US3912223A - Fireproof smoke damper - Google Patents
Fireproof smoke damper Download PDFInfo
- Publication number
- US3912223A US3912223A US451343A US45134374A US3912223A US 3912223 A US3912223 A US 3912223A US 451343 A US451343 A US 451343A US 45134374 A US45134374 A US 45134374A US 3912223 A US3912223 A US 3912223A
- Authority
- US
- United States
- Prior art keywords
- damper
- piston
- duct
- valve
- fireproof smoke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000779 smoke Substances 0.000 title claims abstract description 20
- 239000012530 fluid Substances 0.000 claims description 8
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000009423 ventilation Methods 0.000 description 6
- 208000017604 Hodgkin disease Diseases 0.000 description 1
- NCEXYHBECQHGNR-UHFFFAOYSA-N chembl421 Chemical compound C1=C(O)C(C(=O)O)=CC(N=NC=2C=CC(=CC=2)S(=O)(=O)NC=2N=CC=CC=2)=C1 NCEXYHBECQHGNR-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 102220215119 rs1060503548 Human genes 0.000 description 1
- 102220008421 rs193922681 Human genes 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A62—LIFE-SAVING; FIRE-FIGHTING
- A62C—FIRE-FIGHTING
- A62C2/00—Fire prevention or containment
- A62C2/06—Physical fire-barriers
- A62C2/12—Hinged dampers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K17/00—Safety valves; Equalising valves, e.g. pressure relief valves
- F16K17/36—Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position
- F16K17/38—Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature
- F16K17/386—Safety valves; Equalising valves, e.g. pressure relief valves actuated in consequence of extraneous circumstances, e.g. shock, change of position of excessive temperature the closure members being rotatable or pivoting
Definitions
- a fireproof smoke damper having a casing or duct 521,531 6/ 89 st r 126/293 which includes a curved sector and a shutter plate 1,515,234 11/ 1924 236/49 X within the sector and pivoted at the center of curva- 1,647,036 10 1927 Dileo 251/298 we thereofi 2,112,554 3/1938 Beam 126/287.5 2,224,705 12/1940 Stringer 126/285 B 4 Claims, 2 Drawing Figures US. Patent Oct. 14, 1975 .1 III! F. l-lll.
- This invention relates to a fireproof smoke damper for use in the ventilation system of a building.
- an object of this invention is to provide a novel and improved fireproof smoke damper which overcomes the abovementioned disadvantages of the prior dampers and will effectively prevent the passage of smoke and flame into ventilation and other ducts.
- The'damper according to this invention includes a damper casing having a longitudinal section at least a part of which is composed of a sector and a shutter plate rotatably supported at one edge by a shaft positioned at the center of said sector.
- FIG. 1 is a cross-sectional view of an embodiment of a smoke damper according to this invention.
- FIG. 2 is a schematic diagram, partially in block form, representing the damper of FIG. 1 and means for the operation thereof.
- the damper of this embodiment has an L-type casing l'consisting of a straight upright portion 11, a curved elbow portion 12 and a straight horizontal portion 13.
- the upright portion 11 is connected to a ventilation duct 2 and the horizontal portion 13 is connected to a suction hood 3 positioned within an opening formed in the wall 4 of the building.
- the elbow portion 12 is a curved section having a central angle 6 which is equal to 90 in the present embodiment.
- a horizontal rotating shaft 21 is supported at the center of the sector or curved section of the elbow portion 12 and a flat shutter plate 20 having a contour corresponding to the cross-section of the elbow portion 1 is supported at one edge by the shaft 21.
- the shutter 'plate 20 is rotatable about the shaft-21 between the closed position 20 as shown and the opened position 20' as shown in phantom. Thus, the shutter plate 20 can completely close the elbow portion 12 with the central angle6.
- a flow-rate control 30 having shutter wings 31 and a face grid 32 is positioned in the suction hood 3.
- the damper shaft 21 is coupled v through a crank-arm 22 to a piston rod 41 of an air cylinder having a piston 42 which is always held in the lowermost postion by a spring 43.
- An air inlet port 44 attached to the bottom of the cylinder 40 is connected through a hose 5 to an outlet port 51 of an electromagnetic air valve 50.
- the air valve also has an air inlet port 52 connected through a hose 6 to a compressed air source such as an air compressor (not shown) and an air exhaust port 53.
- the cylinder of the electromagnetic air valve 50 includes an armature 55 which is actuated by an electromagnet 54 and a piston 56 is fixedly coupled through a connecting rod 57 to the armature 55.
- the armature 55, piston 56 and respective ports 51, 52 and 53 are arranged so that the ports 51 and 52 communicate when the armature 55 is actuated and the ports 51 and 53 communicate when the armature 55 is deactuated.
- the electromagnet 54 of the air valve 50 is connected to a power source (not shown) through a main control switch board 60 including a main switch 61 and a test switch 62, a local control switch board including a thermostat switch 71 and a test switch 72 and a fuse box including a fuse 81.
- the main control switch board 60 is installed in the central control room and has a plurality of branch lines for feeding to the other dampers though they are omitted from the drawing for the purpose of simplification.
- the local control switch board 70 is installed near each damper and the fuse box 80 is installed in the damper casing 1.
- the electromagnet 54 of the air valve 50 is energized to pull up the armature 55 and of the piston 56.
- the ports 51 and 52 communicate to feed a compressed air to the air cylinder 40 through the hoses 6 and 5 from the compressed air source (not shown).
- the piston 42 is pushed up against the spring 43 to rotate the crank arm 22, upwardly and maintain the shutter plate 20 of the damper in the open position 20' (FIG. 1).
- the damper of this invention is fully closed as long as the shutter plate 20 is within the central angle 0 of the sectorial or curved section of the elbow portion 12.
- a cam fixed to the rotating shaft 21 of the shutter plate 20 is shaped so that it actuates a switch 91 only when the shutter plate 20 is within the central angle 0.
- the switch 91 is connected in an indicating lamp circuit (not shown) to indicate sufficient closure of the damper.
- the damper is connected to a vertically extending ventilation duct and, therefore, the shutter plate 20 of the damper is opened upwardly about the horizontal shaft 21, the
- the damper of this invention can sufficiently intercept smoke and flame even if some deviation takes place in the position of the closed shutter plate and, therefore, exhibits a high degree of safety and reliability over the prior art dampers.
- a fireproof smoke damper assembly comprising a duct having a substantially straight section and a curved elbow section joined one to the other, said curved section having a longitudinal section in the form of a sector of a circle having its center at one side of said duct, a shaft on said one side of said duct and substantially coincident with said center and a damper plate attached along one edge to said shaft for rotation within said duct about said center, said damper being movable from an open position lying against a wall of said straight section to closed positions when disposed at any point within said curved section and is in close proximity with the wall of said curved section.
- a fireproof smoke damper including an arm carried by said shaft, a cylinder including a spring loaded piston, a rod coupling said arm to said piston whereby said piston under the action of said spring will normally hold said damper in the closed position, means including an electrically operated valve for feeding a fluid under pressure to said cylinder, said valve upon being energized permitting fluid pressure to act on said position and move it in opposition to said spring to open said damper and means on said valve for interrupting said fluid pressure upon de-energization and permit discharge of said fluid in said cylinder and said piston to move said damper to the closed position.
- a fireproof smoke damper according to claim 2 including a power switch, a thermostatically controlled switch and at least one test switch connected in series one with the others and with said electrically operated valve for controlling the application of energy to said valve.
- a fireproof smoke damper according to claim 3 wherein a heat responsive fuse is positioned within said damper casing and connected in series with said switches.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Mechanical Engineering (AREA)
- Air-Flow Control Members (AREA)
Abstract
A fireproof smoke damper having a casing or duct which includes a curved sector and a shutter plate within the sector and pivoted at the center of curvature thereof.
Description
United States Patent 1191 Iwata Oct. 14, 1975 [54] FIREPROOF SMOKE DAMPER 2,226,815 12 1940 Haines 236/49 2,251,822 8/1941 Car1son.... 126/293 [75] Inventor: Yosluaki lwata, Fu rsawa, Japan 3,010,451 11/1961 Hodgins 26/285 B [73] Assigneez .Nittan Company, Limited, Tokyo 3,172,347 3/1965 1011115011 98/1 Japan 3,227,219 1/1966 Boyer et a1. 169/5 3,275,286 9/1966 Wood 251/30 [22] Filed: Mar. 15, 1974 3,303,886 2/1967 Tattersall et a1 169/5 3,352,159 11/1967 Bruce et a1. 251/299 pp 451,343 3,719,321 3/1973 McNabney 236/49 3,730,] 12 5/1973 Hutchinson et a1 98/59 52 us. c1 251/299; 126/285 R; 236/49; 2x33; 22%;?
126/293;l69/5;169/60 51 1111. cm. F16K 1/16; F23L 13/00; A62C 37/18 FOREIGN PATENTS 0R APPLICAUONS [58] Field of Search 98/1, 58-62, 1,017,761 10/1957 Germany 126/285 98/108; 126/285 R, 285 B, 287.5, 293, 418,982 3/1947 Italy 169/5 285.5, 292, 297, 289; 251/30, 299, 298, 303,
300; 236/49; 169/60, 61, 65, 5 Primary ExaminerWil1iam E. Wayner Assistant Examiner-Henry C. Yuen [56] References Cited Attorney, Agent, or FirmEugene E. Geoffrey UNITED STATES PATENTS 422,956 3/1890 Malmborg 126/285 B [57] ABSTRACT 472,461 4/1892 Lundstedt.... 126/285 B A fireproof smoke damper having a casing or duct 521,531 6/ 89 st r 126/293 which includes a curved sector and a shutter plate 1,515,234 11/ 1924 236/49 X within the sector and pivoted at the center of curva- 1,647,036 10 1927 Dileo 251/298 we thereofi 2,112,554 3/1938 Beam 126/287.5 2,224,705 12/1940 Stringer 126/285 B 4 Claims, 2 Drawing Figures US. Patent Oct. 14, 1975 .1 III! F. l-lll.
FIREPROOF SMOKE DAMPER This invention relates to a fireproof smoke damper for use in the ventilation system of a building.
When a fire breaks out in a room ofa building, smoke and flame produced by the fire are transferred to other rooms and to the outside of the building through exhaust ducts of the ventilation system. This not only obstructs fire-fighting and sheltering action but also promotes the spread of fire. Many types of dampers have been used with a ventilation duct but the prior dampers have commonly employed a butterfly type shutter plate rotatably supported on a shaft in a straight tubular damper casing. Such types of prior damages have gaps between the shutter plates and the casings for the purpose of preventing interference with the operation of the damper due to rusting of the rotating portion and contamination with dust. As a result, sufficient interception of smoke and flame'cannot be obtained because the closed damper is not air-tight.
Accordingly, an object of this invention is to provide a novel and improved fireproof smoke damper which overcomes the abovementioned disadvantages of the prior dampers and will effectively prevent the passage of smoke and flame into ventilation and other ducts.
The'damper according to this invention includes a damper casing having a longitudinal section at least a part of which is composed of a sector and a shutter plate rotatably supported at one edge by a shaft positioned at the center of said sector.
Other features of the operation of this invention will be described in detail hereinunder with reference to the accompanying drawings.
In the drawings: FIG. 1 is a cross-sectional view of an embodiment of a smoke damper according to this invention; and
FIG. 2 is a schematic diagram, partially in block form, representing the damper of FIG. 1 and means for the operation thereof.
Throughout the drawings, like reference numerals are used to denote corresponding structural components.
Referring to FIG. 1, the damper of this embodiment has an L-type casing l'consisting of a straight upright portion 11, a curved elbow portion 12 and a straight horizontal portion 13. The upright portion 11 is connected to a ventilation duct 2 and the horizontal portion 13 is connected to a suction hood 3 positioned within an opening formed in the wall 4 of the building. The elbow portion 12 is a curved section having a central angle 6 which is equal to 90 in the present embodiment. A horizontal rotating shaft 21 is supported at the center of the sector or curved section of the elbow portion 12 and a flat shutter plate 20 having a contour corresponding to the cross-section of the elbow portion 1 is supported at one edge by the shaft 21. The shutter 'plate 20 is rotatable about the shaft-21 between the closed position 20 as shown and the opened position 20' as shown in phantom. Thus, the shutter plate 20 can completely close the elbow portion 12 with the central angle6. A flow-rate control 30 having shutter wings 31 and a face grid 32 is positioned in the suction hood 3. v 3
Referring to FIG. 2, the damper shaft 21 is coupled v through a crank-arm 22 to a piston rod 41 of an air cylinder having a piston 42 which is always held in the lowermost postion by a spring 43. An air inlet port 44 attached to the bottom of the cylinder 40 is connected through a hose 5 to an outlet port 51 of an electromagnetic air valve 50. The air valve also has an air inlet port 52 connected through a hose 6 to a compressed air source such as an air compressor (not shown) and an air exhaust port 53. The cylinder of the electromagnetic air valve 50, includes an armature 55 which is actuated by an electromagnet 54 and a piston 56 is fixedly coupled through a connecting rod 57 to the armature 55. The armature 55, piston 56 and respective ports 51, 52 and 53 are arranged so that the ports 51 and 52 communicate when the armature 55 is actuated and the ports 51 and 53 communicate when the armature 55 is deactuated. The electromagnet 54 of the air valve 50 is connected to a power source (not shown) through a main control switch board 60 including a main switch 61 and a test switch 62, a local control switch board including a thermostat switch 71 and a test switch 72 and a fuse box including a fuse 81. The main control switch board 60 is installed in the central control room and has a plurality of branch lines for feeding to the other dampers though they are omitted from the drawing for the purpose of simplification. The local control switch board 70 is installed near each damper and the fuse box 80 is installed in the damper casing 1.
When the main switch 61 is closed, the electromagnet 54 of the air valve 50 is energized to pull up the armature 55 and of the piston 56. Thus, the ports 51 and 52 communicate to feed a compressed air to the air cylinder 40 through the hoses 6 and 5 from the compressed air source (not shown). The piston 42 is pushed up against the spring 43 to rotate the crank arm 22, upwardly and maintain the shutter plate 20 of the damper in the open position 20' (FIG. 1).
When the main switch 61 is opened manually in the case of fire, the'electromagnet 54 is de-energized and the piston 56 falls under its own weight with the result that the ports 51 and 53 are placed in communication. Accordingly, the air in the air cylinder 40 is exhausted through the hose 5 and the port 53 and the piston 42 is pushed downwardly by the spring 43 to rotate the shutter plate 20 to its counterclockwise position to close the damper. The same damper closing action also occurs in response to opening of the switches 62, 71 or 72 or opening of the fuse 81 by excessive heat or other reason. The operation and objects of these switches are self-explanatory.
As previously described, the damper of this invention is fully closed as long as the shutter plate 20 is within the central angle 0 of the sectorial or curved section of the elbow portion 12. A cam fixed to the rotating shaft 21 of the shutter plate 20 is shaped so that it actuates a switch 91 only when the shutter plate 20 is within the central angle 0. The switch 91 is connected in an indicating lamp circuit (not shown) to indicate sufficient closure of the damper.
Although, in the above embodiment, the damper is connected to a vertically extending ventilation duct and, therefore, the shutter plate 20 of the damper is opened upwardly about the horizontal shaft 21, the
" spring force of the air cylinder 40, while, in the former case gravity supplements the action of the spring.
As above described, the damper of this invention can sufficiently intercept smoke and flame even if some deviation takes place in the position of the closed shutter plate and, therefore, exhibits a high degree of safety and reliability over the prior art dampers.
It should be noted that the above description has been made in conjunction with the illustrated embodiment only and various changes and modifications may be made without departing from the scope of the invention as defined in the appended claim.
I claim:
1. A fireproof smoke damper assembly comprising a duct having a substantially straight section and a curved elbow section joined one to the other, said curved section having a longitudinal section in the form of a sector of a circle having its center at one side of said duct, a shaft on said one side of said duct and substantially coincident with said center and a damper plate attached along one edge to said shaft for rotation within said duct about said center, said damper being movable from an open position lying against a wall of said straight section to closed positions when disposed at any point within said curved section and is in close proximity with the wall of said curved section.
2. A fireproof smoke damper according to claim 1 including an arm carried by said shaft, a cylinder including a spring loaded piston, a rod coupling said arm to said piston whereby said piston under the action of said spring will normally hold said damper in the closed position, means including an electrically operated valve for feeding a fluid under pressure to said cylinder, said valve upon being energized permitting fluid pressure to act on said position and move it in opposition to said spring to open said damper and means on said valve for interrupting said fluid pressure upon de-energization and permit discharge of said fluid in said cylinder and said piston to move said damper to the closed position.
3. A fireproof smoke damperaccording to claim 2 including a power switch, a thermostatically controlled switch and at least one test switch connected in series one with the others and with said electrically operated valve for controlling the application of energy to said valve.
4. A fireproof smoke damper according to claim 3 wherein a heat responsive fuse is positioned within said damper casing and connected in series with said switches.
Claims (4)
1. A fireproof smoke damper assembly comprising a duct having a substantially straight section and a curved elbow section joined one to the other, said curved section having a longitudinal section in the form of a sector of a circle having its center at one side of said duct, a shaft on said one side of said duct and substantially coincident with said center and a damper plate attached along one edge to said shaft for rotation within said duct about said center, said damper being movable from an open position lying against a wall of said straight section to closed positions when disposed at any point within said curved section and is in close proximity with the wall of said curved section.
2. A fireproof smoke damper according to claim 1 including an arm carried by said shaft, a cylinder including a spring loaded piston, a rod coupling said arm to said piston whereby said piston under the action of said spring will normally hold said damper in the closed position, means including an electrically operated valve for feeding a fluid under pressure to said cylinder, said valve upon being energized permitting fluid pressure to act on said position and move it in opposition to said spring to open said damper and means on said valve for interrupting said fluid pressure upon de-energization and permit discharge of said fluid in said cylinder and said piston to move said damper to the closed position.
3. A fireproof smoke damper according to claim 2 including a power switch, a thermostatically controlled switch and at least one test switch connected in series one with the others and with said electrically operated valve for controlling the application of energy to said valve.
4. A fireproof smoke damper according to claim 3 wherein a heat responsive fuse is positioned within said damper casing and connected in series with said switches.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US451343A US3912223A (en) | 1974-03-15 | 1974-03-15 | Fireproof smoke damper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US451343A US3912223A (en) | 1974-03-15 | 1974-03-15 | Fireproof smoke damper |
Publications (1)
Publication Number | Publication Date |
---|---|
US3912223A true US3912223A (en) | 1975-10-14 |
Family
ID=23791837
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US451343A Expired - Lifetime US3912223A (en) | 1974-03-15 | 1974-03-15 | Fireproof smoke damper |
Country Status (1)
Country | Link |
---|---|
US (1) | US3912223A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4136676A (en) * | 1977-12-07 | 1979-01-30 | Thermiser Manufacturing Corporation | Flue box assembly |
US4189092A (en) * | 1979-01-08 | 1980-02-19 | Barber-Colman Company | Damper control for preventing spread of fire and smoke through an induction mixing box |
WO1986006783A1 (en) * | 1985-05-07 | 1986-11-20 | Crawford Door Production Ab | Arrangement for air control |
US4958687A (en) * | 1988-12-15 | 1990-09-25 | Daito Tech Kabushiki Kaisha | Fire damper |
US4991657A (en) * | 1986-09-17 | 1991-02-12 | Lelande Jr Walter C | Fire suppression system |
FR2690219A1 (en) * | 1992-04-15 | 1993-10-22 | Robinetterie Indle Ste Nouvell | Automatic cut off system for fluid circuit - includes shut off valve fitted in fluid circuit that is operated by linear actuator via rod with thermal fuse that operates in case of fire |
US6071096A (en) * | 1997-04-25 | 2000-06-06 | Grasl; Andreas | Pneumatic cylinder, in particular for actuating fume extraction valves in fume and heat extraction plants |
US6112823A (en) * | 1999-11-09 | 2000-09-05 | O'leary; James | Waste fire suppression control device |
US20040074237A1 (en) * | 2002-10-17 | 2004-04-22 | Swinford Mark Douglas | Methods and apparatus for regulating gas turbine engine fluid flow |
KR100435949B1 (en) * | 2001-06-15 | 2004-06-12 | 현대자동차주식회사 | Check valve used LPG injection line |
US20120037713A1 (en) * | 2009-03-02 | 2012-02-16 | Belimo Holding Ag | Drive for fire damper |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US422956A (en) * | 1890-03-11 | Electric valve-controller | ||
US472461A (en) * | 1892-04-05 | Electro-magnetic valve-controller | ||
US521531A (en) * | 1894-06-19 | Damper | ||
US1515234A (en) * | 1921-03-14 | 1924-11-11 | Westinghouse Electric Products | Exhaust valve for electrically-heated ovens |
US1647036A (en) * | 1924-12-24 | 1927-10-25 | Pipe pitting | |
US2112554A (en) * | 1936-07-17 | 1938-03-29 | Bryant Heater Co | Automatic control for fuel burning apparatus |
US2224705A (en) * | 1938-10-29 | 1940-12-10 | George E Stringer | Automatic damper control |
US2226815A (en) * | 1939-03-13 | 1940-12-31 | Honeywell Regulator Co | Pneumatic controller |
US2251822A (en) * | 1939-06-05 | 1941-08-05 | Master Electric Co | Stack damper regulator |
US3010451A (en) * | 1958-11-28 | 1961-11-28 | Hodgins Comb Devices Ltd | Smoke pipe damper |
US3172347A (en) * | 1962-11-13 | 1965-03-09 | American Warming Ventilation | Universal fire damper with angular axle |
US3227219A (en) * | 1963-12-19 | 1966-01-04 | Gen Electric | Testing for a fire extinguishing system |
US3275286A (en) * | 1962-10-08 | 1966-09-27 | Lockheed Aircraft Corp | Flow control valve |
US3303886A (en) * | 1965-03-24 | 1967-02-14 | Specialties Dev Corp | Combination air conditioning and foam plug fire extinguishing system |
US3352159A (en) * | 1966-11-30 | 1967-11-14 | Brusmatic Inc | Automatic cotton lint sampler |
US3719321A (en) * | 1971-05-20 | 1973-03-06 | Trane Co | Air flow control device |
US3730112A (en) * | 1971-03-18 | 1973-05-01 | Silent Glan Corp | Incineration systems and methods |
US3753184A (en) * | 1972-03-23 | 1973-08-14 | Johnson Service Co | Temperature control system |
US3757821A (en) * | 1971-01-13 | 1973-09-11 | K Fujiwara | Disk type electromagnetic valve |
-
1974
- 1974-03-15 US US451343A patent/US3912223A/en not_active Expired - Lifetime
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US422956A (en) * | 1890-03-11 | Electric valve-controller | ||
US472461A (en) * | 1892-04-05 | Electro-magnetic valve-controller | ||
US521531A (en) * | 1894-06-19 | Damper | ||
US1515234A (en) * | 1921-03-14 | 1924-11-11 | Westinghouse Electric Products | Exhaust valve for electrically-heated ovens |
US1647036A (en) * | 1924-12-24 | 1927-10-25 | Pipe pitting | |
US2112554A (en) * | 1936-07-17 | 1938-03-29 | Bryant Heater Co | Automatic control for fuel burning apparatus |
US2224705A (en) * | 1938-10-29 | 1940-12-10 | George E Stringer | Automatic damper control |
US2226815A (en) * | 1939-03-13 | 1940-12-31 | Honeywell Regulator Co | Pneumatic controller |
US2251822A (en) * | 1939-06-05 | 1941-08-05 | Master Electric Co | Stack damper regulator |
US3010451A (en) * | 1958-11-28 | 1961-11-28 | Hodgins Comb Devices Ltd | Smoke pipe damper |
US3275286A (en) * | 1962-10-08 | 1966-09-27 | Lockheed Aircraft Corp | Flow control valve |
US3172347A (en) * | 1962-11-13 | 1965-03-09 | American Warming Ventilation | Universal fire damper with angular axle |
US3227219A (en) * | 1963-12-19 | 1966-01-04 | Gen Electric | Testing for a fire extinguishing system |
US3303886A (en) * | 1965-03-24 | 1967-02-14 | Specialties Dev Corp | Combination air conditioning and foam plug fire extinguishing system |
US3352159A (en) * | 1966-11-30 | 1967-11-14 | Brusmatic Inc | Automatic cotton lint sampler |
US3757821A (en) * | 1971-01-13 | 1973-09-11 | K Fujiwara | Disk type electromagnetic valve |
US3730112A (en) * | 1971-03-18 | 1973-05-01 | Silent Glan Corp | Incineration systems and methods |
US3719321A (en) * | 1971-05-20 | 1973-03-06 | Trane Co | Air flow control device |
US3753184A (en) * | 1972-03-23 | 1973-08-14 | Johnson Service Co | Temperature control system |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4136676A (en) * | 1977-12-07 | 1979-01-30 | Thermiser Manufacturing Corporation | Flue box assembly |
US4189092A (en) * | 1979-01-08 | 1980-02-19 | Barber-Colman Company | Damper control for preventing spread of fire and smoke through an induction mixing box |
WO1986006783A1 (en) * | 1985-05-07 | 1986-11-20 | Crawford Door Production Ab | Arrangement for air control |
US4991657A (en) * | 1986-09-17 | 1991-02-12 | Lelande Jr Walter C | Fire suppression system |
US4958687A (en) * | 1988-12-15 | 1990-09-25 | Daito Tech Kabushiki Kaisha | Fire damper |
FR2690219A1 (en) * | 1992-04-15 | 1993-10-22 | Robinetterie Indle Ste Nouvell | Automatic cut off system for fluid circuit - includes shut off valve fitted in fluid circuit that is operated by linear actuator via rod with thermal fuse that operates in case of fire |
US6071096A (en) * | 1997-04-25 | 2000-06-06 | Grasl; Andreas | Pneumatic cylinder, in particular for actuating fume extraction valves in fume and heat extraction plants |
US6112823A (en) * | 1999-11-09 | 2000-09-05 | O'leary; James | Waste fire suppression control device |
KR100435949B1 (en) * | 2001-06-15 | 2004-06-12 | 현대자동차주식회사 | Check valve used LPG injection line |
US20040074237A1 (en) * | 2002-10-17 | 2004-04-22 | Swinford Mark Douglas | Methods and apparatus for regulating gas turbine engine fluid flow |
US6775990B2 (en) * | 2002-10-17 | 2004-08-17 | Mark Douglas Swinford | Methods and apparatus for regulating gas turbine engine fluid flow |
USRE41229E1 (en) * | 2002-10-17 | 2010-04-20 | General Electric Company | Methods and apparatus for regulating gas turbine engine fluid flow |
US20120037713A1 (en) * | 2009-03-02 | 2012-02-16 | Belimo Holding Ag | Drive for fire damper |
US9327148B2 (en) * | 2009-03-02 | 2016-05-03 | Belimo Holding Ag | Drive for fire damper |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3912223A (en) | Fireproof smoke damper | |
US4100931A (en) | Fire damper | |
US3739707A (en) | Smoke-fume exhaust system | |
US3521546A (en) | Atmospheric pressure equalizing means | |
CN113790291A (en) | Fireproof check valve | |
CN113432223A (en) | Fire-fighting smoke exhaust system | |
US2148530A (en) | Damper | |
JP2013088086A (en) | Ceiling-embedded air conditioner | |
KR20190085751A (en) | Smoke air volume control damper system | |
US4245779A (en) | System for increasing heating efficiency | |
US4276871A (en) | Flue damper and draft regulator | |
EP2971995A1 (en) | Arrangement for pressurizing a space and/or evacuating smoke therefrom in case of a fire | |
KR102029712B1 (en) | Heat Exchanger | |
US1816217A (en) | Combustible damper control for unit heaters | |
US4834282A (en) | Device for use with flue dampers | |
US802871A (en) | Ventilating device for buildings. | |
US2290096A (en) | Control means for air conditioning systems | |
US3570384A (en) | Smoke and fire isolation device | |
GB685396A (en) | Improvements in means for heating and ventilating buildings | |
US4270894A (en) | Combination flue and vent damper | |
US2564971A (en) | Means for reducing fire danger in hotels and the like | |
KR102394431B1 (en) | Smoke damper | |
CS271622B1 (en) | Safety cut-off fire flap with low air resistance | |
JPS602502Y2 (en) | smoke evacuation device | |
US3166000A (en) | Fluid control device |