US3916870A - Heater-blower assembly - Google Patents
Heater-blower assembly Download PDFInfo
- Publication number
- US3916870A US3916870A US519757A US51975774A US3916870A US 3916870 A US3916870 A US 3916870A US 519757 A US519757 A US 519757A US 51975774 A US51975774 A US 51975774A US 3916870 A US3916870 A US 3916870A
- Authority
- US
- United States
- Prior art keywords
- blower
- heater
- subassembly
- burner
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002485 combustion reaction Methods 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 4
- 239000000446 fuel Substances 0.000 claims description 4
- 238000009434 installation Methods 0.000 abstract description 7
- 238000010276 construction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 235000011779 Menyanthes trifoliata Nutrition 0.000 description 1
- 240000008821 Menyanthes trifoliata Species 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H3/00—Air heaters
- F24H3/02—Air heaters with forced circulation
- F24H3/06—Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators
- F24H3/10—Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by plates
- F24H3/105—Air heaters with forced circulation the air being kept separate from the heating medium, e.g. using forced circulation of air over radiators by plates using fluid fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/305—Control of valves
- F24H15/31—Control of valves of valves having only one inlet port and one outlet port, e.g. flow rate regulating valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H15/00—Control of fluid heaters
- F24H15/30—Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
- F24H15/355—Control of heat-generating means in heaters
- F24H15/36—Control of heat-generating means in heaters of burners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H9/00—Details
- F24H9/20—Arrangement or mounting of control or safety devices
- F24H9/2064—Arrangement or mounting of control or safety devices for air heaters
- F24H9/2085—Arrangement or mounting of control or safety devices for air heaters using fluid fuel
Definitions
- ABSTRACT This invention relates to a heater-blower assembly for supplying warm air tosubsurface installations that is characterized by a self-contained master blower subassembly which can be used by itself as a source of cool air and a slave heater subassembly which will only operate when connected to the blower.
- the subassemblies in assembled relation cooperate to shield and keep the power connection therebetween connected.
- the heater subassembly has a master burner and a slave burner, the master being independently operative while the slave can only operate when the master is actuated.
- Surfacemounted blowers have been used for years to supply cool air to such installations by means of large diameter flexible ducts passing down through manholes.
- combination heater-blower units have been developed for this same purpose, one of which forms the subject matter of U.S. Pat. No. 2,811,962, of which I am a coinventor.
- a temperatureresponsive control circuit is included in the plenum and automatically operative to shut down the burners whenever the air flow stops or is obstructed to a point where the temperature exceeds a predeter mined maximum. While temperature-responsive shut off mechanisms are common in various types of furnaces and the like, the construction which prevents the power failure from taking place that is most often responsible for overheating is not. Not only is the plug and socket of the interlocking type but, in addition, the blower housing and heater housing cooperate in assembled relation to shield the plug and prevent its accidental or even intentional removal.
- the main blower control switch must be closed before any power is supplied to the heater for igniting the electrically-actuated burners.
- the heater has a master burner and a slave burner, the latter being ignitable only after the former has been lighted. With both burners lighted, the heat output is effectively doubled over using the master alone.
- a second objective of the invention is to provide a two-element assembly of the type described wherein the blower unit is a self-contained subassembly having utility independent of the heater subassembly.
- Another objective of the within described invention is to provide a heater subassembly which is functionally dependent in all respects upon the blower subassembly.
- Still another objective is to provide a mechanical power interlock rendered disconnectable by the juxtaposed relation of the subassembly housings when in assembled relation.
- An additional object of the invention forming the subject matter hereof is to provide an assembly with maximized utility as well as output achieved through separability of its components and all without sacrificing portability.
- FIG. 1 is a perspective view looking down and to the right upon the heater-blower assembly of the present invention as it delivers heated air into a subsurface installation through an open manhole, portions of the air duct having been broken away and shown in section to conserve space;
- FIG. 2 is a top plan view of the blower subassembly alone, portions of the housing having been broken away to expose the fan;
- FIG. 3 is a top plan view of the heater subassembly showing the corner removed from a portion of the housing to expose the elements contained therein and part of the plenum broken away to reveal the heat exchangers;
- FIG. 4 is a side elevation of the blower subassembly
- FIG. 5 is a fragmentary side elevation of the heaterblower assembly, again having portions of the housing broken away to reveal the interior construction;
- FIG. 6 is a front elevation of the blower with parts of the housing broken away to reveal the blower motor and squirrel-cage fan;
- FIG. 7 is a rear elevation of the heater subassembly by having parts of the plenum broken away to expose the gas lines to the burners;
- FIG. 8 is a fragmentary section taken alone line 88 of FIG. 7;
- FIG. 9 is a fragmentary section taken along line 9-9 of FIG. 8;
- FIG. ll is a section of the heat exchanger alone taken along line 10-10 of FIG. 8;
- FIG. 11 is a perspective view of one of the heat exchangers
- FIG. 12 is a section taken along line l2l2 of FIG. 7;
- FIG. 13 is an electrical diagram of the assembly.
- reference numeral 10 has been selected to broadly designate the heater-blower assembly while numerals 12 and 14 have been similarly employed to denominate the blower and heater subassemblies, respectively.
- Reference numeral 16 is the manhole entering into an underground installation requiring ventilation, the manhole cover (not shown) having been removed therefrom.
- a flexible air duct 18 of conventional design has been shown detachably connected to the heater outlet 20. This duct 18 is connectable directly to the blower outlet 22 in those instances where the blower subassembly 12 is used separately and no heater is required.
- Power cord 24 on the blower is connectable to any 115V AC power source which runs the blower motor 5 26.
- Power cord 28 on the blower subassembly 14 is not intended at least for direct connection to a source of electrical power, but instead, is preferably fitted with a special bayonet-type rotatable locking plug 30 that interlocks into socket 32 therefor (FIGS. 2, 3, 6 and 13). While the more common variety of 3wire plug like that found on the blower can, of course, be used in place of the special interlocking type, the latter has the advantage of requiring a special socket adapted to mate therewith which is far less com- 15 mon, thus virtually eliminating the possibility that the heater will be accidently connected directly to a power source. Accordingly, when used as intended, the heater subassembly is always a slave unit to the blower subassembly upon which it depends for its electrical power.
- plug 30 must be inserted into its socket 32 before the connection is made between the blower outlet and heater inlet.
- plug 30 must be inserted into its socket 32 before the connection is made between the blower outlet and heater inlet.
- the blower subassembly 12 is best revealed in FIGSn 1, 2, 3 and 6 where it will be seen to have a base 44 upon which is mounted a conventional electric motor 26 protected inside a ventilated housing 46.
- the motor shaft 48 extends into a fan housing 50 mounted alongside thereof that houses the squirrel-cage-type fan 52. Air enters opening 54 (FIG. 2) in the side of the blower housing 50 opposite the side where the motor shaft is located and is propelled by fan 52 out through outlet 22 in the well-known manner.
- Switch 56 on the motor housing is used to turn the motor on and off.
- a handle 58 facilitates transportation of the blower subassembly by itself and also cooperates with handle 60 on the heater subassembly to enable both subassemblies to be lifted together when in the assembled relation shown in FIGS. 1 and 5. While the assembly can be moved a short distance in this manner, the subassemblies are preferably moved separately and connected together at their point of use as this enables both units to be made larger and with a capacity more nearly answering the heating and ventilating requirements of the usual subsurface installation.
- blower subassembly 14 So far as the novelty of the blower subassembly is concerned, it has none apart from the heater subassembly 14 with which it cooperates in a unique manner in assembled relation.
- the remaining elements of the blower subassembly are conventional both from the standpoint of their function and their construction. Even the aforementioned additions to the blower subassembly have no function apart from the assembly that includes the heater and they are, therefore, surplusage when the blower is used alone.
- FIGS. 1, 4, 5, 7, 9 and 12 Mounted along one side of the base 36 is the plenum 62 within which the heat exchangers 64 are mounted in side-by-side relation. Air from the blower subassembly 12 enters the plenum through inlet 38, passes over the heat exchangers 64 and exits through the outlet 20 in the usual manner, such flow having been indicated by the arrows A in FIG. 8. The hot gaseous products of combustion from the burners 66 enter the intake ends 68 of the heat exchangers, migrate therethrough in heat-exchange relation with the cold air moving through the plenum, and are exhausted out the chimney 70 beneath protective cover 72.
- a louvered housing 74 Fastened to the other side of the base 36 alongside the plenum is a louvered housing 74 containing the burner controls. Gas under pressure enters the housing through gas line 76 containing shut-off valve 78. Inside the housing the gas passes through a pressure regulator 80 and into a T-connection 82 that splits the stream and sends one branch to a first solenoid-actuated valve 84 and the other to a second solenoid-actuated valve 86.
- solenoids 84S and 86S of these valves 84 and 86 are wired to the low side of transformer 88 which is, in turn, energized by closing master power switch 90 on the front of the housing. With switch 90 closed, the transformer will energize the solenoid 868 of valve 86 and open it to admit gas to one of the two burners 66. Closing of switch 90 also completes a high voltage circuit to electric ignitor 92 which ignites the gas issuing from the burner.
- a slave switch 94 is wired to the low side of transformer 88 and, in closed position, it will energize solenoid 84S to open valve 84 and admit gas to the second burner 66 provided that main switch 90 is also closed to energize the transformer.
- Ignitor 92 and flame sensor 96 actually comprise components of a standard direct spark ignition (D.S.I.) control systern which is well known in the art and widely available commercially.
- D.S.I. direct spark ignition
- ignitor 92 When switch 90 is actuated, for example, ignitor 92 generates 19,000 volt spark which will light one or both burners 66.
- the flame sensor continuously proves" the flame and is automatically operative to shut down the system in the event of either an electric power failure or a lack of gas. Once off, the system cannot be restarted until switch 90 is turned off and then closed again.
- thermal switch 98 This switch is connected into the side of the plenum 62 as shown most clearly in H65. 4, 5 and 9 in the path of the air moving therethrough. It is a normally-closed temperature-sensitive switch automatically operative to deenergize the D.S.l. system whenever the plenum temperature exceeds a predetermined maximum. So long as the blower subassembly is operative and nothing is plugged or kinked to prevent free movement of the air through the plenum, the ther mal switch will remain closed and inoperative to shut down the D.S.I. system.
- the heat exchangers 64 will be seen to each comprise a pair of mating preformed half-sections 100 and 102 that are mirror images of one another and are joined together along their outer marginal edges to produce a circuitous gas-circulating tunnel 104 therein.
- Tunnel 104 ex tends along the bottom of the plenum from the intake 68 adjacent the burners and then curves up along the rear wall 106 of the plenum near its outlet 20. From this point, the tunnel opens into a large central chamber 108 which, in turn, communicates with the chimney 70.
- blower air has ample opportunity to pick up heat from one or both heat exchangers as it is force-fed through the plenum.
- a portable heater-blower assembly comprising in combination: a blower subassembly including an electrio-motor driven forced air fan, a blower housing enclosing said fan having an outlet connectable to an air duct, and an electrical outlet within said housing alongside said air outlet facing in the same direction as the latter; a heater subassembly including at least one gasfired burner connectable to a source of gaseous fuel, electric ignition means positioned adjacent said burner operative upon actuation to ignite same, first electrically-actuated valve means connected to control the supply of fuel to said burner; a heater housing including a plenum having an air inlet detachably connectable to the forced air outlet of the blower subassembly, a heat exchanger within said plenum positioned to receive the hot gaseous products of combustion from the burner and pass same in heat-exchange relation to the air from the blower subassembly, an electrical circuit including the electric ignition means and first electricallyactuated valve means having a plug detachably connect
- the electrical circuit includes a length of conductor terminating in the plug, said conductor length being selected such that said plug will only reach the electrical outlet in the blower housing when the forced air outlet is positioned to deliver air into the heater inlet.
- blower subassembly includes switch means connected to the electrical outlet operative upon actuation to energize the electrical circuit of the heater subassembly.
- the electrical circuit of the heater subassembly includes a normally-closed temperature sensitive switch, said switch being located in the plenum in the path of the air moving therethrough from the blower subassembly, and said switch being automatically operative to deenergize said electrical circuit whenever the air temperature in said plenum exceeds a predetermined value.
- the heater subassembly includes a second burner in position to be fired by the electric ignition means; and, in which the electrical circuit includes a second electrically-actuated valve means connected to control the supply of gas to the second burner and a first switch opera tive upon actuation to open said second valve means, said second valve means being located downstream of the first electrically-actuated valve means in series therewith and with said second burner.
- the electrical circuit includes a second switch operative upon actuation to open said first valve means and simultaneously fire said electric ignition means.
- the electrical circuit includes a second switch operative upon actuation to open said first valve means and simultaneously fire said electric ignition means.
- a second heat-exchanger is mounted inside the plenum in position to receive the hot gaseous products of combustion from the second burner and pass same in heatexchanger relation to the air from the blower subassembly.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Direct Air Heating By Heater Or Combustion Gas (AREA)
- Regulation And Control Of Combustion (AREA)
- Air Supply (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
This invention relates to a heater-blower assembly for supplying warm air to subsurface installations that is characterized by a self-contained master blower subassembly which can be used by itself as a source of cool air and a slave heater subassembly which will only operate when connected to the blower. The subassemblies in assembled relation cooperate to shield and keep the power connection therebetween connected. The heater subassembly has a master burner and a slave burner, the master being independently operative while the slave can only operate when the master is actuated.
Description
' United States Patent [191 Beavers 1 Nov. 4, 1975 HEATER-BLOWER ASSEMBLY [75] Inventor: Allan E. Beavers, Littleton, C010.
[73] Assignee: T. A. Pelsue Company, Englewood,
Colo.
22 Filed: on. 31, 1974 21 Appl. No.: 519,757
[56] References Cited UNITED STATES PATENTS 9/1955 Johnston 126/110 R 11/1957 Pelsue et al..... 126/110 B 5/1962 Shotton, Jr 126/110 B l/1968 Woollen, Jr 126/110 R 3,435,817 4/1969 Ott 126/110 R Primary Examiner-William E. Wayner Assistant ExaminerW. E. Tapolcai, Jr. Attorney, Agent, or FirmEdwin L. Spangler, Jr.
[57] ABSTRACT This invention relates to a heater-blower assembly for supplying warm air tosubsurface installations that is characterized by a self-contained master blower subassembly which can be used by itself as a source of cool air and a slave heater subassembly which will only operate when connected to the blower. The subassemblies in assembled relation cooperate to shield and keep the power connection therebetween connected. The heater subassembly has a master burner and a slave burner, the master being independently operative while the slave can only operate when the master is actuated.
10 Claims, 13 Drawing Figures U.S. Patent Noy. 4, 1975 Sheet 1 of3 3,916,870
US. Patent Nov. 4, 1975 Sheet 2 of3 3,916,870
HEATER-BLOWER ASSEMBLY Safety regulations governing working conditions in underground utilitytinstallations require that they be ventilated for the safety of the personnel. Surfacemounted blowers have been used for years to supply cool air to such installations by means of large diameter flexible ducts passing down through manholes. In fact, combination heater-blower units have been developed for this same purpose, one of which forms the subject matter of U.S. Pat. No. 2,811,962, of which I am a coinventor.
Building both the heater and blower into the same unit has certain advantages as well as disadvantages. Among the latter is the problem of keeping the unit light and compact enough to be easily portable while, at the same time, providing adequate heating and ventilating capacity. Also, even in the cold climates, the heater is only needed a few months out of the year and it becomes excess baggage the rest of the time.
It has now been found in accordance with the teaching of the present invention that these and other deficiencies inherent in the prior art combination heaterblower units including my own can, in large measure, be eliminated by the simple, yet unobvious, expedient of making a master self-contained blower unit that is independently operative and of larger capacity while remaining fully portable and adding thereto an equally portable slave heater operable only when connected to the blower. The blower is so designed and constructed that it provides maximum utility and output when used alone as it usually is. The heater, on the other hand, can provide a significantly greater heat output and still remain fully portable due to the fact that the blower motor which is the single heaviest component no longer forms a part thereof.
With the advantages of separability, however, come certain problems such as, for example, the inherent danger of overheating in case the blower becomes dis connected or otherwise inoperative. Thus, a temperatureresponsive control circuit is included in the plenum and automatically operative to shut down the burners whenever the air flow stops or is obstructed to a point where the temperature exceeds a predeter mined maximum. While temperature-responsive shut off mechanisms are common in various types of furnaces and the like, the construction which prevents the power failure from taking place that is most often responsible for overheating is not. Not only is the plug and socket of the interlocking type but, in addition, the blower housing and heater housing cooperate in assembled relation to shield the plug and prevent its accidental or even intentional removal.
Electrically, the main blower control switch must be closed before any power is supplied to the heater for igniting the electrically-actuated burners. Also, the heater has a master burner and a slave burner, the latter being ignitable only after the former has been lighted. With both burners lighted, the heat output is effectively doubled over using the master alone.
Accordingly, it is the principal object of the present invention to provide a novel and improved heaterblower assembly.
A second objective of the invention is to provide a two-element assembly of the type described wherein the blower unit is a self-contained subassembly having utility independent of the heater subassembly.
Another objective of the within described invention is to provide a heater subassembly which is functionally dependent in all respects upon the blower subassembly.
Still another objective is to provide a mechanical power interlock rendered disconnectable by the juxtaposed relation of the subassembly housings when in assembled relation.
An additional object of the invention forming the subject matter hereof is to provide an assembly with maximized utility as well as output achieved through separability of its components and all without sacrificing portability.
Further objects are to provide a heater-blower assembly for underground installations which is safe, efficient, versatile, easy to use, compact, rugged, reliable and even decorative in appearance.
Other objects will be in part apparent and in part pointed out specifically hereinafter in connection with the description of the drawings that follows, and in which:
FIG. 1 is a perspective view looking down and to the right upon the heater-blower assembly of the present invention as it delivers heated air into a subsurface installation through an open manhole, portions of the air duct having been broken away and shown in section to conserve space;
FIG. 2 is a top plan view of the blower subassembly alone, portions of the housing having been broken away to expose the fan;
FIG. 3 is a top plan view of the heater subassembly showing the corner removed from a portion of the housing to expose the elements contained therein and part of the plenum broken away to reveal the heat exchangers;
FIG. 4 is a side elevation of the blower subassembly;
FIG. 5 is a fragmentary side elevation of the heaterblower assembly, again having portions of the housing broken away to reveal the interior construction;
FIG. 6 is a front elevation of the blower with parts of the housing broken away to reveal the blower motor and squirrel-cage fan;
FIG. 7 is a rear elevation of the heater subassembly by having parts of the plenum broken away to expose the gas lines to the burners;
FIG. 8 is a fragmentary section taken alone line 88 of FIG. 7;
FIG. 9 is a fragmentary section taken along line 9-9 of FIG. 8;
FIG. ll) is a section of the heat exchanger alone taken along line 10-10 of FIG. 8;
FIG. 11 is a perspective view of one of the heat exchangers;
FIG. 12 is a section taken along line l2l2 of FIG. 7; and,
FIG. 13 is an electrical diagram of the assembly.
Referring next to the drawings for a detailed description of the present invention and, initially, to FIG. 1 for this purpose, reference numeral 10 has been selected to broadly designate the heater-blower assembly while numerals 12 and 14 have been similarly employed to denominate the blower and heater subassemblies, respectively. Reference numeral 16 is the manhole entering into an underground installation requiring ventilation, the manhole cover (not shown) having been removed therefrom. A flexible air duct 18 of conventional design has been shown detachably connected to the heater outlet 20. This duct 18 is connectable directly to the blower outlet 22 in those instances where the blower subassembly 12 is used separately and no heater is required.
While on the subject of the electrical connection between the blower and heater subassemblies, reference will be made briefly to FIG. 5 where it will be seen that once the heater and blower units are detachably connected together in assembled relation as shown, the
semblies before the electrical connection therebetween can be disconnected. Conversely, plug 30 must be inserted into its socket 32 before the connection is made between the blower outlet and heater inlet. Thus, in order to disconnect the aforementioned electrical connection, one must first disengage the spring latch 40 35 atop the heater inlet and separate the two subassemblies.
In FIGS. 1, 2, 4 and 8 to which brief reference will be made while on the subject of spring latch 40, it will be seen to extend down through vertically-aligned apertures 42 in the blower outlet and heater inlet when in assembled relation as shown. Other types of latches could, of course, be substituted for the one shown, but
it has the advantage of being simple, inexpensive and 45 easy to operate.
The blower subassembly 12 is best revealed in FIGSn 1, 2, 3 and 6 where it will be seen to have a base 44 upon which is mounted a conventional electric motor 26 protected inside a ventilated housing 46. The motor shaft 48 extends into a fan housing 50 mounted alongside thereof that houses the squirrel-cage-type fan 52. Air enters opening 54 (FIG. 2) in the side of the blower housing 50 opposite the side where the motor shaft is located and is propelled by fan 52 out through outlet 22 in the well-known manner. Switch 56 on the motor housing is used to turn the motor on and off. A handle 58 facilitates transportation of the blower subassembly by itself and also cooperates with handle 60 on the heater subassembly to enable both subassemblies to be lifted together when in the assembled relation shown in FIGS. 1 and 5. While the assembly can be moved a short distance in this manner, the subassemblies are preferably moved separately and connected together at their point of use as this enables both units to be made larger and with a capacity more nearly answering the heating and ventilating requirements of the usual subsurface installation.
So far as the novelty of the blower subassembly is concerned, it has none apart from the heater subassembly 14 with which it cooperates in a unique manner in assembled relation. Saying this another way, with the exception of latch aperture 42 in the outlet 22, hot socket 32 and the location of the latter relative to the heater housing, the remaining elements of the blower subassembly are conventional both from the standpoint of their function and their construction. Even the aforementioned additions to the blower subassembly have no function apart from the assembly that includes the heater and they are, therefore, surplusage when the blower is used alone.
Now, the heater subassembly 14 is most clearly revealed in FIGS. 1, 4, 5, 7, 9 and 12 to which detailed reference will now be made. Mounted along one side of the base 36 is the plenum 62 within which the heat exchangers 64 are mounted in side-by-side relation. Air from the blower subassembly 12 enters the plenum through inlet 38, passes over the heat exchangers 64 and exits through the outlet 20 in the usual manner, such flow having been indicated by the arrows A in FIG. 8. The hot gaseous products of combustion from the burners 66 enter the intake ends 68 of the heat exchangers, migrate therethrough in heat-exchange relation with the cold air moving through the plenum, and are exhausted out the chimney 70 beneath protective cover 72.
Fastened to the other side of the base 36 alongside the plenum is a louvered housing 74 containing the burner controls. Gas under pressure enters the housing through gas line 76 containing shut-off valve 78. Inside the housing the gas passes through a pressure regulator 80 and into a T-connection 82 that splits the stream and sends one branch to a first solenoid-actuated valve 84 and the other to a second solenoid-actuated valve 86.
In FIG. 13 it can be seen that solenoids 84S and 86S of these valves 84 and 86, respectively, are wired to the low side of transformer 88 which is, in turn, energized by closing master power switch 90 on the front of the housing. With switch 90 closed, the transformer will energize the solenoid 868 of valve 86 and open it to admit gas to one of the two burners 66. Closing of switch 90 also completes a high voltage circuit to electric ignitor 92 which ignites the gas issuing from the burner. A slave switch 94 is wired to the low side of transformer 88 and, in closed position, it will energize solenoid 84S to open valve 84 and admit gas to the second burner 66 provided that main switch 90 is also closed to energize the transformer. Thus, the second burner fed by valve 84 cannot be lit unless the first burner is lit or at least simultaneously actuated. Ignitor 92 and flame sensor 96 actually comprise components of a standard direct spark ignition (D.S.I.) control systern which is well known in the art and widely available commercially. When switch 90 is actuated, for example, ignitor 92 generates 19,000 volt spark which will light one or both burners 66. The flame sensor continuously proves" the flame and is automatically operative to shut down the system in the event of either an electric power failure or a lack of gas. Once off, the system cannot be restarted until switch 90 is turned off and then closed again.
As far as the circuit diagram of FIG. 13 is concerned, the only remaining element that has not been described is thermal switch 98. This switch is connected into the side of the plenum 62 as shown most clearly in H65. 4, 5 and 9 in the path of the air moving therethrough. It is a normally-closed temperature-sensitive switch automatically operative to deenergize the D.S.l. system whenever the plenum temperature exceeds a predetermined maximum. So long as the blower subassembly is operative and nothing is plugged or kinked to prevent free movement of the air through the plenum, the ther mal switch will remain closed and inoperative to shut down the D.S.I. system.
Finally, with brief reference to FIGS. 10 and 11, the heat exchangers 64 will be seen to each comprise a pair of mating preformed half- sections 100 and 102 that are mirror images of one another and are joined together along their outer marginal edges to produce a circuitous gas-circulating tunnel 104 therein. Tunnel 104 ex tends along the bottom of the plenum from the intake 68 adjacent the burners and then curves up along the rear wall 106 of the plenum near its outlet 20. From this point, the tunnel opens into a large central chamber 108 which, in turn, communicates with the chimney 70. The hot products of combustion, therefore, flow along the bottom of the heat exchanger in concurrent flow relation to the blower air, up along the rear wall, forwardly in countercurrent flow relation along the top, down into the entrance to the chimney and back up again where it is exhausted out the latter. Thus, the blower air has ample opportunity to pick up heat from one or both heat exchangers as it is force-fed through the plenum.
What is claimed is:
1. A portable heater-blower assembly comprising in combination: a blower subassembly including an electrio-motor driven forced air fan, a blower housing enclosing said fan having an outlet connectable to an air duct, and an electrical outlet within said housing alongside said air outlet facing in the same direction as the latter; a heater subassembly including at least one gasfired burner connectable to a source of gaseous fuel, electric ignition means positioned adjacent said burner operative upon actuation to ignite same, first electrically-actuated valve means connected to control the supply of fuel to said burner; a heater housing including a plenum having an air inlet detachably connectable to the forced air outlet of the blower subassembly, a heat exchanger within said plenum positioned to receive the hot gaseous products of combustion from the burner and pass same in heat-exchange relation to the air from the blower subassembly, an electrical circuit including the electric ignition means and first electricallyactuated valve means having a plug detachably connectable to the electrical outlet of the blower subassembly, and means carried by said heater housing in opposed relation to the electrical outlet in said blower housing cooperating therewith to maintain said plug operatively connected thereto when the heater plenum inlet is connected to receive air from the forced air outlet of the blower subassembly.
2. The combination as set forth in claim 1 in which: the means carried by said heater housing in opposed relation to said blower housing electrical outlet comprises an abutment-forming step.
3. The combination as set forth in claim 1 in which: the electrical circuit includes a length of conductor terminating in the plug, said conductor length being selected such that said plug will only reach the electrical outlet in the blower housing when the forced air outlet is positioned to deliver air into the heater inlet.
4. The combination as set forth in claim 1 in which: the blower subassembly includes switch means connected to the electrical outlet operative upon actuation to energize the electrical circuit of the heater subassembly.
5. The combination as set forth in claim 1 in which: the electrical circuit of the heater subassembly includes a normally-closed temperature sensitive switch, said switch being located in the plenum in the path of the air moving therethrough from the blower subassembly, and said switch being automatically operative to deenergize said electrical circuit whenever the air temperature in said plenum exceeds a predetermined value.
6. The combination as set forth in claim 1 in which: the heater subassembly includes a second burner in position to be fired by the electric ignition means; and, in which the electrical circuit includes a second electrically-actuated valve means connected to control the supply of gas to the second burner and a first switch opera tive upon actuation to open said second valve means, said second valve means being located downstream of the first electrically-actuated valve means in series therewith and with said second burner.
7. The combination as set forth in claim 1 in which: the forced air outlet of the blower subassembly and the air inlet of the heater subassembly telescope one inside the other to define a continuous duct; and, in which latch means releasably maintains said inlet and outlet in telescoped relation.
8. The combination as set forth in claim 1 in which: the electrical circuit includes a second switch operative upon actuation to open said first valve means and simultaneously fire said electric ignition means.
9. The combination as set forth in claim 6 in which: the electrical circuit includes a second switch operative upon actuation to open said first valve means and simultaneously fire said electric ignition means.
10. The combination as set forth in claim 6 in which: a second heat-exchanger is mounted inside the plenum in position to receive the hot gaseous products of combustion from the second burner and pass same in heatexchanger relation to the air from the blower subassembly.
Claims (10)
1. A portable heater-blower assembly comprising in combination: a blower subassembly including an electric-motor driven forced air fan, a blower housing enclosing said fan having an outlet connectable to an air duct, and an electrical outlet within said housing alongside said air outlet facing in the same direction as the latter; a heater subassembly including at least one gas-fired burner connectable to a source of gaseous fuel, electric ignition means positioned adjacent said burner operative upon actuation to ignite same, first electrically-actuated valve means connected to control the supply of fuel to said burner; a heater housing including a plenum having an air inlet detachably connectable to the forced air outlet of the blower subassembly, a heat exchanger within said plenum positioned to receive the hot gaseous products of combustion from the burner and pass same in heat-exchange relation to the air from the blower subassembly, an electrical circuit including the electric ignition means and first electrically-actuated valve means having a plug detachably connectable to the electrical outlet of the blower subassembly, and means carried by said heater housing in opposed relation to the electrical outlet in said blower housing cooperating therewith to maintain said plug operatively connected thereto when the heater plenum inlet is connected to receive air from the forced air outlet of the blower subassembly.
2. The combination as set forth in claim 1 in which: the means carried by said heater housing in opposed relation to said blower housing electrical outlet comprises an abutment-forming step.
3. The combination as set forth in claim 1 in which: the electrical circuit includes a length of conductor terminating in the plug, said conductor length being selected such that said plug will only reach the electrical outlet in the blower housing when the forced air outlet is positioned to deliver air into the heater inlet.
4. The combination as set forth in claim 1 in which: the blower subassembly includes switch means connected to the electrical outlet operative upon actuation to energize the electrical circuit of the heater subassembly.
5. The combination as set forth in claim 1 in which: the electrical circuit of the heater subassembly includes a normally-closed temperature sensitive switch, said switch being located in the plenum in the path of the air moving therethrough from the blower subassembly, and said switch being automatically operative to de-energize said electrical circuit whenever the air temperature in said plenum exceeds a predetermined value.
6. The combination as set forth in claim 1 in which: the heater subassembly includes a second burner in position to be fired by the electric ignition means; and, in which the electrical circuit includes a second electrically-actuated valve means connected to control the supply of gas to the second burner and a first switch operative upon actuation to open said second valve means, said second valve means being located downstream of the first electrically-actuated valve means in series therewith and with said second burner.
7. The combination as set forth in claim 1 in which: the forced air outlet of the blower subassembly and the air inlet of the heater subassembly telescope one inside the other to define a continuous duct; and, in which latch means releasably maintains said inlet and outlet in telescoped relation.
8. The combination as set forth in claim 1 in which: the electrical circuit includes a second switch operative upon actuation to open said first valve means and simultaneously fire said electric ignition means.
9. The combination as set forth in claim 6 in which: the electrical circUit includes a second switch operative upon actuation to open said first valve means and simultaneously fire said electric ignition means.
10. The combination as set forth in claim 6 in which: a second heat-exchanger is mounted inside the plenum in position to receive the hot gaseous products of combustion from the second burner and pass same in heat-exchanger relation to the air from the blower subassembly.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US519757A US3916870A (en) | 1974-10-31 | 1974-10-31 | Heater-blower assembly |
CA237,911A CA1036032A (en) | 1974-10-31 | 1975-10-17 | Heater-blower assembly |
IT09593/75A IT1050853B (en) | 1974-10-31 | 1975-10-27 | BLOWER AND AIR HEATER COMPLEX |
GB44280/75A GB1522322A (en) | 1974-10-31 | 1975-10-28 | Heater-blower assemblies |
DE19752548706 DE2548706A1 (en) | 1974-10-31 | 1975-10-30 | PORTABLE HEATER FAN |
SE7512182A SE417637B (en) | 1974-10-31 | 1975-10-30 | PORTABLE HEAT AIR POWER UNIT |
FR7533483A FR2333203A1 (en) | 1974-10-31 | 1975-10-31 | IMPROVEMENTS TO HEATER AND BLOWER UNITS |
JP50131315A JPS5168957A (en) | 1974-10-31 | 1975-10-31 | Kahanshikikanetsu sofusochi |
BE161500A BE835152A (en) | 1974-10-31 | 1975-10-31 | IMPROVEMENTS TO HEATING UNITS AND BLOWER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US519757A US3916870A (en) | 1974-10-31 | 1974-10-31 | Heater-blower assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US3916870A true US3916870A (en) | 1975-11-04 |
Family
ID=24069659
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US519757A Expired - Lifetime US3916870A (en) | 1974-10-31 | 1974-10-31 | Heater-blower assembly |
Country Status (9)
Country | Link |
---|---|
US (1) | US3916870A (en) |
JP (1) | JPS5168957A (en) |
BE (1) | BE835152A (en) |
CA (1) | CA1036032A (en) |
DE (1) | DE2548706A1 (en) |
FR (1) | FR2333203A1 (en) |
GB (1) | GB1522322A (en) |
IT (1) | IT1050853B (en) |
SE (1) | SE417637B (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4108143A (en) * | 1977-04-20 | 1978-08-22 | T.A. Pelsue Company | Forced air heater blower |
US4154213A (en) * | 1977-05-02 | 1979-05-15 | The Coleman Company, Inc. | Ductless forced-circulation undercounter furnace |
US4307701A (en) * | 1980-04-25 | 1981-12-29 | Jack Balon | Portable heat distribution system |
US4483664A (en) * | 1980-12-09 | 1984-11-20 | Armbruster Joseph M | Portable power device, light and fan |
US5121739A (en) * | 1990-07-23 | 1992-06-16 | Barker Stanley G | Portable heat dispensing unit |
US5201651A (en) * | 1991-03-11 | 1993-04-13 | T.A. Pelsue Company | Construction heater and method of manufacture of heater |
AU652636B2 (en) * | 1991-05-21 | 1994-09-01 | Neatport Pty Ltd | Release of gases from an enclosure |
US5404865A (en) * | 1993-11-09 | 1995-04-11 | Huls; Dale J. | Portable outside heater |
US20030056390A1 (en) * | 2001-08-10 | 2003-03-27 | Trevor Adrian | Portable air heating system |
US20070235017A1 (en) * | 2006-04-05 | 2007-10-11 | Fitch John R | Portable heating apparatus |
US20070267536A1 (en) * | 2005-05-27 | 2007-11-22 | Hill Herbert A | Method and apparatus for pre-heating an aircraft engine |
US20080202461A1 (en) * | 2007-02-26 | 2008-08-28 | Honda Motor Co., Ltd. | Engine cylinder sleeve heater and method |
US20080302351A1 (en) * | 2007-06-06 | 2008-12-11 | Hunter Donald O | Gas-Fired Portable Heater |
US7997004B1 (en) | 2001-08-10 | 2011-08-16 | Taps, Llc | Portable air heating system |
CN102383859A (en) * | 2011-09-21 | 2012-03-21 | 刘晓光 | Smoke and fire prevention monitor protection device of hot blast heater for coal mines |
US20120255220A1 (en) * | 2011-04-06 | 2012-10-11 | Technologies Holdings Corp. | Self-Contained Heating Unit for Thermal Pest Control |
US8720109B2 (en) | 2011-01-25 | 2014-05-13 | Technologies Holdings Corp. | Portable heating system for pest control |
US8756857B2 (en) | 2011-01-14 | 2014-06-24 | Technologies Holdings Corp. | Hydronic heating system and method for pest control |
US20150113823A1 (en) * | 2012-05-31 | 2015-04-30 | Young Jin Lee | Hair dryer capable of adjusting volume of unheated air discharged at same time as hot air |
WO2016195878A1 (en) * | 2015-06-05 | 2016-12-08 | Novinium, Inc. | Ventilation system for manhole vault |
EP2345844A3 (en) * | 2010-01-15 | 2017-10-11 | Lennox Industries Inc. | Clamshell heat exchanger |
US10684031B2 (en) | 2016-03-31 | 2020-06-16 | Novinium, Inc. | Smart system for manhole event suppression system |
US10935279B2 (en) | 2012-12-14 | 2021-03-02 | Lennox Industries Inc. | Strain reduction clamshell heat exchanger design |
USD963817S1 (en) | 2020-12-14 | 2022-09-13 | Milwaukee Electric Tool Corporation | Portable heater |
US12169071B2 (en) | 2020-11-04 | 2024-12-17 | Milwaukee Electric Tool Corporation | User interface for heater |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2716975A (en) * | 1951-11-14 | 1955-09-06 | Hartzell Industries | Combustion type air heater for drying purposes |
US2811962A (en) * | 1954-05-27 | 1957-11-05 | Morrison Pelsue Co | Forced air ventilating heaters |
US3036382A (en) * | 1958-04-08 | 1962-05-29 | Jr Thomas E Shotton | Portable dryer unit |
US3369917A (en) * | 1963-09-10 | 1968-02-20 | Daniel B. Granzow | Magnetic brush development of electrostatic images utilizing a high voltage corona |
US3435817A (en) * | 1967-07-28 | 1969-04-01 | Over Lowe Co Inc | Space ventilating and heating apparatus |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1933634A (en) * | 1931-04-17 | 1933-11-07 | Frank L Meyer | Furnace |
US2935261A (en) * | 1956-09-12 | 1960-05-03 | American Air Filter Co | Damper operated switches for automatic heat control of gas fired unit ventilator |
US3164145A (en) * | 1962-07-09 | 1965-01-05 | American Air Filter Co | Air heating apparatus |
-
1974
- 1974-10-31 US US519757A patent/US3916870A/en not_active Expired - Lifetime
-
1975
- 1975-10-17 CA CA237,911A patent/CA1036032A/en not_active Expired
- 1975-10-27 IT IT09593/75A patent/IT1050853B/en active
- 1975-10-28 GB GB44280/75A patent/GB1522322A/en not_active Expired
- 1975-10-30 SE SE7512182A patent/SE417637B/en unknown
- 1975-10-30 DE DE19752548706 patent/DE2548706A1/en not_active Withdrawn
- 1975-10-31 BE BE161500A patent/BE835152A/en unknown
- 1975-10-31 JP JP50131315A patent/JPS5168957A/en active Pending
- 1975-10-31 FR FR7533483A patent/FR2333203A1/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2716975A (en) * | 1951-11-14 | 1955-09-06 | Hartzell Industries | Combustion type air heater for drying purposes |
US2811962A (en) * | 1954-05-27 | 1957-11-05 | Morrison Pelsue Co | Forced air ventilating heaters |
US3036382A (en) * | 1958-04-08 | 1962-05-29 | Jr Thomas E Shotton | Portable dryer unit |
US3369917A (en) * | 1963-09-10 | 1968-02-20 | Daniel B. Granzow | Magnetic brush development of electrostatic images utilizing a high voltage corona |
US3435817A (en) * | 1967-07-28 | 1969-04-01 | Over Lowe Co Inc | Space ventilating and heating apparatus |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4108143A (en) * | 1977-04-20 | 1978-08-22 | T.A. Pelsue Company | Forced air heater blower |
US4154213A (en) * | 1977-05-02 | 1979-05-15 | The Coleman Company, Inc. | Ductless forced-circulation undercounter furnace |
US4307701A (en) * | 1980-04-25 | 1981-12-29 | Jack Balon | Portable heat distribution system |
US4483664A (en) * | 1980-12-09 | 1984-11-20 | Armbruster Joseph M | Portable power device, light and fan |
US5121739A (en) * | 1990-07-23 | 1992-06-16 | Barker Stanley G | Portable heat dispensing unit |
US5201651A (en) * | 1991-03-11 | 1993-04-13 | T.A. Pelsue Company | Construction heater and method of manufacture of heater |
AU652636B2 (en) * | 1991-05-21 | 1994-09-01 | Neatport Pty Ltd | Release of gases from an enclosure |
US5404865A (en) * | 1993-11-09 | 1995-04-11 | Huls; Dale J. | Portable outside heater |
US20030056390A1 (en) * | 2001-08-10 | 2003-03-27 | Trevor Adrian | Portable air heating system |
US6941677B2 (en) * | 2001-08-10 | 2005-09-13 | Taps, Llc | Portable air heating system |
US7997004B1 (en) | 2001-08-10 | 2011-08-16 | Taps, Llc | Portable air heating system |
US8819957B1 (en) | 2001-08-10 | 2014-09-02 | Taps, Llc | Portable air heating system |
US20070267536A1 (en) * | 2005-05-27 | 2007-11-22 | Hill Herbert A | Method and apparatus for pre-heating an aircraft engine |
US20070235017A1 (en) * | 2006-04-05 | 2007-10-11 | Fitch John R | Portable heating apparatus |
US20080202461A1 (en) * | 2007-02-26 | 2008-08-28 | Honda Motor Co., Ltd. | Engine cylinder sleeve heater and method |
US20110168688A1 (en) * | 2007-02-26 | 2011-07-14 | Honda Motor Co., Ltd. | Engine cylinder sleeve heater and method |
US8914973B2 (en) * | 2007-02-26 | 2014-12-23 | Honda Motor Co., Ltd. | Engine cylinder sleeve heater and method |
US20080302351A1 (en) * | 2007-06-06 | 2008-12-11 | Hunter Donald O | Gas-Fired Portable Heater |
EP2345844A3 (en) * | 2010-01-15 | 2017-10-11 | Lennox Industries Inc. | Clamshell heat exchanger |
US8756857B2 (en) | 2011-01-14 | 2014-06-24 | Technologies Holdings Corp. | Hydronic heating system and method for pest control |
US10051853B2 (en) | 2011-01-25 | 2018-08-21 | Therma-Stor LLC | Portable heating system and method for pest control |
US8720109B2 (en) | 2011-01-25 | 2014-05-13 | Technologies Holdings Corp. | Portable heating system for pest control |
US9807994B2 (en) | 2011-01-25 | 2017-11-07 | Technologies Holdings Corp. | Portable heating system and method for pest control |
US9578867B2 (en) | 2011-01-25 | 2017-02-28 | Technologies Holding Corp. | Portable heating system and method for pest control |
US9992990B2 (en) | 2011-01-25 | 2018-06-12 | Therma-Stor LLC | Portable heating system and method for pest control |
US9374991B2 (en) | 2011-01-25 | 2016-06-28 | Technologies Holdings Corp. | Portable heating system and method for pest control |
US9930878B2 (en) | 2011-01-25 | 2018-04-03 | Therma-Stor LLC | Portable heating system and method for pest control |
US9237742B2 (en) | 2011-01-25 | 2016-01-19 | Technologies Holdings Corp. | Portable heating system and method for pest control |
US8479440B2 (en) * | 2011-04-06 | 2013-07-09 | Technologies Holdings Corp. | Self-contained heating unit for thermal pest control |
US20120255220A1 (en) * | 2011-04-06 | 2012-10-11 | Technologies Holdings Corp. | Self-Contained Heating Unit for Thermal Pest Control |
US20120255219A1 (en) * | 2011-04-06 | 2012-10-11 | Technologies Holdings Corp. | Self-Contained Heating Unit for Thermal Pest Control |
US8479439B2 (en) * | 2011-04-06 | 2013-07-09 | Technologies Holding Corp. | Self-contained heating unit for thermal pest control |
CN102383859B (en) * | 2011-09-21 | 2014-08-13 | 鸡西市星光热风炉制造有限公司 | Smoke and fire prevention monitor protection device of hot blast heater for coal mines |
CN102383859A (en) * | 2011-09-21 | 2012-03-21 | 刘晓光 | Smoke and fire prevention monitor protection device of hot blast heater for coal mines |
US20150113823A1 (en) * | 2012-05-31 | 2015-04-30 | Young Jin Lee | Hair dryer capable of adjusting volume of unheated air discharged at same time as hot air |
US9241556B2 (en) * | 2012-05-31 | 2016-01-26 | Young Jin Lee | Hair dryer capable of adjusting volume of unheated air discharged at same time as hot air |
US10935279B2 (en) | 2012-12-14 | 2021-03-02 | Lennox Industries Inc. | Strain reduction clamshell heat exchanger design |
CN107709196A (en) * | 2015-06-05 | 2018-02-16 | 诺维纽姆有限责任公司 | Ventilating system for inspection shaft basement |
WO2016195878A1 (en) * | 2015-06-05 | 2016-12-08 | Novinium, Inc. | Ventilation system for manhole vault |
US11060754B2 (en) | 2015-06-05 | 2021-07-13 | Novinium, Inc. | Ventilation system for manhole vault |
US11561023B2 (en) | 2015-06-05 | 2023-01-24 | Novinium, Llc | Ventilation system for manhole vault |
US10684031B2 (en) | 2016-03-31 | 2020-06-16 | Novinium, Inc. | Smart system for manhole event suppression system |
US11346566B2 (en) | 2016-03-31 | 2022-05-31 | Novinium, Inc. | Smart system for manhole event suppression system |
US12173913B2 (en) | 2016-03-31 | 2024-12-24 | Novinium, Llc | Smart system for manhole event suppression system |
US12169071B2 (en) | 2020-11-04 | 2024-12-17 | Milwaukee Electric Tool Corporation | User interface for heater |
USD963817S1 (en) | 2020-12-14 | 2022-09-13 | Milwaukee Electric Tool Corporation | Portable heater |
Also Published As
Publication number | Publication date |
---|---|
IT1050853B (en) | 1981-03-20 |
SE7512182L (en) | 1976-05-03 |
FR2333203A1 (en) | 1977-06-24 |
DE2548706A1 (en) | 1976-05-06 |
JPS5168957A (en) | 1976-06-15 |
BE835152A (en) | 1976-04-30 |
GB1522322A (en) | 1978-08-23 |
SE417637B (en) | 1981-03-30 |
CA1036032A (en) | 1978-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3916870A (en) | Heater-blower assembly | |
US4026263A (en) | Fireplace systems | |
US2533508A (en) | Furnace for hot-air and water space heating with domestic water heater | |
US5092313A (en) | Gas log fireplace with high heat output | |
US4390125A (en) | Tube-fired radiant heating system | |
US5429112A (en) | Infra-red radiant tube heater | |
US4179065A (en) | Circulating air building heating system | |
US4679545A (en) | Gas-fired outdoor spa and hot tub heater | |
US3175552A (en) | Air heating fireplace | |
US3823704A (en) | Power burner application to fin tube heat exchanger | |
US1938625A (en) | Control system for bake ovens and the like | |
US4163440A (en) | Radiant heater | |
US3364916A (en) | Heating devices | |
US4250867A (en) | Heating unit | |
US5253635A (en) | Gas-fired heater | |
US5329915A (en) | Gas fireplace capable of being installed without masonry work | |
US2593759A (en) | Forced air flow air-heating furnace | |
US3614948A (en) | Space heater | |
US2077599A (en) | Heating system | |
FR1455046A (en) | Heating appliance | |
US4155699A (en) | Heat saving device for space heating furnace | |
US4300527A (en) | Bi-loop heat recovery system | |
US2944596A (en) | Induced draft gas fired space heating system | |
US4320739A (en) | Combustion type heater | |
GB925772A (en) | Improvements in and relating to heating appliances such as hot water boilers, space heating stoves and cookers |