US3893448A - Catheter device for use in detecting gas in body fluids and tissue - Google Patents
Catheter device for use in detecting gas in body fluids and tissue Download PDFInfo
- Publication number
- US3893448A US3893448A US419109A US41910973A US3893448A US 3893448 A US3893448 A US 3893448A US 419109 A US419109 A US 419109A US 41910973 A US41910973 A US 41910973A US 3893448 A US3893448 A US 3893448A
- Authority
- US
- United States
- Prior art keywords
- end portion
- solid
- catheter device
- catheter
- distal end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000001124 body fluid Anatomy 0.000 title description 4
- 239000010839 body fluid Substances 0.000 title description 4
- 239000007787 solid Substances 0.000 claims abstract description 42
- 239000012528 membrane Substances 0.000 claims abstract description 36
- 239000007789 gas Substances 0.000 claims abstract description 34
- 210000004369 blood Anatomy 0.000 claims abstract description 9
- 239000008280 blood Substances 0.000 claims abstract description 9
- 238000003780 insertion Methods 0.000 claims abstract description 5
- 230000037431 insertion Effects 0.000 claims abstract description 5
- 239000000463 material Substances 0.000 claims description 14
- 210000004204 blood vessel Anatomy 0.000 claims description 4
- 238000009792 diffusion process Methods 0.000 abstract description 9
- 210000001519 tissue Anatomy 0.000 description 11
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- LSIXBBPOJBJQHN-UHFFFAOYSA-N 2,3-Dimethylbicyclo[2.2.1]hept-2-ene Chemical compound C1CC2C(C)=C(C)C1C2 LSIXBBPOJBJQHN-UHFFFAOYSA-N 0.000 description 1
- 241001559589 Cullen Species 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 239000003193 general anesthetic agent Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920005573 silicon-containing polymer Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M25/00—Catheters; Hollow probes
- A61M25/0067—Catheters; Hollow probes characterised by the distal end, e.g. tips
- A61M25/0068—Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
- A61M25/0069—Tip not integral with tube
Definitions
- ABSTRACT A blood or tissue gas diffusion catheter device comprising a catheter having a lumen therethrough and provided with a solid distal end portion enclosed within a membrane permeable to gases that might be found in blood or tissue, said distal end portion being shaped to provide a helical path over the outside thereof communicating with the lumen of the catheter, and said end portion being shaped to permit direct insertion of the distal end portion into the body of a patient without the use of a cannulated needle or an otherwise preformed entry.
- catheter devices were constructed in which the catheter was a complete cannula up to a closed distal end and the distal portion of the catheter was covered by a membrane permeable to gases in body fluids such as blood, or extracellular fluid of tissue. These catheters were used to acquire samples of the gas which passed through the membrane and then through the lumen of the catheter. In most instances, holes were drilled, or otherwise provided through the wall of the catheter leading into the lumen thereof through which the gas passed into the lumen of the catheter.
- Catheter devices so constructed were severely limited in minimum overall diameter by virtue of the lumen in the catheter, required extreme difficulty in providing small apertures through the wall of the catheter leading into the lumen, and there was consequent weakening of the cannular tubing by virtue of those apertures. Such catheters were also objectionably expensive to manufacture.
- an optimum catheter device is one that provides a sufficient membrane diffusion area with a minimum overall diameter.
- applicant has reduced that overall diameter to a minimum not heretofore reached.
- the provision of apertures through the wall of the cannula has been eliminated along with its difficulty and expense, and the distal end portion of the catheter has not been weakened to an objectionable extent.
- the instant invention is so constructed that it may be directly inserted in a patients body without the aid of a preferred entry or the use of a cannulated needle.
- the instant invention comprises a catheter device including an elongated catheter or cannular having a lumen therethrough with a solid distal end portion integral with the catheter or attached to the end thereof in a known manner.
- the solid end portion, and preferably the catheter itself, are entirely covered with a membrane of a material permeable to body gases such as oxygen, carbon dioxide, nitrogen, argon, helium, anesthetic agents, inter alia.
- the solid end portion terminates on the slant so that the lower part thereof is the equivalent of a pointed end which, notwithstanding being covered by the membrane. may be directly inserted into the body of the patient.
- the solid end portion is also formed to provide a helical path leading to the lumen of the catheter between the outside surface of the end portion and the membrane.
- this is accomplished by providing a single or double helical groove in the solid end portion.
- the lumen of the cannula heretofore used has been transferred to the outside of the solid end portion.
- This provides a smaller overall diameter of the device than was heretofore obtainable, and also provides ample diffusion area for the gas passing through the membrane when the opposite end of the catheter is connected to the vacuum system of a mass spectrometer or other analyzing device.
- FIG. 1 is a fragmentary vertical sectional view, with parts shown in elevation, of a catheter device having a solid distal end portion with a helical groove therein;
- FIG. 2 is a vertical sectional view taken substantially as indicated by the line IIII of FIG. I, looking in the direction of the arrows;
- FIG. 3 is a fragmentary sectional view of the structure of FIG. I showing the same from a different angle;
- FIG. 4 is a view similar in character to FIG. 1, but illustrating the solid distal end portion on the catheter device as having a double helical groove in the surface thereof;
- FIG. 5 is a vertical sectional view taken substantially as indicated by the line VV of FIG. 4;
- FIG. 6 is a view similar in character to FIG. 3, but showing the connection of the double helical groove with the lumen of the catheter;
- FIG. 7 is a view similar in character to FIGS. 1 and 4, but illustrating the solid portion at the distal end of the catheter as being a rectangular piece of material twisted to provide the helical path for gas;
- FIG. 8 is a vertical sectional view taken substantially as indicated by the line VIIIVII[ of FIG. 7;
- FIG. 9 is a fragmentary sectional view illustrating the connection of the helical path with the lumen in the catheter or cannula.
- FIGS. 1, 2 and 3 there is shown a catheter device including a catheter in the form of a cannula 1 having a lumen 2 extending therethrough.
- the cannula l carries a solid distal end portion 3 having no lumen.
- Both the cannula I and end portion 3 are preferably made of stainless steel, but a suitable plastic material might also be utilized, if desired.
- Stainless steel is preferred because of its strength, the diameter of both the cannula l and solid end portion 3 are the same and quite small.
- a tubular membrane 4 which may well be of polytetrafluoroethylene, silicone rubber, a silicone polymer substance, or equivalent material that is permeable to gases found in the body and which are to be sampled and analyzed.
- the solid end portion 3 is provided with a helical groove 5 forming a helical path between the outer surface of the groove and the membrane 4 leading to the lumen 2 in the cannula l, and the cannula I is beveled at a point 6 in order to establish good communication between the helical groove and the lumen.
- the groove starts rearwardly of the distal end of the portion 3 which distal end remains fully solid as shown at 7 to entirely fill the end of the membrane 4 and is cut off on the slant to provide a lower sharp point 8.
- the monofilament 9 of the same material as the membrane 4 may be placed over the end 7 of the portion 3 to prevent contact of the stainless steel or other material forming the portion 3 with the blood or tissue of the patient, and the membrane 4 extends a material distance or fully over the surface of the cannula l for the same reason.
- the monofilament 9 is so thin and sufficiently strong as not to interfere with the direct insertion of the distal end portion of the catheter into the body of the patient without the aid of a cannulated needle or any other preformed entry.
- the groove 5 as represented in FIG. 2 may be shaped in the form a 60 to approximately 90 angle and of a depth equal to or less than the radius of the solid portion 3.
- the angle between the sides of the groove is not critical but 60 to 90 appears a satisfactory angle.
- the entire length of the catheter device including the cannula l and end portion 3 is rather arbitrary, and depends upon how far the attending surgeon wishes to insert the device into the blood vessel or tissue of a patient.
- the end portion 3 may be attached to the distal end of the cannula I in a known manner, held in position by the structural integrity of the tubular membrane 4, or in certain instances might possibly be formed integral with the cannula.
- the catheter device In use, the catheter device is entered into the body of a patient to a desired location, and gases contained in the body permeate through the membrane 4 and enter the helical groove 5 which provides ample diffusion area. The gas then travels along the groove 5 into the lumen of the cannula l which is connected to a mass spectrometer or other analyzing device.
- the analyzing device has a source of suction to assist the flow of gas to the device.
- an optimum catheter device is one that provides a sufficient membrane diffusion area for gases with a minimum overall diameter.
- a small diameter catheter device that may be placed in the body of a patient without the use of something else to establish an entry point some structural strength is required.
- the sufficient strength is obtained by eliminating a lumen through the solid end portion and boring holes or providing slots leading from the outside of the end portion to the lumen, as was heretofore done. For example, if the distance between the sides of the groove 5, as seen in FIG.
- the space between the grooves 11 and 12, in each case, is 60 at the outer circumference of the cannula 1, then the solid area remaining entirely through the end portion 3 up to the solid end 7 thereof is 1r R in cross sectional area, and that is more than has heretofore been obtained by way of a cannulated end portion with slots or holes drilled through the wall of the cannula. There need be no sacrifice in smallness of diameter.
- the device of FIGS. 4-6 functions the same as above described in connection with FIGS. 1-3
- FIGS. 7, 8 and 9 A structure highly economical to manufacture, and embodying the instant invention, is shown in FIGS. 7, 8 and 9.
- the membrane 4, monofilament 9, and cannula l are the same as illustrated in FIGS. 4-6.
- the only difference is the provision of a solid distal end portion 13 which is simply a strip or rod of material rectangular in cross-section and twisted as seen clearly in FIG. 7 to provide a helical path for gas or gases diffusing through the membrane 4.
- a closed end portion 14 to the twisted rod in any suitable manner to close the end of the tubular membrane 4 and provide a sharp point 15 whereby the device itself may be entered into the body of a patient.
- the twisted bar 13 is secured at its proximal end to the cannula I in a known manner.
- This bar 13 has a greater solid cross-sectional area than has heretofore been obtained by utilizing a cannulated end portion with slots or holes through the wall thereof leading to the lumen.
- the instant invention comprises a catheter device for sampling gases in the blood or tissue of a patient, and which is of a diameter smaller than heretofore utilized, which provides ample diffusion area, and which is itself insertable into the body of a patient without aid from some other instrument to provide an entryway.
- a catheter device for use with analyzing apparatus to obtain samples of gases from the blood or tissue of 60 a patient, said device including a cannula carrying a distal end portion covered by a tubular membrane per meable to body gases and insertable into a blood vessel or tissue of a patient, wherein the improvement comprises:
- said distal end portion being solid throughout its length
- said solid end portion being shaped to provide a path for gases between its external surface and said membrane covering it leading to the lumen of said cannula.
- said distal end portion comprises a solid bar of material polygonal in cross section and of less size than the inside diameter of said tubular membrane
- said bar being twisted to contact said membrane at spaced intervals.
- the catheter device of claim 5 including an end member attached to said solid twisted bar of a size to close the end of said tubular membrane and having a sloping distal face terminating in a sharp point.
- the catheter device of claim 6 including a monofilament covering the sloping face of said end but made of sufficiently thin and strong material as not to interfere with the insertion of the device into the body of a patient.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Optics & Photonics (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
A blood or tissue gas diffusion catheter device comprising a catheter having a lumen therethrough and provided with a solid distal end portion enclosed within a membrane permeable to gases that might be found in blood or tissue, said distal end portion being shaped to provide a helical path over the outside thereof communicating with the lumen of the catheter, and said end portion being shaped to permit direct insertion of the distal end portion into the body of a patient without the use of a cannulated needle or an otherwise preformed entry.
Description
United States Patent Brantigan July 8, 1975 [541 CATHETER DEVICE FOR USE IN 3,572,315 3/1971 Cullen 128/2 E 3,658,053 4/1972 Fergusson et a1. 128/2 E DETECTING GAS [N BODY FLUIDS AND 3,710,778 1/197 3 Cornelius 128/2 G TISSUE lnventor: John W. Brantigan, 914 Medical Plaza, Salt Lake City, Utah 84112 Filed: Nov. 26, 1973 Appl, No.1 419,109
US. Cl. 128/2 G; 128/2 E; 12812 L; 128/214 R; 128/348 Int. Cl A6lb 05/00 Field of Search 128/2 E, 2 G, 2 L, 2.1 E, 128/2.05 R, 348, 214
References Cited UNITED STATES PATENTS Primary Examiner-Kyle L. Howell Attorney, Agent, or FirmHil1, Gross, Simpson, Van Santen, Steadman, Chiara 8:. Simpson [57] ABSTRACT A blood or tissue gas diffusion catheter device comprising a catheter having a lumen therethrough and provided with a solid distal end portion enclosed within a membrane permeable to gases that might be found in blood or tissue, said distal end portion being shaped to provide a helical path over the outside thereof communicating with the lumen of the catheter, and said end portion being shaped to permit direct insertion of the distal end portion into the body of a patient without the use of a cannulated needle or an otherwise preformed entry.
10 Claims, 9 Drawing Figures FIG. 7
FIG. 9
CATHETER DEVICE FOR USE IN DETECTING GAS IN BODY FLUIDS AND TISSUE BRIEF SUMMARY OF THE INVENTION Heretofore, catheter devices were constructed in which the catheter was a complete cannula up to a closed distal end and the distal portion of the catheter was covered by a membrane permeable to gases in body fluids such as blood, or extracellular fluid of tissue. These catheters were used to acquire samples of the gas which passed through the membrane and then through the lumen of the catheter. In most instances, holes were drilled, or otherwise provided through the wall of the catheter leading into the lumen thereof through which the gas passed into the lumen of the catheter. Catheter devices so constructed were severely limited in minimum overall diameter by virtue of the lumen in the catheter, required extreme difficulty in providing small apertures through the wall of the catheter leading into the lumen, and there was consequent weakening of the cannular tubing by virtue of those apertures. Such catheters were also objectionably expensive to manufacture.
Minimum trauma to the blood vessel or tissue in which the distal end portion of the catheter device is inserted is highly desirable. With that in mind, an optimum catheter device is one that provides a sufficient membrane diffusion area with a minimum overall diameter. By way of the instant invention, applicant has reduced that overall diameter to a minimum not heretofore reached. Also, in the instant invention the provision of apertures through the wall of the cannula has been eliminated along with its difficulty and expense, and the distal end portion of the catheter has not been weakened to an objectionable extent. Furthermore, the instant invention is so constructed that it may be directly inserted in a patients body without the aid of a preferred entry or the use of a cannulated needle.
The instant invention comprises a catheter device including an elongated catheter or cannular having a lumen therethrough with a solid distal end portion integral with the catheter or attached to the end thereof in a known manner. The solid end portion, and preferably the catheter itself, are entirely covered with a membrane of a material permeable to body gases such as oxygen, carbon dioxide, nitrogen, argon, helium, anesthetic agents, inter alia. The solid end portion terminates on the slant so that the lower part thereof is the equivalent of a pointed end which, notwithstanding being covered by the membrane. may be directly inserted into the body of the patient. The solid end portion is also formed to provide a helical path leading to the lumen of the catheter between the outside surface of the end portion and the membrane. Preferably, this is accomplished by providing a single or double helical groove in the solid end portion. In effect, the lumen of the cannula heretofore used, has been transferred to the outside of the solid end portion. This provides a smaller overall diameter of the device than was heretofore obtainable, and also provides ample diffusion area for the gas passing through the membrane when the opposite end of the catheter is connected to the vacuum system of a mass spectrometer or other analyzing device.
There is one other way of providing the instant invention by way of connecting a rectangular piece of material to the end of the catheter and then twisting that rectangular piece of material to form the helical path. This method requires the attachment of a sloping end to the twisted rectangular member so that the device may be placed in the body of a patient directly and without the use of a needle or a preformed entry.
Other objects, features and advantages of the invention will be readily apparent from the following description of certain preferred embodiments thereof, taken in conjunction with the accompanying drawing, although variations and modifications may be effected without departing from the spirit and scope of the novel concepts of the disclosure.
BRIEF DESCRIPTION OF THE DRAWING All figures in the drawing are extremely enlarged for purposes of clarity in illustration.
FIG. 1 is a fragmentary vertical sectional view, with parts shown in elevation, of a catheter device having a solid distal end portion with a helical groove therein;
FIG. 2 is a vertical sectional view taken substantially as indicated by the line IIII of FIG. I, looking in the direction of the arrows;
FIG. 3 is a fragmentary sectional view of the structure of FIG. I showing the same from a different angle;
FIG. 4 is a view similar in character to FIG. 1, but illustrating the solid distal end portion on the catheter device as having a double helical groove in the surface thereof;
FIG. 5 is a vertical sectional view taken substantially as indicated by the line VV of FIG. 4;
FIG. 6 is a view similar in character to FIG. 3, but showing the connection of the double helical groove with the lumen of the catheter;
FIG. 7 is a view similar in character to FIGS. 1 and 4, but illustrating the solid portion at the distal end of the catheter as being a rectangular piece of material twisted to provide the helical path for gas;
FIG. 8 is a vertical sectional view taken substantially as indicated by the line VIIIVII[ of FIG. 7; and
FIG. 9 is a fragmentary sectional view illustrating the connection of the helical path with the lumen in the catheter or cannula.
DETAIL DESCRIPTION OF THE SEVERAL EMBODIMENTS In the first embodiment of the invention, illustrated in FIGS. 1, 2 and 3, there is shown a catheter device including a catheter in the form of a cannula 1 having a lumen 2 extending therethrough. The cannula l carries a solid distal end portion 3 having no lumen. Both the cannula I and end portion 3 are preferably made of stainless steel, but a suitable plastic material might also be utilized, if desired. Stainless steel is preferred because of its strength, the diameter of both the cannula l and solid end portion 3 are the same and quite small.
Over both the solid end portion 3 and the cannula l is a tubular membrane 4 which may well be of polytetrafluoroethylene, silicone rubber, a silicone polymer substance, or equivalent material that is permeable to gases found in the body and which are to be sampled and analyzed. The solid end portion 3 is provided with a helical groove 5 forming a helical path between the outer surface of the groove and the membrane 4 leading to the lumen 2 in the cannula l, and the cannula I is beveled at a point 6 in order to establish good communication between the helical groove and the lumen.
It should also be noted that the groove starts rearwardly of the distal end of the portion 3 which distal end remains fully solid as shown at 7 to entirely fill the end of the membrane 4 and is cut off on the slant to provide a lower sharp point 8. The monofilament 9 of the same material as the membrane 4 may be placed over the end 7 of the portion 3 to prevent contact of the stainless steel or other material forming the portion 3 with the blood or tissue of the patient, and the membrane 4 extends a material distance or fully over the surface of the cannula l for the same reason. The monofilament 9 is so thin and sufficiently strong as not to interfere with the direct insertion of the distal end portion of the catheter into the body of the patient without the aid of a cannulated needle or any other preformed entry. The groove 5 as represented in FIG. 2 may be shaped in the form a 60 to approximately 90 angle and of a depth equal to or less than the radius of the solid portion 3. The angle between the sides of the groove is not critical but 60 to 90 appears a satisfactory angle. The entire length of the catheter device including the cannula l and end portion 3 is rather arbitrary, and depends upon how far the attending surgeon wishes to insert the device into the blood vessel or tissue of a patient. The end portion 3 may be attached to the distal end of the cannula I in a known manner, held in position by the structural integrity of the tubular membrane 4, or in certain instances might possibly be formed integral with the cannula.
In use, the catheter device is entered into the body of a patient to a desired location, and gases contained in the body permeate through the membrane 4 and enter the helical groove 5 which provides ample diffusion area. The gas then travels along the groove 5 into the lumen of the cannula l which is connected to a mass spectrometer or other analyzing device. Usually the analyzing device has a source of suction to assist the flow of gas to the device.
As stated above, an optimum catheter device is one that provides a sufficient membrane diffusion area for gases with a minimum overall diameter. With a small diameter catheter device that may be placed in the body of a patient without the use of something else to establish an entry point some structural strength is required. By providing a cannula with a solid distal end portion and giving that end portion a configuration so as to establish a path of travel for the gas between the outer surface of the end portion and the diffusion membrane surrounding it results in sufficient structural strength and a desirable small diameter. The sufficient strength is obtained by eliminating a lumen through the solid end portion and boring holes or providing slots leading from the outside of the end portion to the lumen, as was heretofore done. For example, if the distance between the sides of the groove 5, as seen in FIG. 2, is 60 it would be a solid cross sectional area of 5/6 'rrR throughout the length of the end portion 3. If the distance between the sides of the groove 5 at the circumference of the element 3 was 90, it would be 34 nr of solid material throughout the end portion. Either of these amounts is far greater than can be obtained by an end portion of the same diameter with a lumen therethrough and apertures or slots leading to that lumen. The membrane tube 4 and monofilament 9 can be 6 reduced to approximately 0.002 inch and the overall outside diameter of the entire catheter device may be reduced to approximately 0.020 inch, considerably less than any gas sampling catheter device made heretofore, insofar as I am aware. While the showing in the drawings may not be to the proper scale, the above stated figures are possible.
5 Should more diffusion area be desired, it is a simple expedient to provide the same without objectionably sacrificing a portion of the structural strength throughout the distal end portion 3, as shown in FIGS. 4, 5 and 6. This is accomplished by double helical grooving of 0 the end portion 3. In this instance, the structure is the same as that above described in connection with FIGS. 1, 2 and 3, with the exception that the cannula I is provided with an additional inward bevel 10 directly opposite the bevel 6; and the solid end portion 3 is provided 5 with a pair of helical grooves 11 and 12 one communicating with the lumen 2 of the cannula l at the bevel portion 6 and the other on the opposite side at the bevel portion I0. If the space between the grooves 11 and 12, in each case, is 60 at the outer circumference of the cannula 1, then the solid area remaining entirely through the end portion 3 up to the solid end 7 thereof is 1r R in cross sectional area, and that is more than has heretofore been obtained by way of a cannulated end portion with slots or holes drilled through the wall of the cannula. There need be no sacrifice in smallness of diameter. The device of FIGS. 4-6 functions the same as above described in connection with FIGS. 1-3
with the exception that there is more room to accommodate gas diffusing through the membrane 4.
A structure highly economical to manufacture, and embodying the instant invention, is shown in FIGS. 7, 8 and 9. Here the membrane 4, monofilament 9, and cannula l are the same as illustrated in FIGS. 4-6. The only difference is the provision of a solid distal end portion 13 which is simply a strip or rod of material rectangular in cross-section and twisted as seen clearly in FIG. 7 to provide a helical path for gas or gases diffusing through the membrane 4. In this instance, it is necessary to attach a closed end portion 14 to the twisted rod in any suitable manner to close the end of the tubular membrane 4 and provide a sharp point 15 whereby the device itself may be entered into the body of a patient. The twisted bar 13 is secured at its proximal end to the cannula I in a known manner. This bar 13 has a greater solid cross-sectional area than has heretofore been obtained by utilizing a cannulated end portion with slots or holes through the wall thereof leading to the lumen.
Accordingly, it will be noted that the instant invention comprises a catheter device for sampling gases in the blood or tissue of a patient, and which is of a diameter smaller than heretofore utilized, which provides ample diffusion area, and which is itself insertable into the body of a patient without aid from some other instrument to provide an entryway.
I claim:
I. A catheter device for use with analyzing apparatus to obtain samples of gases from the blood or tissue of 60 a patient, said device including a cannula carrying a distal end portion covered by a tubular membrane per meable to body gases and insertable into a blood vessel or tissue of a patient, wherein the improvement comprises:
said distal end portion being solid throughout its length, and
said solid end portion being shaped to provide a path for gases between its external surface and said membrane covering it leading to the lumen of said cannula.
2. The catheter device in claim I, wherein said solid end portion is grooved externally to provide the path for gases.
3. The catheter device of claim 1, wherein said solid end portion is provided with a helical groove in its external surface to provide the path for gases.
4. The catheter device of claim 1, wherein said solid end portion contains a plurality of helical grooves in its external surface to provide the path for gases.
5. The catheter device of claim 1, wherein said distal end portion comprises a solid bar of material polygonal in cross section and of less size than the inside diameter of said tubular membrane,
said bar being twisted to contact said membrane at spaced intervals.
6. The catheter of claim 1, wherein said solid distal end portion terminates in an end of sufficient size to close the end of said tubular membrane, and which end slopes at its distal face to proall outside diameter less than 0.035 inch.
9. The catheter device of claim 5, including an end member attached to said solid twisted bar of a size to close the end of said tubular membrane and having a sloping distal face terminating in a sharp point.
10. The catheter device of claim 6, including a monofilament covering the sloping face of said end but made of sufficiently thin and strong material as not to interfere with the insertion of the device into the body of a patient.
Claims (10)
1. A catheter device for use with analyzing apparatus to obtain samples of gases from the blood or tissue of a patient, said device including a cannula carrying a distal end portion covered by a tubular membrane permeable to body gases and insertable into a blood vessel or tissue of a patient, wherein the improvement comprises: said distal end portion being solid throughout its length, and said solid end portion being shaped to provide a path for gases between its external surface and said membrane covering it leading to the lumen of said cannula.
2. The catheter device in claim 1, wherein said solid end portion is grooved externally to provide the path for gases.
3. The catheter device of claim 1, wherein said solid end portion is provided with a helical groove in its external surface to provide the path for gases.
4. The catheter device of claim 1, wherein said solid end portion contains a plurality of helical grooves in its external surface to provide the path for gases.
5. The catheter device of claim 1, wherein said distal end portion comprises a solid bar of material polygonal in cross section and of less size than the inside diameter of said tubular membrane, said bar being twisted to contact said membrane at spaced intervals.
6. The catheter of claim 1, wherein said solid distal end portion terminates in an end of sufficient size to close the end of said tubular membranE, and which end slopes at its distal face to provide a sharp point, whereby said catheter device may itself be positioned in the body of a patient without aid from other entry establishing means.
7. The catheter device of claim 1, wherein said distal end portion has a solid portion extending throughout the length of the distal end portion of an area in the range of 0.54 to 0.833 of the cross sectional area of the inside of said tubular membrane.
8. The catheter device of claim 1, which has an overall outside diameter less than 0.035 inch.
9. The catheter device of claim 5, including an end member attached to said solid twisted bar of a size to close the end of said tubular membrane and having a sloping distal face terminating in a sharp point.
10. The catheter device of claim 6, including a monofilament covering the sloping face of said end but made of sufficiently thin and strong material as not to interfere with the insertion of the device into the body of a patient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US419109A US3893448A (en) | 1973-11-26 | 1973-11-26 | Catheter device for use in detecting gas in body fluids and tissue |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US419109A US3893448A (en) | 1973-11-26 | 1973-11-26 | Catheter device for use in detecting gas in body fluids and tissue |
Publications (1)
Publication Number | Publication Date |
---|---|
US3893448A true US3893448A (en) | 1975-07-08 |
Family
ID=23660823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US419109A Expired - Lifetime US3893448A (en) | 1973-11-26 | 1973-11-26 | Catheter device for use in detecting gas in body fluids and tissue |
Country Status (1)
Country | Link |
---|---|
US (1) | US3893448A (en) |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3981297A (en) * | 1975-03-03 | 1976-09-21 | Sorenson Research Co., Inc. | Gas sampling catheter assembly and method |
US4016863A (en) * | 1975-08-27 | 1977-04-12 | Brantigan John W | Tissue tonometer device for use in measuring gas in body tissue |
FR2398485A1 (en) * | 1977-07-29 | 1979-02-23 | Fresenius Chem Pharm Ind | DEVICE FOR CONTINUOUSLY PERFORMING CHEMICAL ANALYZES IN THE LIVING HUMAN BODY |
FR2421624A1 (en) * | 1978-04-03 | 1979-11-02 | Perkin Elmer Corp | HIGH-SPEED TRANSMISSION OF GAS BLOOD CIRCULATION |
EP0089647A2 (en) * | 1982-03-22 | 1983-09-28 | FIDDIAN-GREEN, Richard G. | Hollow viscus tonometry |
US4512349A (en) * | 1983-05-13 | 1985-04-23 | Regents Of The University Of California | Method of direct tissue gas tension measurement and apparatus therefor |
US4671287A (en) * | 1983-12-29 | 1987-06-09 | Fiddian Green Richard G | Apparatus and method for sustaining vitality of organs of the gastrointestinal tract |
US4726381A (en) * | 1986-06-04 | 1988-02-23 | Solutech, Inc. | Dialysis system and method |
US4763658A (en) * | 1986-06-04 | 1988-08-16 | Solutech, Inc. | Dialysis system 2nd method |
US4765339A (en) * | 1986-06-04 | 1988-08-23 | Solutech, Inc. | Closed loop dialysis system |
US4774955A (en) * | 1986-06-04 | 1988-10-04 | Solutech, Inc. | Programmable dialyzer system analyzer and method of use |
US4830013A (en) * | 1987-01-30 | 1989-05-16 | Minnesota Mining And Manufacturing Co. | Intravascular blood parameter measurement system |
US4834707A (en) * | 1987-09-16 | 1989-05-30 | Evans Phillip H | Venting apparatus and method for cardiovascular pumping application |
EP0340908A2 (en) * | 1988-05-05 | 1989-11-08 | The Boc Group, Inc. | Micro-probe for gas sampling |
US4934369A (en) * | 1987-01-30 | 1990-06-19 | Minnesota Mining And Manufacturing Company | Intravascular blood parameter measurement system |
US4951669A (en) * | 1987-01-30 | 1990-08-28 | Minnesota Mining And Manufacturing Company | Blood parameter measurement system |
EP0403394A1 (en) * | 1989-06-16 | 1990-12-19 | Zeta Technology | Probe for microdialysis |
US4989606A (en) * | 1987-01-30 | 1991-02-05 | Minnesota Mining And Manufactoring Company | Intravascular blood gas sensing system |
US5048525A (en) * | 1987-01-30 | 1991-09-17 | Minnesota Mining And Manufacturing Company | Blood parameter measurement system with compliant element |
US5175016A (en) * | 1990-03-20 | 1992-12-29 | Minnesota Mining And Manufacturing Company | Method for making gas sensing element |
US5335658A (en) * | 1992-06-29 | 1994-08-09 | Minnesota Mining And Manufacturing Company | Intravascular blood parameter sensing system |
US5462052A (en) * | 1987-01-30 | 1995-10-31 | Minnesota Mining And Manufacturing Co. | Apparatus and method for use in measuring a compositional parameter of blood |
US20040147903A1 (en) * | 2002-04-05 | 2004-07-29 | Lucas Latini | Microcatheter having tip relief region |
US20050054905A1 (en) * | 2003-09-09 | 2005-03-10 | Corl Paul D. | Apparatus for ascertaining blood characteristics and probe for use therewith |
US20050251087A1 (en) * | 2002-10-09 | 2005-11-10 | Matthew Carr | Microdialysis probe and method for the production thereof |
US20080119792A1 (en) * | 2004-03-26 | 2008-05-22 | Grete Kornerup | Infusion Set |
US20080215003A1 (en) * | 2005-03-17 | 2008-09-04 | Grete Kornerup | Gateway System |
US20100004597A1 (en) * | 2006-08-02 | 2010-01-07 | Unomedical A/S | Insertion Device |
US20100010328A1 (en) * | 2008-07-11 | 2010-01-14 | Nguyen Harry D | Probes and sensors for ascertaining blood characteristics and methods and devices for use therewith |
US20100030155A1 (en) * | 2006-08-02 | 2010-02-04 | Steffen Gyrn | Cannula and Delivery Device |
US20100057046A1 (en) * | 2008-09-03 | 2010-03-04 | Keimar, Inc | Systems for characterizing physiologic parameters and methods for use therewith |
US20100137829A1 (en) * | 2007-02-02 | 2010-06-03 | Nielsen Henrik Boeje | Injection Gateway |
US20100140125A1 (en) * | 2007-02-02 | 2010-06-10 | Orla Mathiasen | Injection Site for Injecting Medication |
US20110087267A1 (en) * | 2009-10-09 | 2011-04-14 | Spivey James T | Method for exchanging end effectors in vivo |
WO2011059397A1 (en) * | 2009-11-16 | 2011-05-19 | Cma Microdialysis Ab | Self-flowing measuring system |
US8012126B2 (en) | 2006-10-31 | 2011-09-06 | Unomedical A/S | Infusion set |
US8062250B2 (en) | 2004-08-10 | 2011-11-22 | Unomedical A/S | Cannula device |
US8246588B2 (en) | 2007-07-18 | 2012-08-21 | Unomedical A/S | Insertion device with pivoting action |
US8303549B2 (en) | 2005-12-23 | 2012-11-06 | Unomedical A/S | Injection device |
US8430850B2 (en) | 2007-07-03 | 2013-04-30 | Unomedical A/S | Inserter having bistable equilibrium states |
US8439838B2 (en) | 2006-06-07 | 2013-05-14 | Unomedical A/S | Inserter for transcutaneous sensor |
US8486003B2 (en) | 2007-07-10 | 2013-07-16 | Unomedical A/S | Inserter having two springs |
US8562567B2 (en) | 2009-07-30 | 2013-10-22 | Unomedical A/S | Inserter device with horizontal moving part |
US8790311B2 (en) | 2006-06-09 | 2014-07-29 | Unomedical A/S | Mounting pad |
US9125681B2 (en) | 2012-09-26 | 2015-09-08 | Ethicon Endo-Surgery, Inc. | Detachable end effector and loader |
US9186480B2 (en) | 2007-06-20 | 2015-11-17 | Unomedical A/S | Apparatus for making a catheter |
US9211379B2 (en) | 2006-02-28 | 2015-12-15 | Unomedical A/S | Inserter for infusion part and infusion part provided with needle protector |
US9254373B2 (en) | 2008-12-22 | 2016-02-09 | Unomedical A/S | Medical device comprising adhesive pad |
US9295485B2 (en) | 2009-10-09 | 2016-03-29 | Ethicon Endo-Surgery, Inc. | Loader for exchanging end effectors in vivo |
US20160175558A1 (en) * | 2014-12-19 | 2016-06-23 | Raumedic Ag | Multiple Lumen Microcatheter Tube and Method for Manufacturing Multiple Lumen Microcatheter Tubes |
US9415159B2 (en) | 2010-03-30 | 2016-08-16 | Unomedical A/S | Medical device |
US9440051B2 (en) | 2011-10-27 | 2016-09-13 | Unomedical A/S | Inserter for a multiplicity of subcutaneous parts |
US9451937B2 (en) | 2013-02-27 | 2016-09-27 | Ethicon Endo-Surgery, Llc | Percutaneous instrument with collet locking mechanisms |
US9533092B2 (en) | 2009-08-07 | 2017-01-03 | Unomedical A/S | Base part for a medication delivery device |
US9566384B2 (en) | 2008-02-20 | 2017-02-14 | Unomedical A/S | Insertion device with horizontally moving part |
US9724127B2 (en) | 2010-09-27 | 2017-08-08 | Unomedical A/S | Insertion system and insertion kit |
US10251636B2 (en) | 2015-09-24 | 2019-04-09 | Ethicon Llc | Devices and methods for cleaning a surgical device |
US10265130B2 (en) | 2015-12-11 | 2019-04-23 | Ethicon Llc | Systems, devices, and methods for coupling end effectors to surgical devices and loading devices |
US10314565B2 (en) | 2015-08-26 | 2019-06-11 | Ethicon Llc | Surgical device having actuator biasing and locking features |
US10335196B2 (en) | 2015-08-31 | 2019-07-02 | Ethicon Llc | Surgical instrument having a stop guard |
US10369277B2 (en) | 2005-09-12 | 2019-08-06 | Unomedical A/S | Invisible needle |
US10675009B2 (en) | 2015-11-03 | 2020-06-09 | Ethicon Llc | Multi-head repository for use with a surgical device |
US10702257B2 (en) | 2015-09-29 | 2020-07-07 | Ethicon Llc | Positioning device for use with surgical instruments |
US10898643B2 (en) | 2008-02-13 | 2021-01-26 | Unomedical A/S | Sealing between a cannula part and a fluid path |
US10912543B2 (en) | 2015-11-03 | 2021-02-09 | Ethicon Llc | Surgical end effector loading device and trocar integration |
US10939909B2 (en) | 2012-12-13 | 2021-03-09 | Ethicon Llc | Circular needle applier with articulating and rotating shaft |
US11020526B2 (en) | 2010-10-04 | 2021-06-01 | Unomedical A/S | Sprinkler cannula |
US11110261B2 (en) | 2011-10-19 | 2021-09-07 | Unomedical A/S | Infusion tube system and method for manufacture |
US11197689B2 (en) | 2011-10-05 | 2021-12-14 | Unomedical A/S | Inserter for simultaneous insertion of multiple transcutaneous parts |
US11291611B2 (en) | 2017-06-09 | 2022-04-05 | Sundance Enteral Solutions, Llc | Multi-lumen gastrointestinal feeding and aspirating catheter assemblies |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3224433A (en) * | 1961-04-10 | 1965-12-21 | Honeywell Inc | ph electrodes |
US3499435A (en) * | 1967-06-02 | 1970-03-10 | Paul E Rockwell | Esophageal probe for use in monitoring |
US3512517A (en) * | 1964-11-30 | 1970-05-19 | Beckman Instruments Inc | Polarographic method and apparatus for monitoring blood glucose concentration |
US3518982A (en) * | 1968-02-09 | 1970-07-07 | Abcor Inc | Device and method for monitoring of gases in the blood stream |
US3572315A (en) * | 1968-11-26 | 1971-03-23 | John S Cullen | Intravascular catheter with gas-permeable tip |
US3658053A (en) * | 1969-08-28 | 1972-04-25 | Scient Research Instr Corp | Catheter for use in detecting dissolved gas in fluids such as blood |
US3710778A (en) * | 1971-03-15 | 1973-01-16 | Gen Electric | Blood gas sensor amplifier and testing system |
-
1973
- 1973-11-26 US US419109A patent/US3893448A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3224433A (en) * | 1961-04-10 | 1965-12-21 | Honeywell Inc | ph electrodes |
US3512517A (en) * | 1964-11-30 | 1970-05-19 | Beckman Instruments Inc | Polarographic method and apparatus for monitoring blood glucose concentration |
US3499435A (en) * | 1967-06-02 | 1970-03-10 | Paul E Rockwell | Esophageal probe for use in monitoring |
US3518982A (en) * | 1968-02-09 | 1970-07-07 | Abcor Inc | Device and method for monitoring of gases in the blood stream |
US3572315A (en) * | 1968-11-26 | 1971-03-23 | John S Cullen | Intravascular catheter with gas-permeable tip |
US3658053A (en) * | 1969-08-28 | 1972-04-25 | Scient Research Instr Corp | Catheter for use in detecting dissolved gas in fluids such as blood |
US3710778A (en) * | 1971-03-15 | 1973-01-16 | Gen Electric | Blood gas sensor amplifier and testing system |
Cited By (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3981297A (en) * | 1975-03-03 | 1976-09-21 | Sorenson Research Co., Inc. | Gas sampling catheter assembly and method |
US4016863A (en) * | 1975-08-27 | 1977-04-12 | Brantigan John W | Tissue tonometer device for use in measuring gas in body tissue |
FR2398485A1 (en) * | 1977-07-29 | 1979-02-23 | Fresenius Chem Pharm Ind | DEVICE FOR CONTINUOUSLY PERFORMING CHEMICAL ANALYZES IN THE LIVING HUMAN BODY |
FR2421624A1 (en) * | 1978-04-03 | 1979-11-02 | Perkin Elmer Corp | HIGH-SPEED TRANSMISSION OF GAS BLOOD CIRCULATION |
EP0089647A2 (en) * | 1982-03-22 | 1983-09-28 | FIDDIAN-GREEN, Richard G. | Hollow viscus tonometry |
EP0089647A3 (en) * | 1982-03-22 | 1984-04-04 | The Regents Of The University Of Michigan | Hollow viscus tonometry |
US4512349A (en) * | 1983-05-13 | 1985-04-23 | Regents Of The University Of California | Method of direct tissue gas tension measurement and apparatus therefor |
US4671287A (en) * | 1983-12-29 | 1987-06-09 | Fiddian Green Richard G | Apparatus and method for sustaining vitality of organs of the gastrointestinal tract |
AU640957B2 (en) * | 1986-02-03 | 1993-09-09 | Mountpelier Investments S.A. | Apparatus and method for selective monitoring/oxygenation of an organ of the gastrointestinal tract |
AU658084B2 (en) * | 1986-02-03 | 1995-03-30 | Mountpelier Investments S.A. | Apparatus and method for selective monitoring/oxygenation of an organ of the gastrointestinal tract |
EP0422690A3 (en) * | 1986-02-03 | 1991-06-26 | Mountpelier Investments, S.A. | Apparatus for selective monitoring/oxygenation of organs of the gastrointestinal tract |
EP0422690A2 (en) * | 1986-02-03 | 1991-04-17 | Mountpelier Investments, S.A. | Apparatus for selective monitoring/oxygenation of organs of the gastrointestinal tract |
US4763658A (en) * | 1986-06-04 | 1988-08-16 | Solutech, Inc. | Dialysis system 2nd method |
US4765339A (en) * | 1986-06-04 | 1988-08-23 | Solutech, Inc. | Closed loop dialysis system |
US4774955A (en) * | 1986-06-04 | 1988-10-04 | Solutech, Inc. | Programmable dialyzer system analyzer and method of use |
US4726381A (en) * | 1986-06-04 | 1988-02-23 | Solutech, Inc. | Dialysis system and method |
US4989606A (en) * | 1987-01-30 | 1991-02-05 | Minnesota Mining And Manufactoring Company | Intravascular blood gas sensing system |
US4934369A (en) * | 1987-01-30 | 1990-06-19 | Minnesota Mining And Manufacturing Company | Intravascular blood parameter measurement system |
US4951669A (en) * | 1987-01-30 | 1990-08-28 | Minnesota Mining And Manufacturing Company | Blood parameter measurement system |
US5048525A (en) * | 1987-01-30 | 1991-09-17 | Minnesota Mining And Manufacturing Company | Blood parameter measurement system with compliant element |
US4830013A (en) * | 1987-01-30 | 1989-05-16 | Minnesota Mining And Manufacturing Co. | Intravascular blood parameter measurement system |
US5462052A (en) * | 1987-01-30 | 1995-10-31 | Minnesota Mining And Manufacturing Co. | Apparatus and method for use in measuring a compositional parameter of blood |
US4834707A (en) * | 1987-09-16 | 1989-05-30 | Evans Phillip H | Venting apparatus and method for cardiovascular pumping application |
US4901727A (en) * | 1988-05-05 | 1990-02-20 | The Boc Group, Inc. | Micro-probe for gas sampling |
EP0340908A3 (en) * | 1988-05-05 | 1989-12-13 | The Boc Group, Inc. | Micro-probe for gas sampling |
EP0340908A2 (en) * | 1988-05-05 | 1989-11-08 | The Boc Group, Inc. | Micro-probe for gas sampling |
EP0403394A1 (en) * | 1989-06-16 | 1990-12-19 | Zeta Technology | Probe for microdialysis |
FR2648353A1 (en) * | 1989-06-16 | 1990-12-21 | Europhor Sa | MICRODIALYSIS PROBE |
US5284775A (en) * | 1990-03-20 | 1994-02-08 | Minnesota Mining And Manufacturing Company | Gas sensing element and method for making same |
US5175016A (en) * | 1990-03-20 | 1992-12-29 | Minnesota Mining And Manufacturing Company | Method for making gas sensing element |
US5421328A (en) * | 1992-06-29 | 1995-06-06 | Minnesota Mining And Manufacturing Company | Intravascular blood parameter sensing system |
US5335658A (en) * | 1992-06-29 | 1994-08-09 | Minnesota Mining And Manufacturing Company | Intravascular blood parameter sensing system |
US20040147903A1 (en) * | 2002-04-05 | 2004-07-29 | Lucas Latini | Microcatheter having tip relief region |
US8142389B2 (en) * | 2002-10-09 | 2012-03-27 | Roche Diagnostics International Ag | Microdialysis probe and method for the production thereof |
US20050251087A1 (en) * | 2002-10-09 | 2005-11-10 | Matthew Carr | Microdialysis probe and method for the production thereof |
US9119579B2 (en) | 2002-10-09 | 2015-09-01 | Matthew Carr | Microdialysis probe and method for the production thereof |
US20090012465A1 (en) * | 2003-03-21 | 2009-01-08 | Lucas Latini | Microcatherer having tip relief region |
US7630747B2 (en) * | 2003-09-09 | 2009-12-08 | Keimar, Inc. | Apparatus for ascertaining blood characteristics and probe for use therewith |
US20050054905A1 (en) * | 2003-09-09 | 2005-03-10 | Corl Paul D. | Apparatus for ascertaining blood characteristics and probe for use therewith |
US20080139909A1 (en) * | 2003-09-09 | 2008-06-12 | Corl Paul D | Sensor with conductor and sealing glass |
US20080146903A1 (en) * | 2003-09-09 | 2008-06-19 | Corl Paul D | Display and probe having a removable connections |
US20080125635A1 (en) * | 2003-09-09 | 2008-05-29 | Corl Paul D | Probe with gas permeable material surrounding a gas sensor assembly |
US20080125633A1 (en) * | 2003-09-09 | 2008-05-29 | Corl Paul D | Probe and display having a gas sensor assembly and surface treatment |
US20080125632A1 (en) * | 2003-09-09 | 2008-05-29 | Corl Paul D | Sensor probe and display module |
US8287516B2 (en) * | 2004-03-26 | 2012-10-16 | Unomedical A/S | Infusion set |
US8221355B2 (en) | 2004-03-26 | 2012-07-17 | Unomedical A/S | Injection device for infusion set |
US20080119792A1 (en) * | 2004-03-26 | 2008-05-22 | Grete Kornerup | Infusion Set |
US8062250B2 (en) | 2004-08-10 | 2011-11-22 | Unomedical A/S | Cannula device |
US7985199B2 (en) | 2005-03-17 | 2011-07-26 | Unomedical A/S | Gateway system |
US20080215003A1 (en) * | 2005-03-17 | 2008-09-04 | Grete Kornerup | Gateway System |
US10369277B2 (en) | 2005-09-12 | 2019-08-06 | Unomedical A/S | Invisible needle |
US9278173B2 (en) | 2005-12-23 | 2016-03-08 | Unomedical A/S | Device for administration |
US8303549B2 (en) | 2005-12-23 | 2012-11-06 | Unomedical A/S | Injection device |
US9211379B2 (en) | 2006-02-28 | 2015-12-15 | Unomedical A/S | Inserter for infusion part and infusion part provided with needle protector |
US8439838B2 (en) | 2006-06-07 | 2013-05-14 | Unomedical A/S | Inserter for transcutaneous sensor |
US8790311B2 (en) | 2006-06-09 | 2014-07-29 | Unomedical A/S | Mounting pad |
US8945057B2 (en) | 2006-08-02 | 2015-02-03 | Unomedical A/S | Cannula and delivery device |
US20100004597A1 (en) * | 2006-08-02 | 2010-01-07 | Unomedical A/S | Insertion Device |
US20100030155A1 (en) * | 2006-08-02 | 2010-02-04 | Steffen Gyrn | Cannula and Delivery Device |
US8012126B2 (en) | 2006-10-31 | 2011-09-06 | Unomedical A/S | Infusion set |
US20100137829A1 (en) * | 2007-02-02 | 2010-06-03 | Nielsen Henrik Boeje | Injection Gateway |
US20100140125A1 (en) * | 2007-02-02 | 2010-06-10 | Orla Mathiasen | Injection Site for Injecting Medication |
US9186480B2 (en) | 2007-06-20 | 2015-11-17 | Unomedical A/S | Apparatus for making a catheter |
US9320869B2 (en) | 2007-06-20 | 2016-04-26 | Unomedical A/S | Apparatus for making a catheter |
US8430850B2 (en) | 2007-07-03 | 2013-04-30 | Unomedical A/S | Inserter having bistable equilibrium states |
US8486003B2 (en) | 2007-07-10 | 2013-07-16 | Unomedical A/S | Inserter having two springs |
US8246588B2 (en) | 2007-07-18 | 2012-08-21 | Unomedical A/S | Insertion device with pivoting action |
US10898643B2 (en) | 2008-02-13 | 2021-01-26 | Unomedical A/S | Sealing between a cannula part and a fluid path |
US10376637B2 (en) | 2008-02-20 | 2019-08-13 | Unomedical A/S | Insertion device with horizontally moving part |
US9566384B2 (en) | 2008-02-20 | 2017-02-14 | Unomedical A/S | Insertion device with horizontally moving part |
US20100010328A1 (en) * | 2008-07-11 | 2010-01-14 | Nguyen Harry D | Probes and sensors for ascertaining blood characteristics and methods and devices for use therewith |
US20100057046A1 (en) * | 2008-09-03 | 2010-03-04 | Keimar, Inc | Systems for characterizing physiologic parameters and methods for use therewith |
US9254373B2 (en) | 2008-12-22 | 2016-02-09 | Unomedical A/S | Medical device comprising adhesive pad |
US8562567B2 (en) | 2009-07-30 | 2013-10-22 | Unomedical A/S | Inserter device with horizontal moving part |
US9533092B2 (en) | 2009-08-07 | 2017-01-03 | Unomedical A/S | Base part for a medication delivery device |
US9186203B2 (en) * | 2009-10-09 | 2015-11-17 | Ethicon Endo-Surgery, Inc. | Method for exchanging end effectors In Vivo |
US20110087267A1 (en) * | 2009-10-09 | 2011-04-14 | Spivey James T | Method for exchanging end effectors in vivo |
US9295485B2 (en) | 2009-10-09 | 2016-03-29 | Ethicon Endo-Surgery, Inc. | Loader for exchanging end effectors in vivo |
US10143454B2 (en) | 2009-10-09 | 2018-12-04 | Ethicon Llc | Loader for exchanging end effectors in vivo |
EP2501286A4 (en) * | 2009-11-16 | 2013-09-04 | Maquet Critical Care Ab | Self-flowing measuring system |
WO2011059397A1 (en) * | 2009-11-16 | 2011-05-19 | Cma Microdialysis Ab | Self-flowing measuring system |
US9167997B2 (en) | 2009-11-16 | 2015-10-27 | Maquet Critical Care Ab | Self-flowing measuring system |
US9415159B2 (en) | 2010-03-30 | 2016-08-16 | Unomedical A/S | Medical device |
US11786653B2 (en) | 2010-03-30 | 2023-10-17 | Unomedical A/S | Insertion device |
US9724127B2 (en) | 2010-09-27 | 2017-08-08 | Unomedical A/S | Insertion system and insertion kit |
US11020526B2 (en) | 2010-10-04 | 2021-06-01 | Unomedical A/S | Sprinkler cannula |
US11197689B2 (en) | 2011-10-05 | 2021-12-14 | Unomedical A/S | Inserter for simultaneous insertion of multiple transcutaneous parts |
US11684767B2 (en) | 2011-10-19 | 2023-06-27 | Unomedical A/S | Infusion tube system and method for manufacture |
US11110261B2 (en) | 2011-10-19 | 2021-09-07 | Unomedical A/S | Infusion tube system and method for manufacture |
US12178984B2 (en) | 2011-10-19 | 2024-12-31 | Unomedical A/S | Infusion tube system and method for manufacture |
US9440051B2 (en) | 2011-10-27 | 2016-09-13 | Unomedical A/S | Inserter for a multiplicity of subcutaneous parts |
US9125681B2 (en) | 2012-09-26 | 2015-09-08 | Ethicon Endo-Surgery, Inc. | Detachable end effector and loader |
US9526516B2 (en) | 2012-09-26 | 2016-12-27 | Ethicon Endo-Surgery, Llc | Detachable end effector and loader |
US10939909B2 (en) | 2012-12-13 | 2021-03-09 | Ethicon Llc | Circular needle applier with articulating and rotating shaft |
US9451937B2 (en) | 2013-02-27 | 2016-09-27 | Ethicon Endo-Surgery, Llc | Percutaneous instrument with collet locking mechanisms |
US20160175558A1 (en) * | 2014-12-19 | 2016-06-23 | Raumedic Ag | Multiple Lumen Microcatheter Tube and Method for Manufacturing Multiple Lumen Microcatheter Tubes |
US10342520B2 (en) | 2015-08-26 | 2019-07-09 | Ethicon Llc | Articulating surgical devices and loaders having stabilizing features |
US10314565B2 (en) | 2015-08-26 | 2019-06-11 | Ethicon Llc | Surgical device having actuator biasing and locking features |
US10335196B2 (en) | 2015-08-31 | 2019-07-02 | Ethicon Llc | Surgical instrument having a stop guard |
US10251636B2 (en) | 2015-09-24 | 2019-04-09 | Ethicon Llc | Devices and methods for cleaning a surgical device |
US10702257B2 (en) | 2015-09-29 | 2020-07-07 | Ethicon Llc | Positioning device for use with surgical instruments |
US10675009B2 (en) | 2015-11-03 | 2020-06-09 | Ethicon Llc | Multi-head repository for use with a surgical device |
US10912543B2 (en) | 2015-11-03 | 2021-02-09 | Ethicon Llc | Surgical end effector loading device and trocar integration |
US10265130B2 (en) | 2015-12-11 | 2019-04-23 | Ethicon Llc | Systems, devices, and methods for coupling end effectors to surgical devices and loading devices |
US11291611B2 (en) | 2017-06-09 | 2022-04-05 | Sundance Enteral Solutions, Llc | Multi-lumen gastrointestinal feeding and aspirating catheter assemblies |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3893448A (en) | Catheter device for use in detecting gas in body fluids and tissue | |
EP0568258B1 (en) | A vascular access device | |
US4650472A (en) | Apparatus and method for effecting percutaneous catheterization of a blood vessel using a small gauge introducer needle | |
US4961729A (en) | Catheter insertion assembly | |
US3459188A (en) | Paracentesis stylet catheter | |
US5169387A (en) | Method and apparatus for catheterization of a body cavity | |
US5373855A (en) | Two-channel needle for withdrawing body fluids | |
EP0107810B1 (en) | Long indwelling double bore catheter | |
US5098376A (en) | Apparatus and methods for furling and introducing an extrapulmonary blood gas exchange device | |
US4016863A (en) | Tissue tonometer device for use in measuring gas in body tissue | |
JP4198986B2 (en) | Apparatus and method for obtaining interstitial fluid from a patient for diagnostic testing | |
US5441481A (en) | Microdialysis probes and methods of use | |
US4585440A (en) | Intravenous catheter assembly | |
US3572315A (en) | Intravascular catheter with gas-permeable tip | |
US3981297A (en) | Gas sampling catheter assembly and method | |
US5531672A (en) | Blood aspiration assembly components and blunt needle aspirators | |
US4894052A (en) | Flash detection in an over the needle catheter with a restricted needle bore | |
US4453928A (en) | Catheter tunneling apparatus | |
US6264627B1 (en) | Catheter to be inserted into a blood vessel, and a method for detection of substances and metabolic changes in a heart | |
EP0317555B1 (en) | High flux threaded needle | |
US5147314A (en) | Apparatus for introducing at least one of a catheter and a guide wire into a body cavity | |
US4714461A (en) | Catheter assembly with air purging feature | |
US5478326A (en) | Arterial device for control of bleeding from a puncture in an artery wall | |
JPH10511029A (en) | catheter | |
USRE36273E (en) | Syringe apparatus for separating blood |