[go: up one dir, main page]

US3903824A - Liquefied gas ship tank insulation system - Google Patents

Liquefied gas ship tank insulation system Download PDF

Info

Publication number
US3903824A
US3903824A US422533A US42253373A US3903824A US 3903824 A US3903824 A US 3903824A US 422533 A US422533 A US 422533A US 42253373 A US42253373 A US 42253373A US 3903824 A US3903824 A US 3903824A
Authority
US
United States
Prior art keywords
ship
hold
tank
insulation
loose fill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US422533A
Inventor
Royce Jay Laverman
Robert Newton Davis
Fave Ivan Vallier La
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chicago Bridge and Iron Co
Original Assignee
Chicago Bridge and Iron Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chicago Bridge and Iron Co filed Critical Chicago Bridge and Iron Co
Priority to US422533A priority Critical patent/US3903824A/en
Application granted granted Critical
Publication of US3903824A publication Critical patent/US3903824A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/02Vessels not under pressure with provision for thermal insulation
    • F17C3/025Bulk storage in barges or on ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0128Shape spherical or elliptical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0308Radiation shield
    • F17C2203/032Multi-sheet layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0329Foam
    • F17C2203/0333Polyurethane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0337Granular
    • F17C2203/0341Perlite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/03Thermal insulations
    • F17C2203/0304Thermal insulations by solid means
    • F17C2203/0345Fibres
    • F17C2203/035Glass wool
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0631Three or more walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/037Handling leaked fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • F17C2260/038Detecting leaked fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/011Barges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S220/00Receptacles
    • Y10S220/901Liquified gas content, cryogenic

Definitions

  • gases can be liquefied at moderate pressures and shipped in tanks capable of maintaining the gas under such pressure to keep it in liquid form.
  • Propane and butane are representative of such gases. Because the pressure needed to liquefy such gases at atmospheric temperature is not unduly great, the pressure vessel required for storage of the so liquefied gas can be built economically and of a relatively large size. Cryogenic gases however cannot be readily liquefied even at fairly high pressures unless the temperature of the liquefied gas is also reduced substantially below atmospheric temperature.
  • cryogenic liquefied gas Because it is difficult and expensive to construct a pressure vessel capable of storing a cryogenic liquefied gas at high pressure in large volume, it has been found more practical and less expensive to cool the cryogenic liquefied gas to a temperature at which it can be stored in a tank designed to withstand a minimum internal pressure plus the hydrostatic and dynamic loads of the liquid. For example, it has been found convenient to store liquefied natural gas, which is essentially methane, at about 260F. and at about psia, or just slightly above atmospheric pressure. Other cryogenic liquefied gases such as hydrogcn, helium and ethylene can similarly be stored at about atmospheric pressure following their refrigeration to a temperature at which they boil at such pressure.
  • Tanks for transporting cryogenic liquefied gases at about atmospheric pressure in a ship or barge are of two main types.
  • the first type of tank is one in which the tank walls and bottom are contoured to be in essentially continuous contact with, and be supported by, the walls and bottom ofa ship hold. Such a tank relies upon this continuous contact with the walls of the hold of the ship for its strength and support.
  • the second type of tank is a structurally free-standing tank which is spaced or separated from the ship hold wall. Such a tank does not rely upon continuous contact with the hold walls for necessary structural strength or support.
  • Such tanks have a support system which transmits the loads of the storage tank to the ship structure through localized support areas, such as would be the case, for example. when using columns or a skirt to support a spherical tank. Such tanks are considered to be safer than the first type of tank because they can maintain their integral strength even if there is a failure of, or damage to, portions of the ships hull.
  • Suitable means must be used in ships or barges having cargo tanks for transporting cryogenic liquefied gases to reduce or retard heat leak so that the amount of liquefied gas which is vaporized is minimized or limited to an acceptable value. Not only must the tank be insulated to retard heat leak into the liquefied gas but, in addition, it is necessary that insulation prevent the refrigerated contents of the tank from cooling the ship structure to a temperature low enough to cause structural failure of metal parts not made of metal suitable for low temperature use.
  • insulating a cryogenic liquefied storage tank on a ship or barge is not a simple matter.
  • One type of tank suitable for this use has double-curved surfaces which do not lend themselves to ready insulation by the application of insulation boards or sheets because of the cost and expense of fitting the insulation in contact with the tank surface.
  • such tanks often have a top portion which extends partially above the ship deck.
  • the tank top portion furthermore is often domed and usually will have a spherical or ellipsoidal shape. Not only must the tank top portion having such a shape be suitably insulated but also the insulation must be protected against the adverse weather conditions which the ship will meet in service.
  • a hold cover is generally installed for this purpose.
  • ship includes all types of ships as well as barges and boats.
  • the improved insulation system comprises non-granular insulation secured to the ship hold walls and hold bottom, a ship hold cover extending over the tank top portion and joined to the ship, and a layer of loose fill insulation plus a resilient blanket layer between the tank top portion and the ship hold cover.
  • the insulating system of this invention is particularly useful when the tank top portion extends partially above the ship deck and also when the ship hold cover are both domed and are advisably also approximately equally spaced apart over a substantial part of their areas.
  • a further important feature of the invention is the inclusion of a splash shield which separates the tank top portion from the loose fill insulation so that in case there is a leak in the tank shell the escaping liquid or vapor will be prevented from penetrating the loose fill insulation and cooling the adjacent portion of the ship hold cover or hold wall.
  • the tank be completely surrounded by an insulating system.
  • the resilient blanket and the loose fill insulation can be terminated adjacent to the non-granular insulation on the ship hold walls. in this way the tank is positioned within a totally insulated space even though only the upper portion of the tank has insulation directly, or essentially, in contact with the outer surface of the tank shell.
  • the tank shell lower part is located inside of the insulated ship hold, it is suitable to leave the tank shell non-insulated over that surface area which projects downwardly from the lower edge of the resilient blanket.
  • HO. 1 is an isometric view of a ship containing five spherical storage tanks for cryogenic liquefied gas;
  • FIG. 2 is a sectional view taken along the line 22 of FIG. 1;
  • FIG. 3 is an enlarged sectional view of the insulation structure used in the top portion of the tank shown in FIG. 2;
  • FIG. 4 is a vertical sectional view of an expansion joint arrangement which separates the loose fill insulation from the insulation applied to the ship hold walls;
  • FIG. 5 is a view similar to that shown in FIG. 2 but with a somewhat different splash shield arrangement over the upper part of the tank and with the tank supported by a cylindrical skirt rather than a series of Columns;
  • FIG. 6 is an enlarged view of the insulation structure used in the top portion of the tank of FIG. 5.
  • each tank 11 comprises a spherical metal shell 12 positioned in the ship hold 13 so that the major part of the shell is located below the main deck 14 of the ship but with an upper top portion of the tank shell protruding above the deck.
  • metal rings 15 and 16 extend around shell 12 in a horizontal manner and the vertical stiffeners 17 extend between the rings.
  • a plurality of spaced apart columns 18 around shell 12 extend from a supporting ledge in the ship hold to ring 16 to support the metal shell 12 securely in position.
  • the lower portion of columns 18 can be insulated (not shown) to prevent the adjacent ship hold at the base of the column from becoming too cold.
  • the lower portion of the inside surface of the hold 13 is covered by non-granular insulation 19 which extends over the entire ship hold bottom and side walls up to the expansion joint 20.
  • Insulation 19 can be of the foamed-in-place type of insulation or it can be composed of insulation board or sheet stock firmly secured to the hold surfaces.
  • Sheet 21 is positioned over the insulation 19 in the ship hold bottom and functions as a drip pan to collect all liquefied gas which may leak from the spherical shell 12.
  • the drip pan 21 is made of a material which can withstand the low temperature of the liquefied gas without structural failure.
  • the drip pan prevents liquefied gas from penetrating the insulation on the ship hold bottom and thereby keeps it from contacting the metal plates used in the construction of the ship hold. By keeping the cold liquefied gas out of contact with the metal used for the ship hold there is avoided any necessity to construct that part of the ship proper of a metal or other material capable of withstanding the cold temperature of the liquefied gas without failing.
  • resilient blanket 25 is placed in contact with the outer surface of spherical shell 12 over that surface of the shell extending above the expansion joint 20.
  • a liquefied gas and vapor impermeable sheet or covering splash shield 26 is placed over the outer surface of resilient blanket 25 to prevent any liquefied gas which leaks therefrom from penetrating into the loose fill insulation 27 which is placed over the resilient blanket.
  • Rigid metal hold cover 28 is placed over the loose fill insulation and extends to the ship, such as to the ship deck.
  • the top of shell 12 is provided with a cupola 29 in which supporting utility pipes, pumps and various operating control systems can be positioned. The cupola is also shown covered both on its sides and top with the resilient blanket 25, splash shield 26, and loose fill insulation 27.
  • Conduit 30 can be used to withdraw vapor from the shell 12 or to fill it with a liquefied gas. Furthermore, conduit 31 which can extend to the bottom of the tank shell, can be used to remove liquefied gas from the tank.
  • FIG. 4 shows the expansion joint 20 in greater detail.
  • Vertical plate 32 constitutes the ship hold wall on which non-granular insulation 19 equipped externally with a spray shield (not shown) is secured.
  • Metal plate 33 extends inwardly in a horizontal direction from hold wall 32. Near the inner edge of plate 33 is positioned upwardly extending metal plate 34 which supports an inwardly directed horizontal plate 35. On the inner edge of plate 35 there is positioned a downwardly directed plate 36.
  • Metal plate 38 is horizontally joined to the outer surface of tank shell 12. Drain holes 37 are placed in metal plate 38 to permit drainage of any leaking liquefied gas into the drip pan 21.
  • Joined to the outer edge of metal plate 38 is metal plate 39 which projects vertically upwardly towards plate 35.
  • the described insulation system accommodates temperature expansion and contraction of the tank shell 12 without displacement of the loose fill insulation 27.
  • the vessel shell 12 expands the dimensional enlargement of the shell is acccommodated through compression of the resilient blanket 25.
  • the tank shell 12 cools and contracts, such as when it is filled with liquefied natural gas, the dimensional shrinkage or reduction of tank shell 12 is accompanied by expansion of the resilient blanket 25 without any significant displacement of loose fill insulation 27.
  • any suitable resilient blanket can be used in the insulating system of this invention.
  • a particularly useful resilient blanket is one made of fine glass fibers bonded together by a thin film of a phenolformaldehyde resin.
  • the glass fibers can have a nominal diameter less than 0.00015 inch and the blanket can have a density of about l2 pounds per cubic foot.
  • a commercially available resilient blanket of glass fibers which can be used in practicing this invention is marketed under the trade names Ultralite and Textrafine.
  • the thickness of the blanket employed will, of course, depend on the size of the tank shell, the metal of which it is made and the temperature cycle to which the shell will be subjected during use. Further details concerning the qualities desired in a suitable resilient blanket are set forth in Wissmiller US. Pat. No. 3,147,878.
  • any suitable loose fill insulation can be employed in the insulating system of this invention. It is presently considered advisable however to employ expanded perlite or vermiculite for this purpose since it can withstand the pressures applied against it by the resilient blanket during warm-up and expansion of the tank shell.
  • Insulation of the ship hold is readily achieved because the bottom of the hold and the hold walls generally are plane surfaces or no more than single-curved surfaces so that they can be readily covered with a minimum of fitting and cutting by use of insulation board or sheet stock.
  • Insulation board stock is not readily adaptable to insulating the surfaces of tank shell 12 because the surface of the shell is double-curved.
  • the system of this invention employing the resilient blanket and loose fill insulation combination is readily adaptable to double-curved surfaces and involves no problem in fitting the insulation to the contour of the tank shell.
  • the resilient blanket-loose fill insulation system also provides an advantage in that no seams or gaps can develop in the insulation over the top portion of the tank shell even during thermal movement of the storage tank or through movement of the tank caused by motion of the ship. If an insulating board system was used over the top portion of the tank. gaps or seams could develop through such movement and this would lead to a decrease in insulating capacity because of the discontinuity in the insulation and the flow of air through the gaps.
  • any suitable material can be used for the splash shield 26.
  • One suitable material is made of a sheet of a polymeric material bonded to an aluminum sheet.
  • the polymeric material can be Mylar or some equivalent material which can withstand the low temperatures to which it will be subjected.
  • a commercially available laminate of Mylar and aluminum foil is available under the trade name Zero perm.
  • FIGS. 5 and 6 illustrate a second embodiment of the invention; however, the features, except those which will be subsequently described. are the same as those illustrated in FIGS. 1 to 4.
  • the tank shell 12 in FIGS. 5 and 6 is supported by a cylindrical metal skirt 50 which is mounted on its lower edge on a ledge of the ship hold 13.
  • Ring 51 is mounted on the shell 12 and extends around the spherical shell. The ring is joined to the top edge of cylindrical skirt 50.
  • the top portion of the shell 12 shown in FIGS. 5 and 6 has a splash shield made of metal, such as aluminum sheet, spaced outwardly from the surface of shell 12 but joined thereto by metal tabs 56.
  • the space between the splash shield 55 and shell 12 provides clearance for any liquefied gas which leaks from the tank to flow downwardly and to thereby avoid penetrating into any of the adjacent insulation.
  • the space also provides an accessible space for leak detection by the passage of a carrier gas which can then be analyzed for the presence of hydrocarbons.
  • the illustrated splash shield configuration does not depend on the use of columns or a skirt support system.
  • suitable drain holes 37 are positioned in the expansion joint 20 to provide conduit means for escaped liquefied gas to flow downwardly along the tank into the drip pan 21.
  • the tank shown in the drawings is spherical, it should be understood that the invention is not limited to a tank of this shape or to the illustrated systems used to secure the tank to the ship.
  • said loose fill insulation is supported at the bottom against downward flow by an expansion joint between the tank and ship hold walls which permits horizontal and vertical displacements of the tank relative to the ship hold walls.
  • the tank is a metal spherical shell and that part of the shell which is in the insulated ship hold is uninsulated below the resilient blanket, and the hold contains no other insulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

A ship having a hold containing a tank, for transporting a cryogenic liquefied gas, which is structurally free-standing and is spaced or separated from the ship hold walls, insulation secured to the ship hold walls and hold bottom, a ship hold cover extending over the tank top portion and joined to the ship, and a layer of loose fill insulation and a resilient blanket layer between the tank top portion and the ship hold cover.

Description

Sept. 9, 1975 United States atent 1 1 Laverman et a1.
[54] LIQUEFIED GAS SHIP TANK INSULATION 3,770,158 11/1973 Alleaurne 220/9 LG SYSTEM FOREIGN PATENTS OR APPLICATIONS 235,188 6/1960 Australia.......................... 220/9 LG [75] Inventors: Royce Jay Laverman, South Holland; Robert Newton Davis,
OTHER PUBLICATIONS The Methane Tanker Jules Verne, The Motor Ship, Oct, 1964, p. 276t.
Bolingbrook; Ivan Vallier La Fave, Naperville, all of 111.
[73] Assignee: Chicago Bridge & Iron Company,
Oak Brook, 11].
Dec. 6, 1973 Appl. No.1 422,533
Assistant EranzinerGregory W. OConnor 221 Filed:
Attorney, Agent, or FirmMerriam, Marshall, Shapiro & Klase ABSTRACT [57 A ship having a hold containing a tank, for transport- [52] US. 114/74 A; 220/9 LG [51] Int. C19... 13638 25/16 114/74 A; 220/9 LG, 9 B,
Field of Search ing a cryogenic liquefied gas, which is structurally free -standing and is spaced or separated from the ship hold walls, insulation secured to the ship hold walls and hold bottom,
a ship hold cover extending over the [56] References Cited UNITED STATES PATENTS tank top portion and joined to the ship, and a layer of loose fill insulation and a resilient blanket layer be tween the tank top portion and the ship hold cover.
3,276,412 10/1966 Estes et 114/74 A 220/9 LG 2 3,491,910 1/1970 Buckwalter ct al. 4/1972 3,655,086 Trcnner............................ 20/9 LG 8 Claims, 6 Drawing Figures PATENTED SEP 9 75 SHEET 1 BF 3 FIG! LIQUEFIED GAS SHIP TANK INSULATION SYSTEM This invention relates to ships used for transporting cryogenic liquefied gases. More particularly, this invention is concerned with improvements in insulation systems used on ships which contain tanks for transporting cryogenic liquefied gases and which tanks are separate, independent, free-standing structures resting on supports attached to the ship hull or hold structure.
Many useful gases are available or are produced at geographical locations far removed from the locations where they are used or needed. Although some such gases can be economically transported under pressure in the form of a gas. it is generally more desirable to liquefy the gas and transport it in that form because of the increased volume of gas which can be transported in liquid form rather than in the form of a gas.
Some gases can be liquefied at moderate pressures and shipped in tanks capable of maintaining the gas under such pressure to keep it in liquid form. Propane and butane are representative of such gases. Because the pressure needed to liquefy such gases at atmospheric temperature is not unduly great, the pressure vessel required for storage of the so liquefied gas can be built economically and of a relatively large size. Cryogenic gases however cannot be readily liquefied even at fairly high pressures unless the temperature of the liquefied gas is also reduced substantially below atmospheric temperature. Because it is difficult and expensive to construct a pressure vessel capable of storing a cryogenic liquefied gas at high pressure in large volume, it has been found more practical and less expensive to cool the cryogenic liquefied gas to a temperature at which it can be stored in a tank designed to withstand a minimum internal pressure plus the hydrostatic and dynamic loads of the liquid. For example, it has been found convenient to store liquefied natural gas, which is essentially methane, at about 260F. and at about psia, or just slightly above atmospheric pressure. Other cryogenic liquefied gases such as hydrogcn, helium and ethylene can similarly be stored at about atmospheric pressure following their refrigeration to a temperature at which they boil at such pressure.
Tanks for transporting cryogenic liquefied gases at about atmospheric pressure in a ship or barge are of two main types. The first type of tank is one in which the tank walls and bottom are contoured to be in essentially continuous contact with, and be supported by, the walls and bottom ofa ship hold. Such a tank relies upon this continuous contact with the walls of the hold of the ship for its strength and support. The second type of tank is a structurally free-standing tank which is spaced or separated from the ship hold wall. Such a tank does not rely upon continuous contact with the hold walls for necessary structural strength or support. Such tanks have a support system which transmits the loads of the storage tank to the ship structure through localized support areas, such as would be the case, for example. when using columns or a skirt to support a spherical tank. Such tanks are considered to be safer than the first type of tank because they can maintain their integral strength even if there is a failure of, or damage to, portions of the ships hull.
Suitable means must be used in ships or barges having cargo tanks for transporting cryogenic liquefied gases to reduce or retard heat leak so that the amount of liquefied gas which is vaporized is minimized or limited to an acceptable value. Not only must the tank be insulated to retard heat leak into the liquefied gas but, in addition, it is necessary that insulation prevent the refrigerated contents of the tank from cooling the ship structure to a temperature low enough to cause structural failure of metal parts not made of metal suitable for low temperature use.
Suitably insulating a cryogenic liquefied storage tank on a ship or barge is not a simple matter. One type of tank suitable for this use has double-curved surfaces which do not lend themselves to ready insulation by the application of insulation boards or sheets because of the cost and expense of fitting the insulation in contact with the tank surface. Furthermore, such tanks often have a top portion which extends partially above the ship deck. The tank top portion furthermore is often domed and usually will have a spherical or ellipsoidal shape. Not only must the tank top portion having such a shape be suitably insulated but also the insulation must be protected against the adverse weather conditions which the ship will meet in service. A hold cover is generally installed for this purpose.
According to the present invention there is provided an improved system for insulating a ship tank for transporting a cryogenic liquefied gas and which tank is structurally free-standing and is spaced or separated from the ship hold wall. As used herein and in the claims, ship" includes all types of ships as well as barges and boats. The improved insulation system comprises non-granular insulation secured to the ship hold walls and hold bottom, a ship hold cover extending over the tank top portion and joined to the ship, and a layer of loose fill insulation plus a resilient blanket layer between the tank top portion and the ship hold cover. The insulating system of this invention is particularly useful when the tank top portion extends partially above the ship deck and also when the ship hold cover are both domed and are advisably also approximately equally spaced apart over a substantial part of their areas.
A further important feature of the invention is the inclusion of a splash shield which separates the tank top portion from the loose fill insulation so that in case there is a leak in the tank shell the escaping liquid or vapor will be prevented from penetrating the loose fill insulation and cooling the adjacent portion of the ship hold cover or hold wall.
It is important that the tank be completely surrounded by an insulating system. To do this, the resilient blanket and the loose fill insulation can be terminated adjacent to the non-granular insulation on the ship hold walls. in this way the tank is positioned within a totally insulated space even though only the upper portion of the tank has insulation directly, or essentially, in contact with the outer surface of the tank shell. Thus, since the tank shell lower part is located inside of the insulated ship hold, it is suitable to leave the tank shell non-insulated over that surface area which projects downwardly from the lower edge of the resilient blanket.
The invention will now be described further in conjunction with the attached drawings, in which:
HO. 1 is an isometric view of a ship containing five spherical storage tanks for cryogenic liquefied gas;
FIG. 2 is a sectional view taken along the line 22 of FIG. 1;
FIG. 3 is an enlarged sectional view of the insulation structure used in the top portion of the tank shown in FIG. 2;
FIG. 4 is a vertical sectional view of an expansion joint arrangement which separates the loose fill insulation from the insulation applied to the ship hold walls;
FIG. 5 is a view similar to that shown in FIG. 2 but with a somewhat different splash shield arrangement over the upper part of the tank and with the tank supported by a cylindrical skirt rather than a series of Columns; and
FIG. 6 is an enlarged view of the insulation structure used in the top portion of the tank of FIG. 5.
So far as is practical the same numbers will be used in the different views of the drawings to identify the same or identical parts or elements.
With reference to FIGS. 1, 2 and 3, the ship 10 is shown with five spherical tanks 1 l for storing cryogenic liquefied gas at a very low temperature and at about atmospheric pressure or at such other pressure as is considered appropriate and suitable for practical transportation of the liquefied gas. Each tank 11 comprises a spherical metal shell 12 positioned in the ship hold 13 so that the major part of the shell is located below the main deck 14 of the ship but with an upper top portion of the tank shell protruding above the deck. As shown in FIG. 2, metal rings 15 and 16 extend around shell 12 in a horizontal manner and the vertical stiffeners 17 extend between the rings. A plurality of spaced apart columns 18 around shell 12 extend from a supporting ledge in the ship hold to ring 16 to support the metal shell 12 securely in position. The lower portion of columns 18 can be insulated (not shown) to prevent the adjacent ship hold at the base of the column from becoming too cold.
The lower portion of the inside surface of the hold 13 is covered by non-granular insulation 19 which extends over the entire ship hold bottom and side walls up to the expansion joint 20. Insulation 19 can be of the foamed-in-place type of insulation or it can be composed of insulation board or sheet stock firmly secured to the hold surfaces. Sheet 21 is positioned over the insulation 19 in the ship hold bottom and functions as a drip pan to collect all liquefied gas which may leak from the spherical shell 12. The drip pan 21 is made of a material which can withstand the low temperature of the liquefied gas without structural failure. The drip pan prevents liquefied gas from penetrating the insulation on the ship hold bottom and thereby keeps it from contacting the metal plates used in the construction of the ship hold. By keeping the cold liquefied gas out of contact with the metal used for the ship hold there is avoided any necessity to construct that part of the ship proper of a metal or other material capable of withstanding the cold temperature of the liquefied gas without failing.
As shown in FIGS. 2 and 3, resilient blanket 25 is placed in contact with the outer surface of spherical shell 12 over that surface of the shell extending above the expansion joint 20. A liquefied gas and vapor impermeable sheet or covering splash shield 26 is placed over the outer surface of resilient blanket 25 to prevent any liquefied gas which leaks therefrom from penetrating into the loose fill insulation 27 which is placed over the resilient blanket. Rigid metal hold cover 28 is placed over the loose fill insulation and extends to the ship, such as to the ship deck. The top of shell 12 is provided with a cupola 29 in which supporting utility pipes, pumps and various operating control systems can be positioned. The cupola is also shown covered both on its sides and top with the resilient blanket 25, splash shield 26, and loose fill insulation 27. In some instances it is desirable to terminate the resilient blanket 25, splash shield 26, and loose fill insulation at some position along the side wall of the cupola. The upper remaining surface of the cupola can then be covered with another insulation, such as foamed-in-place polyurethane foam.
Conduit 30 can be used to withdraw vapor from the shell 12 or to fill it with a liquefied gas. Furthermore, conduit 31 which can extend to the bottom of the tank shell, can be used to remove liquefied gas from the tank.
FIG. 4 shows the expansion joint 20 in greater detail. Vertical plate 32 constitutes the ship hold wall on which non-granular insulation 19 equipped externally with a spray shield (not shown) is secured. Metal plate 33 extends inwardly in a horizontal direction from hold wall 32. Near the inner edge of plate 33 is positioned upwardly extending metal plate 34 which supports an inwardly directed horizontal plate 35. On the inner edge of plate 35 there is positioned a downwardly directed plate 36. Metal plate 38 is horizontally joined to the outer surface of tank shell 12. Drain holes 37 are placed in metal plate 38 to permit drainage of any leaking liquefied gas into the drip pan 21. Joined to the outer edge of metal plate 38 is metal plate 39 which projects vertically upwardly towards plate 35. Vertically extending plate 39 is positioned approximately midway between the plates 34 and 36. Resilient blanket 40 is doubled over twice to form a W-shape in the space between the plates 34 and 36 with the fold between the two vs of the W locked over the upwardly extending vertical plate 39. The described expansion joint prevents the loose fill insulation 27 from falling downwardly into the ship hold yet it permits the tank shell 12 to expand and contact with temperature change Without displacement of the loose fill insulation 27.
The described insulation system accommodates temperature expansion and contraction of the tank shell 12 without displacement of the loose fill insulation 27. When the vessel shell 12 expands the dimensional enlargement of the shell is acccommodated through compression of the resilient blanket 25. When the tank shell 12 cools and contracts, such as when it is filled with liquefied natural gas, the dimensional shrinkage or reduction of tank shell 12 is accompanied by expansion of the resilient blanket 25 without any significant displacement of loose fill insulation 27.
Any suitable resilient blanket can be used in the insulating system of this invention. A particularly useful resilient blanket is one made of fine glass fibers bonded together by a thin film of a phenolformaldehyde resin. The glass fibers can have a nominal diameter less than 0.00015 inch and the blanket can have a density of about l2 pounds per cubic foot. A commercially available resilient blanket of glass fibers which can be used in practicing this invention is marketed under the trade names Ultralite and Textrafine. The thickness of the blanket employed will, of course, depend on the size of the tank shell, the metal of which it is made and the temperature cycle to which the shell will be subjected during use. Further details concerning the qualities desired in a suitable resilient blanket are set forth in Wissmiller US. Pat. No. 3,147,878.
Any suitable loose fill insulation can be employed in the insulating system of this invention. It is presently considered advisable however to employ expanded perlite or vermiculite for this purpose since it can withstand the pressures applied against it by the resilient blanket during warm-up and expansion of the tank shell.
Insulation of the ship hold is readily achieved because the bottom of the hold and the hold walls generally are plane surfaces or no more than single-curved surfaces so that they can be readily covered with a minimum of fitting and cutting by use of insulation board or sheet stock. Insulation board stock, however, is not readily adaptable to insulating the surfaces of tank shell 12 because the surface of the shell is double-curved. The system of this invention, however, employing the resilient blanket and loose fill insulation combination is readily adaptable to double-curved surfaces and involves no problem in fitting the insulation to the contour of the tank shell.
The use of the resilient blanket-loose fill insulation combination employed on the top portion of the tank shell surface does not lend itself to use on the lower part of the tank shell surface because the loose fill insulation complicates the provision of adequate drain means for conveying spillage of liquefied gas into a drip pan. Furthermore. the application of the insulation to the lower portion of the tank shell would complicate visual inspection of the vertical support system of the storage tank. By insulating the surface of the ship hold below essentially the equator level of the tank shell, instead of insulating the surface of the shell itself over this area. easy access for visual inspection of the majority of the tank support system is achieved.
The resilient blanket-loose fill insulation system also provides an advantage in that no seams or gaps can develop in the insulation over the top portion of the tank shell even during thermal movement of the storage tank or through movement of the tank caused by motion of the ship. If an insulating board system was used over the top portion of the tank. gaps or seams could develop through such movement and this would lead to a decrease in insulating capacity because of the discontinuity in the insulation and the flow of air through the gaps.
Any suitable material can be used for the splash shield 26. One suitable material is made of a sheet of a polymeric material bonded to an aluminum sheet. The polymeric material can be Mylar or some equivalent material which can withstand the low temperatures to which it will be subjected. A commercially available laminate of Mylar and aluminum foil is available under the trade name Zero perm.
FIGS. 5 and 6 illustrate a second embodiment of the invention; however, the features, except those which will be subsequently described. are the same as those illustrated in FIGS. 1 to 4. The tank shell 12 in FIGS. 5 and 6 is supported by a cylindrical metal skirt 50 which is mounted on its lower edge on a ledge of the ship hold 13. Ring 51 is mounted on the shell 12 and extends around the spherical shell. The ring is joined to the top edge of cylindrical skirt 50. The top portion of the shell 12 shown in FIGS. 5 and 6 has a splash shield made of metal, such as aluminum sheet, spaced outwardly from the surface of shell 12 but joined thereto by metal tabs 56. The space between the splash shield 55 and shell 12 provides clearance for any liquefied gas which leaks from the tank to flow downwardly and to thereby avoid penetrating into any of the adjacent insulation. The space also provides an accessible space for leak detection by the passage of a carrier gas which can then be analyzed for the presence of hydrocarbons. The illustrated splash shield configuration does not depend on the use of columns or a skirt support system. Of course, suitable drain holes 37 are positioned in the expansion joint 20 to provide conduit means for escaped liquefied gas to flow downwardly along the tank into the drip pan 21.
Although the tank shown in the drawings is spherical, it should be understood that the invention is not limited to a tank of this shape or to the illustrated systems used to secure the tank to the ship.
The foregoing detailed description has been given for clearness of understanding only, and no unnecessary limitations should be understood therefrom as modifications will be obvious to those skilled in the art.
What is claimed is:
1. In a ship having a hold containing at least one tank, for transporting a cryogenic liquefied gas, which is structurally free-standing and is spaced or separated from the ship hold walls, the improvement comprising:
insulation secured to the ship hold walls and hold bottom,
a ship hold cover extending over the tank top portion and joined to the ship,
a layer of loose fill insulation and a resilient blanket layer between the tank top portion and the ship hold cover,
said resilient blanket and the loose fill insulation terminating at a lower edge adjacent to the insulation on the ship hold walls, and
said loose fill insulation is supported at the bottom against downward flow by an expansion joint between the tank and ship hold walls which permits horizontal and vertical displacements of the tank relative to the ship hold walls.
2. In a ship having a hold containing at least one tank, for transporting a cryogenic liquefied gas, which is structurally free-standing and is spaced or separated from the ship hold walls, the improvement comprising:
insulation secured to the ship hold walls and hold bottom,
a ship hold cover extending over the tank top portion and joined to the ship,
a layer of loose fill insulation and a resilient blanket layer between the tank top portion and the ship hold cover,
said resilient blanket and the loose fill insulation terminating at a lower edge adjacent to the insulation on the ship hold walls, and
the tank is a metal spherical shell and that part of the shell which is in the insulated ship hold is uninsulated below the resilient blanket, and the hold contains no other insulation.
3. The improvement according to claim 1 which the tank top portion and the ship hold cover are both domed.
4. The improvement according to claim 1 in which a splash shield separates the tank top portion from the loose fill insulation.
5. The improvement according to claim 3 in which 7. The improvement according to claim 1 in which the splash shield is between the resilient blanket and the loose fill insulation is expanded perlite or vermicuthe loose fill insulation. lite.
6. The improvement according to claim 1 in which 8. The improvement according to claim 5 in which the tank is a metal spherical'shell and that part of the 5 the splash shield is fabricated from bonded sheets of shell which is in the insulated ship hold is uninsulated polymeric material and aluminum sheet below the resilient blanket.

Claims (8)

1. In a ship having a hold containing at least one tank, for transporting a cryogenic liquefied gas, which is structurally free-standing and is spAced or separated from the ship hold walls, the improvement comprising: insulation secured to the ship hold walls and hold bottom, a ship hold cover extending over the tank top portion and joined to the ship, a layer of loose fill insulation and a resilient blanket layer between the tank top portion and the ship hold cover, said resilient blanket and the loose fill insulation terminating at a lower edge adjacent to the insulation on the ship hold walls, and said loose fill insulation is supported at the bottom against downward flow by an expansion joint between the tank and ship hold walls which permits horizontal and vertical displacements of the tank relative to the ship hold walls.
2. In a ship having a hold containing at least one tank, for transporting a cryogenic liquefied gas, which is structurally free-standing and is spaced or separated from the ship hold walls, the improvement comprising: insulation secured to the ship hold walls and hold bottom, a ship hold cover extending over the tank top portion and joined to the ship, a layer of loose fill insulation and a resilient blanket layer between the tank top portion and the ship hold cover, said resilient blanket and the loose fill insulation terminating at a lower edge adjacent to the insulation on the ship hold walls, and the tank is a metal spherical shell and that part of the shell which is in the insulated ship hold is uninsulated below the resilient blanket, and the hold contains no other insulation.
3. The improvement according to claim 1 which the tank top portion and the ship hold cover are both domed.
4. The improvement according to claim 1 in which a splash shield separates the tank top portion from the loose fill insulation.
5. The improvement according to claim 3 in which the splash shield is between the resilient blanket and the loose fill insulation.
6. The improvement according to claim 1 in which the tank is a metal spherical shell and that part of the shell which is in the insulated ship hold is uninsulated below the resilient blanket.
7. The improvement according to claim 1 in which the loose fill insulation is expanded perlite or vermiculite.
8. The improvement according to claim 5 in which the splash shield is fabricated from bonded sheets of polymeric material and aluminum sheet.
US422533A 1973-12-06 1973-12-06 Liquefied gas ship tank insulation system Expired - Lifetime US3903824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US422533A US3903824A (en) 1973-12-06 1973-12-06 Liquefied gas ship tank insulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US422533A US3903824A (en) 1973-12-06 1973-12-06 Liquefied gas ship tank insulation system

Publications (1)

Publication Number Publication Date
US3903824A true US3903824A (en) 1975-09-09

Family

ID=23675311

Family Applications (1)

Application Number Title Priority Date Filing Date
US422533A Expired - Lifetime US3903824A (en) 1973-12-06 1973-12-06 Liquefied gas ship tank insulation system

Country Status (1)

Country Link
US (1) US3903824A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089285A (en) * 1976-09-22 1978-05-16 Hitachi Shipbuilding & Engineering Co., Ltd. Secondary barrier construction for vessels carrying spherical low temperature liquified gas storage tanks
US4126099A (en) * 1977-06-27 1978-11-21 Chicago Bridge & Iron Company Ship with flat bottom tank and shrink-fit system for lateral support
US4128187A (en) * 1975-10-02 1978-12-05 Hitachi Shipbuilding & Engineering Co., Ltd. Secondary barrier construction for low temperature liquified gas storage tank carrying vessels
US4156492A (en) * 1977-06-27 1979-05-29 Lox Equipment Company Vessel support apparatus
US4233921A (en) * 1978-01-31 1980-11-18 Sener Ingenieria Y Sistemas, S.A. Transport vessels having liquid gas storage tanks
JPS5816976A (en) * 1981-07-24 1983-01-31 Mitsubishi Heavy Ind Ltd Coating construction of tank top in low temperature tank ship
FR2515780A1 (en) * 1981-11-04 1983-05-06 Moss Rosenberg Verft As WATERPROOF THERMAL INSULATION DEVICE BETWEEN TWO STRUCTURAL ELEMENTS
FR2540967A1 (en) * 1983-02-11 1984-08-17 Nord Mediterranee Chantiers LIQUEFIED GAS TRANSPORT VESSEL, METHOD AND DEVICE FOR THERMALLY INSULATING THE VESSELS THEREOF
US4498602A (en) * 1983-12-08 1985-02-12 Chicago Bridge & Iron Company Resilient blanket with integral high strength facing and method of making same
US20050061222A1 (en) * 2003-09-24 2005-03-24 Miyazaki Satoshi Tank covers and ships
KR100487444B1 (en) * 2001-10-12 2005-05-04 삼성중공업 주식회사 On board insulation method of prismatic type LPG cargo tank
US20120074150A1 (en) * 2010-09-29 2012-03-29 Basf Se Device for storing hot, corrosively active liquids and use of the device
WO2016006382A1 (en) * 2014-07-10 2016-01-14 三菱重工業株式会社 Carrier ship

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276412A (en) * 1964-08-12 1966-10-04 Bethlehem Steel Corp Fluid tight shield
US3491910A (en) * 1966-09-06 1970-01-27 Pittsburgh Des Moines Steel Low temperature storage tank
US3655086A (en) * 1970-10-09 1972-04-11 Cryotan Inc Receptacles for the storage of liquefied gases at cryogenic temperatures
US3770158A (en) * 1971-05-24 1973-11-06 Technigaz Device for protecting the environment of a tank against failures thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3276412A (en) * 1964-08-12 1966-10-04 Bethlehem Steel Corp Fluid tight shield
US3491910A (en) * 1966-09-06 1970-01-27 Pittsburgh Des Moines Steel Low temperature storage tank
US3655086A (en) * 1970-10-09 1972-04-11 Cryotan Inc Receptacles for the storage of liquefied gases at cryogenic temperatures
US3770158A (en) * 1971-05-24 1973-11-06 Technigaz Device for protecting the environment of a tank against failures thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128187A (en) * 1975-10-02 1978-12-05 Hitachi Shipbuilding & Engineering Co., Ltd. Secondary barrier construction for low temperature liquified gas storage tank carrying vessels
US4089285A (en) * 1976-09-22 1978-05-16 Hitachi Shipbuilding & Engineering Co., Ltd. Secondary barrier construction for vessels carrying spherical low temperature liquified gas storage tanks
US4126099A (en) * 1977-06-27 1978-11-21 Chicago Bridge & Iron Company Ship with flat bottom tank and shrink-fit system for lateral support
US4156492A (en) * 1977-06-27 1979-05-29 Lox Equipment Company Vessel support apparatus
US4233921A (en) * 1978-01-31 1980-11-18 Sener Ingenieria Y Sistemas, S.A. Transport vessels having liquid gas storage tanks
JPS5816976A (en) * 1981-07-24 1983-01-31 Mitsubishi Heavy Ind Ltd Coating construction of tank top in low temperature tank ship
JPS64277B2 (en) * 1981-07-24 1989-01-05 Mitsubishi Heavy Ind Ltd
FR2515780A1 (en) * 1981-11-04 1983-05-06 Moss Rosenberg Verft As WATERPROOF THERMAL INSULATION DEVICE BETWEEN TWO STRUCTURAL ELEMENTS
EP0117828A1 (en) * 1983-02-11 1984-09-05 CHANTIERS DU NORD ET DE LA MEDITERRANEE Société Anonyme dite: Ship for the transport of liquefied gas, method and device for the thermal insulation of its tanks
FR2540967A1 (en) * 1983-02-11 1984-08-17 Nord Mediterranee Chantiers LIQUEFIED GAS TRANSPORT VESSEL, METHOD AND DEVICE FOR THERMALLY INSULATING THE VESSELS THEREOF
US4498602A (en) * 1983-12-08 1985-02-12 Chicago Bridge & Iron Company Resilient blanket with integral high strength facing and method of making same
KR100487444B1 (en) * 2001-10-12 2005-05-04 삼성중공업 주식회사 On board insulation method of prismatic type LPG cargo tank
US20050061222A1 (en) * 2003-09-24 2005-03-24 Miyazaki Satoshi Tank covers and ships
US7520232B2 (en) * 2003-09-24 2009-04-21 Mitsubishi Heavy Industries, Ltd. Tank covers and ships
US20120074150A1 (en) * 2010-09-29 2012-03-29 Basf Se Device for storing hot, corrosively active liquids and use of the device
WO2016006382A1 (en) * 2014-07-10 2016-01-14 三菱重工業株式会社 Carrier ship
JP2016016806A (en) * 2014-07-10 2016-02-01 三菱重工業株式会社 Carrier ship
CN106458296A (en) * 2014-07-10 2017-02-22 三菱重工业株式会社 Carrier ship

Similar Documents

Publication Publication Date Title
US3903824A (en) Liquefied gas ship tank insulation system
US3680323A (en) Tanker for liquified and/or compressed gas
US3993213A (en) Thermally insulated cryogenic container
JP6838067B2 (en) Ship containment system for liquefied gas
US4106424A (en) Insulated marine container for liquefied gas
CA1045061A (en) Insulated tank
JP6466581B2 (en) System for connecting at least one pipe between an LNG tank and its tank connection space
KR102543434B1 (en) Loading system of liquid hydrogen storage tank for ship
KR102478353B1 (en) Liquid hydrogen storage tank for ship
US3347402A (en) Cryogenic tank
US3882809A (en) Storage vessel for ship transport of liquefied gas
JPH08295394A (en) Cryogenic tank for cryogenic liquefied gas
US3337079A (en) Stressed membrane liquified gas container
US3136135A (en) Shipping liquefied gases
USRE29463E (en) Tanker for liquified and/or compressed gas
US3477606A (en) Membrane tank structures
KR102603746B1 (en) Dome barrier structure of independence type storage tank
US3566824A (en) Marine transportation of liquified gases
US3052203A (en) Ship and tank thereon
US3159004A (en) Transportation of liquefied natural gas
US3828709A (en) Lng cargo tank insulation system
KR20150044727A (en) Upper Structure Of Cargo Tank, And Insulation And Gas Tight Method Of The Same
WO2009067017A1 (en) Cylindrical tank for transport and storage of chilled, liquified gas on a floating unit, with provisions for reducing liquid movements and absorbing deformations due to variations of the internal load
US3225955A (en) Land storage for liquefied gases
CN112278163A (en) Low-temperature liquid cargo leakage protection device of independent liquid tank