[go: up one dir, main page]

US3915882A - Soap compositions - Google Patents

Soap compositions Download PDF

Info

Publication number
US3915882A
US3915882A US305417A US30541772A US3915882A US 3915882 A US3915882 A US 3915882A US 305417 A US305417 A US 305417A US 30541772 A US30541772 A US 30541772A US 3915882 A US3915882 A US 3915882A
Authority
US
United States
Prior art keywords
soap
clay
sodium
weight
smectite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US305417A
Inventor
Joseph Peter Nirschl
Robert Andrew Gloss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to US305417A priority Critical patent/US3915882A/en
Priority to PH15182A priority patent/PH10588A/en
Priority to CA185,092A priority patent/CA1015508A/en
Priority to SE7315174A priority patent/SE413674B/en
Priority to JP48125854A priority patent/JPS504A/ja
Priority to FI3467/73A priority patent/FI58342C/en
Priority to GB5204873A priority patent/GB1418720A/en
Publication of USB305417I5 publication Critical patent/USB305417I5/en
Application granted granted Critical
Publication of US3915882A publication Critical patent/US3915882A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/62Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D10/00Compositions of detergents, not provided for by one single preceding group
    • C11D10/04Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap
    • C11D10/047Compositions of detergents, not provided for by one single preceding group based on mixtures of surface-active non-soap compounds and soap based on cationic surface-active compounds and soap
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/001Softening compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/126Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D9/00Compositions of detergents based essentially on soap
    • C11D9/04Compositions of detergents based essentially on soap containing compounding ingredients other than soaps
    • C11D9/06Inorganic compounds
    • C11D9/18Water-insoluble compounds

Definitions

  • ABSTRACT Granular laundering compositions comprising a curd-dispersant-containing soap-based granule, a smectite-type clay and a quaternary ammonium antistatic agent.
  • the soap and curd dispersant are formulated in the granule and the clay is attached to the surface of the granule.
  • the quaternary ammonium compound is formulated in releasable combination with the granule.
  • the resulting compositions enhanced solubility and provide through-the-wash fabric softening and anti-static benefits.
  • the instant invention relates to granular laundering compositions which provide simultaneous laundering, softening and anti-static benefits on textiles during conventional fabric laundering operations.
  • Such compositions employ a combination of a soap and a curd dispersant in granular form, certain smectite clay compounds having particular cation exchange characteristics, and certain cationic anti-static agents.
  • Laundry soaps i.e., the water-soluble salts of fatty acids
  • soaps deposit on many types of fabrics in the form of a curd and thereby provide desirable softening benefits.
  • the buildup of heavy soap curd on fabrics eventually results in loss of fabric brightness.
  • soap curd has been found to interfere with the flame retardant finishes commonly applied to childrens clothing. That is to say, flame retardant fabrics coated with a heavy soap curd exhibit decreased levels of flame retardancy which, on removal of the soap curd, are restored to their original level.
  • One method for preventing curd buildup on fabrics laundered with soap is to include a curd dispersant in the laundering bath. While this method achieves the desired result, the laundered fabrics no longer have the desirable softening benefits imparted by soap. More importantly, granular laundering compositions which contain both soap and significant amounts of curd dispersant are difficult to dissolve in aqueous laundering baths. When such products are added to water, the soap tends to undergo a phase transition and agglomerates as a gelatinous material which then deposits in an unsightly manner on the fabrics being laundered.
  • certain smectite-type clay materials can be attached to the surface of soap-based detergent granules containing certain curd dispersants to substantially enhance the solu bility of the granules. Furthermore, once the granules have dissolved, the clay is dispersed throughout the laundry liquor and deposits on the fabric surfaces to provide softening. Thus, the problem of excess curd buildup on fabrics is solved without losing the desirable softening benefits of soap-based compositions.
  • Clays have been utilized in many different types of detergent systems for widely diverse purposes.
  • Clays for example, have been disclosed for use as builders (Schwartz and Perry, Surface Active Agents, lntersicence Publishers, lnc., 1949, p. 233 and Schwartz, Perry and Berch, Surface Active Agents and Detergents, Vol. II Interscience Publishers, lnc., 1958, pp. 297-300); as watersofteners (British Pat. No. 461,221); as anti-caking agents (U.S. Pat. Nos. 2,625,513 and 2,770,600); as suspending agents (U.S. Pat. Nos. 2,594,257, 2,594,258 and 2,920,045); and as fillers (U.S. Pat. No. 2,708,185).
  • clay materials can be deposited on fabrics to impart softening properties thereto.
  • Such clay deposition is usually realized by contacting fabrics to be so treated with aqueous clay suspensions (see, for example, US. Pat. Nos. 3,033,699 and 3,594,221
  • clays as fabric softeners is described in the cited art, such clay softeners are not entirely suitable for this purpose since they do not possess antistatic properties. Indeed, fabrics coated with clays, while exhibiting a soft hand, tend to develop higher levels of static change than the uncoated fabrics, themselves.
  • clay minerals of the type used in the present invention can be attached to the surface of soap-based detergent granules, especially those containing curd dispersants, and combined with specific quaternary ammonium compounds to provide soluble soap granules having combined fabric softening and anti-static benefits.
  • compositions which can be employed to achieve concurrent fabric laundering, fabric softening, and anti-static effects without interfering with flame retardancy.
  • the present invention encompasses fabric laundering compositions comprising: (A) a granular particle which comprises; (i) from about 30% to about 80% by weight of said particle of a soap compound; and (ii) from about 1% to about 30% by weight of said granular particle of a curd-dispersing agent; (B) an impalpable smectite-type clay having an ion exchange capacity of at least about 50 meq/ 100 g.
  • each R is a hydrocarbyl group containing from about to about 22 carbon atoms and each R is a hydrocarbyl group containing from 1 to about 4 carbon atoms, and wherein X is an anion, i.e., halide, hydroxide, carbonate, phosphate, etc.
  • n indicates the charge on the anion; n can be 1 to 3 in the compounds herein.
  • compositions have a weight ratio of granular particles to smectite clay in the range of from about 20:1 to about 3:1.
  • the weight ratio of smectite-type clay-to-quaternary ammonium compound in the compositions herein is from about 40:1 to about 1:1, preferably about 5:1.
  • the quaternary ammonium compound is present in releasable combination with the compositions herein.
  • releasable combination is meant that, on admixture with water, the soluble components of the composition granules dissolve and the clay and quaternary compounds are independently suspended in the aqueous medium.
  • compositions herein preferably provide a solution pH of from about 6 to about 1 1 when dissolved in water at a concentration of about 0.12% by weight.
  • the invention encompasses methods for concurrently cleansing, softening and providing anti-static effects on fibers and fabrics comprising laundering said fabrics in an aqueous laundry bath containing an effective amount (e.g., from about 0.02% to about 2% by weight) of a laundry composition as described above.
  • an effective amount e.g., from about 0.02% to about 2% by weight
  • compositions and processes of this invention employ three essential ingredients: the soap-based granule; the clay; and the quaternary ammonium anti-static agent.
  • the soap granule dissolves and functions in standard fashion to remove soil from fabrics being laun- Anti-Static Agent
  • the quaternary ammonium antistatic agents are em ployed in the instant compositions at-a concentration of from about 0.5% to about preferably from about 0.5% to about 5% by weight, and are therefore.
  • the quaternary anti-stats are used at a clay to quaternary weight ratio of from about 40:1 to about 1:1, preferably about 5:1.
  • the anti-static agents of this invention are quaternary ammonium salts of the formula wherein each R group is a hydrocarbyl (i.e., alkyl or alkenyl) group containing from about 10 to about 22 carbon atoms and each R group is a short-chain hydrocarbyl group containing from 1 to about 4 carbon atoms.
  • X in the above compounds can be any saltforming anion, e.g., halide, hydroxide ion, sulfat, carbonate, phosphate, etc.
  • the charge on the anion is designated an n, wherein n is 1-3.
  • the quaternary ammonium anti-static agents herein are characterized by their limited solubility in water. That is to say, such quaternary salts are essentially insoluble in water, existing therein in what appears to be the mesomorphic liquid crystalline state.
  • the insolubility of the quaternary salts used herein is a critical aspect of this invention inasmuch as water-soluble quaternary salts become chemically affixed to the surface of the clay,or react with the soap or curd dispersant. When the quaternary anti-static agent is affixed to the surface of the clay, or has reacted with the soap or curd dispersant, it does not perform the desired anti-static function.
  • Quaternary ammonium compounds are not generally considered to be useful in combination with anionic materials such as soaps since the opposite charges on these two types of materials cause them to react and precipitate from solution.
  • anionic materials such as soaps since the opposite charges on these two types of materials cause them to react and precipitate from solution.
  • the desirable anti-static benefits of the insoluble quaternary ammonium salts used herein are not negated when employed in combination with soaps or the anionic curd dispersants.
  • the insoluble nature of the di-long chain quats renders them somewhat campatible with such anionic materials.
  • the quaternary ammonium anti-stats herein perform their anti-static function when used in combination with clays and anionics such as soap and curd dispersants.
  • the quaternary ammonium anti-static agents used in this invention can be prepared in various ways wellknown in the art. Many such materials are commercially available.
  • the quaternaries are often made from alkyl halide mixturescorresponding to the mixed alkyl chain lengths in fatty acids.
  • the ditallow quaternaries are made from alkyl halides having mixed C C chain lengths. Such mixed di-long chain quaternaries are useful herein and are preferred from a cost standpoint.
  • any anionic group can be the counterion in the quaternary compounds used herein.
  • the anionic groups in the quaternary compounds can be exchanged, one for another, using standard anion exchange resins.
  • quaternary ammonium salts having any desired anion are readily available. While the nature of such anions has no effect on the compositions and processes of this invention, chloride ion is the preferred counter-ion from a cost standpoint.
  • substantially water-insoluble quaternary ammonium antistatic agents suitable for use in the compositions and processes of the instant invention. All of the quaternary ammonium compounds listed can be formulated in releasable combination with the detergent compositions herein, but the compilation of suitable quaternary compounds hereinafter is only by way of example and is not intended to be limiting of such compounds.
  • Ditallowdimethylammonium chloride is an especially preferred quaternary anti-static agent for use herein by virtue of its low cost, low solubility and high-anti-static activity; other useful di-long chain quaternary compounds are dicetyldimethylammonium chloride; bis-docosyldimethylammonium chloride; didecyldimethylammonium chloride; ditallowdimethylammonium bromide; dioleoyldimethylammonium hydroxide; ditallowdiethylammonium chloride; ditallowdipropylammonium bromide; ditallowdibutylammonium fluoride, cetyldecylmethylethylammonium chloride, bis- [ditallowdim ethylammonium ]sulfate; tris- [ditallowdimethylammonium]-phosphate; and the like.
  • the Granular Particles The Granular Particles
  • the granular particle component of the instant laundering compositions comprises two essential ingredients (l) a water-soluble soap compound and (2) a curd-dispersing agent.
  • the quaternary ammonium antistatic agent can comprise a third component of the granules, but is more preferably applied to the surfaces of said granules by spraying after the base granules are formed.
  • Soap Compound The granular particles of the instant invention comprise from about 30% to about 80%, preferably from about 40% to about 70%, by weight of the particles of a soap compound.
  • Useful soap compounds include the ordinary alkali metal soaps such as the sodium, potassium, ammonium and alkanolammonium salts of higher fatty acids containing from about 8 to about 24 carbon atoms, preferably from about 10 to about 20 carbon atoms.
  • Suitable fatty acids can be obtained from natural sources such as, for instance, plant or animal esters (e.g., palm oil, coconut oil, babassu oil, soybean oil, castor oil, tallow, whale and fish oils, grease, lard, and mixtures thereof).
  • the fatty acids also can be synthetically produced (e.g., by the oxidation of petroleum, or by hydrogenation of carbon monoxide by the Fischer- Tropsch process).
  • Resin acids are suitable such as rosin and those resin acids in tall oil.
  • Naphthenic acids are also suitable.
  • Sodium and potassium soaps can be made by direct saponification of the fats and oils or by the neutralization of the free fatty acids which are prepared in a separate manufacturing process. Particularly useful are the sodium and potassium salts of the mixture of fatty acids derived from. coconut oil and tallow, i.e., sodium tallow soap, sodium coconut soap, potassium tallow soap, potassium coconut soap and mixtures thereof.
  • the Curd Dispersing Agent As noted above, it is well known that the use of soap in hard water results in the formation and precipitation of insoluble fatty acid salts, more commonly referred to as lime soaps, which have a tendency to coagulate and form a sticky curd. To prevent formation of such curd in laundering solutions containing the compositions of the instant invention, the granular particles in addition to the soap component contain from about 1% to about 30%, preferably from about 2% to about 20%, by weight of the particle of a curd-dispersing agent.
  • Such curd dispersing agents either prevent the formation of large particles of insoluble lime soaps or prevent such soaps from flocculating so that they are flushed away with the washing or rinsing liquid and do not adhere to fabrics or to surfaces of washing vessels.
  • the general method consists of preparing a series of mixtures containing varying proportions of sodium oleate and the curd dispersing agent being tested. These mixtures contain approximately 10% total soap-pluscurd dispersant in distilled water. Five milliliters of each mixture are then added to 45 milliliters of hard water (usually 200 ppm hardness as CaO). This is called the first dilution, and it usually results in a turbid but well-dispersed sol. Five milliliters of the first dilution are then added to 45 milliliters of hard water, forming the second dilution. This is a severe test since there is now more than enough lime present to precipitate all the soap.
  • the total soapplus-curd dispersant concentration is of the order of 0.1%.
  • the results are expressed as the percentage of dispersant in the soap-curd dispersant mixture which is just sufficient to prevent flocculation on the second dilution.
  • a curd dispersing agent is any material which produces a percentage value in the above-described lime soap peptizing procedure of about 39% or less.
  • a conventional non-curd dispersant surfactant for purposes of this invention is a surfactant providing a percentage value greater than 39% in the above-described lime soap peptizing procedure.
  • curd-dispersing agents include certain anionic, semipolar nonionic, ampholytic and zwitterionic materials as well as certain amides and amines. Classes of these curd-dispersing agents are more fully described as follows:
  • Anionic organic detergents which are alkali metal, ammonium and substituted-ammonium salts of esters of a-sulfonated fatty acids in which the esters contain about 12 to about 25 carbon atoms.
  • R is an alkyl and alkenyl moiety of about to about carbon atoms (forming with the two carbon atoms a fatty acid group); R is alkyl of l to about 10 carbon atoms; and M is a salt-forming moiety.
  • the salt-forming moety M in the hereinbefore described structural formula is a water-solubilizing cation and can be, for example, an alkali metal cation (e.g., sodium, potassium, lithium), ammonium or substituted ammonium cation.
  • alkali metal cation e.g., sodium, potassium, lithium
  • substituted ammonium cations include methyl-, dimethyl-, trimethyl-ammonium and triethanolammonium cations and quaternary ammonium cations such as tetramethyl ammonium and dimethyl piperidinium cations and those derived from alkylamines such as ethylamine, diethylamine, triethylamine, mixtures thereof and the like.
  • this class of compounds include the sodium and potassium salts of esters where R is selected from methyl, ethyl, propyl, butyl, hexyl and octyl groups and the fatty acid group (R, plus the two carbon atoms in the structure above) is selected from lauric, myristic palmitic, stearic, palmitoleic, oleic, linoleic acids and mixtures thereof.
  • a preferred ester material herein is the sodium salt of the methyl ester of a-sulfonated tallow fatty acid, the term tallow indicating a carbon chain distribution approximately as follows: C 2.5%, C 28%, C 23%, palmitoleic 2%, oleic 41.5%, and linoleic-3% (the first three fatty acids listed are saturated).
  • Suitable salts of oz-sulfonated fatty esters include the ammonium and tetramethylammonium salts of the hexyl, octyl, ethyl, and butyl esters of a-sulfonated tridecanoic acid; the potassium and sodium salts of the ethyl, butyl, hexyl, octyl, and decyl esters of a-sulfonated pentadecanoic acid, and the sodium and potassium salts of the butyl, hexyl, octyl, and decyl esters of oz-sulfonated heptadecanoic acid; and the lithium and ammonium salts of the butyl, hexyl, octyl, and decyl esters of a-sulfonated nonadecanoic acid.
  • Anionic organic detergents which are salts of 2-acyloxy-alkanel -sulfonic acids.
  • Preferred B-acyloxy-alkane-l-sulfonate salts herein are the alkali metal salts of fi-acetoxy-alkane-l-sulfonic acids corresponding to the above formula wherein R is an alkyl moiety of about 12 to about 16 carbon atoms, these salts being preferred from the standpoint of their excellent curd-dispersing properties and ready availability.
  • Anionic organic detergents which are alkyl ether sulfates.
  • These materials have the formula RO(C H.,0),SO M wherein R is an alkyl or alkenyl moeity of about 10 to about 20 carbon atoms, x is l to 30, and M is a saltforming cation as defined hereinbefore.
  • the alkyl ether sulfates useful in the present invention as curd dispersants are condensation products of ethylene oxide and monohydric alcohols having about 10 to about 20 carbon atoms. preferably, R has l4 to 18 carbon atoms.
  • the alcohols can be derived from fats, e.g., coconut oil or tallow, or can by synthetic. Lauryl alcohol and straight chain alcohols derived from tallow are preferred herein. Such alcohols are reacted with l to 30, and especially 3 or 6, molar proportions of ethylene oxide and the resulting mixture of molecular species, having, for example, an average of 3 or 6 moles of ethylene oxide per mole of alcohol, is sulfated and neutralized.
  • alkyl ether sulfates of the present invention are sodium coconut alkyl ethylene glycol ether sulfate; lithium tallow alkyl trialkylene glycol ether sulfate; sodium tallow alkyl hexaoxyethylene sulfate; and ammonium tetradecyl octaoxyethylene sulfate.
  • alkali metal coconutand tallow-alkyl oxyethylene ether sulfates having an average of about 3 to about 10 oxyethylene moieties.
  • the alkyl ether sulfates of the present invention are known compounds and are described in U.S. Pat. No. 3,322,876 to Walker (July 25, 1967) incorporated herein by reference.
  • Anionic organic detergents which are olefin sulfonates having about 12 to about 24 carbon atoms.
  • olefin sulfonates is used herein to mean compounds which can be produced by the sulfonation of a-olefins by means of uncomplexed sulfur trioxide, followed by neutralization of the acid reaction mixture using conditions such that any sultones which have been formed in the reaction are hydrolyzed to give the corresponding hydroxy-alkanesulfonates.
  • the sulfur trioxide may be liquid or gaseous, and is usually, but not necessarily, diluted by inert diluents, for example by liquid S chlorinated hydrocarbon, etc., when used in the liquid form, or by air, nitrogen, gaseous S0 etc., when used in the gaseous form.
  • the a-olefins from which the olefin sulfates are derived are mono-olefins having 12 to 24 carbon atoms, preferably 14 to 16 carbon atoms. Preferably, they are straight chain olefins.
  • suitable l-olefins include l-dodecene; l-tetradecene; l-hexadecene; loctadecene; l-eicosene and l-tetracosene.
  • the olefin sulfonates can contain minor amounts of other materials, such as alkene disulfonates depending upon the reaction conditions, proportions of reactants, the nature of the starting olefins and impurities in the olefin stock and side reactions during the sulfonation process.
  • a preferred embodiment herein are those olefin sulfonates which are described completely in US. Pat. No. 3,332,880 issued July 25, 1967, to Kessler, et. al., hereby incorporated by reference.
  • Nonionic organic detergents which are semiplar detergent compounds.
  • R is alkyl, alkenyl, or monohydroxyalkyl of about 8 to about 18 carbon atoms having from O to about ethylene oxide moieties and from O to l glyceryl moiety and R and R are each alkyl or monohydroxyalkyl groups containing from 1 to about 3 carbon atoms.
  • the arrow in the formula is a conventional representation of the semi-polar bond.
  • phosphine oxides examples include: dodecyldimethylphosphine oxide, tetradecyldimethylphosphine oxide, tetradecylmethylethylphosphine oxide, 3,6,9-trioxaoctadecyldimethylphosphine oxide, cetyldimethylphosphine oxide, 3-dodecoxy-2 hydroxypropyldi( 2-hydroxyethyl phosphine oxide, stearyldimethylphosphine oxide, cetylethylpropylphosphine oxide, oleyldiethylphosphine oxide, dodecyldiethylphosphine oxide, tetradecyldiethylphosphine oxide, dodecyldipropylphosphine oxide, dodecyldi( hydroxymethyl)phosphine oxide, dodecyldi( 2-hydroxyethyl)phosphine oxide, pho
  • Nonionic organic detergents which are certain organic sulfoxides.
  • X- S CH CH R H l O OH group e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • These detergents have the formula 2 1 R NCH -R3ZM wherein R is alkyl of about 8 to 18 carbon atoms, R is alkyl of l to about 3 carbon atoms or is hydrogen, R is alkylene of 1 to about 4 carbon atoms, Z is carboxy, sulfonate, sulfate, phosphate or phosphonate and M is a salt-forming cation, as hereinbefore described.
  • Examples of compounds falling within this definition are sodium 3-dodecylaminopropionate; sodium 3- dodecylaminopropane sulfonate; N-alkyltaurines such as the one prepared by reacting dodecylamine with sodium isethionate according to the teaching of US. Pat.
  • Zwitterionic synthetic detergents which are derivatives of aliphatic quaternary ammonium, phosphonium and sulfonium compounds, in which the aliphatic groups can be straight chain or branched, and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
  • a general formula for these compounds is:
  • R is an alkyl, alkenyl, hydroxyalkyl or alkylbenzyl group containing from about 8 to about 24 carbon atoms and having from 0 to about 10 etliylene oxide moieties and from 0 to l glyceryl moiety;
  • Y is selected from the group consisting of nitrogen, phosphorus, and sulfur atoms;
  • R is an alkyl or monohydroxy alkyl group containing 1 to about 3 carbon atoms;
  • x is 1 when Y is a sulfur atom and 2 when Y is nitrogen or phosphorus atom,
  • R is an alkylene or hydroxy alkylene group of 1 to about 4 carbon atoms and Z is a member selected from the group consisting of carboxylate, sulfonate, sulfate, phosphonate, and phosphate groups.
  • Examples of compounds falling within this definition also includes 3-( N,N-dimethyl-N-hexadecylammonio )propane-l-sulfonate and 3-(N,N-dimethyl- N-hexadecyl-ammonio )-2-hydroxypropane- 1 -sulfonate which are especially preferred herein for their availability and curd dispersant characteristics.
  • Some of the compounds of this type as well as their use as dispersing agents are more fully described in US. Pat. Nos. 2,699,991 and 3,660,470 herein incorporated by reference.
  • Organiccarboxylic acid amides include those aliphatic amides of the general formula:
  • R- CO N R n I 4 5 wherein R is hydrogen, alkyl, or alkylol and R and R" are hydrogen, alkyl, alkylol, or alkylene joined through an oxygen atom, the total number of carbon atoms in R, Rand R" being from about 9 to about 25.
  • Amides of this general type which are of special utility are those aliphatic carboxylic acid alkanolamides of the formula: V
  • C(RIRIIRIVII) RCO'N in which RC0 is the acyl group of a soap forming carboxylic acid having from aboutv 10 to about 18 carbon atoms, R and R" are each selected from the group consisting of hydrogen, alkyl, and alkylol substituents, and R' is an alkylol substituent, the total number of carbon atoms in R, R5 and R being from 1 to 7.
  • lauryl lauramide myristic N-methyl ethanolamide; butyl capramide; capric butanolamide; dibutyl capramide; dibutyl myristamide; stearic acid amide of tris(hydroxymethyl)amino methane; myristic glycerylamide; N-lauroyl morpholin'e; lauric glycerylamide; palmitic acid vamide of 2-amino-2-methyl-l,3-
  • pentanediol Especially preferred is tallow acyl monoethanolamide.
  • Such amine compounds include N-alkyl monoalkylolamines and N-alkyl dialkylolamines in which the alkyl group has from 1010 16 carbon atoms and the alkanol group has 2 or 3 carbon atoms; N-alkyl morpholines in which the alkyl group has from 10 to carbon atoms; and N-alkyl tris( hydroxymethyl)aminomethane in which the alkyl group has from 10 to 16 carbon atoms.
  • Such compounds include N-dodecylmonoethanolamine, N-dodecyl-tris(hydroxymethyl )aminomethane N-dodecyl isopropanolamine, N-tetradecyl monoethanolamine, N-dodecyl diethanolamine, N-tetradecyl diethanolamine and N-dodecyl morpholine.
  • N-dodecylmonoethanolamine N-dodecyl-tris(hydroxymethyl )aminomethane
  • N-dodecyl isopropanolamine N-tetradecyl monoethanolamine
  • N-dodecyl diethanolamine N-tetradecyl diethanolamine
  • N-dodecyl morpholine N-dodecyl morpholine.
  • the compounds preferred for use in the granular particles of the instant composition include the sodium salt of the methyl ester of a-sulfonated tallow the alkyl group averages about 14.8 carbon atoms in length; hexadecylammonio )propane-v l -sulfonate; dimethyl-N-hexadecylammonio)Q-hydroxypropane l sulfonate; 3-( N -dodecylbenzene -N,N-dimethyl ammonio )-propane-l-sulfonate and tallow acyl monoethanolamide.
  • Y i i Highly preferred curd dispersing agents herein are the sodium salt of ethoxylated tallow alkyl sulfate averaging about 3 ethylene oxide groups per mole, the sodium salt of ethoxylated tallow alkyl sulfate average about 6 ethylene oxide groups per mole, and tallow acyl monoethanolamide.
  • Optional Granule Components Besides the above-described soap and curddispersing components, the granular particles of the instant compositions can contain a wide variety of optional components generally found in conventional fabric laundering formulations.
  • optional components include, for example, conventional anionic or nonionic surfactants which are not particularly useful as curd dispersants and alkaline builder salts.
  • non-curddispersing surfactants are those having a percentage value in the above-described lime soap peptizing test greater than 39% and include the sodium salts of linear alkyl benzene sulfonac acid where the alkyl group average about 10 to 18 carbon atoms in length, sodium tallow alkyl sulfate, the condensation product of coconut 'fatty alcohol with about 6 moles of ethylene oxide per mole of alcohol, and the condensation product of a secondary fatty alcohol containing about carbon atoms with about 9 moles of ethylene oxide per mole of alcohol.
  • such conventional non-curddispersing surfactants generally comprise from about 1% to 30% by weight of the granular particle.
  • Typical alkaline builders include sodium tripolyphosphate, sodium citrate, sodium nitrilotriacetate, sodium carbonate and sodium mellitate. When employed, such conventional builders generally comprise from about 1% to 30% by weight of the granular particle.
  • optional granule components include the various soil-suspending agents such as carboxymethylcellulose, corrosion inhibitors, dyes, fillers such as sodium sulfate and silica, optical brighteners, bleaches such as sodium perborate, suds boosters, suds depressants, germicides, antitarnishing agents, pH adjusting agents such as sodium silicate, enzymes, and the like, well known in the art for use in detergent compositions. Bound water can also be present in said compositions.
  • soil-suspending agents such as carboxymethylcellulose, corrosion inhibitors, dyes, fillers such as sodium sulfate and silica, optical brighteners, bleaches such as sodium perborate, suds boosters, suds depressants, germicides, antitarnishing agents, pH adjusting agents such as sodium silicate, enzymes, and the like, well known in the art for use in detergent compositions.
  • Bound water can also be present in said compositions.
  • the soap-based granules herein can be prepared in standard fashion, e.g., by blending the soap, curd dispersant and optional ingredients of the granules in a crutcher, and subsequently blowing the mix in standard spray-drying equipment.
  • the present compositions contain, as an essential ingredient, particulate smectite-type clay materials which increase the solubility of the combined soap-curd dispersant granules and provide fabric softening concurrently with fabric cleansing.
  • smectite clays are present in the detergent compositions at concentrations from about 4% to about 25%, preferably from 5% to 15% by weight, of the total composition.
  • the weight ratio of clay to the soap-based granules is from about 20:1 to about 3:1 by weight.
  • the clay minerals used to provide the solubility and softening properties of the instant compositions can be described as impalpable, expandable, three-layer clays, i.e., alumino-silicates and magnesium silicates, having an ion exchange capacity of at least about 50 meg/100 g. of clay.
  • impalpable as used to describe the clays employed herein means that the individual clay particles are of a size that they cannot be perceived tactilely. Such particle sizes are within the range below about 50 microns. In general, the clays herein will have a particle size within the range of from about 5 microns to about 25 microns.
  • the term expandable as used to describe clays relates to the ability of the layered clay structure to be swollen, or expanded, on contact with water.
  • the three-layer expandable clays used herein are those materials classified geologically as smectites.
  • smectite-type clays There are two distinct classes of smectite-type clays. In the first, aluminum oxide is present in the silicate crystal lattice; in the second class of smectites, magnesium oxide is present in the silicate crystal lattice.
  • the general formulas of these smectites are Al SE0 (Ol-l) and Mg (Si O (OI-D for the aluminum and magnesium oxide type clay, respectively. It is to be rec ognized that the range of the water of hydration in the above formulas can vary with the processing to which the clay has been subjected. This is immaterial to the use of smectite clays in the present invention in that the expandable characteristics of the hydrated clays are dictated by the silicate lattice structure.
  • atom substitution by iron and magnesium can occur within the crystal lattice of the smectites, while metal cations such as Na+, Ca+l-, as well as 1-1+, can be copresent in the water of hydration to provide electrical neutrality. Except as noted hereinafter, such cation substitutions are immaterial to the use of the clays herein since the desirable physical properties of the clays are not substantially altered thereby.
  • the three-layer, expandable alumino'silicates useful herein are further characterized by a dioctahedral crystal lattice, while the expandable three-layer magnesium silicates have a trioctahedral crystal lattice.
  • the clays employed in the compositions of the instant invention contain cationic counterions such as protons, sodium ions, potassium ions, calcium ion, magnesium ion, and the like. It is customary to distinguish between clays on the basis of one cation predominantly or exclusively absorbed.
  • a sodium clay is one in which the absorbed cation is predominantly sodium.
  • Such absorbed cations can become involved in exchange reactions with cations present in aqueous solutions.
  • a typical exchange reaction involving a smectite-type clay is expressed by the following equation:
  • smectite clay Na
  • NH OH Na-l NaOl-l Since in the foregoing equilibrium reaction, one equivalent weight of ammonium ion replaces an equivalent weight of sodium, it is customary to measure clay cation exchange capacity (sometimes termed base exchange capacity) in terms of milliequivalents per g. of clay (meq/lOO g.).
  • the cation exchange capacity of clays can be measured in several ways, including by electrodialysis, by exchange with ammonium ion followed by titration, or by a methylene blue procedure, all as fully set forth in Grimshaw, The Chemist y and Physics of Clays, lnterscience Publishers, Inc. pp. 264-265 (1971).
  • the cation exchange capacity of a clay mineral relates to such factors as the expandable properties of the clay, the charge of the clay, which, in turn, is determined at least in part by the lattice structure, and the like.
  • the ion exchange capacity of clays varies widely in the range from about 2 meq/ 100 g. for kaolinites to about meq/lOO g., and greater, for
  • Illite clays certain clay of the montmorillonite variety.
  • Illite clays have an ion exchange capacity somehwere in the lower portion of the range, i.e., around 26 meq/ 100 g. for an average illite clay.
  • illite and kaolinite clays are not useful in the instant compositions. Indeed, such illite and kaolinite clays constitute a major component of clay soils and, are, in fact, removed from fabric surfaces by means of the instant compositions.
  • smectites such as nontronite, having an ion exchange capacity of approximately 50 meq/ 100 g.
  • saponite which has an ion exchange capacity of around 70 meq/ l 00 g.
  • montmorillonite which has an ion exchange capacity greater than 70 meq/lOO g.
  • clay minerals useful herein can be characerized as impalpable, expandable, three-layer smectite-type clays having an ion exchange capacity of at least about 50 meq/ 100 g.
  • the smectite clays used in the compositions herein are all commercially available. Such clays include, for example, montmorillonite, volchonskoite, nontronite, hectorite, spaonite, sauconite, and vermiculite.
  • the clays herein are available under commercial names such as fooler clay (clay found in a relatively thin vein above the main bentonite or montmorillonite veins in the Black Hills) and various tradenames such as Thixogel No. 1 (also, Thixo-Jell) and Gelwhite GP from Georgia Kaolin Co., Elizabeth, N.J.; Volclay BC and Volclay No.
  • any of the impalpable smectite-type clays having a cation exchange capacity of at least about 50 meq/ 100 g. are useful herein, certain clays are preferred.
  • Gelwhite GP and fooler clay are extremely white forms of smectite clays and are therefore preferred when formulating white, granular compositions.
  • Volclay BC which is a smectite-type clay mineral containing at least 3% iron (expressed as Fe O in the crystal lattice, and which has a very high ion exchange capacity, is one of the most efficient andeffective clays for use in laundry compositions and is preferred from the standpoint of fabric softening performance.
  • l is a preferred clay herein from the standpoint of both product solubility and through-the-wash fabric softening performance.
  • certain smectite clays such as those marketed under the name bentonite, are sufficiently contaminated by other silicate minerals that their ion exchange capacity falls below the requisite range, and such clays are of no use in the instant compositions.
  • Appropriate clay minerals for use herein can be selected by virtue of the fact that smectites exhibit a true 14A x-ray diffraction pattern. This characteristic pattern, together with exchange capacity measurements performed in the manner noted above, provides a basis for selecting suitable impalpable smectite'type clay minerals for use in the granular detergent compositions disclosed herein.
  • compositions herein can be formulated by simply preparing granules comprising the soap, curd dispersant, and any of the optional ingredients mentioned hereinabove.
  • the granules are then sprayed with a quaternary ammonium compound from a melt and then contacted with the smectite-type clay.
  • the clay can then be simply admixed, e.g., by tumbling, with the soap-based granules and blended.
  • this method is employed, the clay is attached to the soapbased granules mainly by surface forces between the clay and soap granules.
  • the soap-based granules are coated with a material of the type hereinafter disclosed which promotes adhesion of the clay particles to the surface of the granules.
  • a material of the type hereinafter disclosed which promotes adhesion of the clay particles to the surface of the granules.
  • the substantially dry soap-based granules can be first sprayed with said material in liquid form and then admixed with the clay. The clay and sprayed granules are then thoroughly blended to provide good contact and optimum coating of the granules with the clay.
  • the clay and granules are concurrently admixed and sprayed with the adhesionpromoting material. Mixing of the clay and granules can be achieved using a standard drum mixer. Following this, the quaternary ammonium anti-static agent can be added to the compositions, e.g., by spraying from a melt.
  • the quaternary anti-static agent is not affixed to the surface of the clay by chemical bonding. That is to say, if the clay and quat combine by an ion exchange mechanism, the quat is not released to perform its desirable anti-static function when the compositions are admixed with water.
  • the preferred way to avoid ion exchange reactions between the quat and clay is to add the quat to the compositions from a melt, rather than from a solution or suspension in water.
  • the materials which can be optionally used herein to promote the adhesion of the clays to the surface of the granules can be any water-soluble or water-disperable organic materials, preferably those which are liquids or are liquifiable at convenient temperatures for spraying, i.e., at temperatures from about 60F to about F.
  • the adhesion-promoting materials used herein should not be toxic or deleterious to fabrics. Since most soap compositions are desirably white in color, colorless organic materials are preferred herein for attaching the clay to the soap-based granules.
  • the materials used herein have sufficient hydrophilic character that they are easily dissolved or dispersed in water, but they are preferably not hygroscopic.
  • a variety of liquid and liquifiable organic compounds are useful herein for attaching the clay to the surface of the soap-based granules.
  • a all manner of common ethoxylated nonionic surfactants can be used for this purpose.
  • Nonionic surfactants produced by the condensation of an alkylene oxide moiety (hydrophilic in nature) with an organic hydrophobic compound which is usually aliphatic or alkyl aromatic in nature can be used.
  • the length of the hydrophilic or polyoxyalkylene moiety which is condensed with any particular hydrophobic compound can be readily adjusted to yield colorless, liquid or liquifiable, water dispensable, organic, nonionic surfactants which are useful adhesion promoters herein.
  • Examples of nonionic surfactants which can be used as the adhesionpromoting materials herein include:
  • the polyethylene oxide condensates of alkyl phenols. These compounds include the condensation prod ucts of alkyl phenols having an alkyl group containing from about 6 to 12 carbon atoms, in either a straight chain or branched chain configuration, with ethylene oxide, said ethylene oxide being present in amounts equal to to 25 moles of ethylene oxide per mole of alkyl phenol.
  • the alkyl substituent in such compounds can be derived, for example, from polymerized propylene, diisobutylene, octene, or nonene.
  • Examples of compounds of this type include nonyl phenol condensed with about 9.5 moles of ethylene oxide per mole of nonyl phenol, dodecyl phenol condensed with about 12 moles of ethylene oxide per mole of phenol, dinonyl 'phenol condensed with about 15 moles of ethylene oxide per mole of phenol, di-isooctylphenol condensed with about 15 moles of ethylene oxide per mole of phenol.
  • Commercially available nonionic surfactants of this type include lgepal CO-6l0 marketed by the GAF Corporation; and Triton X-45, X-l l4, X-l00 and X- 102, all marketed by the Rohm and Haas Company.
  • the condensation product of aliphatic alcohols with ethylene oxide The alkyl chain of the aliphatic alcohol can either be straight or branched and generally contains from about 8 to about 22 carbon atoms.
  • ethoxylated alcohols include the condensation product of about 6 moles of ethylene oxide with 1 mole of tridecanol, myristyl alcohol condensed with about 10 moles of ethylene oxide per mole of myristyl alcohol, the condensation product of ethylene oxide with coconut fatty alcohol wherein the coconut alcohol is a mixture of fatty alcohols with alkyl chains varying from 10 to 14 carbon atoms and wherein the condensate contains about 6 moles of ethylene oxide per mole of alcohol, and the condensation product of about 9 moles of ethylene oxide with the abovedescribed coconut alcohol.
  • nonionic surfactants of this type include Tergitol 15-S-9 marketed by the Union Carbide Corporation, Neodol 23-65 marketed by the Shell Chemical Company, and Kyro EOB marketed by The Procter and Gamble Company.
  • the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol.
  • the hydropho' bic portion of these compounds has a molecular weight of from about 1,500 to 1,800.
  • the addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water-solubility of the molecule as a whole, and the liquid character of the product is re tained up to the point where the polyoxyethylene content is about 50% of the total weight of the condensation product.
  • Examples of compounds of this type in clude certain of the commercially available Pluronic surfactants marketed by the Wyandotte Chemicals Corporation.
  • the condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylene diamine consist of the reaction product of ethylenediamine and excess propylene oxide, said base having a molecular weight of from about 2,500 to about 3,000.
  • This base is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about by weight of polyoxyethylene and has a molecular weight of from about 5,000 to about 1 1,000.
  • this type of nonionic surfactant include certain of the commercially available Tetronic compounds marketed by the Wyandotte Chemicals Corporation.
  • the fatty acids are another class of materials which can be used to promote the attachment of the clays to the surface of the granules.
  • Fatty acids useful herein are those C, to C straight chain and branched chain aliphatic carboxylic acids which can be obtained, for example, by the saponification of triglycerides. Both saturated and unsaturated fatty acids are useful herein. Mixtures of fatty acids obtainable from certain designated fats, e.g., tallow fatty acids, obtainable from tallow; coconut fatty acids, obtainable from coconut oil, and; palm fatty acids, obtainable from palm oil, are also useful herein.
  • the C to C aliphatic fatty acids, and mixtures thereof, are preferred members of this class of adhesion-promoting materials herein.
  • Exemplary fatty acids which can be employed herein to affix the clay to the soap-based granules include lauric, myristic, palmitic, stearic, elaidic, oleic and eicosanoic acids, and mixtures thereof.
  • the fatty alcohols having C to C hydrocarbon chains are also useful herein as adhesion promoters. These materials can be obtained in a variety of ways well known in the art, e.g., from various triglyceride oils such as palm oil and coconut oil. Exemplary alcohols useful herein include l-dodecanol, l-tetradecanol, l-hexadecanol and l-octadecanol.
  • Preferred materials which can be used herein to attach the smectite clays to the surfaces of the soap-pluscurd dispersant granules include: coconut alcohol ethoxylate containing 6 ethylene oxide units per molecule; tallow alcohol ethoxylate containing 11 ethylene oxide units per molecule, i.e., tallow ethylene oxide (1 1); coconut fatty acid mixtures; tallow fatty acid mixtures, the condensate of one mole of ethylene oxide with l-dodecanol; and the condensate of one mole of l-dodecanol with ethylene oxide hexamer.
  • Especially preferred adhesion promoters herein include coconut fatty acids and tallow ethylene oxide (1 1).
  • the optionally employed adhesionpromoting materials serve the additional function of providing an unexpected additional increment of solubility to the compositions. That is to say, while the soap-plus-curd dispersant granules herein exhibit poor solubility in laundering baths on the range of from about 60F. to F., the surface coating of the adhesion-promoting materials enhances this solubility.
  • the soap-plus-curd dispersant granules coated with the adhesion-promoting materials are not rendered sufficiently soluble to be optimally useful for cool water washing (i.e., at about 80F)
  • the added increment of solubility imparted by the adhesionpromoting materials complements the substantial increase in solubility afforded by the smectite-type clays.
  • the soap-based granules coated with the adhesion promoter and having the smectite-type clays attached to the surface have a water solubility comparable to that of the better commercial synthetic detergent compositions over a wide temperature range.
  • the optionally-employed, adhesion-promoting materials serve to decrease product dust levels.
  • the decreased product dust levels afforded by the adhesion promoters aids in processing and provides a more acceptable product for the consumer.
  • the adhesion-promoting materials herein are employed to attach the smectite-type clays to the surface of the soap-based granules, they are preferably used in an amount sufficient to provide said granules with at least a monolayer coating of said materials.
  • the adhesion-promoting material can comprise from about 0.5% to about 8%, preferably 1% to about 4% by weight of the total composition.
  • higher proportions of the adhesion promoters can be employed, but this represents an economic waste in that such increased proportions are not required to affix the clay to the granules and do not further increase product solubility to any substantial degree.
  • clay-to-soap-based granules ratio results in compositions wherein a substantial proportion of the surface of the granules are coated with the clay.
  • adhesion-promoting materials are additionally employed, greater coverage of the granules is more easily achieved.
  • soapbased granules having about and greater, of their surfaces coated with the clay exhibit the desirable solubility properties disclosed herein, it is preferred that the clay coat at least about 40% of the granule surface. Such higher degrees of surface coating are most readily achieved by use of the adhesion-promoting materials disclosed above.
  • compositions of the instant invention are added to an aqueous laundering liquor to the extent of from about 0.02% to about 2% by weight, preferably from about 0.1% to about 1% by weight. Addition of such compositions provide a laundering liquor pH of from about 6 to 11.
  • a soap-based laundry granule is prepared having the following composition:
  • soap-plus-clay granules are sprayed with melted ditallowdimethylammonium chloride antistat; a total of 5% by weight of the final composition comprises said anti-stat.
  • composition is added to an aqueous laundering liquor at 100F at a concentration of about 0.12% by weight.
  • the composition rapidly dissolves and the clay and anti-stat are uniformly and independently dispersed throughout the laundering liquor. Fabrics laundered in said liquor are concurrently cleansed, softened and provided with an anti-static finish; substantially no curd buildup occurs.
  • a soap-based laundry granule is prepared having the following composition:
  • the foregoing granular product is then sprayed with a melt of ditallowdimethylammonium chloride to a total of 5% by weight of the granules.
  • composition is a stable laundry detergent formulation having excellent water dispersability and providing excellent fabric laundering, fabric softening, and fabric anti-static characteristics when added to laundering liquors to the extent of about 0.12% by weight.
  • a soap-based laundry granule is prepared having the following composition:
  • the quantity of said anti-stat is adjusted to provide a coating comprising 5% by weight of the total granules.
  • composition provides excellent fabric laundering and has desirable solubility, fabric softening and anti-static characteristics when used to launder fabrics in an aqueous liquor at concentrations of about 0.7% by weight.
  • a soap-based laundry granule is prepared having the following composition:
  • Component miscellaneous Balance A mixture of tallow and coconut soaps comprising 80% tallow soap and 20% coconut soap.
  • the foregoing ingredients are mixed in a crutcher and spray-dried to provide a granular, soap-based composition.
  • composition is then uniformly admixed with impalpable particles of ditallowdimethylammonium chloride anti-stat.
  • concentration of anti-stat in the composition is 7% by weight.
  • composition is added to an aqueous laundry bath at F at a concentration of 0.5% by weight.
  • Said laundering bath provides excellent fabric laundering and imparts desirable fabric softening and anti-static characteristics to nylon, cotton, polyester-and polyester/- cotton blends laundered therein.
  • compositions set forth hereinabove can be made without obviating the advantageous properties of said compositions.
  • substantially similar results are obtained when, in the abovedescribed compositions, the ethoxylated tallow alkyl sulfate curd dispersing agent of the Example I and II compositions, or the tallow monoethanolamide curddispersing agent of the Example III and IV compositions, is replaced with equivalent amounts of the sodium salt of the methyl ester of a-sulfonated tallow fatty acid; the sodium salt of ethoxylated tallow alkyl sulfate having an average of about 6 ethylene oxide groups per mole; sodium B-acetoxy-hexadecane-lsulfonate; sodium B-acetoxy tridecane-l-sulfonate; the sodium salt of sulfonated l-hexadecene; dimethyldodecylphosphine oxide; sodium
  • compositions comprising from about 75% to about 96% by weight of a soapbased granule containing a curd dispersant, from about 0.5% to about 15% by weight of a quaternary ammonium anti-static agent and from about 4% to about 25% by weight of a smectite-type clay, provide excellent through-the-wash fabric cleansing, softening and antistatic benefits.
  • a fabric laundering composition comprising:
  • a substantially water-insoluble quaternary ammonium anti-static agent of the formula wherein each R is a hydrocarbyl group containing from about 10 to about 22 carbon atoms and each R is a hydrocarbyl group containing from about 1 to about 4 carbon atoms, X is an anion and n is an integer from 1 to 3, the weight ratio of smectitetype clay to quaternary ammonium compound being in the range of from about 40:1 to about 1:1, said quaternary ammonium compound being in releasable combination in said composition.
  • composition according to claim 1 A composition according to claim 1:
  • soap compound is a water-soluble salt of a higher fatty acid containing from about 8 to about 24 carbon atoms and is present in said granular particles to the extent of from about 40% to about 70% by weight of the granular particles;
  • curd-dispersing agent is selected from the group consisting of i. compounds of the formula III ll wherein R, is alkyl or alkenyl of about 10 to 20 carbon atoms, R is alkyl of 1 to about 10 carbon atoms and M is a salt-forming cation;
  • olefin sulfonates containing from about 12 to 24 carbon atoms
  • R is selected from the group consisting of alkyl, alkenyl, hydroxyalkyl and alkylbenzene groups, all groups containing from about 8 to about 24 carbon atoms and having from 0 to about 10 ethylene oxide moieties and from O to l glyceryl moiety;
  • Y is selected from the group consisting of nitrogen, phosphorus, and sulfur atoms;
  • R is an alkyl or monohydroxy alkyl group containing 1 to about 3 carbon atoms;
  • x is 1 when Y is a sulfur atom and 2 when Y is a nitrogen or phosphorus atom,
  • R is alkylene or hydroxyalkylene of from 1 to about 4 carbon atoms and Z is a group selected from the group consisting of carboxylate, sulfonate, sulfate, phosphonate, and phosphate groups; ix.
  • R is hydrogen, alkyl or alkylol and R and R" are each hydrogen, alkyl, alkylol, or alkylene joined through an oxygen atom, the total number of carbon atoms in R, R and R being from about 9 to about 25; and organic amines selected from the group consisting of N-alkyl monoalkylolamines and N-alkyl dialkylolamines wherein the alkyl group contains from about to 16 carbon atoms and the alkylol group contains 2 or 3 carbon atoms; N-alkyl morpholines wherein the alkyl groups contains from about 10 to 16 carbon atoms and N-alkyl tris(hydroxymethyl)-aminomethane wherein the alkyl group contains from about 10 to 16 carbon atoms; and wherein said curddispersing agent is present in said granular particles to the extent of from about 2% to about 20% by weight of said granular particles;
  • impalpable smectite-type clay is selected from the group consisting of dioctahedral expandable three-layer aluminum-silicates and trioctahedral expandable three-layer magensium silicates, and is present to the extent of from about 4% to about by weight of the total compositon; and
  • the quaternary ammonium compound is ditallowdimethylammonium chloride and is present in releasable combination with the composition at a concentration of from about 0.5% to about 5% by weight.
  • composition according to claim 1 A wherein the soap is selected from the group consisting of sodium tallow soap, sodium coconut soap, potassium tallow soap, potassium coconut soap and mixtures thereof;
  • the curd-dispersing agent is selected from the group consisting of the sodium salt of the methyl ester of a-sulfonated tallow fatty acid; the sodium salt of ethoxylated tallow alkyl sulfate having an average of about 3 ethylene oxide groups per mole; the sodium salt of ethoxylated tallow alkyl sulfate having an average of about 6 ethylene oxide groups per mole; sodium B-acetoxy-hexadecane-lsulfonate; sodium-B-acetoxy tridecane- 1 -sulfonate; the sodium salt of sulfonated l-hexadecene; dimethyldodecylphosphine oxide; sodium hexadecylmethylaminopripionate; 3( N,N-dimethyl-N- alkylammonio)-propane-l-sulfonat and 3(N,N-
  • smectite-type clay is selected from the group consisting of montmorillonites, volchonskoites, nontronites, hectorites, sauconites and vermiculites;
  • composition according to claim 1 wherein the smectite-type clay is selected from the group consisting of fooler clay, Thixogel No. l, Gelwhite GP, Volclay BC, VolclayNo. 325, Black Hills Bentonite Bl-l 450, Veegum Pro and Veegum F.
  • composition according to claim 1 wherein the smectite-type clay is Volclay BC.
  • composition according to claim 1 wherein the smectite-type clay is fooler clay.
  • composition according to claim 1 wherein the curd-dispersing agent is the sodium salt of ethoxylated tallow alkyl sulfate having an average of about 3 ethylene oxide groups per mole and the smectite-type clay is Thixogel No. l.
  • composition according to claim 1 containing as an additional component from about 0.5% to about 8% by weight of an adhesion-promoting material.
  • composition according to claim 1 containing as an additional component from about 1% to about 30% by weight of an alkaline builder salt.
  • composition according to claim 9 wherein the alkaline builder salt is sodium tripolyphosphate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Granular laundering compositions comprising a curd-dispersantcontaining soap-based granule, a smectite-type clay and a quaternary ammonium anti-static agent. The soap and curd dispersant are formulated in the granule and the clay is attached to the surface of the granule. The quaternary ammonium compound is formulated in releasable combination with the granule. The resulting compositions enhanced solubility and provide throughthe-wash fabric softening and anti-static benefits.

Description

' United States Patent Nirschl et al.
SOAP COMPOSITIONS Inventors: Joseph Peter Nirschl; Robert Andrew Gloss, both of Cincinnati, Ohio Assignee: The Procter & Gamble Company,
Cincinnati, Ohio Filed: Nov. 10, 1972 Appl. No.: 305,417
Published under the Trial Voluntary Protest Program on January 28, 1975 as document no. B 305,417.
References Cited UNITED STATES PATENTS 2/1973 Kolsky et a1. 252/120 X Oct. 28, 1975 3,765,911 10/1973 Knowles et al. 252/131 X Primary Examiner-Leland A. Sebastian Attorney, Agent, or FirmRichard C. Witte; Thomas H. OFlaherty; Jack D. Schaeffer [57] ABSTRACT Granular laundering compositions comprising a curd-dispersant-containing soap-based granule, a smectite-type clay and a quaternary ammonium antistatic agent. The soap and curd dispersant are formulated in the granule and the clay is attached to the surface of the granule. The quaternary ammonium compound is formulated in releasable combination with the granule. The resulting compositions enhanced solubility and provide through-the-wash fabric softening and anti-static benefits.
10 Claims, N0 Drawings SOAP COMPOSITIONS BACKGROUND OF THE INVENTION The instant invention relates to granular laundering compositions which provide simultaneous laundering, softening and anti-static benefits on textiles during conventional fabric laundering operations. Such compositions employ a combination of a soap and a curd dispersant in granular form, certain smectite clay compounds having particular cation exchange characteristics, and certain cationic anti-static agents.
Laundry soaps, i.e., the water-soluble salts of fatty acids, provide the user with good fabric cleansing coupled with product mildness. In addition, soaps deposit on many types of fabrics in the form of a curd and thereby provide desirable softening benefits. However, the buildup of heavy soap curd on fabrics eventually results in loss of fabric brightness. Furthermore, soap curd has been found to interfere with the flame retardant finishes commonly applied to childrens clothing. That is to say, flame retardant fabrics coated with a heavy soap curd exhibit decreased levels of flame retardancy which, on removal of the soap curd, are restored to their original level.
From the foregoing, it can be seen that the use of soap-based laundering products presents a dilemma. The soap provides desirable fabric cleaning and through-the-wash fabric softening, but can eventually detract from fabric appearance and decrease the efficacy of the flame retardant finishes present on modern fabrics.
One method for preventing curd buildup on fabrics laundered with soap is to include a curd dispersant in the laundering bath. While this method achieves the desired result, the laundered fabrics no longer have the desirable softening benefits imparted by soap. More importantly, granular laundering compositions which contain both soap and significant amounts of curd dispersant are difficult to dissolve in aqueous laundering baths. When such products are added to water, the soap tends to undergo a phase transition and agglomerates as a gelatinous material which then deposits in an unsightly manner on the fabrics being laundered.
As more fully disclosed in the co-pending application of Ohren, Ser. No. 279,127 filed Aug. 9, 1972, certain smectite-type clay materials can be attached to the surface of soap-based detergent granules containing certain curd dispersants to substantially enhance the solu bility of the granules. Furthermore, once the granules have dissolved, the clay is dispersed throughout the laundry liquor and deposits on the fabric surfaces to provide softening. Thus, the problem of excess curd buildup on fabrics is solved without losing the desirable softening benefits of soap-based compositions.
However, such clay-plus-soap granules, while effective for their intended purpose, do no impart desirable antistatic benefits to fabrics laundered therein. That is to say, commercially acceptable fabric softeners also provide anti-static benefits, and such benefits have come to be expected by the user of such products. The present invention discloses a means for providing these desirable anti-static benefits.
Various clay materials have been utilized in many different types of detergent systems for widely diverse purposes. Clays, for example, have been disclosed for use as builders (Schwartz and Perry, Surface Active Agents, lntersicence Publishers, lnc., 1949, p. 233 and Schwartz, Perry and Berch, Surface Active Agents and Detergents, Vol. II Interscience Publishers, lnc., 1958, pp. 297-300); as watersofteners (British Pat. No. 461,221); as anti-caking agents (U.S. Pat. Nos. 2,625,513 and 2,770,600); as suspending agents (U.S. Pat. Nos. 2,594,257, 2,594,258 and 2,920,045); and as fillers (U.S. Pat. No. 2,708,185).
It is also well known that some clay materials can be deposited on fabrics to impart softening properties thereto. Such clay deposition is usually realized by contacting fabrics to be so treated with aqueous clay suspensions (see, for example, US. Pat. Nos. 3,033,699 and 3,594,221 The co-pending application of Storm and Nirschl, Ser. No. 271,943, filed July 14, 1972, now abandoned, teaches the use of clays as softeners in detergent compositions.
Various quaternary ammonium compounds are known in the art which possess anti-static properties, and the use of clays in combination with conventional cationic agents for various purposes has been taught in the prior art. For example, US. Pat. No. 3,594,212 teaches that quaternary ammonium compounds affixed to the surface of clay can enhance clay deposition on fabrics; see, also, US. Pat. No. 3,625,505. However, as will be seen hereinafter, when quaternary compounds are chemically affixed to clay surfaces in the manner disclosed in the prior art, the desirable anti-static benefits are substantially lost. Furthermore, quaternary ammonium compounds are not generally taught to be useful in combination with anionic materials such as soap in the manner disclosed herein.
While the use of clays as fabric softeners is described in the cited art, such clay softeners are not entirely suitable for this purpose since they do not possess antistatic properties. Indeed, fabrics coated with clays, while exhibiting a soft hand, tend to develop higher levels of static change than the uncoated fabrics, themselves.
The concurrently filed application of Nirschl and Gloss, entitled Detergent Compositions; Ser. No. 305,416, filed Nov. 10, 1972 discloses the use of clayplus-quat softeners and anti-static agents in built, nonsoap detergent compositions.
US. Pat. No. 2,819,228 discloses the use of clays in combination with cationic surfactants as dry emulsifiers; however, these compositions do not contain detergent compounds suitable for laundering fabrics.
It has been heretofore unrecognized that clay minerals of the type used in the present invention can be attached to the surface of soap-based detergent granules, especially those containing curd dispersants, and combined with specific quaternary ammonium compounds to provide soluble soap granules having combined fabric softening and anti-static benefits.
Accordingly, it is an object of the present invention to provide compositions which can be employed to achieve concurrent fabric laundering, fabric softening, and anti-static effects without interfering with flame retardancy.
It is a further object of the present invention to provide soap-based laundering, softening and anti-static compositions containing curd dispersants in the form of granular formulations which can be easily dissolved in water over a wide temperature range.
These and other objects ae obtained herein, as will be seen from the following disclosure.
SUMMARY OF THE INVENTION The present invention encompasses fabric laundering compositions comprising: (A) a granular particle which comprises; (i) from about 30% to about 80% by weight of said particle of a soap compound; and (ii) from about 1% to about 30% by weight of said granular particle of a curd-dispersing agent; (B) an impalpable smectite-type clay having an ion exchange capacity of at least about 50 meq/ 100 g. of clay, attached to the surface of said granular particle; and (C) from about 0.5% to about 15% by weight of a substantially waterinsoluble quaternary ammonium anti-static agent of the formula wherein each R is a hydrocarbyl group containing from about to about 22 carbon atoms and each R is a hydrocarbyl group containing from 1 to about 4 carbon atoms, and wherein X is an anion, i.e., halide, hydroxide, carbonate, phosphate, etc. In the above formula, the integer, n, indicates the charge on the anion; n can be 1 to 3 in the compounds herein. The compositions have a weight ratio of granular particles to smectite clay in the range of from about 20:1 to about 3:1. The weight ratio of smectite-type clay-to-quaternary ammonium compound in the compositions herein is from about 40:1 to about 1:1, preferably about 5:1. The quaternary ammonium compound is present in releasable combination with the compositions herein. By releasable combination is meant that, on admixture with water, the soluble components of the composition granules dissolve and the clay and quaternary compounds are independently suspended in the aqueous medium.
The compositions herein preferably provide a solution pH of from about 6 to about 1 1 when dissolved in water at a concentration of about 0.12% by weight.
In a method aspect, the invention encompasses methods for concurrently cleansing, softening and providing anti-static effects on fibers and fabrics comprising laundering said fabrics in an aqueous laundry bath containing an effective amount (e.g., from about 0.02% to about 2% by weight) of a laundry composition as described above.
DETAILED DESCRIPTION OF THE INVENTION The compositions and processes of this invention employ three essential ingredients: the soap-based granule; the clay; and the quaternary ammonium anti-static agent. The soap granule dissolves and functions in standard fashion to remove soil from fabrics being laun- Anti-Static Agent The quaternary ammonium antistatic agents are em ployed in the instant compositions at-a concentration of from about 0.5% to about preferably from about 0.5% to about 5% by weight, and are therefore.
present in the laundering liquors at levels from about 5 ppm to about ppm. In general, the quaternary anti-stats are used at a clay to quaternary weight ratio of from about 40:1 to about 1:1, preferably about 5:1.
The anti-static agents of this invention are quaternary ammonium salts of the formula wherein each R group is a hydrocarbyl (i.e., alkyl or alkenyl) group containing from about 10 to about 22 carbon atoms and each R group is a short-chain hydrocarbyl group containing from 1 to about 4 carbon atoms. X in the above compounds can be any saltforming anion, e.g., halide, hydroxide ion, sulfat, carbonate, phosphate, etc. The charge on the anion is designated an n, wherein n is 1-3. The number of cationic ammonium groups, n, will equal the change, n, on the anion to provide electrical neutrality. Quaternary ammonium compounds wherein n=1 are commercially available and are preferred herein for this reason.
The quaternary ammonium anti-static agents herein are characterized by their limited solubility in water. That is to say, such quaternary salts are essentially insoluble in water, existing therein in what appears to be the mesomorphic liquid crystalline state. The insolubility of the quaternary salts used herein is a critical aspect of this invention inasmuch as water-soluble quaternary salts become chemically affixed to the surface of the clay,or react with the soap or curd dispersant. When the quaternary anti-static agent is affixed to the surface of the clay, or has reacted with the soap or curd dispersant, it does not perform the desired anti-static function.
The cause of the solubility properties of the particular class of quatemaries found to be useful herein is not known with certainty. While not intending to be limited by theory, it appears that the two extended hydrocarbyl chains c,,' c present in the molecules serve to lower their solubility and probably account for their existence as liquid crystals. In any event, it has now been found the di-long chain quaternaries can be used in releasable combination with compositions containing clays. That is to say, the quaternary compound and the clay are independently suspended in the washing liquor and the quaternary compound does not appear to substantially affix itself to the clay surface by an ion exchange mechanism.
Quaternary ammonium compounds are not generally considered to be useful in combination with anionic materials such as soaps since the opposite charges on these two types of materials cause them to react and precipitate from solution. Surprisingly, it has now been found that the desirable anti-static benefits of the insoluble quaternary ammonium salts used herein are not negated when employed in combination with soaps or the anionic curd dispersants. Apparently, the insoluble nature of the di-long chain quats renders them somewhat campatible with such anionic materials. Whatever the reason, the quaternary ammonium anti-stats herein perform their anti-static function when used in combination with clays and anionics such as soap and curd dispersants. I
The quaternary ammonium anti-static agents used in this invention can be prepared in various ways wellknown in the art. Many such materials are commercially available. The quaternaries are often made from alkyl halide mixturescorresponding to the mixed alkyl chain lengths in fatty acids. For example, the ditallow quaternaries are made from alkyl halides having mixed C C chain lengths. Such mixed di-long chain quaternaries are useful herein and are preferred from a cost standpoint.
As noted above, essentially any anionic group can be the counterion in the quaternary compounds used herein. The anionic groups in the quaternary compounds can be exchanged, one for another, using standard anion exchange resins. Thus, quaternary ammonium salts having any desired anion are readily available. While the nature of such anions has no effect on the compositions and processes of this invention, chloride ion is the preferred counter-ion from a cost standpoint.
The following are representative examples of substantially water-insoluble quaternary ammonium antistatic agents suitable for use in the compositions and processes of the instant invention. All of the quaternary ammonium compounds listed can be formulated in releasable combination with the detergent compositions herein, but the compilation of suitable quaternary compounds hereinafter is only by way of example and is not intended to be limiting of such compounds. Ditallowdimethylammonium chloride is an especially preferred quaternary anti-static agent for use herein by virtue of its low cost, low solubility and high-anti-static activity; other useful di-long chain quaternary compounds are dicetyldimethylammonium chloride; bis-docosyldimethylammonium chloride; didecyldimethylammonium chloride; ditallowdimethylammonium bromide; dioleoyldimethylammonium hydroxide; ditallowdiethylammonium chloride; ditallowdipropylammonium bromide; ditallowdibutylammonium fluoride, cetyldecylmethylethylammonium chloride, bis- [ditallowdim ethylammonium ]sulfate; tris- [ditallowdimethylammonium]-phosphate; and the like.
The Granular Particles The granular particle component of the instant laundering compositions comprises two essential ingredients (l) a water-soluble soap compound and (2) a curd-dispersing agent. In addition, as will be set forth more fully hereinafter, the quaternary ammonium antistatic agent can comprise a third component of the granules, but is more preferably applied to the surfaces of said granules by spraying after the base granules are formed.
Soap Compound The granular particles of the instant invention comprise from about 30% to about 80%, preferably from about 40% to about 70%, by weight of the particles of a soap compound. Useful soap compounds include the ordinary alkali metal soaps such as the sodium, potassium, ammonium and alkanolammonium salts of higher fatty acids containing from about 8 to about 24 carbon atoms, preferably from about 10 to about 20 carbon atoms. Suitable fatty acids can be obtained from natural sources such as, for instance, plant or animal esters (e.g., palm oil, coconut oil, babassu oil, soybean oil, castor oil, tallow, whale and fish oils, grease, lard, and mixtures thereof). The fatty acids also can be synthetically produced (e.g., by the oxidation of petroleum, or by hydrogenation of carbon monoxide by the Fischer- Tropsch process). Resin acids are suitable such as rosin and those resin acids in tall oil. Naphthenic acids are also suitable. Sodium and potassium soaps can be made by direct saponification of the fats and oils or by the neutralization of the free fatty acids which are prepared in a separate manufacturing process. Particularly useful are the sodium and potassium salts of the mixture of fatty acids derived from. coconut oil and tallow, i.e., sodium tallow soap, sodium coconut soap, potassium tallow soap, potassium coconut soap and mixtures thereof.
The Curd Dispersing Agent As noted above, it is well known that the use of soap in hard water results in the formation and precipitation of insoluble fatty acid salts, more commonly referred to as lime soaps, which have a tendency to coagulate and form a sticky curd. To prevent formation of such curd in laundering solutions containing the compositions of the instant invention, the granular particles in addition to the soap component contain from about 1% to about 30%, preferably from about 2% to about 20%, by weight of the particle of a curd-dispersing agent.
, Such curd dispersing agents either prevent the formation of large particles of insoluble lime soaps or prevent such soaps from flocculating so that they are flushed away with the washing or rinsing liquid and do not adhere to fabrics or to surfaces of washing vessels.
The effectiveness of particular materials as curddispersing agents can be ascertained by a simple procedure testing the ability of the test material to peptize lime soaps. Such a procedure is outlined in Schwartz and Perry, Surface Active A gents, lnterscience Publishers, Inc., 1949 at pp. 326 and 327, and is summarized as follows:
The general method consists of preparing a series of mixtures containing varying proportions of sodium oleate and the curd dispersing agent being tested. These mixtures contain approximately 10% total soap-pluscurd dispersant in distilled water. Five milliliters of each mixture are then added to 45 milliliters of hard water (usually 200 ppm hardness as CaO). This is called the first dilution, and it usually results in a turbid but well-dispersed sol. Five milliliters of the first dilution are then added to 45 milliliters of hard water, forming the second dilution. This is a severe test since there is now more than enough lime present to precipitate all the soap. Furthermore, the total soapplus-curd dispersant concentration is of the order of 0.1%. The results are expressed as the percentage of dispersant in the soap-curd dispersant mixture which is just sufficient to prevent flocculation on the second dilution. The more effective the curd dispersing agent, the lower is the percentage value. For purposes of the instant invention a curd dispersing agent is any material which produces a percentage value in the above-described lime soap peptizing procedure of about 39% or less. A conventional non-curd dispersant surfactant for purposes of this invention is a surfactant providing a percentage value greater than 39% in the above-described lime soap peptizing procedure.
Examples of suitable curd-dispersing agents include certain anionic, semipolar nonionic, ampholytic and zwitterionic materials as well as certain amides and amines. Classes of these curd-dispersing agents are more fully described as follows:
(1) Anionic organic detergents which are alkali metal, ammonium and substituted-ammonium salts of esters of a-sulfonated fatty acids in which the esters contain about 12 to about 25 carbon atoms.
These detergent compounds have the following structure:
SOM
wherein R is an alkyl and alkenyl moiety of about to about carbon atoms (forming with the two carbon atoms a fatty acid group); R is alkyl of l to about 10 carbon atoms; and M is a salt-forming moiety.
The salt-forming moety M in the hereinbefore described structural formula is a water-solubilizing cation and can be, for example, an alkali metal cation (e.g., sodium, potassium, lithium), ammonium or substituted ammonium cation. Specific examples of substituted ammonium cations include methyl-, dimethyl-, trimethyl-ammonium and triethanolammonium cations and quaternary ammonium cations such as tetramethyl ammonium and dimethyl piperidinium cations and those derived from alkylamines such as ethylamine, diethylamine, triethylamine, mixtures thereof and the like.
Specific examples of this class of compounds include the sodium and potassium salts of esters where R is selected from methyl, ethyl, propyl, butyl, hexyl and octyl groups and the fatty acid group (R, plus the two carbon atoms in the structure above) is selected from lauric, myristic palmitic, stearic, palmitoleic, oleic, linoleic acids and mixtures thereof. A preferred ester material herein is the sodium salt of the methyl ester of a-sulfonated tallow fatty acid, the term tallow indicating a carbon chain distribution approximately as follows: C 2.5%, C 28%, C 23%, palmitoleic 2%, oleic 41.5%, and linoleic-3% (the first three fatty acids listed are saturated).
Other examples of suitable salts of oz-sulfonated fatty esters utilizable herein include the ammonium and tetramethylammonium salts of the hexyl, octyl, ethyl, and butyl esters of a-sulfonated tridecanoic acid; the potassium and sodium salts of the ethyl, butyl, hexyl, octyl, and decyl esters of a-sulfonated pentadecanoic acid, and the sodium and potassium salts of the butyl, hexyl, octyl, and decyl esters of oz-sulfonated heptadecanoic acid; and the lithium and ammonium salts of the butyl, hexyl, octyl, and decyl esters of a-sulfonated nonadecanoic acid.
The salts of a-sulfonated fatty acid esters of the present invention are known compounds and are described in U.S. Pat. No. 3,223,645, issued Dec. 14, 1965 to Kalberg, this patent being hereby incorporated by reference.
2. Anionic organic detergents which are salts of 2-acyloxy-alkanel -sulfonic acids.
These salts have the formula:
R-CH- M CH SO the sodium salt of 2-acetoxy-tridecane-l-sulfonic acid; the potassium salt of 2-propionyloxy-tetradecane-1- sulfonic acid; the lithium salt of Z-butanoyloxytetradecane-l-sulfonic acid; the sodium salt of 2- pentanoyloxy-pentadecane-l-sulfonic acid; the ammonium salt of 2-hexanoyloxy-hexadecane l-sulfonic acid; the sodium salt of 2-acetoxy-hexadecane-l-sulfonic acid; the dimethylammonium salt of 2-heptanoyloxytridecane-l-sulfonic acid; the potassium salt of 2- octanoyloxy-tetradecane-l-sulfonic acid; the dimethylpiperidinium salt of 2-nonanoyloxytetradecane-lsulfonic acid; the sodium salt of 2-acetoxyheptadecane-l-sulfonic acid; the lithium salt of 2- acetoxy-octadecane-l-sulfonic acid; the dimethylamine salt of 2-acetoxy-octadecane-l-sulfonic acid; the potassium salt of 2-acetoxy-nonadecane-l-sulfonic acid; the sodium salt of 2-acetoxy-eicosane-l--sulfonic acid; the sodium salt of 2-propionyloxy-clocosane-lsulfonic acid; and isomers thereof.
Preferred B-acyloxy-alkane-l-sulfonate salts herein are the alkali metal salts of fi-acetoxy-alkane-l-sulfonic acids corresponding to the above formula wherein R is an alkyl moiety of about 12 to about 16 carbon atoms, these salts being preferred from the standpoint of their excellent curd-dispersing properties and ready availability.
Typical examples of the above described B-acetoxy alkanesulfonates are described in the literature: Belgian Pat. No. 650,323 issued July 9, 1963, discloses the preparation of certain 2-acyloxy alkanesulfonic acids. Similarly, U.S. Pats. No. 2,094,451 issued Sept. 28, 1937, To Guenther, et al., and No. 2,086,215 issued July 6, 1937 to De Groote disclose certain salts of ,B-acetoxy alkanesulfonic acids. These patents are hereby incorporated by reference.
3. Anionic organic detergents which are alkyl ether sulfates.
These materials have the formula RO(C H.,0),SO M wherein R is an alkyl or alkenyl moeity of about 10 to about 20 carbon atoms, x is l to 30, and M is a saltforming cation as defined hereinbefore.
The alkyl ether sulfates useful in the present invention as curd dispersants are condensation products of ethylene oxide and monohydric alcohols having about 10 to about 20 carbon atoms. preferably, R has l4 to 18 carbon atoms. The alcohols can be derived from fats, e.g., coconut oil or tallow, or can by synthetic. Lauryl alcohol and straight chain alcohols derived from tallow are preferred herein. Such alcohols are reacted with l to 30, and especially 3 or 6, molar proportions of ethylene oxide and the resulting mixture of molecular species, having, for example, an average of 3 or 6 moles of ethylene oxide per mole of alcohol, is sulfated and neutralized.
Specific examples of alkyl ether sulfates of the present invention are sodium coconut alkyl ethylene glycol ether sulfate; lithium tallow alkyl trialkylene glycol ether sulfate; sodium tallow alkyl hexaoxyethylene sulfate; and ammonium tetradecyl octaoxyethylene sulfate.
Preferred herein for reasons of excellent curddispersing properties and ready availability are the alkali metal coconutand tallow-alkyl oxyethylene ether sulfates having an average of about 3 to about 10 oxyethylene moieties. The alkyl ether sulfates of the present invention are known compounds and are described in U.S. Pat. No. 3,322,876 to Walker (July 25, 1967) incorporated herein by reference.
4. Anionic organic detergents which are olefin sulfonates having about 12 to about 24 carbon atoms.
The term olefin sulfonates is used herein to mean compounds which can be produced by the sulfonation of a-olefins by means of uncomplexed sulfur trioxide, followed by neutralization of the acid reaction mixture using conditions such that any sultones which have been formed in the reaction are hydrolyzed to give the corresponding hydroxy-alkanesulfonates. The sulfur trioxide may be liquid or gaseous, and is usually, but not necessarily, diluted by inert diluents, for example by liquid S chlorinated hydrocarbon, etc., when used in the liquid form, or by air, nitrogen, gaseous S0 etc., when used in the gaseous form.
The a-olefins from which the olefin sulfates are derived are mono-olefins having 12 to 24 carbon atoms, preferably 14 to 16 carbon atoms. Preferably, they are straight chain olefins. Examples of suitable l-olefins include l-dodecene; l-tetradecene; l-hexadecene; loctadecene; l-eicosene and l-tetracosene.
In addition to the true alkene sulfonates and a proportion of hydroxy-alkanesulfonates, the olefin sulfonates can contain minor amounts of other materials, such as alkene disulfonates depending upon the reaction conditions, proportions of reactants, the nature of the starting olefins and impurities in the olefin stock and side reactions during the sulfonation process.
A preferred embodiment herein are those olefin sulfonates which are described completely in US. Pat. No. 3,332,880 issued July 25, 1967, to Kessler, et. al., hereby incorporated by reference.
5. Nonionic organic detergents which are semiplar detergent compounds.
These include, for example, long chain tertiary phosphine oxides having the structure:
. 3 wherein R is alkyl, alkenyl, or monohydroxyalkyl of about 8 to about 18 carbon atoms having from O to about ethylene oxide moieties and from O to l glyceryl moiety and R and R are each alkyl or monohydroxyalkyl groups containing from 1 to about 3 carbon atoms. The arrow in the formula is a conventional representation of the semi-polar bond.
Examples of suitable phosphine oxides are: dodecyldimethylphosphine oxide, tetradecyldimethylphosphine oxide, tetradecylmethylethylphosphine oxide, 3,6,9-trioxaoctadecyldimethylphosphine oxide, cetyldimethylphosphine oxide, 3-dodecoxy-2 hydroxypropyldi( 2-hydroxyethyl phosphine oxide, stearyldimethylphosphine oxide, cetylethylpropylphosphine oxide, oleyldiethylphosphine oxide, dodecyldiethylphosphine oxide, tetradecyldiethylphosphine oxide, dodecyldipropylphosphine oxide, dodecyldi( hydroxymethyl)phosphine oxide, dodecyldi( 2-hydroxyethyl)phosphine oxide, tetradecylmethyl-2-hydroxypropyl phosphine oxide, oleyldimethylphosphine oxide, and
2-hydroxydodecyldimethylphosphine oxide.
6. Nonionic organic detergents which are certain organic sulfoxides.
Such compounds have the general formula:
X- S CH CH R H l O OH group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate.
These detergents have the formula 2 1 R NCH -R3ZM wherein R is alkyl of about 8 to 18 carbon atoms, R is alkyl of l to about 3 carbon atoms or is hydrogen, R is alkylene of 1 to about 4 carbon atoms, Z is carboxy, sulfonate, sulfate, phosphate or phosphonate and M is a salt-forming cation, as hereinbefore described. Examples of compounds falling within this definition are sodium 3-dodecylaminopropionate; sodium 3- dodecylaminopropane sulfonate; N-alkyltaurines such as the one prepared by reacting dodecylamine with sodium isethionate according to the teaching of US. Pat. No. 2,658,072; sodium salts of N-higher alkyl aspartic acids such as those produced according to the teaching of US. Pat. No. 2,43 8,091; and the products sold under the trade name Miranol and described in US. Pat. No. 2,528,378.
8. Zwitterionic synthetic detergents which are derivatives of aliphatic quaternary ammonium, phosphonium and sulfonium compounds, in which the aliphatic groups can be straight chain or branched, and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and one contains an anionic water solubilizing group, e.g., carboxy, sulfonate, sulfate, phosphate, or phosphonate. A general formula for these compounds is:
l Y CH2 R3 wherein R is an alkyl, alkenyl, hydroxyalkyl or alkylbenzyl group containing from about 8 to about 24 carbon atoms and having from 0 to about 10 etliylene oxide moieties and from 0 to l glyceryl moiety; Y is selected from the group consisting of nitrogen, phosphorus, and sulfur atoms; R is an alkyl or monohydroxy alkyl group containing 1 to about 3 carbon atoms; x is 1 when Y is a sulfur atom and 2 when Y is nitrogen or phosphorus atom, R is an alkylene or hydroxy alkylene group of 1 to about 4 carbon atoms and Z is a member selected from the group consisting of carboxylate, sulfonate, sulfate, phosphonate, and phosphate groups.
4- [N,N-di( Z-hydroxyethyl )'-N-octadecyl-ammonio butane- 1 -carboxylate;
-[S-3-hydroxypropyl-S-hexadecylsulfonio]-3- hydroxypentane- 1 -sulfate; 3-[P,P-diethyl-P- 5 3,6,9trioxatetracosanephosphonio]-2-hydroxypropane- 1 -phosphate; 3-[N,N-dipropyl-N-3-dodecoxy-2-hydroxypropylammonio l-propane -1-phosphonate; 3-( N,N-dimethyl-N-hexadecylammonio )propanel sulfonate; 3-(N.N-dimethyl-N-hexadecyl-ammonio)2- hydroxypropanel -sulfonate; 4-[N,N-di(2-hydroxyethyl)-N- (2hydroxydodecyl )ammonio -butanel carboxylate; v 3-[S-ethyl-S-( 3-dodecoxy-2- hydroxypropyl)sulfonio]-propane- 1 -phosphate; 3-[ P,P-dimethyl-P-dodecylphosphonio]-propanel phosphonate; S- N,N-di( 3-hydroxypropyl )-N-hexadecylammonio -2'hydroxypentane- 1 sulfate; 3-(dodecylbenzyldimethylammonio)propane-1- sulfonate; and 2-(dodecylbenzyldimethylammonio)ethane-1- sulphate. Examples of compounds falling within this definition also includes 3-( N,N-dimethyl-N-hexadecylammonio )propane-l-sulfonate and 3-(N,N-dimethyl- N-hexadecyl-ammonio )-2-hydroxypropane- 1 -sulfonate which are especially preferred herein for their availability and curd dispersant characteristics. Some of the compounds of this type as well as their use as dispersing agents are more fully described in US. Pat. Nos. 2,699,991 and 3,660,470 herein incorporated by reference.
9. Organiccarboxylic acid amides. Such amide compounds include those aliphatic amides of the general formula:
R- CO N R n I 4 5 wherein R is hydrogen, alkyl, or alkylol and R and R" are hydrogen, alkyl, alkylol, or alkylene joined through an oxygen atom, the total number of carbon atoms in R, Rand R" being from about 9 to about 25.
Amides of this general type which are of special utility are those aliphatic carboxylic acid alkanolamides of the formula: V
C(RIRIIRIVII) RCO'N in which RC0 is the acyl group of a soap forming carboxylic acid having from aboutv 10 to about 18 carbon atoms, R and R" are each selected from the group consisting of hydrogen, alkyl, and alkylol substituents, and R' is an alkylol substituent, the total number of carbon atoms in R, R5 and R being from 1 to 7.
Some specific amides coming within the scope of the invention are:
lauric ethanolamide;
stearic ethanolamide; dimethyl lauramide;
' lauramide; i
lauryl lauramide; myristic N-methyl ethanolamide; butyl capramide; capric butanolamide; dibutyl capramide; dibutyl myristamide; stearic acid amide of tris(hydroxymethyl)amino methane; myristic glycerylamide; N-lauroyl morpholin'e; lauric glycerylamide; palmitic acid vamide of 2-amino-2-methyl-l,3-
propanediol; lauryl hydroxy-acetamide; myristyl formamide; lauric isopropanol amide; and 1 myristic acid amide of 3-amino-3-methyl-2,4-
pentanediol. Especially preferred is tallow acyl monoethanolamide.
Such amides, their preparation and use as dispersing agents are discussed more fully in US. Pat. No. 2,527,076, hereby incorporated by reference.
10. Organic "alkyl and alkanol amines.
Such amine compounds include N-alkyl monoalkylolamines and N-alkyl dialkylolamines in which the alkyl group has from 1010 16 carbon atoms and the alkanol group has 2 or 3 carbon atoms; N-alkyl morpholines in which the alkyl group has from 10 to carbon atoms; and N-alkyl tris( hydroxymethyl)aminomethane in which the alkyl group has from 10 to 16 carbon atoms. l
Specific examples of such compounds include N-dodecylmonoethanolamine, N-dodecyl-tris(hydroxymethyl )aminomethane N-dodecyl isopropanolamine, N-tetradecyl monoethanolamine, N-dodecyl diethanolamine, N-tetradecyl diethanolamine and N-dodecyl morpholine. Compounds of this type and their use as curd-dispersing agents are described more fully in British Pat. No. 1,006,836, incorporated herein by reference.
Of all the above-described types of curd-dispersing agents, the compounds preferred for use in the granular particles of the instant composition include the sodium salt of the methyl ester of a-sulfonated tallow the alkyl group averages about 14.8 carbon atoms in length; hexadecylammonio )propane-v l -sulfonate; dimethyl-N-hexadecylammonio)Q-hydroxypropane l sulfonate; 3-( N -dodecylbenzene -N,N-dimethyl ammonio )-propane-l-sulfonate and tallow acyl monoethanolamide. Y i i Highly preferred curd dispersing agents herein are the sodium salt of ethoxylated tallow alkyl sulfate averaging about 3 ethylene oxide groups per mole, the sodium salt of ethoxylated tallow alkyl sulfate average about 6 ethylene oxide groups per mole, and tallow acyl monoethanolamide.
Optional Granule Components Besides the above-described soap and curddispersing components, the granular particles of the instant compositions can contain a wide variety of optional components generally found in conventional fabric laundering formulations. Such optional components include, for example, conventional anionic or nonionic surfactants which are not particularly useful as curd dispersants and alkaline builder salts. Such non-curddispersing surfactants are those having a percentage value in the above-described lime soap peptizing test greater than 39% and include the sodium salts of linear alkyl benzene sulfonac acid where the alkyl group average about 10 to 18 carbon atoms in length, sodium tallow alkyl sulfate, the condensation product of coconut 'fatty alcohol with about 6 moles of ethylene oxide per mole of alcohol, and the condensation product of a secondary fatty alcohol containing about carbon atoms with about 9 moles of ethylene oxide per mole of alcohol. When employed, such conventional non-curddispersing surfactants generally comprise from about 1% to 30% by weight of the granular particle.
Typical alkaline builders include sodium tripolyphosphate, sodium citrate, sodium nitrilotriacetate, sodium carbonate and sodium mellitate. When employed, such conventional builders generally comprise from about 1% to 30% by weight of the granular particle.
Other optional granule components include the various soil-suspending agents such as carboxymethylcellulose, corrosion inhibitors, dyes, fillers such as sodium sulfate and silica, optical brighteners, bleaches such as sodium perborate, suds boosters, suds depressants, germicides, antitarnishing agents, pH adjusting agents such as sodium silicate, enzymes, and the like, well known in the art for use in detergent compositions. Bound water can also be present in said compositions.
The soap-based granules herein can be prepared in standard fashion, e.g., by blending the soap, curd dispersant and optional ingredients of the granules in a crutcher, and subsequently blowing the mix in standard spray-drying equipment.
Clay Compounds The present compositions contain, as an essential ingredient, particulate smectite-type clay materials which increase the solubility of the combined soap-curd dispersant granules and provide fabric softening concurrently with fabric cleansing. These smectite clays are present in the detergent compositions at concentrations from about 4% to about 25%, preferably from 5% to 15% by weight, of the total composition. The weight ratio of clay to the soap-based granules is from about 20:1 to about 3:1 by weight.
The clay minerals used to provide the solubility and softening properties of the instant compositions can be described as impalpable, expandable, three-layer clays, i.e., alumino-silicates and magnesium silicates, having an ion exchange capacity of at least about 50 meg/100 g. of clay. The term impalpable as used to describe the clays employed herein means that the individual clay particles are of a size that they cannot be perceived tactilely. Such particle sizes are within the range below about 50 microns. In general, the clays herein will have a particle size within the range of from about 5 microns to about 25 microns. The term expandable as used to describe clays relates to the ability of the layered clay structure to be swollen, or expanded, on contact with water. The three-layer expandable clays used herein are those materials classified geologically as smectites.
There are two distinct classes of smectite-type clays. In the first, aluminum oxide is present in the silicate crystal lattice; in the second class of smectites, magnesium oxide is present in the silicate crystal lattice. The general formulas of these smectites are Al SE0 (Ol-l) and Mg (Si O (OI-D for the aluminum and magnesium oxide type clay, respectively. It is to be rec ognized that the range of the water of hydration in the above formulas can vary with the processing to which the clay has been subjected. This is immaterial to the use of smectite clays in the present invention in that the expandable characteristics of the hydrated clays are dictated by the silicate lattice structure. Furthermore, atom substitution by iron and magnesium can occur within the crystal lattice of the smectites, while metal cations such as Na+, Ca+l-, as well as 1-1+, can be copresent in the water of hydration to provide electrical neutrality. Except as noted hereinafter, such cation substitutions are immaterial to the use of the clays herein since the desirable physical properties of the clays are not substantially altered thereby.
The three-layer, expandable alumino'silicates useful herein are further characterized by a dioctahedral crystal lattice, while the expandable three-layer magnesium silicates have a trioctahedral crystal lattice.
As noted hereinabove, the clays employed in the compositions of the instant invention contain cationic counterions such as protons, sodium ions, potassium ions, calcium ion, magnesium ion, and the like. It is customary to distinguish between clays on the basis of one cation predominantly or exclusively absorbed. For example, a sodium clay is one in which the absorbed cation is predominantly sodium. Such absorbed cations can become involved in exchange reactions with cations present in aqueous solutions. A typical exchange reaction involving a smectite-type clay is expressed by the following equation:
smectite clay (Na) NH OH (Ni-l NaOl-l Since in the foregoing equilibrium reaction, one equivalent weight of ammonium ion replaces an equivalent weight of sodium, it is customary to measure clay cation exchange capacity (sometimes termed base exchange capacity) in terms of milliequivalents per g. of clay (meq/lOO g.). The cation exchange capacity of clays can be measured in several ways, including by electrodialysis, by exchange with ammonium ion followed by titration, or by a methylene blue procedure, all as fully set forth in Grimshaw, The Chemist y and Physics of Clays, lnterscience Publishers, Inc. pp. 264-265 (1971). The cation exchange capacity of a clay mineral relates to such factors as the expandable properties of the clay, the charge of the clay, which, in turn, is determined at least in part by the lattice structure, and the like. The ion exchange capacity of clays varies widely in the range from about 2 meq/ 100 g. for kaolinites to about meq/lOO g., and greater, for
(- smectite clay certain clay of the montmorillonite variety. Illite clays have an ion exchange capacity somehwere in the lower portion of the range, i.e., around 26 meq/ 100 g. for an average illite clay.
It has been determined that illite and kaolinite clays, with their relatively low ion exchange capacities, are not useful in the instant compositions. Indeed, such illite and kaolinite clays constitute a major component of clay soils and, are, in fact, removed from fabric surfaces by means of the instant compositions. However, smectites, such as nontronite, having an ion exchange capacity of approximately 50 meq/ 100 g., saponite, which has an ion exchange capacity of around 70 meq/ l 00 g., and montmorillonite, which has an ion exchange capacity greater than 70 meq/lOO g., have been found to be useful in the instant compositions. This is so since such smectites, if attached to the granule surface, increase composition solubility while, once added to laundering liquor, deposit on the fabrics to provide softening. Accordingly, clay minerals useful herein can be characerized as impalpable, expandable, three-layer smectite-type clays having an ion exchange capacity of at least about 50 meq/ 100 g.
The smectite clays used in the compositions herein are all commercially available. Such clays include, for example, montmorillonite, volchonskoite, nontronite, hectorite, spaonite, sauconite, and vermiculite. The clays herein are available under commercial names such as fooler clay (clay found in a relatively thin vein above the main bentonite or montmorillonite veins in the Black Hills) and various tradenames such as Thixogel No. 1 (also, Thixo-Jell) and Gelwhite GP from Georgia Kaolin Co., Elizabeth, N.J.; Volclay BC and Volclay No. 325, from American Colloid Co., Skokie, Ill.; Black Hills Bentonite Bl-I 450, from international Minerals and Chemicals; and Veegum Pro and Veegum F, From R. T. Vanderbilt. It is to be recognized that such smectite-type minerals obtained under the foregoing commercial and tradenames can comprise mixtures of the various discreet mineral entities. Such mixtures of the smectite minerals are suitable for use herein.
While any of the impalpable smectite-type clays having a cation exchange capacity of at least about 50 meq/ 100 g. are useful herein, certain clays are preferred. For example, Gelwhite GP and fooler clay are extremely white forms of smectite clays and are therefore preferred when formulating white, granular compositions. Volclay BC, which is a smectite-type clay mineral containing at least 3% iron (expressed as Fe O in the crystal lattice, and which has a very high ion exchange capacity, is one of the most efficient andeffective clays for use in laundry compositions and is preferred from the standpoint of fabric softening performance. Likewise, Thixogel No. l, is a preferred clay herein from the standpoint of both product solubility and through-the-wash fabric softening performance. On the other hand, certain smectite clays, such as those marketed under the name bentonite, are sufficiently contaminated by other silicate minerals that their ion exchange capacity falls below the requisite range, and such clays are of no use in the instant compositions.
Appropriate clay minerals for use herein can be selected by virtue of the fact that smectites exhibit a true 14A x-ray diffraction pattern. This characteristic pattern, together with exchange capacity measurements performed in the manner noted above, provides a basis for selecting suitable impalpable smectite'type clay minerals for use in the granular detergent compositions disclosed herein.
COMPOSITION PREPARATION The compositions herein can be formulated by simply preparing granules comprising the soap, curd dispersant, and any of the optional ingredients mentioned hereinabove. The granules are then sprayed with a quaternary ammonium compound from a melt and then contacted with the smectite-type clay. When this procedure is used, the clay can then be simply admixed, e.g., by tumbling, with the soap-based granules and blended. When this method is employed, the clay is attached to the soapbased granules mainly by surface forces between the clay and soap granules.
In a preferred method for attaching the clay to the granules, the soap-based granules are coated with a material of the type hereinafter disclosed which promotes adhesion of the clay particles to the surface of the granules. When an adhesion-promoting material is used, the substantially dry soap-based granules can be first sprayed with said material in liquid form and then admixed with the clay. The clay and sprayed granules are then thoroughly blended to provide good contact and optimum coating of the granules with the clay. In an alternate procedure, the clay and granules are concurrently admixed and sprayed with the adhesionpromoting material. Mixing of the clay and granules can be achieved using a standard drum mixer. Following this, the quaternary ammonium anti-static agent can be added to the compositions, e.g., by spraying from a melt.
Whatever the method chosen for admixing the soapbased granules, clay and anti-static agent, it is necessary to insure that the quaternary anti-static agent is not affixed to the surface of the clay by chemical bonding. That is to say, if the clay and quat combine by an ion exchange mechanism, the quat is not released to perform its desirable anti-static function when the compositions are admixed with water. The preferred way to avoid ion exchange reactions between the quat and clay is to add the quat to the compositions from a melt, rather than from a solution or suspension in water.
The materials which can be optionally used herein to promote the adhesion of the clays to the surface of the granules can be any water-soluble or water-disperable organic materials, preferably those which are liquids or are liquifiable at convenient temperatures for spraying, i.e., at temperatures from about 60F to about F. Of course, the adhesion-promoting materials used herein should not be toxic or deleterious to fabrics. Since most soap compositions are desirably white in color, colorless organic materials are preferred herein for attaching the clay to the soap-based granules. Preferably, the materials used herein have sufficient hydrophilic character that they are easily dissolved or dispersed in water, but they are preferably not hygroscopic.
A variety of liquid and liquifiable organic compounds are useful herein for attaching the clay to the surface of the soap-based granules. For example, a all manner of common ethoxylated nonionic surfactants can be used for this purpose. Nonionic surfactants produced by the condensation of an alkylene oxide moiety (hydrophilic in nature) with an organic hydrophobic compound which is usually aliphatic or alkyl aromatic in nature can be used. The length of the hydrophilic or polyoxyalkylene moiety which is condensed with any particular hydrophobic compound can be readily adjusted to yield colorless, liquid or liquifiable, water dispensable, organic, nonionic surfactants which are useful adhesion promoters herein. Examples of nonionic surfactants which can be used as the adhesionpromoting materials herein include:
1. The polyethylene oxide condensates of alkyl phenols. These compounds include the condensation prod ucts of alkyl phenols having an alkyl group containing from about 6 to 12 carbon atoms, in either a straight chain or branched chain configuration, with ethylene oxide, said ethylene oxide being present in amounts equal to to 25 moles of ethylene oxide per mole of alkyl phenol. The alkyl substituent in such compounds can be derived, for example, from polymerized propylene, diisobutylene, octene, or nonene. Examples of compounds of this type include nonyl phenol condensed with about 9.5 moles of ethylene oxide per mole of nonyl phenol, dodecyl phenol condensed with about 12 moles of ethylene oxide per mole of phenol, dinonyl 'phenol condensed with about 15 moles of ethylene oxide per mole of phenol, di-isooctylphenol condensed with about 15 moles of ethylene oxide per mole of phenol. Commercially available nonionic surfactants of this type include lgepal CO-6l0 marketed by the GAF Corporation; and Triton X-45, X-l l4, X-l00 and X- 102, all marketed by the Rohm and Haas Company.
2. The condensation product of aliphatic alcohols with ethylene oxide. The alkyl chain of the aliphatic alcohol can either be straight or branched and generally contains from about 8 to about 22 carbon atoms. Examples of such ethoxylated alcohols include the condensation product of about 6 moles of ethylene oxide with 1 mole of tridecanol, myristyl alcohol condensed with about 10 moles of ethylene oxide per mole of myristyl alcohol, the condensation product of ethylene oxide with coconut fatty alcohol wherein the coconut alcohol is a mixture of fatty alcohols with alkyl chains varying from 10 to 14 carbon atoms and wherein the condensate contains about 6 moles of ethylene oxide per mole of alcohol, and the condensation product of about 9 moles of ethylene oxide with the abovedescribed coconut alcohol. Examples of commercially available nonionic surfactants of this type include Tergitol 15-S-9 marketed by the Union Carbide Corporation, Neodol 23-65 marketed by the Shell Chemical Company, and Kyro EOB marketed by The Procter and Gamble Company.
3. The condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol. The hydropho' bic portion of these compounds has a molecular weight of from about 1,500 to 1,800. The addition of polyoxyethylene moieties to this hydrophobic portion tends to increase the water-solubility of the molecule as a whole, and the liquid character of the product is re tained up to the point where the polyoxyethylene content is about 50% of the total weight of the condensation product. Examples of compounds of this type in clude certain of the commercially available Pluronic surfactants marketed by the Wyandotte Chemicals Corporation.
4. The condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethylene diamine. The hydrophobic base of these products consists of the reaction product of ethylenediamine and excess propylene oxide, said base having a molecular weight of from about 2,500 to about 3,000. This base is condensed with ethylene oxide to the extent that the condensation product contains from about 40% to about by weight of polyoxyethylene and has a molecular weight of from about 5,000 to about 1 1,000. Examples of this type of nonionic surfactant include certain of the commercially available Tetronic compounds marketed by the Wyandotte Chemicals Corporation.
The fatty acids are another class of materials which can be used to promote the attachment of the clays to the surface of the granules. Fatty acids useful herein are those C, to C straight chain and branched chain aliphatic carboxylic acids which can be obtained, for example, by the saponification of triglycerides. Both saturated and unsaturated fatty acids are useful herein. Mixtures of fatty acids obtainable from certain designated fats, e.g., tallow fatty acids, obtainable from tallow; coconut fatty acids, obtainable from coconut oil, and; palm fatty acids, obtainable from palm oil, are also useful herein. The C to C aliphatic fatty acids, and mixtures thereof, are preferred members of this class of adhesion-promoting materials herein.
Exemplary fatty acids which can be employed herein to affix the clay to the soap-based granules include lauric, myristic, palmitic, stearic, elaidic, oleic and eicosanoic acids, and mixtures thereof.
The fatty alcohols having C to C hydrocarbon chains are also useful herein as adhesion promoters. These materials can be obtained in a variety of ways well known in the art, e.g., from various triglyceride oils such as palm oil and coconut oil. Exemplary alcohols useful herein include l-dodecanol, l-tetradecanol, l-hexadecanol and l-octadecanol.
Preferred materials which can be used herein to attach the smectite clays to the surfaces of the soap-pluscurd dispersant granules include: coconut alcohol ethoxylate containing 6 ethylene oxide units per molecule; tallow alcohol ethoxylate containing 11 ethylene oxide units per molecule, i.e., tallow ethylene oxide (1 1); coconut fatty acid mixtures; tallow fatty acid mixtures, the condensate of one mole of ethylene oxide with l-dodecanol; and the condensate of one mole of l-dodecanol with ethylene oxide hexamer. Especially preferred adhesion promoters herein include coconut fatty acids and tallow ethylene oxide (1 1).
In addition to providing good attachment of the smectite-type clays to the surface of the soap-based granules herein, the optionally employed adhesionpromoting materials serve the additional function of providing an unexpected additional increment of solubility to the compositions. That is to say, while the soap-plus-curd dispersant granules herein exhibit poor solubility in laundering baths on the range of from about 60F. to F., the surface coating of the adhesion-promoting materials enhances this solubility. While the soap-plus-curd dispersant granules coated with the adhesion-promoting materials are not rendered sufficiently soluble to be optimally useful for cool water washing (i.e., at about 80F), the added increment of solubility imparted by the adhesionpromoting materials complements the substantial increase in solubility afforded by the smectite-type clays. Accordingly, the soap-based granules coated with the adhesion promoter and having the smectite-type clays attached to the surface have a water solubility comparable to that of the better commercial synthetic detergent compositions over a wide temperature range.
In addition to providing optimal attachment of the smectite clays to the soap-based granules and enhancing the water solubility of the compositions herein, the optionally-employed, adhesion-promoting materials serve to decrease product dust levels. The decreased product dust levels afforded by the adhesion promoters aids in processing and provides a more acceptable product for the consumer.
When the adhesion-promoting materials herein are employed to attach the smectite-type clays to the surface of the soap-based granules, they are preferably used in an amount sufficient to provide said granules with at least a monolayer coating of said materials. For most purposes, the adhesion-promoting material can comprise from about 0.5% to about 8%, preferably 1% to about 4% by weight of the total composition. Of course, higher proportions of the adhesion promoters can be employed, but this represents an economic waste in that such increased proportions are not required to affix the clay to the granules and do not further increase product solubility to any substantial degree.
Use of the clay-to-soap-based granules ratio noted hereinabove results in compositions wherein a substantial proportion of the surface of the granules are coated with the clay. Of course, when the adhesion-promoting materials are additionally employed, greater coverage of the granules is more easily achieved. While soapbased granules having about and greater, of their surfaces coated with the clay exhibit the desirable solubility properties disclosed herein, it is preferred that the clay coat at least about 40% of the granule surface. Such higher degrees of surface coating are most readily achieved by use of the adhesion-promoting materials disclosed above.
For fabric laundering, softening, and anti-static purposes, the compositions of the instant invention are added to an aqueous laundering liquor to the extent of from about 0.02% to about 2% by weight, preferably from about 0.1% to about 1% by weight. Addition of such compositions provide a laundering liquor pH of from about 6 to 11.
The laundering compositions of the instant invention are illustrated by the following examples:
EXAMPLE 1 A soap-based laundry granule is prepared having the following composition:
Component Sodium soap Potassium soap TAE S C ,,LAS Sodium silicate Sodium sulfate Brightener Perfume Water Miscellaneous Balance The foregoing ingredients are mixed in a crutcher and spray-dried to provide a granular, soap-based composition.
Eighty-eight and four-tenths parts by weight of the soap-based granules prepared above are admixed with l 1.6 parts by weight of an impalpable sodium montmorillonite clay having an ion exchange capacity greater than 50 meq/ g. marketed under the tradename Thixogel No. 1. Such admixture provides a composition comprising the soap-plus-curd dispersant granules having the clay attached to the surface of the granules.
The foregoing soap-plus-clay granules are sprayed with melted ditallowdimethylammonium chloride antistat; a total of 5% by weight of the final composition comprises said anti-stat.
The foregoing composition is added to an aqueous laundering liquor at 100F at a concentration of about 0.12% by weight. The composition rapidly dissolves and the clay and anti-stat are uniformly and independently dispersed throughout the laundering liquor. Fabrics laundered in said liquor are concurrently cleansed, softened and provided with an anti-static finish; substantially no curd buildup occurs.
EXAMPLE I] A soap-based laundry granule is prepared having the following composition:
Component Sodium soap Potassium soap TAE S C LAS Sodium silicate Sodium sulfate Brightener Perfume Water Miscellaneous 3. Balance The foregoing ingredients are mixed in a crutcher and spray-dried to provide a granular, soap-based composition.
The foregoing granular product is then sprayed with a melt of ditallowdimethylammonium chloride to a total of 5% by weight of the granules.
Eighty-eight and four-tenths parts by weight of the soap-based granules coated with the ditallowdimethylammonium chloride prepared above are admixed with 8.6 parts by weight of impalpable sodium montmorillonite clay having an ion exchange capacity greater than 50 meq/ 100 g., marketed under the tradename, Thixogel No. l. The admixed clay and soapbased granules are sprayed with liquid coconut fatty acid and mixing is continued to provide uniform soapplus-curd dispersant-plus-quat granules having the clay attached to the surface. Enough coconut fatty acid is employed to provide about 3% by weight of the total composition.
The foregoing composition is a stable laundry detergent formulation having excellent water dispersability and providing excellent fabric laundering, fabric softening, and fabric anti-static characteristics when added to laundering liquors to the extent of about 0.12% by weight.
EXAMPLE III A soap-based laundry granule is prepared having the following composition:
Component Sodium soap Tallow monoethanolamide Sodium tripolyphosphate l Sodium ethylenediaminetetraacetate Sodium silicate Carboxymethylcellulose Sodium perborate Perfume, brightener. moisture & Misc.
Balance A mixture of tallow and coconut soaps comprising 80% tallow soap and coconut soap.
.The quantity of said anti-stat is adjusted to provide a coating comprising 5% by weight of the total granules.
Ninety-five parts by weight of the soap-based granules coated with the anti-stat prepared above are admixed with 5 parts by weight of an impalpable sodium montmorillonite clay having an ion exchange capacity of about 85-100 meq/ 100 g., marketed under the tradename Volclay BC. Such admixture provides a composition comprising the soap-plus-curd dispersant plus anti-stat granules having the clay attached to the surface.
The foregoing composition provides excellent fabric laundering and has desirable solubility, fabric softening and anti-static characteristics when used to launder fabrics in an aqueous liquor at concentrations of about 0.7% by weight.
EXAMPLE IV A soap-based laundry granule is prepared having the following composition:
Component miscellaneous Balance A mixture of tallow and coconut soaps comprising 80% tallow soap and 20% coconut soap.
The foregoing ingredients are mixed in a crutcher and spray-dried to provide a granular, soap-based composition.
Ninety-two parts by weight of the soap-based granules prepared above are admixed with 5 parts by weight of an impalpable sodium montmorillonite clay having an ion exchange capacity of about 85-100 meq/ 100 g., marketed under the tradename Volclay BC, and 3 parts by weight of a liquid coconut fatty acid. Mixing is continued to provide uniform soap-plus-curd dispersant granule having the clay attached to the surface of such granules.
The foregoing composition is then uniformly admixed with impalpable particles of ditallowdimethylammonium chloride anti-stat. The final concentration of anti-stat in the composition is 7% by weight.
The composition is added to an aqueous laundry bath at F at a concentration of 0.5% by weight. Said laundering bath provides excellent fabric laundering and imparts desirable fabric softening and anti-static characteristics to nylon, cotton, polyester-and polyester/- cotton blends laundered therein.
It is to be recognized that various substitutions for the components of the compositions set forth hereinabove can be made without obviating the advantageous properties of said compositions. For example, substantially similar results are obtained when, in the abovedescribed compositions, the ethoxylated tallow alkyl sulfate curd dispersing agent of the Example I and II compositions, or the tallow monoethanolamide curddispersing agent of the Example III and IV compositions, is replaced with equivalent amounts of the sodium salt of the methyl ester of a-sulfonated tallow fatty acid; the sodium salt of ethoxylated tallow alkyl sulfate having an average of about 6 ethylene oxide groups per mole; sodium B-acetoxy-hexadecane-lsulfonate; sodium B-acetoxy tridecane-l-sulfonate; the sodium salt of sulfonated l-hexadecene; dimethyldodecylphosphine oxide; sodium hexadecylmethylaminopropionate; 3(N,N-dimethyl-N- alkylammonio )-propanel -sulfonate and 3(N,N- dimethyl-N-alkylammonio )-2-hydroxypropanel sulfonate wherein in both compounds the alkyl group averages 14.8 carbon atoms in length; 3 (N,N- dimethyl-N-hexadecylammonio)-propanel -sulfonate; 3(N,N-dimethyl-N-hexadecylammonio)-2- hydroxypropanel -sulfonate; 3-( N-dodecylbenzyl- N ,N-dimethylammonio )-propanel -sulfonate; methyl- B-hydroxydodecyl sulfoxide; stearic ethanolamide; or N-dodecylmonoethanolamine, respectively.
Substantially similar results are obtained, when in the above-described compositions, the Thixogel No. l clay of the Example I and II compositions or the Volclay BC of the Example III and IV compositions is replaced with an equivalent amount of fooler clay, Gelwhite GP, Volclay No. 325, Black Hills Bentonite BH 450, Veegum Pro or Veegum F, respectively.
Substantially similar results are obtained when, in the above-described mixes, the sodium linear alkyl benzene sulfonate non-curd-dispersing surfactant of the Example I and II compositions is replaced with an equivalent amount of sodium tallow alkyl sulfate; the condensation product of coconut fatty alcohol with about 6 moles of ethylene oxide per mole of alcohol; or the condensation product of a secondary fatty alcohol containing about 15 carbon atoms with about 9 moles of ethylene oxide per mole of alcohol, respectively.
Substantially similar results are obtained when, in the above-described compositions, the sodium tripolyphosphate builder of the Example III and IV compositions is replaced with an equivalent amount of sodium citrate, sodium carbonate, sodium mellitate or sodium nitrilotriacetate, respectively.
Subsequently similar results are obtained when, in the above-described compositions, the coconut fatty acid adhesion-promoting agent of the Example II and Example IV compositions is replaced with an equivalent amount of coconut alcohol ethoxylate containing 6 ethylene oxide units per mole; tallow alcohol ethoxylate containing 1 l ethylene oxide units per mole; tallow fatty acid mixtures, the condensate of one mole of ethylene oxide with l-dodecanol; the condensate of one mole of l-dodecanol with ethylene oxide hexamer; or the condensate of 9.5 moles of ethylene oxide with nonyl phenol, respectively.
Equivalent anti-static results are obtained in the above-described compositions when the ditallowdimethylammonium chloride is replaced by an equivalent amount of ditallowdirnethylammonium bromide; ditallowdimethylammonium hydroxide; ditallowdiethylammonium chloride; dioctadecyldibutylammonium iodide; oleoyldecylmethylbutylammonium chloride; bisditallowdibutylammonium carbonate and [ditallowdiethylammonium ]phosphate respectively.
As seen from the foregoing, compositions comprising from about 75% to about 96% by weight of a soapbased granule containing a curd dispersant, from about 0.5% to about 15% by weight of a quaternary ammonium anti-static agent and from about 4% to about 25% by weight of a smectite-type clay, provide excellent through-the-wash fabric cleansing, softening and antistatic benefits.
What is claimed is:
l. A fabric laundering composition, comprising:
A. from about 75% to about 96% by weight of granular particles which comprise i. from about 30% to about 80% by weight of said granular particles of a soap compound, and
ii. from about 1% to about 30% by weight of said granular particles of a curd-dispersing agent;
B. from about 4% to about 25% by weight of an impalpable smectite-type clay having an ion exchange capacity of at least about 50 meq/lOO grams, attached to the surface of said granular particles, said composition having a weight ratio of granular particles to impalpable smectite-type clay of from about 20:1 to 3:]; and
C. from about 0.5% to about 15% by weight of a substantially water-insoluble quaternary ammonium anti-static agent of the formula wherein each R is a hydrocarbyl group containing from about 10 to about 22 carbon atoms and each R is a hydrocarbyl group containing from about 1 to about 4 carbon atoms, X is an anion and n is an integer from 1 to 3, the weight ratio of smectitetype clay to quaternary ammonium compound being in the range of from about 40:1 to about 1:1, said quaternary ammonium compound being in releasable combination in said composition.
2. A composition according to claim 1:
A. wherein the soap compound is a water-soluble salt of a higher fatty acid containing from about 8 to about 24 carbon atoms and is present in said granular particles to the extent of from about 40% to about 70% by weight of the granular particles;
B. wherein the curd-dispersing agent is selected from the group consisting of i. compounds of the formula III ll wherein R, is alkyl or alkenyl of about 10 to 20 carbon atoms, R is alkyl of 1 to about 10 carbon atoms and M is a salt-forming cation;
ii. compounds of the formula tris- 7 u OCR R C CH SO M wherein R is alkyl of about 9 to about 23 carbon atoms, R is alkyl of lto about 8 carbon atoms and M is a salt-forming cation; iii. compounds of the formula RO(C H O) 50 M wherein R is alkyl or alkenyl of about 10 to about 20 carbon atoms, x is l to 30 and M is a saltforming cation;
iv. olefin sulfonates containing from about 12 to 24 carbon atoms;
v. compounds of the formula X S CH CH R l! 2 O OH wherein R is an alkyl group of from about 8 to 16 carbon atoms and X is selected from the group consisting of methyl, ethyl and B-hydroxyethyl groups; vii. compounds of the formula R N CH2 R3 ZM wherein R is alkyl of about 8 to 18 carbon atoms, R is selected from the group consisting of alkyl of 1 to about 3 carbon atoms and hydrogen, R is alkylene of 1 to about 4 carbon atoms, Z is selected from the group consisting of carboxy, sulfonate, sulfate, phosphate and phosphonate, and M is a salt-forming cation.
viii. compounds of the formula wherein R is selected from the group consisting of alkyl, alkenyl, hydroxyalkyl and alkylbenzene groups, all groups containing from about 8 to about 24 carbon atoms and having from 0 to about 10 ethylene oxide moieties and from O to l glyceryl moiety; Y is selected from the group consisting of nitrogen, phosphorus, and sulfur atoms; R is an alkyl or monohydroxy alkyl group containing 1 to about 3 carbon atoms; x is 1 when Y is a sulfur atom and 2 when Y is a nitrogen or phosphorus atom, R is alkylene or hydroxyalkylene of from 1 to about 4 carbon atoms and Z is a group selected from the group consisting of carboxylate, sulfonate, sulfate, phosphonate, and phosphate groups; ix. compounds of the formula RI R-CO-N wherein R is hydrogen, alkyl or alkylol and R and R" are each hydrogen, alkyl, alkylol, or alkylene joined through an oxygen atom, the total number of carbon atoms in R, R and R being from about 9 to about 25; and organic amines selected from the group consisting of N-alkyl monoalkylolamines and N-alkyl dialkylolamines wherein the alkyl group contains from about to 16 carbon atoms and the alkylol group contains 2 or 3 carbon atoms; N-alkyl morpholines wherein the alkyl groups contains from about 10 to 16 carbon atoms and N-alkyl tris(hydroxymethyl)-aminomethane wherein the alkyl group contains from about 10 to 16 carbon atoms; and wherein said curddispersing agent is present in said granular particles to the extent of from about 2% to about 20% by weight of said granular particles;
C. wherein said impalpable smectite-type clay is selected from the group consisting of dioctahedral expandable three-layer aluminum-silicates and trioctahedral expandable three-layer magensium silicates, and is present to the extent of from about 4% to about by weight of the total compositon; and
D. wherein the quaternary ammonium compound is ditallowdimethylammonium chloride and is present in releasable combination with the composition at a concentration of from about 0.5% to about 5% by weight.
3. A composition according to claim 1 A. wherein the soap is selected from the group consisting of sodium tallow soap, sodium coconut soap, potassium tallow soap, potassium coconut soap and mixtures thereof;
B. wherein the curd-dispersing agent is selected from the group consisting of the sodium salt of the methyl ester of a-sulfonated tallow fatty acid; the sodium salt of ethoxylated tallow alkyl sulfate having an average of about 3 ethylene oxide groups per mole; the sodium salt of ethoxylated tallow alkyl sulfate having an average of about 6 ethylene oxide groups per mole; sodium B-acetoxy-hexadecane-lsulfonate; sodium-B-acetoxy tridecane- 1 -sulfonate; the sodium salt of sulfonated l-hexadecene; dimethyldodecylphosphine oxide; sodium hexadecylmethylaminopripionate; 3( N,N-dimethyl-N- alkylammonio)-propane-l-sulfonat and 3(N,N-
dimethyl-N-hexade cylammonio )-2- hydroxypropane- 1 -sulfonate; 3-( N-dodecylbenzyl- N,N-dimethylammonio)-propane-1-sulfonate; and tallow acyl monoethanolamide;
C. wherein the smectite-type clay is selected from the group consisting of montmorillonites, volchonskoites, nontronites, hectorites, sauconites and vermiculites; and
D. wherein the quaternary ammonium compound is ditallowdimethylammonium chloride.
4. A composition according to claim 1 wherein the smectite-type clay is selected from the group consisting of fooler clay, Thixogel No. l, Gelwhite GP, Volclay BC, VolclayNo. 325, Black Hills Bentonite Bl-l 450, Veegum Pro and Veegum F.
5. A composition according to claim 1 wherein the smectite-type clay is Volclay BC.
6. A composition according to claim 1 wherein the smectite-type clay is fooler clay.
7. A composition according to claim 1 wherein the curd-dispersing agent is the sodium salt of ethoxylated tallow alkyl sulfate having an average of about 3 ethylene oxide groups per mole and the smectite-type clay is Thixogel No. l.
8. A composition according to claim 1 containing as an additional component from about 0.5% to about 8% by weight of an adhesion-promoting material.
9. A composition according to claim 1 containing as an additional component from about 1% to about 30% by weight of an alkaline builder salt.
10. A composition according to claim 9 wherein the alkaline builder salt is sodium tripolyphosphate.

Claims (10)

1. A FABRIC LAUNDERING COMPOSITION COMPRISING: A. FROM ABOUT 75% TO ABOUT 96% BY WEIGHT OF GRANULAR PARTICLES WHICH COMPRISES I. FROM ABOUT 30% TO ABOUT 80% BY WEIGH OF SAID GRANULAR PARTICLES OF A SOAP COMPOUND, AND II. FROM ABOUT 1% TO ABOUT 30% BY WEIGHT OF SAID GRANULAR PARTICLES OF A CURD-DISPERSING AGENT, B. FROM ABOUT 4% TO ABOUT 25% BY WEIGHT OF AN IMPALPABLE SMECTITE-TYPE CLAY HAVING AN ION EXCHANGE CAPACITY OF AT LEAST ABOUT 50 MEG/100 GRAMS, ATTACHED TO THE SURFACE OF SAID GRANULAR PARTICLES SAID COMPOSITION HAVING A WEIGHT RATIO OF GRANULAR PARTICLDES TO IMPALSABLE SMECTITE-TYPE CLAY OF FROM ABOUT 20:1 TO 3:1 AND C. FROM ABOUT 0.5% TO ABOUT 15% BY WEIGHT OF A SUBSTANTIALLY WATER -INSOLUBLE QUATERNARY AMMONIUM ANTI-STATIC AGENT OF THE FORMULA
2. A composition according to claim 1: A. wherein the soap compound is a water-soluble salt of a higher fatty acid containing from about 8 to about 24 carbon atoms and is present in said granular particles to the extent of from about 40% to about 70% by weight of the granular particles; B. wherein the curd-dispersing agent is selected from the group consisting of i. compounds of the formula
3. A composition according to claim 1 A. wherein the soap is selected from the group consisting of sodium tallow soap, sodium coconut soap, potassium tallow soap, potassium coconut soap and mixtures thereof; B. wherein the curd-dispersing agent is selected from the group consisting of the sodium salt of the methyl ester of Alpha -sulfonated tallow fatty acid; the sodium salt of ethoxylated tallow alkyl sulfate having an average of about 3 ethylene oxide groups per mole; the sodium salt of ethoxylated tallow alkyl sulfate having an average of about 6 ethylene oxide groups per mole; sodium Beta -acetoxy-hexadecane-1-sulfonate; sodium- Beta -acetoxy tridecane-1-sulfonate; the sodium salt of sulfonated 1-hexadecene; dimethyldodecylphosphine oxide; sodium hexadecylmethylaminopripionate; 3(N,N-dimethyl-N-alkylammonio)-propane-1-sulfonat and 3(N,N-dimethyl-N-hexadecylammonio)-2-hydroxypropane-1-sulfonate; 3-(N-dodecylbenzyl-N,N-dimethylammonio)-propane-1-sulfonate; and tallow acyl monoethanolamide; C. wherein the smectite-type clay is selected from the group consisting of montmorillonites, volchonskoites, nontronites, hectorites, sauconites and vermiculites; and D. wherein the quaternary ammonium compound is ditallowdimethylammonium chloride.
4. A composition according to claim 1 wherein the smectite-type clay is selected from the group consisting of ''''fooler clay,'''' Thixogel No. 1, Gelwhite GP, Volclay BC, Volclay No. 325, Black Hills Bentonite BH 450, Veegum Pro and Veegum F.
5. A composition according to claim 1 wherein the smectite-type clay is Volclay BC.
6. A composition according to claim 1 wherein the smectite-type clay is ''''fooler clay.''''
7. A composition according to claim 1 wherein the curd-dispersing agent is the sodium salt of ethoxylated tallow alkyl sulfate having an average of about 3 ethylene oxide groups per mole and the smectite-type clay is Thixogel No. 1.
8. A composition according to claim 1 containing as an additional component from about 0.5% to about 8% by weight of an adhesion-promoting material.
9. A composition according to claim 1 containing as an additional component from about 1% to about 30% by weight of an alkaline builder salt.
10. A composition according to claim 9 wherein the alkaline builder salt is sodium tripolyphosphate.
US305417A 1972-11-10 1972-11-10 Soap compositions Expired - Lifetime US3915882A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US305417A US3915882A (en) 1972-11-10 1972-11-10 Soap compositions
PH15182A PH10588A (en) 1972-11-10 1973-11-02 Soap compositions
CA185,092A CA1015508A (en) 1972-11-10 1973-11-06 Soap compositions
JP48125854A JPS504A (en) 1972-11-10 1973-11-08
SE7315174A SE413674B (en) 1972-11-10 1973-11-08 LAUNDRY COMPOSITION CONTAINING A TENSIDE OF THE TYPE OF TV, TEACHING OF THE SMEKTITT TYPE AND A QUATER AMMONIUM ASSOCIATION
FI3467/73A FI58342C (en) 1972-11-10 1973-11-09 TEXTILTVAETTMEDELSKOMPOSITION
GB5204873A GB1418720A (en) 1972-11-10 1973-11-09 Laundry detergent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US305417A US3915882A (en) 1972-11-10 1972-11-10 Soap compositions

Publications (2)

Publication Number Publication Date
USB305417I5 USB305417I5 (en) 1975-01-28
US3915882A true US3915882A (en) 1975-10-28

Family

ID=23180693

Family Applications (1)

Application Number Title Priority Date Filing Date
US305417A Expired - Lifetime US3915882A (en) 1972-11-10 1972-11-10 Soap compositions

Country Status (7)

Country Link
US (1) US3915882A (en)
JP (1) JPS504A (en)
CA (1) CA1015508A (en)
FI (1) FI58342C (en)
GB (1) GB1418720A (en)
PH (1) PH10588A (en)
SE (1) SE413674B (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234465A (en) * 1978-03-30 1980-11-18 The Lion Fat & Oil Co., Ltd. Detergent composition
US4308024A (en) * 1978-11-03 1981-12-29 Lever Brothers Company Fabric softening composition
US4339335A (en) * 1976-12-02 1982-07-13 Colgate Palmolive Co. Free flowing high bulk density particulate detergent-softener
FR2525232A1 (en) * 1982-04-15 1983-10-21 Colgate Palmolive Co SOFTENING DETERGENT FOR TEXTILES AND MANUFACTURING METHOD THEREOF
US4419250A (en) * 1982-04-08 1983-12-06 Colgate-Palmolive Company Agglomerated bentonite particles for incorporation in heavy duty particulate laundry softening detergent compositions.
US4421657A (en) * 1982-04-08 1983-12-20 Colgate-Palmolive Company Heavy duty laundry softening detergent composition and method for manufacture thereof
US4482471A (en) * 1982-04-08 1984-11-13 Colgate-Palmolive Company Siliconate-coated sodium perborate
US4482630A (en) * 1982-04-08 1984-11-13 Colgate-Palmolive Company Siliconate-coated enzyme
US4482477A (en) * 1982-04-08 1984-11-13 Colgate-Palmolive Company Particulate detergent containing siliconate, composition and method for manufacture thereof
US4488972A (en) * 1982-04-08 1984-12-18 Colgate-Palmolive Company Bentonite agglomerates
US4526702A (en) * 1982-08-25 1985-07-02 Colgate Palmolive Co. Process for manufacturing bentonite-containing particulate fabric softening detergent composition
US4536316A (en) * 1983-06-01 1985-08-20 Colgate-Palmolive Co. Fabric softening composition containing surface modified clay
US4664817A (en) * 1980-03-27 1987-05-12 The Colgate-Palmolive Co. Free flowing high bulk density particulate detergent-softener
US4746445A (en) * 1982-04-08 1988-05-24 Colgate-Palmolive Company Process for manufacturing bentonite agglomerates
US4767546A (en) * 1982-04-08 1988-08-30 Colgate-Palmolive Co. Fabric softening bentonite agglomerates for use in laundry detergents
US4795032A (en) * 1987-12-04 1989-01-03 S. C. Johnson & Son, Inc. Wash-added, rinse-activated fabric conditioner and package
US4851137A (en) * 1982-04-08 1989-07-25 Colgate-Palmolive Co. Process for manufacturing bentonite agglomerates
US4970008A (en) * 1988-12-20 1990-11-13 Kandathil Thomas V Fabric conditioner comprising a mixture of quaternary ammonium compounds and select tertiary amines
US5019292A (en) * 1987-06-30 1991-05-28 The Procter & Gamble Company Detergent compositions
US5062972A (en) * 1989-01-03 1991-11-05 The Procter & Gamble Co. Fabric conditioning compositions: natural hectorite clay and binding and dispersing agent
WO1993001267A1 (en) * 1991-07-08 1993-01-21 The Procter & Gamble Company Detergent compositions containing polyhydroxy fatty acid amide surfactants and a clay softening system
US5470509A (en) * 1993-07-15 1995-11-28 The Procter & Gamble Company Low pH granular detergent composition having improved biodegradability and cleaning performance
GB2331305A (en) * 1997-11-12 1999-05-19 Mcbride Robert Ltd Fabric softening granules
WO2002053692A1 (en) * 2000-12-29 2002-07-11 Unilever Plc Detergent compositions
US6462005B1 (en) * 1994-01-07 2002-10-08 Texas Instruments Incorporated Cleaning agent for a semiconductor device and a method of manufacturing a semiconductor device
US20060034948A1 (en) * 2002-10-10 2006-02-16 Sequoia Pacific Research Company, L.L.C. Method for treating an environment that may be or is contaminated with an undesirable bacterial, virus and or spore
AU2001269038B2 (en) * 2000-06-28 2006-10-05 Perma-Trade Wassertechnik Gmbh Water treatment device
WO2007115870A1 (en) * 2006-04-06 2007-10-18 Henkel Ag & Co. Kgaa Solid textile care composition based on soap
US20160074549A1 (en) * 2014-09-17 2016-03-17 Lonza, Inc. Activated disinfectant hydrogen peroxide compositions
US20170079898A1 (en) * 2015-09-17 2017-03-23 Johnson & Johnson Consumer Inc. COMPOSITIONS COMPRISING ZWITTERIONIC ALKYL-ALKANOYLAMIDES and/or ALKYL ALKANOATES
US9822073B2 (en) 2014-10-20 2017-11-21 Eastman Chemical Company Heterocyclic amphoteric compounds
US9877904B2 (en) 2014-10-20 2018-01-30 Johnson & Johnson Consumer Inc. Compositions comprising zwitterionic ester ammonioalkanoates containing a heterocyclic group
US9943816B2 (en) 2014-10-20 2018-04-17 Eastman Chemical Company Amphoteric ester sulfonates
US11414380B2 (en) 2015-09-17 2022-08-16 Eastman Chemical Company Amphoteric compounds
US11441106B2 (en) 2017-06-27 2022-09-13 Henkel Ag & Co. Kgaa Particulate fragrance enhancers

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959155A (en) 1973-10-01 1976-05-25 The Procter & Gamble Company Detergent composition
DE2631129A1 (en) * 1975-07-14 1977-02-03 Procter & Gamble METHOD FOR CONDITIONING TISSUE AND MEANS OF CARRYING OUT THE METHOD
DE3060975D1 (en) * 1979-11-16 1982-11-25 Ciba Geigy Ag Soap bar with an antimicrobial activity and process for the reduction of its discoloration
JPS5672094A (en) * 1979-11-16 1981-06-16 Lion Corp Detergent composition
ATE10010T1 (en) 1981-03-20 1984-11-15 Unilever Nv PROCESS FOR THE PREPARATION OF DETERGENT COMPOSITIONS CONTAINING SODIUM ALUMINUM SILICATES.
GB8306308D0 (en) * 1983-03-08 1983-04-13 Unilever Plc Conditioning fabrics in tumbledryer
US4582615A (en) * 1984-11-26 1986-04-15 Colgate Palmolive Co. Bentonite-sulfate fabric softening particulate agglomerate, processes for manufacture and use thereof, and detergent compositions containing it
US4626364A (en) * 1985-01-28 1986-12-02 Colgate-Palmolive Company Particulate fabric softening and antistatic built detergent composition and particulate agglomerate for use in manufacture thereof
GB8518910D0 (en) * 1985-07-26 1985-09-04 Procter & Gamble Ltd Toilet compositions
EP0258500A1 (en) * 1986-09-02 1988-03-09 Akzo N.V. Fabric softening composition and detergent-composition comprising the same
EP0258923B1 (en) * 1986-09-02 1993-10-06 Akzo Nobel N.V. Fabric softening composition and detergent-composition comprising the same
US4786422A (en) * 1986-10-06 1988-11-22 Colgate-Palmolive Co. Fabric softening and antistatic particulate wash cycle laundry additive containing cationic/anionic surfactant complex on bentonite
TR201007716A2 (en) * 2010-09-21 2010-12-21 Dalan Ki̇mya Endüstri̇ Anoni̇m Şi̇rketi̇ Performance enhancing particles

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716488A (en) * 1970-09-04 1973-02-13 Stevens & Co Inc J P Textile fabric cleaning compositions
US3765911A (en) * 1970-10-27 1973-10-16 London Oil Refining Co Processing of rubber and the like, and to processing compositions therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3716488A (en) * 1970-09-04 1973-02-13 Stevens & Co Inc J P Textile fabric cleaning compositions
US3765911A (en) * 1970-10-27 1973-10-16 London Oil Refining Co Processing of rubber and the like, and to processing compositions therefor

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339335A (en) * 1976-12-02 1982-07-13 Colgate Palmolive Co. Free flowing high bulk density particulate detergent-softener
US4234465A (en) * 1978-03-30 1980-11-18 The Lion Fat & Oil Co., Ltd. Detergent composition
US4308024A (en) * 1978-11-03 1981-12-29 Lever Brothers Company Fabric softening composition
USRE34062E (en) * 1978-11-03 1992-09-15 Lever Brothers Company Fabric softening composition contains water-insoluble surfactant and aliphatic mono-carboxylic acid
US4664817A (en) * 1980-03-27 1987-05-12 The Colgate-Palmolive Co. Free flowing high bulk density particulate detergent-softener
US4488972A (en) * 1982-04-08 1984-12-18 Colgate-Palmolive Company Bentonite agglomerates
US4482471A (en) * 1982-04-08 1984-11-13 Colgate-Palmolive Company Siliconate-coated sodium perborate
US4482630A (en) * 1982-04-08 1984-11-13 Colgate-Palmolive Company Siliconate-coated enzyme
US4482477A (en) * 1982-04-08 1984-11-13 Colgate-Palmolive Company Particulate detergent containing siliconate, composition and method for manufacture thereof
US4851137A (en) * 1982-04-08 1989-07-25 Colgate-Palmolive Co. Process for manufacturing bentonite agglomerates
US4421657A (en) * 1982-04-08 1983-12-20 Colgate-Palmolive Company Heavy duty laundry softening detergent composition and method for manufacture thereof
US4419250A (en) * 1982-04-08 1983-12-06 Colgate-Palmolive Company Agglomerated bentonite particles for incorporation in heavy duty particulate laundry softening detergent compositions.
US4746445A (en) * 1982-04-08 1988-05-24 Colgate-Palmolive Company Process for manufacturing bentonite agglomerates
US4767546A (en) * 1982-04-08 1988-08-30 Colgate-Palmolive Co. Fabric softening bentonite agglomerates for use in laundry detergents
FR2525232A1 (en) * 1982-04-15 1983-10-21 Colgate Palmolive Co SOFTENING DETERGENT FOR TEXTILES AND MANUFACTURING METHOD THEREOF
US4526702A (en) * 1982-08-25 1985-07-02 Colgate Palmolive Co. Process for manufacturing bentonite-containing particulate fabric softening detergent composition
US4536316A (en) * 1983-06-01 1985-08-20 Colgate-Palmolive Co. Fabric softening composition containing surface modified clay
US5019292A (en) * 1987-06-30 1991-05-28 The Procter & Gamble Company Detergent compositions
US4795032A (en) * 1987-12-04 1989-01-03 S. C. Johnson & Son, Inc. Wash-added, rinse-activated fabric conditioner and package
US4970008A (en) * 1988-12-20 1990-11-13 Kandathil Thomas V Fabric conditioner comprising a mixture of quaternary ammonium compounds and select tertiary amines
US5062972A (en) * 1989-01-03 1991-11-05 The Procter & Gamble Co. Fabric conditioning compositions: natural hectorite clay and binding and dispersing agent
WO1993001267A1 (en) * 1991-07-08 1993-01-21 The Procter & Gamble Company Detergent compositions containing polyhydroxy fatty acid amide surfactants and a clay softening system
US5470509A (en) * 1993-07-15 1995-11-28 The Procter & Gamble Company Low pH granular detergent composition having improved biodegradability and cleaning performance
US6462005B1 (en) * 1994-01-07 2002-10-08 Texas Instruments Incorporated Cleaning agent for a semiconductor device and a method of manufacturing a semiconductor device
GB2331305A (en) * 1997-11-12 1999-05-19 Mcbride Robert Ltd Fabric softening granules
AU2001269038B2 (en) * 2000-06-28 2006-10-05 Perma-Trade Wassertechnik Gmbh Water treatment device
WO2002053692A1 (en) * 2000-12-29 2002-07-11 Unilever Plc Detergent compositions
US20060034948A1 (en) * 2002-10-10 2006-02-16 Sequoia Pacific Research Company, L.L.C. Method for treating an environment that may be or is contaminated with an undesirable bacterial, virus and or spore
WO2007115870A1 (en) * 2006-04-06 2007-10-18 Henkel Ag & Co. Kgaa Solid textile care composition based on soap
US7989412B2 (en) 2006-04-06 2011-08-02 Henkel Ag & Co. Kgaa Solid textile care composition based on soap
US20090099055A1 (en) * 2006-04-06 2009-04-16 Henkel Ag & Co. Kgaa Solid Textile Care Composition Based On Soap
US10646607B2 (en) * 2014-09-17 2020-05-12 Lonza, Inc. Activated disinfectant hydrogen peroxide compositions
US20160074549A1 (en) * 2014-09-17 2016-03-17 Lonza, Inc. Activated disinfectant hydrogen peroxide compositions
US11167054B2 (en) 2014-09-17 2021-11-09 Lonza, Llc Activated disinfectant hydrogen peroxide compositions
US11000816B2 (en) 2014-10-20 2021-05-11 Eastman Chemical Company Amphoteric ester sulfonates
US9943816B2 (en) 2014-10-20 2018-04-17 Eastman Chemical Company Amphoteric ester sulfonates
US9877904B2 (en) 2014-10-20 2018-01-30 Johnson & Johnson Consumer Inc. Compositions comprising zwitterionic ester ammonioalkanoates containing a heterocyclic group
US9822073B2 (en) 2014-10-20 2017-11-21 Eastman Chemical Company Heterocyclic amphoteric compounds
US9993408B2 (en) * 2015-09-17 2018-06-12 Johnson & Johnson Consumer Inc. Compositions comprising zwitterionic alkyl-alkanoylamides and/or alkyl alkanoates
US20170079898A1 (en) * 2015-09-17 2017-03-23 Johnson & Johnson Consumer Inc. COMPOSITIONS COMPRISING ZWITTERIONIC ALKYL-ALKANOYLAMIDES and/or ALKYL ALKANOATES
US11414380B2 (en) 2015-09-17 2022-08-16 Eastman Chemical Company Amphoteric compounds
US11441106B2 (en) 2017-06-27 2022-09-13 Henkel Ag & Co. Kgaa Particulate fragrance enhancers

Also Published As

Publication number Publication date
JPS504A (en) 1975-01-06
CA1015508A (en) 1977-08-16
SE413674B (en) 1980-06-16
FI58342C (en) 1981-01-12
USB305417I5 (en) 1975-01-28
PH10588A (en) 1977-07-12
FI58342B (en) 1980-09-30
GB1418720A (en) 1975-12-24

Similar Documents

Publication Publication Date Title
US3915882A (en) Soap compositions
US3852211A (en) Detergent compositions
US3936537A (en) Detergent-compatible fabric softening and antistatic compositions
US3886075A (en) Fabric softening composition containing a smectite type clay
US3862058A (en) Detergent compositions containing a smectite-type clay softening agent
US3948790A (en) Detergent compositions containing short chain quaternary ammonium clays
US4292035A (en) Fabric softening compositions
US4062647A (en) Clay-containing fabric softening detergent compositions
US3993573A (en) Softening additive and detergent composition
CA1152263A (en) Detergent-compatible fabric softening and antistatic compositions
EP0026528B1 (en) Detergent compositions
US4375416A (en) Detergent composition having textile softening properties
US4514444A (en) Fabric cleaning/conditioning compositions
CA1137383A (en) Detergent compositions having textile softening property
US4326971A (en) Detergent softener compositions
DK148600B (en) fabric softener
GB2164657A (en) Hot water wash cycle detergent-softener compositions
US4329237A (en) Detergent softener compositions
NZ225217A (en) Detergent comprising 1-25 wt% of a hectorite clay
US4411803A (en) Detergent softener compositions
US3607765A (en) Detergent softener compositions
CA1203651A (en) Detergent - compatible fabric softening and anti- static compositions
GB1572815A (en) Process for making detergent compositions
EP0001315A1 (en) Antistatic, fabric-softening detergent composition and method for producing same
EP0123400A2 (en) Fabric conditioning agents, compositions and processes