US3901689A - Method for producing chromium-chromium carbide powder - Google Patents
Method for producing chromium-chromium carbide powder Download PDFInfo
- Publication number
- US3901689A US3901689A US482990A US48299074A US3901689A US 3901689 A US3901689 A US 3901689A US 482990 A US482990 A US 482990A US 48299074 A US48299074 A US 48299074A US 3901689 A US3901689 A US 3901689A
- Authority
- US
- United States
- Prior art keywords
- chromium
- powder
- carbon
- carbide
- coatings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000843 powder Substances 0.000 title claims abstract description 76
- 229910003470 tongbaite Inorganic materials 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- RMXTYBQNQCQHEU-UHFFFAOYSA-N ac1lawpn Chemical compound [Cr]#[Cr] RMXTYBQNQCQHEU-UHFFFAOYSA-N 0.000 title description 3
- 239000011651 chromium Substances 0.000 claims abstract description 121
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 83
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 80
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 71
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000002245 particle Substances 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 30
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000000203 mixture Substances 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000007789 gas Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 239000001257 hydrogen Substances 0.000 claims description 7
- 239000004215 Carbon black (E152) Substances 0.000 claims description 6
- 229930195733 hydrocarbon Natural products 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 238000000576 coating method Methods 0.000 abstract description 70
- 150000001247 metal acetylides Chemical class 0.000 abstract description 13
- 239000002131 composite material Substances 0.000 abstract description 5
- 238000005474 detonation Methods 0.000 abstract description 4
- 239000011159 matrix material Substances 0.000 abstract description 3
- 229910019863 Cr3 C2 Inorganic materials 0.000 abstract 1
- 229910019869 Cr7 C3 Inorganic materials 0.000 abstract 1
- 235000012721 chromium Nutrition 0.000 description 56
- 239000011248 coating agent Substances 0.000 description 32
- 238000006243 chemical reaction Methods 0.000 description 28
- 238000000151 deposition Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 230000008021 deposition Effects 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 238000009826 distribution Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 231100000241 scar Toxicity 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000006233 lamp black Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000000320 mechanical mixture Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 208000032544 Cicatrix Diseases 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- -1 chromium carbides Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 229940099112 cornstarch Drugs 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 238000000399 optical microscopy Methods 0.000 description 2
- 230000037387 scars Effects 0.000 description 2
- 238000004901 spalling Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 235000013531 gin Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003621 hammer milling Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 238000010671 solid-state reaction Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000009718 spray deposition Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
- C22C32/0052—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B55/00—Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
- F02B55/08—Outer members for co-operation with rotary pistons; Casings
Definitions
- a composite powder for use in producing articles or coatings having unique wear and frictional characterl l PP 432,990 istics consisting essentially of a chromium matrix with Relaed Application Data at least one chromium carbide taken from the class of carbides consisting of Cr C Cr, C and Cr C and [62] g lzfi g 1973 each particle containing from about 0.2 wt to about 5.4 wt carbon.
- CARBIDES CARBIDES CHROMIUM CHROMIUM CARBIDES CHROMIUM F I 5 METHOD FOR PRODUCING CHROMIUM-CHROMIUM CARBIDE POWDER This is a division of application Ser. No. 388,433, filed Aug. 15, I973, now US. Pat. No. 3,846,084.
- This invention relates to a novel powder for use in producing articles and coatings having unique wear and frictional characteristics. More particularly this invention relates to powders which are to be applied as a coating on a substrate using metal spraying techniques and to the articles and coatings made thereby.
- Chromium metal has been used as an electroplated coating (i.e., hard chromium plating") for many years to restore worn or damaged parts to their original dimensions, to increase wear resistance, reduce friction, and provide corrosion resistance. Chromiums excellent wear and frictional characteristics have been attributed to its low ratio of energy of adhesion to hardness when mated against a number of materials that are commonly used in engineering applications. Hard chromium electroplate, however, has a number of limitations. The electroplating of chromium is economically feasible when the configuration of the part is relatively simple and the number of the parts and/or their size is relatively small. When the configuration of the part becomes complex, obtaining a uniform coating thickness by electro-deposition is difficult and requires precise placement of electrodes and thieves.
- An alternative method of depositing chromium metal is by metal spraying such as with a plasma or detonation gun.
- metal spraying such as with a plasma or detonation gun.
- These methods offer a number of processing advantages.
- Surface prepartion is relatively simple and inexpensive.
- the coatings can be applied to almost any metallic substrate without using undercoats.
- the rate of deposition is very high so that a large volume of parts can be coated with a minimal capital investment.
- the coating thickness can be controlled very closely so that any subsequent finishing can be kept to a minimum.
- the overspray can be easily contained and recovered making pollution control a simple matter.
- plasma-deposited chromium is not as wear-resistant at ambient temperature as hard electroplated chromium. This is because the wear-resistance of chromium plate is not an inherent property of elemental chromium but is believed to arise largely from impurities and stresses incorporated in the coating during plating. Plasma deposited chromium being a purer form of chromium thus lacks the wear resistances of hard chromium plate while retaining the corrosionresistance characteristics of chromium.
- coatings made by the plasma or detonation-gun process can be made that are remarkably superior to hard chromium electroplate in compatibility, frictional characteristics and wear resistance by incorporating a dispersion of chromium carbide particles in a chromium matrix.
- Coatings of this type have been made from mechanical mixtures of powders as described in my co-pending application Ser. No. 388,434 filed Aug. 15, 1973. While such mechanical mixtures are advantageous, there are certain limitations to the quality of coatings made from them. Both plasma and detonation-gun deposition result in a coating with a multilayer structure of overlapping, thin, lenticular particles or splats.” Each coating particle or splat is derived from a single particle of the powder used to produce the coating. There is little, if any, combining or alloying of two or more powder particles during the coating deposition process.
- each splat is a mixture of chromium and chromium carbide. This in turn requires that each powder particle contain a mixture of chromium metal and chromium carbide.
- each splat is a mixture of chromium metal and chromium carbides.
- Another object is to provide such a powder which contains chromium and chromium carbide in each particle.
- a further object is to provide a method for making such powder.
- Yet another object is to provide a chromium/chromium carbide coating having superior property to hard chromium electroplate.
- Still another object is to provide a coated trochoid surface for a rotary combustion engine.
- FIG. 1 is a pictorial representation of the structure obtained by depositing mechanical mixture of chromium and chromium carbides
- FIG. 2 is a pictorial representation of the type structure obtained by depositing the powder of this invention.
- FIGS. 3, 4 and 5 show possible distribution of the carbide phases in the powder particles
- FIG. 6 shows the variation of wear scar volumes with carbon content of the powder used to produce the coating tested, compared to coatings of hard chrome plate
- FIG. 7 shows the hardness of coatings obtained with powders of various carbon content compared to hard- 3 ness of hard chrome plate.
- the methods of this invention produce a composite powder containing the desired amount of chromium carbide and chromium in which substantially each particle contains at least some chromium and chromium carbide.
- Examples of the possible distributions of the carbide phases in the powder particles are shown in FIGS. 3, 4 and 5.
- the exact composition of the carbide phases in the powder or the distribution of the carbide phases as shown in FIGS. 3, 4 and 5 are not important, only the total carbon content, since during deposition the particles become essentially completely molten.
- the carbides reprecipitate from the melt forming Cr C Cr,C or Cr C or a combination of these, depending on the total amount of C present and the rate of solidification.
- the preferred composition results in a predominantly Cr C dispersion.
- the material is prepared by chemical reaction of an intimate mixture of a source of Cr and a source of C; temperatures of lOO0l400C are suitable for solid state reactions. Times of from about 1-50 hours are suitable. Temperatures in excess of 1500C are required for production of the powder by melting referred to hereinafter.
- the principal reaction involved The principal product is cr, .,c,,, with minor amount of CT7C3 and Cl'aCz.
- reaction l When oxygen is present in the Cr (as Cr O or Cr,,O is used as the Cr source, reaction l is preceded or accompanied by The Cr formed in reaction (2) may react with C present in excess of the amount required to bring reaction (2) to completion to form Cr carbide by reaction (I).
- the source of Cr may be commercial Cr powder (e.g., Union Carbide Mining and Metals Division electrolytic chromium powder), Cr O as in reaction (2), or
- the source of carbon may be any commercial carbon consisting of essentially elemental C and volatile impurities. Decolorizing carbon, lampblack, and powdered graphite have been used with equal success.
- a higher carbide of Cr may be used as the C source, since it may react with Cr to form another carbide, the resulting product having the characteristic intimacy of the invention.
- a gaseous hydrocarbon or hydrocarbon/hydrogen gas mixture is also a suitable carbon source, provided its composition is such that the carbon activity is high enough to permit carbide formation.
- This reaction has not been used directly, but powdered mixtures of Cr and C heated in a H; atmosphere are found to consist, after reaction, of two-phase particles in which the carbide phase essentially encapsulates the original Cr particles as shown in FIG. 3.
- This structure differs from that found in similar mixtures heated in the absence of H which show mainly isolated areas of carbide formation on the Cr particles, as shown in FIG. 4, corresponding to points of solid-solid contact of the original Cr and C particles.
- the difference in structure is clear evidence that carbon has been transported through the vapor phase in the H atmosphere, by the reaction occurring at the Cr particles.
- This vapor transport reaction may be the principal source of Cr carbide formation or it may supplement reaction (I).
- the intimately mixed Cr/Cr carbide structure may also be prepared by melting Cr and C (present either as the element or as a Cr carbide) mixture of appropriate total analysis, allowing the homogeneous liquid to freeze and the Cr carbide to precipitate out, and then crushing the solidified melt to powder. Temperatures greater than I500C are required for this method. Limitations of higher melting temperatures and difficulty in crushing the solidified melt practically limit this method of preparation to carbon content of 3% by weight or more.
- the reaction of Cr and C is preferably carried out in vacuum because this promotes the removal of the gaseous C0 formed in reaction (2) or (6).
- the vacuum does not have to be extraordinarily good, ultimate system pressures between 0.01 and microns having been found to yield products of essentially the same oxygen content.
- the reaction can also be carried out in any atmosphere with oxygen potential sufficiently low to prevent oxidation of Cr.
- a hydrogen atmosphere is quite suitable and is particularly useful for the preparation of a composite of low C content with a uniform carbide distribution, since the H, takes part in the reaction and promotes uniform distribution.
- the product of the Cr C or C50, C reaction is a sintered cake, however the reaction is carried out. Sintering is least, and reduction to powder by ball-milling, hammer-milling, and other conventional techniques is easier, when the Cr O C reaction is used or when the Cr C reaction is carried out in H Lower reaction temperatures favor ease of reduction when the Cr C reaction is carried out in vacuum.
- the carbide distribution within the powder particle is a function of the method of production.
- the predominant form is that shown in FIG. 4 because the carbon tends to react with the chromium surface closest to it.
- the finer and more uniform the distribution of carbon in the starting mixture the more uniform the distribution of carbides around the surface of the chromium will be.
- the ultimate extension of this trend is achieved when a gaseous source of carbon is used either by directly supplying a hydrocarbon gas or by heating the solid carbon plus chromium in a hydrogen atmosphere (which results in a hydrocarbon gas).
- the carbide distribution which results is like that in FIG. 3.
- a distribution of carbon particles throughout the powder particle, FIG. 5, may result when a solid ingot of the proper total composition is reduced to powder.
- Oxygen content (in the range 0.03 to 1%) does not affect he wear properties of coatings made from powders of this invention.
- the carbon content of the powder of this invention may be between 0.2 percent and 5.4% by weight.
- plasma deposits made from the powder are superior in tests to similar deposits made from commercial electrolytic chromium powder.
- the high end of the range is defined by the complete conversion to the compound Cr C which contains 5.6% by weight; at this point, the material no longer contains free Cr.
- the wear resistance of coatings made from the powder varies with carbon content as shown in the band curve on FIG. 6.
- the range of values observed for commercial hard chrome plate is also shown in the FIG. 6 by the cross-hatched area adjacent to the vertical axis.
- the optimum composition is believed to lie in the range O.8l .7% C by weight, and may vary somewhat with the method of preparation. Coatings, made from powders in this composition range, are equivalent to or superior to commercial electrolytic Cr plate in laboratory lubricated rubbing wear tests at high load (see FIG. 6). Furthermore, the hardness. see FIG. 7, is at a minimum, making it possible to readily finish the coating with conventional grinding or honing tools. Lowsurface-speed, high-deposition-rate plasma plating produces well-bonded, uncracked coatings.
- powders containing about 1 wt carbon produce plasma deposited coatings on interior trochoid surfaces of rotary combustion engines which have remarkedly and unexpectedly superior properties, as shown hereinafter in Example 9.
- the coating of this invention is characterized by the presence in substantially every splat of both Cr and Cr carbide.
- the relative amounts of Cr and Cr Carbides will vary between splats as a necessary result of the use of powder with a range of partial sizes and adventitious difference in the degree to which each Cr particle is carburized and in the conditions to which the various particles are subjected in passing through the coating device.
- the coating of this invention is distinguished from that produced from a powder which is a simple mixture of Cr and Cr carbide, which is pictorially represented in FIG. 1, in that the splats in the latter type of coating are each individually either all Cr or all Cr carbide.
- FIG. 2 is to be understood as being merely illustrative of one feature of the distribution of the carbides in the coating.
- the majority of the carbide particles were found to be of submicron size and most were predominantly in the shape of a lace-like network, suggesting that the coatings contained fine-grained interlocking, continuous networks of both carbide and Cr, the separation between the interstices of these networks being so small that they are not resolvable in optical microscopy.
- the coatings produced with the powder of this invention have a number of advantages in addition to the general processing advantages previously described as being associated with metal spray deposition.
- Coatings are superior to those formed by the plasma deposition of commercial electrolytic chromium powder in that increased wear resistance and resistance to spalling are found, though there is minimal increase in hardness as measured by diamond pyramid indentations.
- Coatings are superior to coatings in which nitrogen rather than carbon is the strengthening additive, in that carbide-strengthened material is much less brittle and much less prone to spalling.
- Coatings of this invention performed far superior to electrolytic chrome plate coating on internal trochoid surfaces in rotary combustion engines as described in detail in Example 9.
- EXAMPLE I 8879 grams of Union Carbide Mining and Metals Division electrolytic chromium, screened through a 230- mesh sieve, was mixed with 200 grams of Fisher Scientific Company Norit A decolorizing carbon, similarly screened, and blended for 2 hours in a cone blender. A portion of this mixture was used to fill eight pans, each about 0.6 cm deep, so that each pan contained between 210 and 230 grams of the mixture. The pans were vertically stacked in a vacuum furnace so that there was about 0.4 clearance between pans. The furnace was evacuated slowly to about SOO-micron pressure and then more rapidly to about 0.5 micron, using an oil-diffusion pump.
- the 325mesh powders from the furnace runs were individually analyzed for combined carbon, free carbon, and oxygen. All showed less than 0.1% free carbon, between 300 and 420 ppm oxygen, and 105-1.08% combined carbon.
- the distribution of carbides on the chromium was similar to that in FIG. 4.
- EXAMPLE 2 Numerous mixtures differing only in the amounts of electrolytic chromium and decolorizing carbon used were processed as described in Example 1. The resulting powders, which ranged in carbon content from 0.6 to 5.4%, were used to form plasma-deposited coatings and tested for wear resistance using the techniques and procedures described in Example 1. Results of these tests are included in FIG. 6.
- EXAMPLE 3 5400 grams of the same electrolytic chromium powder used in preceding examples was mixed with 87 grams of lampblack for one hour in a ceramic ball mill and then further mixed for 30 minutes in a cone blender. The mixed powders were loaded into pans and heated in the vacuum furnace exactly as described in Example 1. The product, after reduction to 325 mesh powder, analyzed 0.81% carbon and 335 ppm oxygen. Plasma-deposited coatings were made and tested as described in Example 1. Scar volumes of 21 to 34 X l0 cm were observed; these results are included in FIG. 6.
- EXAMPLE 4 1476 grams of the same electrolytic chromium powder used in previous examples and 24 grams of the same screened decolorizing carbon used in previous ex amples were blended for two hours in a cone blender. Two boats, each 0.6 cm deep and about 25 cm long, were filled with this powder and placed in a 10 cm diameter ceramic tube furnace which was then sealed and evacuated with a mechanical pump for several hours. The furance was then filled with hydrogen, heated to l l50C, and maintained at this temperature for 22 hours, a flow of l 5 scfh of hydrogen being maintained during the entire cycle. The product was a sintered cake much more readily reduced to 325 mesh powder than the products of the vacuum processing previously described. This powder analyzed 1.06% carbon, 630 ppm oxygen.
- EXAMPLE 5 1773 grams of the same electrolytic chromium powder used in previous examples and 27 grams of the same screened decolorizing carbon used in earlier examples were blended by shaking and rolling in a 32-oz glass jar. Using this powder, eight separate heats, each with between and grams of mix, were made in a 4 cm diameter tube furnace. Each heat was for 5 hours at 1 C in a flow of about l 10 scfh hydrogen without preliminary evacuation. The eight cakes were easily powdered by light hammering and when blended together and screened yielded a 325 mesh powder containing 1.13% C and 1730 ppm oxygen. The microstructure of this powder was very similar to that of the powder described in Example 4, consisting of chromium carbide surrounding chromium; in addition, a small amount of very fine precipitates was noted decorating the carbide-chromium interface.
- EXAMPLE 6 A powder analyzing 1.13% C prepared by the method described in Example 1 was plated onto test blocks using a detonation gun. Microstructural differences between these coatings and those formed by plasma deposition were observed consistent with the difference in method of coating formation. For weartest conditions identical with those employed for the plasma-deposited materials, scar volumes of 15-19 X 10 cm were measured on the detonation-gun coatmgs.
- EXAMPLE 7 Four hundred lb ofCr O was blended with 94.8 lb of lampblack in a twin-shell blended and then more thoroughly blended in a vibratory ball mill. This product was then mixed with 9.5 lb cornstarch binder and enough water to make a mix suitable for forming briquettes in a standard briquetting press. It was then pressed into briquettes of about 2-inch maximum dimension and dried to remove excess water.
- the briquetted mix charged to a large vacuum furnace in an l9-inch-deep bed covered with graphite plates, was heated to 1000C without letting the pressure exceed 5000 microns, held one hour at 1000C after the pressure had dropped below 2000 microns, then heated to l400C and held at that temperature for 50 hours, at the end of which time the pressure had dropped to less than microns.
- a portion of this product was pulverized to 325 mesh size and found to contain 1.14% C and 460 ppm oxygen.
- the carbide dispersion in the powder was similar to FIG. 4. Wear samples formed from this material by plasma deposition and tested as described previously exhibited wear scars of 21-24 X l0 cm volume.
- EXAMPLE 8 A mixture of 9900 grams of commercial grade electrolytic chromium sized to pass through a (SS-mesh better with plasma deposition than with electroplating, the amount of material that must be removed in finishing is also less.
- the trochoids were made of several different types of materials and of two different sizes, examples of which are shown in Table l. Over 3113 hr of test stand operation have accumulated on the small engine size and 331 hr of test stand and 7000 hr of vehicle operation on the large engine size. In comparison with hard electroplated chromium the coatings of this invention showed the following advantages:
- the wear of the mating seal surface is approximately one-half that caused by hard electroplated chromium, which is greater than 0.005 inch per 100 hr.
- Performance of the coating is less sensitive to surface finish than hard electroplated chromium. There was no appreciable difference in wear of either the coated surface or the seal surface between as-ground coating surfaces of 16 to 32 microinches rrns and honed surfaces of approximately 6 rrns. In comparison, a hard electroplated chromium surface must be finished to better than 6 microinches rrns to perform satisfactorily.
- a method for producing a powder comprising:
- step A comminuting the product formed in step A to a powder containing from about 0.2 wt to about 5.4 wt Carbon and wherein substantially every particle of said powder consists essentially of chromium and at least one chromium carbide taken from the class consisting of Cr C Cr C and Cr C 2.
- a method for producing a powder comprising:
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US482990A US3901689A (en) | 1973-08-15 | 1974-06-25 | Method for producing chromium-chromium carbide powder |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00388433A US3846084A (en) | 1973-08-15 | 1973-08-15 | Chromium-chromium carbide powder and article made therefrom |
US482990A US3901689A (en) | 1973-08-15 | 1974-06-25 | Method for producing chromium-chromium carbide powder |
Publications (1)
Publication Number | Publication Date |
---|---|
US3901689A true US3901689A (en) | 1975-08-26 |
Family
ID=27012312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US482990A Expired - Lifetime US3901689A (en) | 1973-08-15 | 1974-06-25 | Method for producing chromium-chromium carbide powder |
Country Status (1)
Country | Link |
---|---|
US (1) | US3901689A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4092459A (en) * | 1975-01-13 | 1978-05-30 | Graham Magnetics Incorporated | Powder products |
US4533413A (en) * | 1983-05-10 | 1985-08-06 | Toyota Jidosha Kabushiki Kaisha | Reinforced material incorporating fine composite powder and method and apparatus for making the same |
US4594101A (en) * | 1983-05-10 | 1986-06-10 | Toyota Jidosha Kabushiki Kaisha | Fine composite powder material and method and apparatus for making the same |
EP0366900A1 (en) * | 1988-09-05 | 1990-05-09 | Dornier Gmbh | Sintered alloy containing carbide |
US20070062762A1 (en) * | 2005-09-20 | 2007-03-22 | Ernst Ach | Elevator installation with drivebelt pulley and flat-beltlike suspension means |
CN1313367C (en) * | 2005-12-18 | 2007-05-02 | 株洲硬质合金集团有限公司 | Fine granule Cr3C2 preparation method |
US20080292897A1 (en) * | 2007-05-22 | 2008-11-27 | United Technologies Corporation | Wear resistant coating |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3743499A (en) * | 1971-10-21 | 1973-07-03 | Nordstjernan Rederi Ab | Method of enlarging the particle size of transition metal powder and carbides thereof |
-
1974
- 1974-06-25 US US482990A patent/US3901689A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3743499A (en) * | 1971-10-21 | 1973-07-03 | Nordstjernan Rederi Ab | Method of enlarging the particle size of transition metal powder and carbides thereof |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4092459A (en) * | 1975-01-13 | 1978-05-30 | Graham Magnetics Incorporated | Powder products |
US4137361A (en) * | 1975-01-13 | 1979-01-30 | Graham Magnetics Incorporated | Powder products |
US4533413A (en) * | 1983-05-10 | 1985-08-06 | Toyota Jidosha Kabushiki Kaisha | Reinforced material incorporating fine composite powder and method and apparatus for making the same |
US4594101A (en) * | 1983-05-10 | 1986-06-10 | Toyota Jidosha Kabushiki Kaisha | Fine composite powder material and method and apparatus for making the same |
EP0366900A1 (en) * | 1988-09-05 | 1990-05-09 | Dornier Gmbh | Sintered alloy containing carbide |
US20070062762A1 (en) * | 2005-09-20 | 2007-03-22 | Ernst Ach | Elevator installation with drivebelt pulley and flat-beltlike suspension means |
CN1313367C (en) * | 2005-12-18 | 2007-05-02 | 株洲硬质合金集团有限公司 | Fine granule Cr3C2 preparation method |
US20080292897A1 (en) * | 2007-05-22 | 2008-11-27 | United Technologies Corporation | Wear resistant coating |
US8530050B2 (en) | 2007-05-22 | 2013-09-10 | United Technologies Corporation | Wear resistant coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3846084A (en) | Chromium-chromium carbide powder and article made therefrom | |
US9291264B2 (en) | Coatings and powders, methods of making same, and uses thereof | |
CN111254379B (en) | Preparation method of high-entropy ceramic coating | |
US9919358B2 (en) | Sintered molybdenum carbide-based spray powder | |
US3896244A (en) | Method of producing plasma sprayed titanium carbide tool steel coatings | |
US3606359A (en) | Tungsten carbide coated piston rings | |
TWI661882B (en) | Process for producing chromium nitride-containing sintered spraying powder, chromium-containing sintered spray powder and use thereof, and coated component and producing process thereof | |
US3305326A (en) | Self-fusing flame spray material | |
WO2003074216A1 (en) | Corrosion resistant powder and coating | |
US5966585A (en) | Titanium carbide/tungsten boride coatings | |
CN112281105B (en) | Metal ceramic composite coating and preparation method and application thereof | |
US5281484A (en) | High stress capability, intermetallic phase titanium aluminide coated components | |
US3901689A (en) | Method for producing chromium-chromium carbide powder | |
US4508788A (en) | Plasma spray powder | |
CA2267960C (en) | Coating powder and method for its production | |
US4678511A (en) | Spray micropellets | |
CA2567089C (en) | Wear resistant alloy powders and coatings | |
JPH08104969A (en) | Ceramic / metal composite powder for thermal spraying, thermal spray coating, and method for forming thermal spray coating | |
EP0748879B1 (en) | Method for producing a TiB2-based coating and the coated article so produced | |
JPH0317899B2 (en) | ||
Hodge et al. | Metallic materials resistant to molten zinc | |
US3881910A (en) | Chromium-chromium carbide powder | |
US3395030A (en) | Carbide flame spray material | |
US3809546A (en) | Method of making a hard alloy matrix containing a tungsten-boron phase | |
JPH0564706B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MORGAN GUARANTY TRUST COMPANY OF NEW YORK, AND MOR Free format text: MORTGAGE;ASSIGNORS:UNION CARBIDE CORPORATION, A CORP.,;STP CORPORATION, A CORP. OF DE.,;UNION CARBIDE AGRICULTURAL PRODUCTS CO., INC., A CORP. OF PA.,;AND OTHERS;REEL/FRAME:004547/0001 Effective date: 19860106 |
|
AS | Assignment |
Owner name: UNION CARBIDE CORPORATION, Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:MORGAN BANK (DELAWARE) AS COLLATERAL AGENT;REEL/FRAME:004665/0131 Effective date: 19860925 |
|
AS | Assignment |
Owner name: UNION CARBIDE COATINGS SERVICE TECHNOLOGY CORPORAT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:UNION CARBIDE COATINGS SERVICE CORPORATION;REEL/FRAME:005240/0883 Effective date: 19900102 |
|
AS | Assignment |
Owner name: PRAXAIR S.T. TECHNOLOGY, INC., COLORADO Free format text: CHANGE OF NAME;ASSIGNOR:UNION CARBIDE COATINGS SERVICE TECHNOLOGY CORPORATION;REEL/FRAME:006334/0986 Effective date: 19920611 |