manner, all of the casings 4, also fitted with the resilient plates, are secured to the base board 10 with the sheets being interposed therebetween.
Then all of the push buttons 3 are forced into the casings 4 so that the projections 19 of the push buttons fit into the downwardly extending elastic ribs 14 of the casings 4 thereby securing the push buttons in the casings 4.
The upper frame 1 is then placed over the push buttons 3 such that the push buttons 3 pass through the guide holes 12 of the frame 1 and the casings 4 are secured in the stepped recesses on the rear side of the upper frame. In this state, the sheets 6, 7, 8, 9 and the base board 10 are held between the ribs 13 on both sides of the upper frame 1. The assembling of the push button switches is completed when the mounting screws 11 inserted from bottom upwardly through the sheets and the base board are driven into threaded holes (not shown) of the upper frame 1.
It will be noted that the contact 32, shown in FIG. 6, has both of its lines to its different sides. The disc, which is physically pressed against the contact 32 has itself no printed wires or leads leading to it. Rather the disc closes the two sides of the contact 32.
The snap-acting, multicontact, multicircuit, pushbutton switch according to the invention operates as follows:
The push-button switch thus assembled has' any one of the push buttons 3 in vertical alignment with the corresponding resilient plate 5, the contact 24 on the rear side of the first printed circuit sheet 6, the hole 28 in the insulating sheet 7, the contact assembly 32 on the front side, and the contact 35 on the rear side of the second printed circuit sheet 8, the hole in the insulating sheet 9, and the fixed contact assembly 43 on the printed circuit base board 10. When the push button 3 is not depressed, i.e. when the users finger is removed from the button, the central limb 21 of the resilient plate 5 pushes the push button 3 upwards, and the contact 24 of the rear side of the first printed circuit sheet 6 and the contact assembly 32 on the second printed circuit sheet 8 are thereby kept apart. Likewise, the contact 35 on the rear side of the second printed circuit sheet 8 and the fixed contact assembly 43 on the printed circuit base board 10 are kept apart; hence all of the switches are kept in the opened state.
When a push button is depressed, the central limb 21 of the resilient plate 5 is pushed downward by the projecting portion 20 of the rear surface of the push button 3, and when the downward movement thereof exceeds a predetermined position, the central limb 21 is bent in a snapping manner into a reversed arc position thereby forcing contact 24, located on the rear side of the first printed circuit sheet 6, onto the contact assembly 32, located on the first side of the second printed circuit sheet 8. The portion of the second printed circuit sheet 8 bearing the contact assembly 32 is further bent downward through the hole 39 of the insulating sheet 9 until the contact 35, located on the rear side of the second printed circuit 8 makes physical contact with the fixed contact assembly 43, located on the printed circuit base board 10. In this manner, the circuits connected to the contact assemblies 32 and 43, respectively, are both closed within an extremely short time period. When the push button is released, the central limb 21 of the resilient plate 5 is snapped back to its original position by its own resilience, thereby pushing up the push button 3. The first printed circuit sheet 6 and the second printed circuit sheet 8 are brought back to their original positions by their own elasticity, and the contacts are placed in the opened state. It should be ap- 7 preciated that any one of the other push buttons and the related contacts are operated in the same manner.
As should be apparent from the above description, the snap-acting, multicontact, multicircuit, push-button switch, according to the present invention, can be operatedin snapping manner by means of the resilient plate, the thickness thereof which can be made extremely thin. in addition, all of the contacts are sealed from theouter atmosphere thereby preventing the intrusion of dust and the like from outside, and hence preventing any possibility of deteriorating the insulation. Furthermore, the number of contacts and the circuits in the push-button switch of this invention can be changed as desired, and the arrangement of the push buttons may also be changed as desired.
Although the invention has been described with reference to a preferred embodiment thereof, it will be apparent to those skilled in the art that various modifications or alterations can be executed without departing from the scope of the invention. For instance, the number of printed circuit sheets may be increased or decreased, or the shape of the contact assemblies may be changed from the ratchet-wheel shape to any other suitable configuration.
I claim:
1. A snap-acting, multicontact, multicircuit, pushbutton switch comprising:
a printed circuit base board provided with a plurality of fixed contact assemblies each connected to one pair of a first set of terminals;
' a first printed circuit sheet made of an insulating flexible film, a plurality of movable contacts fixed on the rear side of said first printed circuitsheet;
a second printed circuit sheet interposed between said printed circuit base board and said first printed circuit sheet and made of an insulating flexible film, a plurality of movable contact assemblies fixed on the front side of said second printed circuit sheet each contact assembly connected to one pair of a second set of terminals, and a plurality of movable contacts at positions aligning with the contact assemblies on the front side thereof and fixed on the rear side of said second printed circuit sheet;
two insulating flexible film sheets, each having a plurality of holes at positions aligning with said contacts and being interposted between said first and second printed circuits sheets and between the second printed circuit sheet and the printed circuit base board respectively;
a plurality of push buttons arranged on the front side of the first printed circuit sheet in alignment with said plurality of movable contacts and contact assemblies, and a plurality of snap-action resilient spring plates, with one resilient plate provided directly beneath each push button and without another metal spring for each push button,
whereby when any one of the push buttons is depressed it pushes its corresponding resilient plate, pushing the resilient plate downward until it snaps into a reverse position thereby contacting the first printed circuit sheet and forcing the movable contacts of the first printed circuit sheet downward until they meet in physical contact with the movable contact assemblies of the second printed circuit sheet and forcing the movable contacts of the second printed circuit sheet downward until they meet in physical contact with the contact assemblies of the printed circuit base board, and when four pillar-like projections downwardly extending from i the push button is released the push button is wherein said plurality of push buttons are received in a plurality of casings, respectively, and each of the easings is provided with a pair of legs each having a detent at the lower end thereof.
3. A push-button switch as set forth in claim 2, wherein said first and second printed circuit sheets, said printed circuit base board, and said two insulating sheets having holes, are all provided with a plurality of pairs of holes in vertically aligned positions so that when said pairs of legs of said casings are passed through said pairs of holes, said first and second printed circuit sheets, printed circuit base board, and two insulating sheets are superimposed in precisely aligned manner.
4. A push-button switch as set forth in claim 2 wherein each of said casings is further provided with the four comers of the casing.
5. A push-button switch as set forth in claim 4 wherein said first and second printed circuit sheets, said printed circuit base board,- and two insulating sheets are all further provided with a plurality of sets each including four holes therethrough in vertically aligned positions so that when said four pillar-like projections of the casing pass through said four in one set of holes, said first and second printed circuit sheets, said printed circuit base board, and two insulating sheets are superimposed in far more precisely aligned manner.
6. A push-button switch as set forth in claim 1 wherein said resilient plate is made of a thin metal sheet having three limbs, the central limb of which is longer than the two side limbs, whereby when the central limb is depressed by a push button, the bending state of the resilient plate is changed in a snapping manner into the reversely bent state.
7. A push-button switch as set forth in claim 1 wherein an upper frame having a plurality of holes isfurther provided so that said plurality of push buttons are upwardly exposed through said plurality of holes.
8. A push-button switch as set forth in claim 7 wherein a substantially rectangular recessed portion is formed around each of said plurality of holes on the rear side of said upper frame, and said plurality'of casings are tightly received in said recessed portions.
9. A push-button switch as set forth in claim 7 wherein said upper frame is further provided with two side ribs along the lower side edges, and all of the first and second printed circuit sheets, said printed circuit base board, and two insulating sheets superimposed are received between said side ribs of the upper frame when the push-button switch is assembled.
10. A push-button switch as set forth in claim 9 wherein a plurality of mounting screws are further driven from the rear side of the printed circuit base board to a plurality of threaded holes in the upper frame penetrating through the first and second printed circuit sheets and two insulating sheets.
11. A push-button switch as in claim 6 wherein said resilient plate is further provided with four holes at the four comers thereof.
12. A push-button switch as in claim 8 wherein each of said casings has a stepped portion which fits into said recessed portion in a tight manner.
13. A push-button switch as set forth in claim 2 wherein each of said plurality of push-buttons is further provided an integral pair of projections of a substantially triangular detent cross-section projecting from both sides of the lower part of the push-button, and each of said casings has a downwardly extending rib which fits with and retains said projections.
14. A push-button switch as set forth in claim 1 wherein said plurality of push-buttons are further provided with a downwardly projecting portion at the center of the lower surface.
15. A contact assembly as set forth in claim 1 wherein said plurality of contact members are further provided with leads which connect said contact assemblies to terminals located on the longitudinal ends of said second printed circuit sheet and printed circuit base board.
16. A snap-acting, pushbutton switch comprising:
a printed circuit base board provided with at least one fixed contact assembly;
a printed circuit sheet made of an insulating flexible film placed over the printed circuit base board and provided with at least one movable contact aligning with said fixed contact assembly;
a flexible insulating sheet having at least one hole aligning with said contact and contact assembly and being interposed between the printed circuit sheet and the printed circuit base board;
a push button arranged on the front side of the printed circuit sheet in alignment with the contact and contact assembly, a resilient plate provided beneath the push button;
whereby when the push button is depressed its corresponding resilient plate is pushed downward until it snaps into a reverse position thereby forcing the contact of the printed circuit sheet downward until it comes into physical contact with the contact assembly of the printed circuit base board and when the push button is released the push button is brought back to its original position by the action of the resilient plate while the movable contact is separated from the contact assembly due to the flexibility of the printed circuit sheets.
Claims (16)
1. A snap-acting, multicontact, multicircuit, pushbutton switch comprising: a printed circuit base board provided with a plurality of fixed contact assemblies each connected to one pair of a first set of terminals; a first printed circuit sheet made of an insulating flexible film, a plurality of movable contacts fixed on the rear side of said first printed circuit sheet; a second printed circuit sheet interposed between said printed circuit base board and said first printed circuit sheet and made of an insulating flexible film, a plurality of movable contact assemblies fixed on The front side of said second printed circuit sheet each contact assembly connected to one pair of a second set of terminals, and a plurality of movable contacts at positions aligning with the contact assemblies on the front side thereof and fixed on the rear side of said second printed circuit sheet; two insulating flexible film sheets, each having a plurality of holes at positions aligning with said contacts and being interposted between said first and second printed circuits sheets and between the second printed circuit sheet and the printed circuit base board respectively; a plurality of push buttons arranged on the front side of the first printed circuit sheet in alignment with said plurality of movable contacts and contact assemblies, and a plurality of snap-action resilient spring plates, with one resilient plate provided directly beneath each push button and without another metal spring for each push button, whereby when any one of the push buttons is depressed it pushes its corresponding resilient plate, pushing the resilient plate downward until it snaps into a reverse position thereby contacting the first printed circuit sheet and forcing the movable contacts of the first printed circuit sheet downward until they meet in physical contact with the movable contact assemblies of the second printed circuit sheet and forcing the movable contacts of the second printed circuit sheet downward until they meet in physical contact with the contact assemblies of the printed circuit base board, and when the push button is released the push button is brought back to its original position by the action of the resilient plate while the movable contacts are separated from the contact assemblies due to the flexibility of the printed circuit sheets.
2. A push-button switch as set forth in claim 1 wherein said plurality of push buttons are received in a plurality of casings, respectively, and each of the casings is provided with a pair of legs each having a detent at the lower end thereof.
3. A push-button switch as set forth in claim 2 wherein said first and second printed circuit sheets, said printed circuit base board, and said two insulating sheets having holes, are all provided with a plurality of pairs of holes in vertically aligned positions so that when said pairs of legs of said casings are passed through said pairs of holes, said first and second printed circuit sheets, printed circuit base board, and two insulating sheets are superimposed in precisely aligned manner.
4. A push-button switch as set forth in claim 2 wherein each of said casings is further provided with four pillar-like projections downwardly extending from the four corners of the casing.
5. A push-button switch as set forth in claim 4 wherein said first and second printed circuit sheets, said printed circuit base board, and two insulating sheets are all further provided with a plurality of sets each including four holes therethrough in vertically aligned positions so that when said four pillar-like projections of the casing pass through said four in one set of holes, said first and second printed circuit sheets, said printed circuit base board, and two insulating sheets are superimposed in far more precisely aligned manner.
6. A push-button switch as set forth in claim 1 wherein said resilient plate is made of a thin metal sheet having three limbs, the central limb of which is longer than the two side limbs, whereby when the central limb is depressed by a push button, the bending state of the resilient plate is changed in a snapping manner into the reversely bent state.
7. A push-button switch as set forth in claim 1 wherein an upper frame having a plurality of holes is further provided so that said plurality of push buttons are upwardly exposed through said plurality of holes.
8. A push-button switch as set forth in claim 7 wherein a substantially rectangular recessed portion is formed around each of said plurality of holes on the rear side of said upper frame, and said pLurality of casings are tightly received in said recessed portions.
9. A push-button switch as set forth in claim 7 wherein said upper frame is further provided with two side ribs along the lower side edges, and all of the first and second printed circuit sheets, said printed circuit base board, and two insulating sheets superimposed are received between said side ribs of the upper frame when the push-button switch is assembled.
10. A push-button switch as set forth in claim 9 wherein a plurality of mounting screws are further driven from the rear side of the printed circuit base board to a plurality of threaded holes in the upper frame penetrating through the first and second printed circuit sheets and two insulating sheets.
11. A push-button switch as in claim 6 wherein said resilient plate is further provided with four holes at the four corners thereof.
12. A push-button switch as in claim 8 wherein each of said casings has a stepped portion which fits into said recessed portion in a tight manner.
13. A push-button switch as set forth in claim 2 wherein each of said plurality of push-buttons is further provided an integral pair of projections of a substantially triangular detent cross-section projecting from both sides of the lower part of the push-button, and each of said casings has a downwardly extending rib which fits with and retains said projections.
14. A push-button switch as set forth in claim 1 wherein said plurality of push-buttons are further provided with a downwardly projecting portion at the center of the lower surface.
15. A contact assembly as set forth in claim 1 wherein said plurality of contact members are further provided with leads which connect said contact assemblies to terminals located on the longitudinal ends of said second printed circuit sheet and printed circuit base board.
16. A snap-acting, pushbutton switch comprising: a printed circuit base board provided with at least one fixed contact assembly; a printed circuit sheet made of an insulating flexible film placed over the printed circuit base board and provided with at least one movable contact aligning with said fixed contact assembly; a flexible insulating sheet having at least one hole aligning with said contact and contact assembly and being interposed between the printed circuit sheet and the printed circuit base board; a push button arranged on the front side of the printed circuit sheet in alignment with the contact and contact assembly, a resilient plate provided beneath the push button; whereby when the push button is depressed its corresponding resilient plate is pushed downward until it snaps into a reverse position thereby forcing the contact of the printed circuit sheet downward until it comes into physical contact with the contact assembly of the printed circuit base board and when the push button is released the push button is brought back to its original position by the action of the resilient plate while the movable contact is separated from the contact assembly due to the flexibility of the printed circuit sheets.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9457773A JPS5329226B2 (en) | 1973-08-23 | 1973-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3917917A true US3917917A (en) | 1975-11-04 |
Family
ID=14114129
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US499600A Expired - Lifetime US3917917A (en) | 1973-08-23 | 1974-08-22 | Keyboard pushbutton switch assembly having multilayer contact and circuit structure |
Country Status (2)
Country | Link |
---|---|
US (1) | US3917917A (en) |
JP (1) | JPS5329226B2 (en) |
Cited By (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3969595A (en) * | 1974-09-23 | 1976-07-13 | Xerox Corporation | Sequential switching assembly having plural, spaced flexible contact layers |
US4029915A (en) * | 1974-12-12 | 1977-06-14 | Hoshidenkoseizo Kabushiki Kaisha | Miniaturized calculator keyboard switch assembly having universally pivoted key actuators |
US4032728A (en) * | 1974-12-20 | 1977-06-28 | Olympia Werke Ag | Push button switch |
US4052580A (en) * | 1975-06-03 | 1977-10-04 | Amf Incorporated | Momentary contact pushbutton type switch having flexible, mounted housing |
US4056701A (en) * | 1976-07-08 | 1977-11-01 | Bowmar Instrument Corporation | Low profile lighted push button switch |
US4124313A (en) * | 1974-08-22 | 1978-11-07 | Kienzle Apparate Gmbh | Keyboard assembly |
US4146767A (en) * | 1976-09-10 | 1979-03-27 | Alps Electric Co., Ltd. | Push-button switch |
US4181826A (en) * | 1978-04-06 | 1980-01-01 | Motorola, Inc. | Dome switch actuating apparatus |
US4202640A (en) * | 1974-08-22 | 1980-05-13 | Kienzle Apparate Gmbh | Keyboard assembly |
DE2931370A1 (en) * | 1979-08-02 | 1981-02-05 | Petrick Gmbh Elektro Mech | Double action multicontact tumbler switch - has first bridging leaf spring depressed onto second springs under first and further pressure |
US4268815A (en) * | 1979-11-26 | 1981-05-19 | Eventoff Franklin Neal | Multi-function touch switch apparatus |
US4307272A (en) * | 1979-02-21 | 1981-12-22 | The Echlin Manufacturing Company | Pressure actuated switch |
EP0051749A1 (en) * | 1980-11-06 | 1982-05-19 | PREH, Elektrofeinmechanische Werke Jakob Preh Nachf. GmbH & Co. | Keyboard |
US4334134A (en) * | 1980-11-13 | 1982-06-08 | Gte Automatic Electric Labs Inc. | Identification cap actuator assembly |
FR2496330A1 (en) * | 1980-12-12 | 1982-06-18 | Thomson Csf Mat Tel | SWITCH WITH TIME-DIFFERENT CONTACTS AND KEYBOARD COMPRISING SUCH SWITCHES |
US4349712A (en) * | 1979-01-25 | 1982-09-14 | Itt Industries, Inc. | Push-button switch |
US4360722A (en) * | 1980-11-03 | 1982-11-23 | Gte Automatic Electric Labs Inc. | Designation cap actuator assembly |
US4375018A (en) * | 1980-06-16 | 1983-02-22 | Sheldahl, Inc. | Membrane switch having adhesive label as edge seal |
US4376238A (en) * | 1980-03-12 | 1983-03-08 | International Computers Limited | Electrical devices |
EP0088365A1 (en) * | 1982-03-10 | 1983-09-14 | PREH, Elektrofeinmechanische Werke Jakob Preh Nachf. GmbH & Co. | Keyboard |
US4406953A (en) * | 1980-08-25 | 1983-09-27 | Kabushiki Kaisha Higashifuji Seisakusho | Timer switch |
US4408252A (en) * | 1982-02-16 | 1983-10-04 | Becton Dickinson And Company | Low profile keyboard switch |
EP0110094A1 (en) * | 1982-11-05 | 1984-06-13 | Wilhelm Ruf KG | Push button for closing electrical contacts |
US4467150A (en) * | 1982-02-24 | 1984-08-21 | Digital Equipment Corporation | Electronic keyboard |
EP0119603A2 (en) * | 1983-03-18 | 1984-09-26 | Siemens Aktiengesellschaft | Push button switch installation |
US4484042A (en) * | 1982-08-03 | 1984-11-20 | Alps Electric Co., Ltd. | Snap action push button switch |
EP0144916A2 (en) * | 1983-12-02 | 1985-06-19 | Siemens Aktiengesellschaft | Push button |
US4535209A (en) * | 1983-11-09 | 1985-08-13 | Gerhard Kurz | Pressure-sensitive electrical switch |
US4536625A (en) * | 1983-04-20 | 1985-08-20 | Bebie Alain M | Keyboard design |
FR2587833A1 (en) * | 1985-09-21 | 1987-03-27 | Rheinmetall Gmbh | Multiple pushbutton switch panel for machine control |
US4659881A (en) * | 1986-01-27 | 1987-04-21 | Eastman Kodak Company | Multidome multistage switch assembly |
EP0234193A2 (en) * | 1986-01-18 | 1987-09-02 | Stierlen-Maquet Aktiengesellschaft | Switch arrangement |
US4703139A (en) * | 1983-09-06 | 1987-10-27 | Kb Denver, Inc. | Method in a snap dome switch keyboard assembly for reducing contact bounce time |
US4751385A (en) * | 1984-12-03 | 1988-06-14 | Cts Corporation | Lighted contact switch |
US4767898A (en) * | 1986-07-29 | 1988-08-30 | Aisin Seiki Kabushiki Kaisha | Pressure responsive switch with an air filter |
FR2614120A1 (en) * | 1987-04-17 | 1988-10-21 | C P Clare Electronique | Electronic keyboard |
US4786766A (en) * | 1985-08-26 | 1988-11-22 | Canon Kabushiki Kaisha | Keyboard apparatus |
US4922067A (en) * | 1988-04-01 | 1990-05-01 | Eastman Kodak Company | Fluid pressure switch having venting means for dispersing back pressure |
US4931601A (en) * | 1989-02-23 | 1990-06-05 | Eastman Kodak Company | Pressure switch having internal vent chamber |
US5510584A (en) * | 1995-03-07 | 1996-04-23 | Itt Corporation | Sequentially operated snap action membrane switches |
US5609563A (en) * | 1991-12-12 | 1997-03-11 | Olympus Optical Co., Ltd. | Endoscope apparatus provided with curvature and fluid flow control |
US5670760A (en) * | 1995-10-24 | 1997-09-23 | Golden Books Publishing Company, Inc. | Multi-switch membrane-switch assembly |
FR2803084A1 (en) * | 1999-12-27 | 2001-06-29 | Itt Mfg Entpr S Inc | Small size touch sensitive push button electrical switch having dome shaped push button pressing switch contact/printed circuit board held with outer cover rim sealing dome section/contact. |
US6265677B1 (en) * | 1998-07-07 | 2001-07-24 | Acer Peripherals, Inc. | Keyboard assembly including circuit membrane switch array |
US20030053280A1 (en) * | 2001-08-31 | 2003-03-20 | Logitech Europe S.A. | Sensing keys for keyboard |
US20030133278A1 (en) * | 2002-01-11 | 2003-07-17 | Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho | Elastic sheet structure having an improved electrical continuity function, and printed circuit board structure |
US6626473B1 (en) * | 1998-12-10 | 2003-09-30 | Huf Hülsbeck & Fürst Gmbh & Co. Kg | Outer door handle, especially for motor vehicles, with a bow-type handle and with a pressure-actuated element integrated therein |
US6680676B1 (en) * | 1999-01-28 | 2004-01-20 | Matsushita Electric Industrial Co., Ltd. | Switch unit and portable terminal device using the switch unit |
US20040095261A1 (en) * | 2002-11-15 | 2004-05-20 | Hsien-Ming Lin | Apparatus and method for determining output signals according to pressure and depressing time |
US20050174332A1 (en) * | 2004-02-06 | 2005-08-11 | Hua-Yu Hunag | Casing having button portion without penetrating interstice |
US20060279095A1 (en) * | 2005-06-07 | 2006-12-14 | Mitsui Mining & Smelting Co., Ltd. | Latch release operating apparatus |
US20070273548A1 (en) * | 2004-11-10 | 2007-11-29 | Lg Electronics Inc. | Remote Monitor in Electric Home Appliances |
US20090042453A1 (en) * | 2007-08-10 | 2009-02-12 | Chi Mei Communication Systems, Inc. | Contact spring assembly for electronic devices |
US20090101485A1 (en) * | 2007-10-19 | 2009-04-23 | Alpha Corporation | Pushbutton switch mounting structure |
US20120024682A1 (en) * | 2010-07-30 | 2012-02-02 | Primax Electronics Ltd. | Two-level pressure sensitive keyboard |
US20150179358A1 (en) * | 2013-12-25 | 2015-06-25 | Panasonic Intellectual Property Management Co., Ltd. | Keyboard |
EP2905674A1 (en) * | 2014-01-24 | 2015-08-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Keyboard and system with a keyboard |
US20170069444A1 (en) * | 2015-09-04 | 2017-03-09 | Apple Inc. | Film-based housing and switch for keyboard assembly |
GB2542246A (en) * | 2015-07-16 | 2017-03-15 | Lenovo Singapore Pte Ltd | Input device and electronic apparatus |
US9640347B2 (en) | 2013-09-30 | 2017-05-02 | Apple Inc. | Keycaps with reduced thickness |
US9704665B2 (en) | 2014-05-19 | 2017-07-11 | Apple Inc. | Backlit keyboard including reflective component |
US9704670B2 (en) | 2013-09-30 | 2017-07-11 | Apple Inc. | Keycaps having reduced thickness |
US9710069B2 (en) | 2012-10-30 | 2017-07-18 | Apple Inc. | Flexible printed circuit having flex tails upon which keyboard keycaps are coupled |
US9715978B2 (en) | 2014-05-27 | 2017-07-25 | Apple Inc. | Low travel switch assembly |
US9761389B2 (en) | 2012-10-30 | 2017-09-12 | Apple Inc. | Low-travel key mechanisms with butterfly hinges |
US9779889B2 (en) | 2014-03-24 | 2017-10-03 | Apple Inc. | Scissor mechanism features for a keyboard |
US9793066B1 (en) | 2014-01-31 | 2017-10-17 | Apple Inc. | Keyboard hinge mechanism |
US9870880B2 (en) | 2014-09-30 | 2018-01-16 | Apple Inc. | Dome switch and switch housing for keyboard assembly |
US9908310B2 (en) | 2013-07-10 | 2018-03-06 | Apple Inc. | Electronic device with a reduced friction surface |
US9916945B2 (en) | 2012-10-30 | 2018-03-13 | Apple Inc. | Low-travel key mechanisms using butterfly hinges |
US9927895B2 (en) | 2013-02-06 | 2018-03-27 | Apple Inc. | Input/output device with a dynamically adjustable appearance and function |
US9934915B2 (en) | 2015-06-10 | 2018-04-03 | Apple Inc. | Reduced layer keyboard stack-up |
US9971084B2 (en) | 2015-09-28 | 2018-05-15 | Apple Inc. | Illumination structure for uniform illumination of keys |
US9997304B2 (en) | 2015-05-13 | 2018-06-12 | Apple Inc. | Uniform illumination of keys |
US9997308B2 (en) | 2015-05-13 | 2018-06-12 | Apple Inc. | Low-travel key mechanism for an input device |
US10083806B2 (en) | 2015-05-13 | 2018-09-25 | Apple Inc. | Keyboard for electronic device |
US10082880B1 (en) | 2014-08-28 | 2018-09-25 | Apple Inc. | System level features of a keyboard |
US10115544B2 (en) | 2016-08-08 | 2018-10-30 | Apple Inc. | Singulated keyboard assemblies and methods for assembling a keyboard |
US10128064B2 (en) | 2015-05-13 | 2018-11-13 | Apple Inc. | Keyboard assemblies having reduced thicknesses and method of forming keyboard assemblies |
US10262814B2 (en) | 2013-05-27 | 2019-04-16 | Apple Inc. | Low travel switch assembly |
US10353485B1 (en) | 2016-07-27 | 2019-07-16 | Apple Inc. | Multifunction input device with an embedded capacitive sensing layer |
US10755877B1 (en) | 2016-08-29 | 2020-08-25 | Apple Inc. | Keyboard for an electronic device |
US10775850B2 (en) | 2017-07-26 | 2020-09-15 | Apple Inc. | Computer with keyboard |
US10796863B2 (en) | 2014-08-15 | 2020-10-06 | Apple Inc. | Fabric keyboard |
US11500538B2 (en) | 2016-09-13 | 2022-11-15 | Apple Inc. | Keyless keyboard with force sensing and haptic feedback |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50118273A (en) * | 1974-03-06 | 1975-09-16 | ||
JPS50155985A (en) * | 1974-06-06 | 1975-12-16 | ||
JPS5266963A (en) * | 1975-11-29 | 1977-06-02 | Matsushita Electric Works Ltd | Method of constituting small switch |
IT1082772B (en) * | 1977-05-23 | 1985-05-21 | Olivetti & Co Spa | CLICK TYPE CONTACT KEYBOARD MODULE |
JPS58132441U (en) * | 1982-03-03 | 1983-09-07 | ソニー株式会社 | alarm device |
EP2405457A1 (en) * | 2010-07-09 | 2012-01-11 | Koninklijke Philips Electronics N.V. | Modular keyboard assembly |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3571542A (en) * | 1969-08-12 | 1971-03-23 | Ibm | Fluid logic controlled elastic diaphragm switch matrix with cross point shielding |
US3584162A (en) * | 1970-02-16 | 1971-06-08 | Ibm | Electrical keyboard switch mechanism with improved resilient diaphragm contact actuator |
US3699294A (en) * | 1971-05-18 | 1972-10-17 | Flex Key Corp | Keyboard, digital coding, switch for digital logic, and low power detector switches |
US3749859A (en) * | 1972-04-19 | 1973-07-31 | Colorado Instr Inc | Keyboard switch assembly with improved hermetically sealed diaphragm contact structure |
US3780237A (en) * | 1972-10-16 | 1973-12-18 | Chomerics Inc | Keyboard switch assembly with multi-sectional key actuator |
US3811025A (en) * | 1973-05-17 | 1974-05-14 | Lockheed Electronics Co | Touch panel switch assembly |
US3860771A (en) * | 1973-10-29 | 1975-01-14 | Chomerics Inc | Keyboard switch assembly with dome shaped actuator having associated underlying contactor means |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3290439A (en) * | 1963-04-29 | 1966-12-06 | Willcox | Data encoding keyboard |
US3603756A (en) * | 1970-01-29 | 1971-09-07 | Sperry Rand Corp | Snap action switch |
-
1973
- 1973-08-23 JP JP9457773A patent/JPS5329226B2/ja not_active Expired
-
1974
- 1974-08-22 US US499600A patent/US3917917A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3571542A (en) * | 1969-08-12 | 1971-03-23 | Ibm | Fluid logic controlled elastic diaphragm switch matrix with cross point shielding |
US3584162A (en) * | 1970-02-16 | 1971-06-08 | Ibm | Electrical keyboard switch mechanism with improved resilient diaphragm contact actuator |
US3699294A (en) * | 1971-05-18 | 1972-10-17 | Flex Key Corp | Keyboard, digital coding, switch for digital logic, and low power detector switches |
US3749859A (en) * | 1972-04-19 | 1973-07-31 | Colorado Instr Inc | Keyboard switch assembly with improved hermetically sealed diaphragm contact structure |
US3780237A (en) * | 1972-10-16 | 1973-12-18 | Chomerics Inc | Keyboard switch assembly with multi-sectional key actuator |
US3811025A (en) * | 1973-05-17 | 1974-05-14 | Lockheed Electronics Co | Touch panel switch assembly |
US3860771A (en) * | 1973-10-29 | 1975-01-14 | Chomerics Inc | Keyboard switch assembly with dome shaped actuator having associated underlying contactor means |
Cited By (122)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4124313A (en) * | 1974-08-22 | 1978-11-07 | Kienzle Apparate Gmbh | Keyboard assembly |
US4202640A (en) * | 1974-08-22 | 1980-05-13 | Kienzle Apparate Gmbh | Keyboard assembly |
US3969595A (en) * | 1974-09-23 | 1976-07-13 | Xerox Corporation | Sequential switching assembly having plural, spaced flexible contact layers |
US4029915A (en) * | 1974-12-12 | 1977-06-14 | Hoshidenkoseizo Kabushiki Kaisha | Miniaturized calculator keyboard switch assembly having universally pivoted key actuators |
US4032728A (en) * | 1974-12-20 | 1977-06-28 | Olympia Werke Ag | Push button switch |
US4052580A (en) * | 1975-06-03 | 1977-10-04 | Amf Incorporated | Momentary contact pushbutton type switch having flexible, mounted housing |
US4056701A (en) * | 1976-07-08 | 1977-11-01 | Bowmar Instrument Corporation | Low profile lighted push button switch |
US4146767A (en) * | 1976-09-10 | 1979-03-27 | Alps Electric Co., Ltd. | Push-button switch |
US4181826A (en) * | 1978-04-06 | 1980-01-01 | Motorola, Inc. | Dome switch actuating apparatus |
US4349712A (en) * | 1979-01-25 | 1982-09-14 | Itt Industries, Inc. | Push-button switch |
US4307272A (en) * | 1979-02-21 | 1981-12-22 | The Echlin Manufacturing Company | Pressure actuated switch |
DE2931370A1 (en) * | 1979-08-02 | 1981-02-05 | Petrick Gmbh Elektro Mech | Double action multicontact tumbler switch - has first bridging leaf spring depressed onto second springs under first and further pressure |
US4268815A (en) * | 1979-11-26 | 1981-05-19 | Eventoff Franklin Neal | Multi-function touch switch apparatus |
US4376238A (en) * | 1980-03-12 | 1983-03-08 | International Computers Limited | Electrical devices |
US4375018A (en) * | 1980-06-16 | 1983-02-22 | Sheldahl, Inc. | Membrane switch having adhesive label as edge seal |
US4406953A (en) * | 1980-08-25 | 1983-09-27 | Kabushiki Kaisha Higashifuji Seisakusho | Timer switch |
US4360722A (en) * | 1980-11-03 | 1982-11-23 | Gte Automatic Electric Labs Inc. | Designation cap actuator assembly |
EP0051749A1 (en) * | 1980-11-06 | 1982-05-19 | PREH, Elektrofeinmechanische Werke Jakob Preh Nachf. GmbH & Co. | Keyboard |
US4527030A (en) * | 1980-11-06 | 1985-07-02 | Preh Elektrofeinmechanische Werke, Jakob Preh Nachf., Gmbh & Co. | Keyboard |
US4334134A (en) * | 1980-11-13 | 1982-06-08 | Gte Automatic Electric Labs Inc. | Identification cap actuator assembly |
FR2496330A1 (en) * | 1980-12-12 | 1982-06-18 | Thomson Csf Mat Tel | SWITCH WITH TIME-DIFFERENT CONTACTS AND KEYBOARD COMPRISING SUCH SWITCHES |
US4408252A (en) * | 1982-02-16 | 1983-10-04 | Becton Dickinson And Company | Low profile keyboard switch |
US4467150A (en) * | 1982-02-24 | 1984-08-21 | Digital Equipment Corporation | Electronic keyboard |
AU584303B2 (en) * | 1982-02-24 | 1989-05-18 | Digital Equipment Corporation | Electronic keyboard |
EP0088365A1 (en) * | 1982-03-10 | 1983-09-14 | PREH, Elektrofeinmechanische Werke Jakob Preh Nachf. GmbH & Co. | Keyboard |
US4484042A (en) * | 1982-08-03 | 1984-11-20 | Alps Electric Co., Ltd. | Snap action push button switch |
EP0110094A1 (en) * | 1982-11-05 | 1984-06-13 | Wilhelm Ruf KG | Push button for closing electrical contacts |
EP0119603A2 (en) * | 1983-03-18 | 1984-09-26 | Siemens Aktiengesellschaft | Push button switch installation |
EP0119603A3 (en) * | 1983-03-18 | 1986-10-08 | Siemens Aktiengesellschaft | Push button switch installation |
US4536625A (en) * | 1983-04-20 | 1985-08-20 | Bebie Alain M | Keyboard design |
US4703139A (en) * | 1983-09-06 | 1987-10-27 | Kb Denver, Inc. | Method in a snap dome switch keyboard assembly for reducing contact bounce time |
US4535209A (en) * | 1983-11-09 | 1985-08-13 | Gerhard Kurz | Pressure-sensitive electrical switch |
US4641004A (en) * | 1983-12-02 | 1987-02-03 | Siemens Aktiengesellschaft | Key module for keyboards having a dome-shaped key member of resilient material |
EP0144916A2 (en) * | 1983-12-02 | 1985-06-19 | Siemens Aktiengesellschaft | Push button |
EP0144916A3 (en) * | 1983-12-02 | 1985-07-17 | Siemens Aktiengesellschaft | Push button |
US4751385A (en) * | 1984-12-03 | 1988-06-14 | Cts Corporation | Lighted contact switch |
US4786766A (en) * | 1985-08-26 | 1988-11-22 | Canon Kabushiki Kaisha | Keyboard apparatus |
FR2587833A1 (en) * | 1985-09-21 | 1987-03-27 | Rheinmetall Gmbh | Multiple pushbutton switch panel for machine control |
EP0234193A3 (en) * | 1986-01-18 | 1988-08-24 | Stierlen-Maquet Aktiengesellschaft | Switch arrangement |
US4767943A (en) * | 1986-01-18 | 1988-08-30 | Stierlen-Maquet Ag | Switch arrangement |
EP0234193A2 (en) * | 1986-01-18 | 1987-09-02 | Stierlen-Maquet Aktiengesellschaft | Switch arrangement |
US4659881A (en) * | 1986-01-27 | 1987-04-21 | Eastman Kodak Company | Multidome multistage switch assembly |
US4767898A (en) * | 1986-07-29 | 1988-08-30 | Aisin Seiki Kabushiki Kaisha | Pressure responsive switch with an air filter |
FR2614120A1 (en) * | 1987-04-17 | 1988-10-21 | C P Clare Electronique | Electronic keyboard |
US4922067A (en) * | 1988-04-01 | 1990-05-01 | Eastman Kodak Company | Fluid pressure switch having venting means for dispersing back pressure |
US4931601A (en) * | 1989-02-23 | 1990-06-05 | Eastman Kodak Company | Pressure switch having internal vent chamber |
US5609563A (en) * | 1991-12-12 | 1997-03-11 | Olympus Optical Co., Ltd. | Endoscope apparatus provided with curvature and fluid flow control |
US5510584A (en) * | 1995-03-07 | 1996-04-23 | Itt Corporation | Sequentially operated snap action membrane switches |
US5670760A (en) * | 1995-10-24 | 1997-09-23 | Golden Books Publishing Company, Inc. | Multi-switch membrane-switch assembly |
US6265677B1 (en) * | 1998-07-07 | 2001-07-24 | Acer Peripherals, Inc. | Keyboard assembly including circuit membrane switch array |
US6626473B1 (en) * | 1998-12-10 | 2003-09-30 | Huf Hülsbeck & Fürst Gmbh & Co. Kg | Outer door handle, especially for motor vehicles, with a bow-type handle and with a pressure-actuated element integrated therein |
US6680676B1 (en) * | 1999-01-28 | 2004-01-20 | Matsushita Electric Industrial Co., Ltd. | Switch unit and portable terminal device using the switch unit |
WO2001048770A1 (en) * | 1999-12-27 | 2001-07-05 | Itt Manufacturing Enterprises Inc. | Sealed individual electric switch fixed by being interlocked on a circuit board |
FR2803084A1 (en) * | 1999-12-27 | 2001-06-29 | Itt Mfg Entpr S Inc | Small size touch sensitive push button electrical switch having dome shaped push button pressing switch contact/printed circuit board held with outer cover rim sealing dome section/contact. |
US6501036B2 (en) | 1999-12-27 | 2002-12-31 | Itt Manufacturing Enterprises, Inc. | Sealed board-mounted electrical switch |
US20030053280A1 (en) * | 2001-08-31 | 2003-03-20 | Logitech Europe S.A. | Sensing keys for keyboard |
US6999009B2 (en) | 2001-08-31 | 2006-02-14 | Logitech Europe S.A. | Sensing keys for keyboard |
US20030133278A1 (en) * | 2002-01-11 | 2003-07-17 | Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho | Elastic sheet structure having an improved electrical continuity function, and printed circuit board structure |
US6812424B2 (en) * | 2002-01-11 | 2004-11-02 | Kabushiki Kaisha Tokai-Rika-Denki-Seisakusho | Elastic sheet structure having an improved electrical continuity function, and printed circuit board structure |
US20040095261A1 (en) * | 2002-11-15 | 2004-05-20 | Hsien-Ming Lin | Apparatus and method for determining output signals according to pressure and depressing time |
US20050174332A1 (en) * | 2004-02-06 | 2005-08-11 | Hua-Yu Hunag | Casing having button portion without penetrating interstice |
US20070273548A1 (en) * | 2004-11-10 | 2007-11-29 | Lg Electronics Inc. | Remote Monitor in Electric Home Appliances |
US20060279095A1 (en) * | 2005-06-07 | 2006-12-14 | Mitsui Mining & Smelting Co., Ltd. | Latch release operating apparatus |
US7938460B2 (en) * | 2005-06-07 | 2011-05-10 | Mitsui Mining & Smelting Co., Ltd. | Latch release operating apparatus |
US20090042453A1 (en) * | 2007-08-10 | 2009-02-12 | Chi Mei Communication Systems, Inc. | Contact spring assembly for electronic devices |
US7578712B2 (en) * | 2007-08-10 | 2009-08-25 | Chi Mei Communication Systems, Inc. | Contact spring assembly for electronic devices |
US20090101485A1 (en) * | 2007-10-19 | 2009-04-23 | Alpha Corporation | Pushbutton switch mounting structure |
US7683278B2 (en) * | 2007-10-19 | 2010-03-23 | Alpha Corporation | Pushbutton switch mounting structure |
US8314352B2 (en) * | 2010-07-30 | 2012-11-20 | Primax Electronics, Ltd. | Two-level pressure sensitive keyboard |
US20120024682A1 (en) * | 2010-07-30 | 2012-02-02 | Primax Electronics Ltd. | Two-level pressure sensitive keyboard |
US10699856B2 (en) | 2012-10-30 | 2020-06-30 | Apple Inc. | Low-travel key mechanisms using butterfly hinges |
US10211008B2 (en) | 2012-10-30 | 2019-02-19 | Apple Inc. | Low-travel key mechanisms using butterfly hinges |
US9916945B2 (en) | 2012-10-30 | 2018-03-13 | Apple Inc. | Low-travel key mechanisms using butterfly hinges |
US11023081B2 (en) | 2012-10-30 | 2021-06-01 | Apple Inc. | Multi-functional keyboard assemblies |
US10254851B2 (en) | 2012-10-30 | 2019-04-09 | Apple Inc. | Keyboard key employing a capacitive sensor and dome |
US9761389B2 (en) | 2012-10-30 | 2017-09-12 | Apple Inc. | Low-travel key mechanisms with butterfly hinges |
US9710069B2 (en) | 2012-10-30 | 2017-07-18 | Apple Inc. | Flexible printed circuit having flex tails upon which keyboard keycaps are coupled |
US10114489B2 (en) | 2013-02-06 | 2018-10-30 | Apple Inc. | Input/output device with a dynamically adjustable appearance and function |
US9927895B2 (en) | 2013-02-06 | 2018-03-27 | Apple Inc. | Input/output device with a dynamically adjustable appearance and function |
US10262814B2 (en) | 2013-05-27 | 2019-04-16 | Apple Inc. | Low travel switch assembly |
US10556408B2 (en) | 2013-07-10 | 2020-02-11 | Apple Inc. | Electronic device with a reduced friction surface |
US9908310B2 (en) | 2013-07-10 | 2018-03-06 | Apple Inc. | Electronic device with a reduced friction surface |
US9704670B2 (en) | 2013-09-30 | 2017-07-11 | Apple Inc. | Keycaps having reduced thickness |
US10224157B2 (en) | 2013-09-30 | 2019-03-05 | Apple Inc. | Keycaps having reduced thickness |
US9640347B2 (en) | 2013-09-30 | 2017-05-02 | Apple Inc. | Keycaps with reduced thickness |
US11699558B2 (en) | 2013-09-30 | 2023-07-11 | Apple Inc. | Keycaps having reduced thickness |
US10002727B2 (en) | 2013-09-30 | 2018-06-19 | Apple Inc. | Keycaps with reduced thickness |
US10804051B2 (en) | 2013-09-30 | 2020-10-13 | Apple Inc. | Keycaps having reduced thickness |
US9418798B2 (en) * | 2013-12-25 | 2016-08-16 | Panasonic Intellectual Property Management Co., Ltd. | Keyboard |
US20150179358A1 (en) * | 2013-12-25 | 2015-06-25 | Panasonic Intellectual Property Management Co., Ltd. | Keyboard |
EP2905674A1 (en) * | 2014-01-24 | 2015-08-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Keyboard and system with a keyboard |
US9793066B1 (en) | 2014-01-31 | 2017-10-17 | Apple Inc. | Keyboard hinge mechanism |
US9779889B2 (en) | 2014-03-24 | 2017-10-03 | Apple Inc. | Scissor mechanism features for a keyboard |
US9704665B2 (en) | 2014-05-19 | 2017-07-11 | Apple Inc. | Backlit keyboard including reflective component |
US9715978B2 (en) | 2014-05-27 | 2017-07-25 | Apple Inc. | Low travel switch assembly |
US10796863B2 (en) | 2014-08-15 | 2020-10-06 | Apple Inc. | Fabric keyboard |
US10082880B1 (en) | 2014-08-28 | 2018-09-25 | Apple Inc. | System level features of a keyboard |
US10879019B2 (en) | 2014-09-30 | 2020-12-29 | Apple Inc. | Light-emitting assembly for keyboard |
US9870880B2 (en) | 2014-09-30 | 2018-01-16 | Apple Inc. | Dome switch and switch housing for keyboard assembly |
US10128061B2 (en) | 2014-09-30 | 2018-11-13 | Apple Inc. | Key and switch housing for keyboard assembly |
US10134539B2 (en) | 2014-09-30 | 2018-11-20 | Apple Inc. | Venting system and shield for keyboard |
US10192696B2 (en) | 2014-09-30 | 2019-01-29 | Apple Inc. | Light-emitting assembly for keyboard |
US9997304B2 (en) | 2015-05-13 | 2018-06-12 | Apple Inc. | Uniform illumination of keys |
US10083805B2 (en) | 2015-05-13 | 2018-09-25 | Apple Inc. | Keyboard for electronic device |
US10128064B2 (en) | 2015-05-13 | 2018-11-13 | Apple Inc. | Keyboard assemblies having reduced thicknesses and method of forming keyboard assemblies |
US10424446B2 (en) | 2015-05-13 | 2019-09-24 | Apple Inc. | Keyboard assemblies having reduced thickness and method of forming keyboard assemblies |
US10468211B2 (en) | 2015-05-13 | 2019-11-05 | Apple Inc. | Illuminated low-travel key mechanism for a keyboard |
US10083806B2 (en) | 2015-05-13 | 2018-09-25 | Apple Inc. | Keyboard for electronic device |
US9997308B2 (en) | 2015-05-13 | 2018-06-12 | Apple Inc. | Low-travel key mechanism for an input device |
US9934915B2 (en) | 2015-06-10 | 2018-04-03 | Apple Inc. | Reduced layer keyboard stack-up |
US9958907B2 (en) | 2015-07-16 | 2018-05-01 | Lenovo (Singapore) Pte Ltd | Touch pad for a portable electronic apparatus |
GB2542246B (en) * | 2015-07-16 | 2019-05-15 | Lenovo Singapore Pte Ltd | Touch pad sound damping and retention |
GB2542246A (en) * | 2015-07-16 | 2017-03-15 | Lenovo Singapore Pte Ltd | Input device and electronic apparatus |
US20170069444A1 (en) * | 2015-09-04 | 2017-03-09 | Apple Inc. | Film-based housing and switch for keyboard assembly |
US10310167B2 (en) | 2015-09-28 | 2019-06-04 | Apple Inc. | Illumination structure for uniform illumination of keys |
US9971084B2 (en) | 2015-09-28 | 2018-05-15 | Apple Inc. | Illumination structure for uniform illumination of keys |
US10353485B1 (en) | 2016-07-27 | 2019-07-16 | Apple Inc. | Multifunction input device with an embedded capacitive sensing layer |
US11282659B2 (en) | 2016-08-08 | 2022-03-22 | Apple Inc. | Singulated keyboard assemblies and methods for assembling a keyboard |
US10115544B2 (en) | 2016-08-08 | 2018-10-30 | Apple Inc. | Singulated keyboard assemblies and methods for assembling a keyboard |
US10755877B1 (en) | 2016-08-29 | 2020-08-25 | Apple Inc. | Keyboard for an electronic device |
US11500538B2 (en) | 2016-09-13 | 2022-11-15 | Apple Inc. | Keyless keyboard with force sensing and haptic feedback |
US10775850B2 (en) | 2017-07-26 | 2020-09-15 | Apple Inc. | Computer with keyboard |
Also Published As
Publication number | Publication date |
---|---|
JPS5044479A (en) | 1975-04-21 |
JPS5329226B2 (en) | 1978-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3917917A (en) | Keyboard pushbutton switch assembly having multilayer contact and circuit structure | |
US3699294A (en) | Keyboard, digital coding, switch for digital logic, and low power detector switches | |
US4194097A (en) | Membrane keyboard apparatus with tactile feedback | |
US3760137A (en) | Matrix push-button switch | |
US3909564A (en) | Keyboard assembly with foldable printed circuit matrix switch array, and key actuator locking slide plate | |
US4659881A (en) | Multidome multistage switch assembly | |
US3590195A (en) | Oilcan pushbutton switch | |
US3959610A (en) | Hermetically sealed keyboard type assembly with elastomeric electrical connecting link between switch and component modules | |
US3749872A (en) | Switch mounted on printed circuit board | |
US4086451A (en) | Keyboard apparatus | |
US4164634A (en) | Keyboard switch assembly with multiple isolated electrical engagement regions | |
US3899648A (en) | Nodally operated push-button switch | |
US3673357A (en) | Tactile response switch with unitary control strip of independently operably plural disc contacts | |
US3928741A (en) | Momentary contact single pole switch | |
GB1512488A (en) | Tactile feedback push-button switch | |
GB1441765A (en) | Push button switch | |
US4146767A (en) | Push-button switch | |
US3806685A (en) | Linear cam slide switch with guide means and conductive sheet contact | |
US3777090A (en) | Linear cam actuated diaphragm switch with lost motion actuator | |
US4268728A (en) | Switch encoder | |
US4197437A (en) | Snap-action switch | |
US5120922A (en) | Momentary pushbutton slide switch | |
GB1139756A (en) | Electric contact mechanism | |
US3911233A (en) | Keyboard switch for desk top electronic calculators | |
GB1535810A (en) | Multi-contact push button switch |