US3879942A - Partition for rocket engines - Google Patents
Partition for rocket engines Download PDFInfo
- Publication number
- US3879942A US3879942A US372515A US37251573A US3879942A US 3879942 A US3879942 A US 3879942A US 372515 A US372515 A US 372515A US 37251573 A US37251573 A US 37251573A US 3879942 A US3879942 A US 3879942A
- Authority
- US
- United States
- Prior art keywords
- plug
- chamber
- arrangement according
- wall
- flow passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K9/00—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
- F02K9/74—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof combined with another jet-propulsion plant
- F02K9/76—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof combined with another jet-propulsion plant with another rocket-engine plant; Multistage rocket-engine plants
- F02K9/763—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof combined with another jet-propulsion plant with another rocket-engine plant; Multistage rocket-engine plants with solid propellant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K9/00—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
- F02K9/08—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants
- F02K9/28—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using solid propellants having two or more propellant charges with the propulsion gases exhausting through a common nozzle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K9/00—Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
- F02K9/97—Rocket nozzles
- F02K9/978—Closures for nozzles; Nozzles comprising ejectable or discardable elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K15/00—Check valves
- F16K15/14—Check valves with flexible valve members
- F16K15/1402—Check valves with flexible valve members having an integral flexible member cooperating with a plurality of seating surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K2200/00—Details of valves
- F16K2200/20—Common housing having a single inlet, a single outlet and multiple valve members
- F16K2200/203—Common housing having a single inlet, a single outlet and multiple valve members in parallel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7734—Fluid opened valve requiring reset
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7838—Plural
- Y10T137/7839—Dividing and recombining in a single flow path
- Y10T137/784—Integral resilient member forms plural valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/7722—Line condition change responsive valves
- Y10T137/7837—Direct response valves [i.e., check valve type]
- Y10T137/7859—Single head, plural ports in parallel
Definitions
- ABSTRACT A partition arrangement for separating a rear combustion chamber space having a propulsion nozzle leading from the rear end thereof from a forward chamber.
- the partition includes a partition wall disposed between the forward end of the rear chamber and the rear end of the forward chamber which has a pair of symmetrically arranged flow passages. Sealing plugs are detachably insertable into these passages so as to accommodate sealing of the chambers from one another during operation of the rear chamber as a combustion chamber supplying the nozzle and for permitting flow of pressurized gases from the forward chamber through the hollow passages and the rear chamber when the plugs are removed from the passages.
- the plugs are mounted so as to be movable from the inserted to the released positions while remaining inside of the rear chamber at positions spaced from the nozzle so as to prevent the plugs tampering nozzle operation.
- Preferred embodiments of the arrangement for holding the sealing plugs include a centrally disposed trunion on the partition wall which supports the sealing plugs for a predetermined axial movement against a stop collar on the trunion and a subsequent rotational movement of a holding member with attached sealing plugs for moving the plugs out of axial alignment with the passages.
- a helically coiled spring mounted on the trunnion and the holding member provides the lateral forces for pivoting the plugs 1aterally.
- a stop pin is arranged on the partition wall for preventing application of the rotational torque by the spring until after the plugs have moved rearwardly axially out of engagement with the passages.
- Another preferred embodiment utilizes a slot and pin arrangement at the centrally disposed trunion for guiding movement of the plugs in the axial and lateral directions in a predetermined path in response to the pressure forces in the forward chamber.
- This invention relates to a partition or intermediate wall arrangement for rocket engines with at least one flow passage or throughflow aperture and at least one plug sealing the latter.
- the partition arrangement separates a combustion chamber provided with a solid propellant charge and at least one nozzle from an additional chamber arranged at the end of the combustion chamber facing away from the nozzle.
- This additional chamber may be a further combustion chamber with a further solid propellant charge.
- a partition for rocket engines has been contemplated which has at least one passage and plug sealing same for separating a combustion chamber equipped with a solid propellant charge or grain and at least one nozzle from an additional space arranged at the end facing away from the nozzle, especially where said additional space is a further combustion chamber with a solid propellant charge.
- the plugs upon ignition of the ramjet engine, the plugs are pushed out of the apertures into the chamber disposed in front thereof and are ejected by the at least one nozzle.
- the plugs jam in the nozzle and thus impair the unimpeded exhausting of the propellant gases, which, depending on the circumstances, can result in an explosion or other malfunction of the rocket engine.
- This invention is based on the problem of avoiding the above-discussed disadvantage of this type of partition arrangement.
- the present invention solves this problem, for a partition of the type described above, by providing that the at least one plug is affixed axially displaceably at a plug control holding means or mounting device such that after the plug has been pushed axially out of the flow passage, the plug can be laterally shifted or pivoted, preferably into a position completely vacating the flow passage.
- the plug control means include means precluding movement of the plug to a rearward position where it can jam the nozzle.
- the present invention contemplates a preferred partition arrangement where the partition wall is constructed so that a holding means for the plug or plugs is axially displaceable and laterally pivotable on a trunnion centrally arranged at the partition wall.
- the holding means can also be formed like a ring, for example, which is axially shiftable in a guide at the inner wall of the combustion chamber housing.
- the plugs are joined to the ring by radial arms.
- the laterl displaceability and/or pivotability of the at least one plug is provided, according to another suggestion of this invention, by biased or pretensioned springs.
- this guide element is a radial pin fixedly attached to the trunnion, which pin engages a slot of the holding means which is first extended in the axial direction and then is angled at the end terminating at the plug.
- the partition wall due to the desired symmetrical mass distribution, has more than one opening and thus also more than one plug, which can consist in dependence on the mechanical and thermal stresses incurred of, for example, steel, aluminum, synthetic resin with metallic coating, sintered-powder metal, or a ceramic material.
- the spring element for the lateral displacement or pivoting of the plug in certain preferred embodiments of the present invention can be a torsion rod a rod, with a flat or round cross section, or also a cylindrical or conical coil spring.
- the plugs according to preferred embodiments of the present invention have a circular or oval cross section and carry advantageously an additional sealing ring on their cylindrical or curved outer surface.
- FIG. I is a side schematic sectional view illustrating a rocket engine and partition arrangement constructed in accordance with the present invention.
- FIG. 2 is an enlarged partial sectional side view which shows details of partition arrangement constructed in accordance with the present invention with the plugs in sealing position in the passages of the partition wall;
- FIG. 3 is a cross-sectional view taken along section line 3-3 of FIG. 2;
- FIG. 4 is a view similar to FIG. 2 with the plugs retracted and pivoted away from the passages in the partition wall;
- FIG. 5 is a cross-sectional view taken along section line 5-5 of FIG. 4;
- FIG. 6 is a view similar to FIG. 3 which shows a modified embodiment in accordance with the present invention for holding and controlling movement of the plugs,
- FIG. 7 is a view similar to FIG. 2 which shows a further preferred embodiment of the holding and control means for the plugs which is constructed in accordance with the present invention
- FIG. 8 is a side schematic sectional view illustrating a ram jet engine and partition arrangement constructed in accordance with the present invention.
- FIG. 9 is an enlarged partial sectional view of a still further modified partition arrangement with the plugs in sealing position in the passages of the partition wall.
- FIG. 1 shows a solid-grain rocket engine with a hull or case 1, a nozzle 2, a first combustion chamber 3 and a second combustion chamber 4, which chambers are separated from each other by partition 5.
- a propellant charge 6 with an igniter 7 is arranged in the first combustion chamber 3.
- a propellant charge 8 with an igniter 9 is provided in the second combustion chamber 4.
- FIG. 2 shows details of the partition of this invention.
- This partition 5 has two openings 10 sealed by plugs 11 with sealing rings or gaskets I2.
- the plugs 11 are connected with one another by a holding means 13 which is axially displaceably and pivotably or rotatably mounted on a trunnion 14 attached to the partition 5.
- the trunnion I4 is provided with an extension 15 with stop 16, which extension has a square cross section, for example.
- a flat spiral spring 17 is axially displaceably mounted on this extension 15 with free end 18 of the flat spiral spring 17 fixedly joined to the holding means 13 by means of the mounting device 19.
- the pin absorbs the torque exerted by the spring 17 as long as the plugs 11 are still within the apertures 10.
- the inner end of spring 17 is rotatably fixed to extension 15 by, for example, bending the inner end of spring 17 into a closely fitting square configuration similar to the cross-section of extension 15.
- FIG. 3 shows the partition along the section line 3-3 indicated in FIG. 2, with the plugs 11 and the holding means I3.
- the flat spiral spring 17, axially displaceable on the extension 15, is biased by its clamped attachment at the mounting device 19 so that it exerts a torque on the holding means 13. If. due to an excess pressure in the second combustion chamber 4, i.e. the one facing away from the nozzle, the plugs 11 are pressed out of the openings 10, the torque of the flat spiral spring 17 effects that the holding means 13, together with the plugs I1, is rotated, for example, by 90, so that the plugs 11 are located between the openings 10.
- FIG. 4 shows this position.
- the flat spiral spring 17 has been pressed, together with the holding means 13, against the stop 16.
- FIG. 5 illustrates a sectional view along line 5-5 of FIG. 4 and shows the position of the plugs 11 after vacating the openings 10 of the partition 5 in even greater detail.
- the flat spiral spring 17 has been relaxed or brought to its neutral unstressed condition after pivoting of the holding means 13 by, for example, 90, so that the mounting means 13 with the plugs 11 is held in this end position by spring 17.
- FIG. 6 shows, in a view similar to FIGS. 3 and 5, a modified arrangement at the partition 5 wherein the holding means for the plugs 11 is constituted by the spring 13a proper.
- Numeral 16a denotes a centrally positioned pin member
- 20a denotes pins attached to the partition 5, which release the spring action only after the plugs 11 have been pushed longitudinally out of the openings 10.
- the stop pins 200 operate in a manner similar to the stop pin 20 described above with re spect to the FIG. 2 embodiment.
- the pivoted position of the plugs 11 wherein they free the openings 10 is indicated in dashed lines in FIG. 6.
- the spring is appropriately axially guided in a slot provided in the pin member to permit the desired axial movement of the plugs 11.
- FIG. 7 shows another modified construction of the partition 5 wherein the pivotability of the holding means 13 for the plugs 11 is provided by a positive guidance at the trunnion 14, by having a radial pin 21, fixedly attached to the trunnion 14, extend through a slot 22 formed in a sleeve 23 which is fixedly joined to the holding means 13 and longitudinally and rotationally displaceable on the trunnion 14.
- This slot 22 is fashioned, in a first section 220, to extend in the axial direction to accommodate axial withdrawal of the plugs from the passages and, in a second section 22b, to extend at an angle, in order to attain the desired pivoting of the holding means 13.
- the pressure effect of the propellant gases flowing against the plugs 11 supplies the forces for both axial and pivotal movement of the holding means 13 and plugs 11 in this FIG. 7 embodiment.
- FIG. 8 shows an overall arrangement similar to FIG. 1 except that a ram jet engine 24 has been substituted for the rocket engine.
- This ram jet engine 24 includes an air inlet 25 at the forward end thereof and fuel injection means 26 rearwardly thereof. Since the structure of FIG. 8 downstream of the ram jet engine is similar to the structure downstream of the rocket engine of FIG. I, like reference numerals are used for like parts. It is also noted that any of the described partition wall arrangements can be used in conjunction with the rocket engine of FIG. 1 and the ram jet engine of FIG. 8.
- FIG. 9 illustrates a partition arrangement similar to FIG. 7 except that an annular holding ring 27 with inwardly projecting mounting arms attached to the plugs is provided in lieu of the inner ring and radially outwardly projecting arms 13 of FIG. 7.
- the ring 27 is guided for axial movement by way of a pin and slot arrangement 21, 22b, 22a analogous to the FIG. 7 arrangement except that the slot or slots are provided in the annular ring 27.
- a partition arrangement for separating first and second longitudinally spaced chambers of a rocket engine from one another comprising:
- wall means having a first side facing said first chamber and a second side facing said second chamber, at least one flow passage extending through said wall means from said first side to said second side, plug means detachably insertable into each of said at least one flow passage such that said wall means and plug means from a continuous sealed partition between said first and second chambers when said plug means are in respective inserted sealing positions in said at least one flow passage and such that said at least one flow passage communicates said first and second chambers with one another when said plug means are in respective non-sealing positions,
- plug control means for controlling movement of said plug means between said respective inserted sealing positions and predetermined non-sealing positions
- said plug control means includes lateral force means for laterally forcing said plug means away from longitudinal alignment with said at least one flow passage after said plug means has moved longitudinally a predetermined distance from the respective sealing position thereof.
- said plug control means includes means for guiding said plug means along a predetermined path in both longitudinal and lateral directions.
- said first chamber is a conbustion chamber which has a nozzle arranged at the rear end thereof which is opposite said wall means for exhausting combustion products from said first chamber to propel said rocket.
- said second chamber is a combustion chamber, and wherein combustion products from said second chamber are supplied to said nozzle by way of said at least one flow passage and said first chamber.
- each of said first and second chambers are provided with solid propellant charges, and wherein the pressure build-up in said second chamber resulting from ignition of the propellant charge therein forces said plug means in the longitudinal direction away from said inserted sealing positions toward said first chamber.
- said plug control means includes longitudinal stop means for limiting the longitudinal movement of said plug means into said first chamber so as to maintain said plug means spaced forwardly of said nozzle at all times during operation of the rocket with propulsion by products from said second combustion chamber.
- said second chamber includes means for supplying a pressure medium exhaust to said nozzle by way of said at least one flow passage and said first chamber.
- said plug control means includes lateral force stop means for preventing lateral forcing of said plug means whenever said plug means are in a position where the most forward end of the plug means is forward of said first side of the wall means.
- said lateral force means includes means for laterally forcing said plug means laterally a distance such that all portions of said plug means are out of longitudinal alignment with said at least one flow passage.
- a partition arrangement for separating first and second longitudinally spaced chambers of a rocket engine from one another comprising:
- wall means having a first side facing said first chamber and a second side facing said second chamber, at least one flow passage extending through said wall means from said first side to said second side,
- plug means detachably insertable into each of said at least one flow passage such that said wall means and plug means form a continuous sealed partition between said first and second chambers when said plug means are in respective inserted sealing positions in said at least one flow passage and such that said at least one flow passage communicates said first and second chambers with one another when said plug means are in respective non-sealing positions,
- plug control means attached to said plug means for controlling movement of said plug means between said respective inserted sealing positions and predetermined non-sealing positions
- said plug control means includes a trunnion attached to the wall means and holding means directly attached to the plug means, said holding means being longitudinally displaceable and laterally pivotable on said trunnion.
- said plug control means includes means for guiding said plug means along a predetermined path in both longitudinal and lateral directions.
- said first chamber is a combustion chamber which has a nozzle arranged at the rear end thereof which is opposite said wall means for exhausting combustion products from said first chamber to propel said rocket.
- said second chamber includes means for supplying a pressure medium exhaust to said nozzle by way of said at least one flow passage and said first chamber.
- said plug control means includes lateral force means for laterally forcing said plug means away from longitudinal alignment with said at least one flow passage, said lateral force means including resilient means.
- said plug control means includes lateral force means for laterally forcing said plug means away from longitudinal alignment with said at least one flow passage, said lateral force means including resilient means.
- said resilient means include spring means engageable with said trunnion means and said holding means for pivoting said holding means and attached plug means about said trunnion.
- said plug control means includes lateral force stop means for preventing lateral forcing of said plug means whenever said plug means are in a position where the most forward end of the plug means is forward of said first side of the wall means.
- said lateral force stop means includes abutment pin means fixed to said wall means and engageable with said holding means, said abutment pin means extending longitudinally onto said first chamber a predetermined distance such that said holding means engages said pin means when said holding means is in positions forward of a position where said plug means is rearward of said first side of said wall means and such that said pin means releases said holding means when said holding means is at a position where said plug means is rearward of said first side of said side wall means.
- said plug control means includes longitudinal stop means for limiting the longitudinal movement of said plug means into said first chamber so as to maintain said plug means spaced forwardly of said nozzle at all times during operation of the rocket with propulsion by products from said second combustion chamber.
- said plug control means includes lateral force means for laterally forcing said plug means away from longitudinal alignment with said at least one flow passage.
- said lateral force means including resilient means.
- said plug control means includes lateral force stop means for preventing lateral forcing of said plug means whenever said plug means are in a position where the most forward end of the plug means is forward of said first side of the wall means.
- said plug control means includes a trunnion attached to the wall means and holding means directly attached to the plug means. said holding means being guided by a pin and slot connection with the trunnion means such that, in response to pressure in said second chamber against said plug means. said holding means moves longitudinally during initial movement of said plug means from said sealing position until said plug means are free of said passage means and such that said holding means pivots to laterally move said plug means out of alignment with said passage means.
- said plug control means includes a ring member axially shiftable in guide means at the inner wall of the first combustion chamber, and wherein said plug means are joined to the ring by radial arms.
- said plug control means includes means for maintaining said plug means within said first chamber and spaced from a propulsion nozzle arranged at the end of said first chamber opposite said wall means when said plug means are in said predetermined non-sealing positions.
- said plug control means includes holding means directly attached to the plug means, said holding means having guided pin and slot connection with relatively fixed guide means of said rocket engine such that, in response to pressure in said second chamber against said plug means, said holding means moves longitudinally during initial movement of said plug means from sealing position until said plug means are free of said passages means and such that said holding means pivots to laterally move said plug means out of alignment with said passage means.
- a partition arrangement for separating first and second longitudinally spaced chambers of a rocket engine from one another comprising:
- wall means having a first side facing said first chamber and a second side facing said second chamber
- plug means detachably insertable into each of said at least one flow passage such that said wall means and plug means form a continuous sealed partition between said first and second chambers when said plug means are in respective inserted sealing positions in said at least one flow passage and such that said at least one flow passage communicates said first and second chambers with one another when said plug means are in respective non-sealing positions,
- plug control means attached to said plug means for controlling movement of said plug means between said respective inserted sealing positions and predetermined non-sealing positions.
- said plug control means includes longitudinal stop means for limiting the longitudinal movement of said plug means into said first chamber so as to maintain said plug means spaced forwardly of said nozzle at all times during operation of the rocket with propulsion by products from said second combustion chamber,
- said plug control means includes lateral force means for laterally forcing said plug means away from longitudinal alignement with said at least one flow passage after said plug means has moved longitudinally against said stop member.
- said plug control means includes means for guiding said plug means along a predetermined path in both longitudinal and lateral directions.
- said first chamber is a combustion chamber which has a nozzle arranged at the rear end thereof which is opposite said wall means for exhausting combustion products from said first chamber to propel said rocket.
- each of said first and second chambers are provided with solid propellant charges, and wherein the pressure build-up in said second chamber resulting from ignition of the propellant charge therein forces said plug means in the longitudinal direction away from said inserted sealing positions toward said first chamber.
- said plug control means includes lateral force stop means for preventing lateral forcing of said plug means whenever said plug means are in a position where the most forward end of the plug means is forward of said first side of the wall means.
- lateral force means includes means for laterally forcing said plug means laterally a distance such that all portions of said plug means are out of longitudinal alignment with said at least one flow passage.
- said plug control means includes a trunnion attached to the wall means and holding means directly attached to the plug means, said holding means being guided by a pin and slot connection with the trunnion means such that, in response to pressure in said second chamber against said plug means.
- said holding means moves longitudinally during initial movement of said plug means from said sealing position until said plug means are free of said passage means and such that said holding means pivots to laterally move said plug means out of alignment with said passage means.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Nozzles (AREA)
- Fuel-Injection Apparatus (AREA)
- Testing Of Engines (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2230457A DE2230457C3 (de) | 1972-06-22 | 1972-06-22 | Zwischenwand für Raketentriebwerke |
Publications (1)
Publication Number | Publication Date |
---|---|
US3879942A true US3879942A (en) | 1975-04-29 |
Family
ID=5848424
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US372515A Expired - Lifetime US3879942A (en) | 1972-06-22 | 1973-06-22 | Partition for rocket engines |
Country Status (6)
Country | Link |
---|---|
US (1) | US3879942A (it) |
BE (1) | BE801230A (it) |
DE (1) | DE2230457C3 (it) |
FR (1) | FR2189646B1 (it) |
GB (1) | GB1401400A (it) |
IT (1) | IT986191B (it) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4007685A (en) * | 1975-07-30 | 1977-02-15 | The United States Of America As Represented By The Secretary Of The Army | Gas generator |
US4028886A (en) * | 1975-10-23 | 1977-06-14 | Mcdonnell Douglas Corporation | Passive chamber wall fragmenter |
US4050243A (en) * | 1976-05-17 | 1977-09-27 | The United States Of America As Represented By The Secretary Of The Navy | Combination solid fuel ramjet injector/port cover |
US4075832A (en) * | 1974-12-09 | 1978-02-28 | Dynamit Nobel Aktiengesellschaft | Partition for rocket motors |
WO1990001634A1 (en) * | 1988-08-11 | 1990-02-22 | Fike Corporation | Reverse bulged forward acting scored rupture disc bulkhead structure for multi-stage rocket motor |
EP0211703B1 (fr) * | 1985-07-03 | 1990-03-14 | Societe Nationale Des Poudres Et Explosifs | Dispositif de fermeture temporaire d'un orifice interne d'un propulseur |
US5125229A (en) * | 1988-05-10 | 1992-06-30 | Societe Nationale Des Poudres Et Explosifs | Nozzleless propulsion unit of low aspect ratio |
US5201644A (en) * | 1987-12-23 | 1993-04-13 | 3H Invent A/S | Valve arrangement for pump or compressor |
US5311902A (en) * | 1991-07-02 | 1994-05-17 | Overfield Norbert W | Reciprocating compressor valve |
US5431643A (en) * | 1992-04-02 | 1995-07-11 | The Procter & Gamble Company | Absorbent article having a nonwoven topsheet with fluid impervious areas |
WO2009032447A1 (en) * | 2007-08-02 | 2009-03-12 | Aerojet-General Corporation | Multi-functional pulse-divided rocket |
US20090229241A1 (en) * | 2008-03-07 | 2009-09-17 | Haight Stephen D | Hybrid missile propulsion system with reconfigurable multinozzle grid |
US20100288516A1 (en) * | 2009-05-14 | 2010-11-18 | Airbus France | Fluid ejection device |
US9032737B2 (en) | 2009-12-30 | 2015-05-19 | Rolls-Royce North American Technologies, Inc. | Combustor added to a gas turbine engine to increase thrust |
CN104977168A (zh) * | 2015-07-15 | 2015-10-14 | 江西洪都航空工业集团有限责任公司 | 一种堵盖释放装置 |
EP3015697A1 (de) * | 2014-10-29 | 2016-05-04 | Bayern-Chemie Gesellschaft für flugchemische Antriebe mbH | Integriertes flugkörperantriebssystem |
US20170191569A1 (en) * | 2015-12-31 | 2017-07-06 | Boe Technology Group Co., Ltd. | Vacuum-pumping device and method for operating the same |
CN110145412A (zh) * | 2019-05-27 | 2019-08-20 | 北京理工大学 | 门式固体火箭发动机 |
RU2704058C1 (ru) * | 2018-11-20 | 2019-10-23 | Акционерное общество "Машиностроительное конструкторское бюро "Искра" имени Ивана Ивановича Картукова" (АО "МКБ "Искра") | Разделительное днище многоимпульного ракетного двигателя на твердом топливе |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1537469A (en) * | 1975-12-23 | 1978-12-29 | Imi Kynoch Ltd | Disintegrable member for controlling flow between pressure chambers |
GB9206616D0 (en) * | 1992-03-26 | 1997-09-17 | Royal Ordnance Plc | Improvements in or relating to combustion apparatus and valves therefor |
CN110594038B (zh) * | 2019-08-20 | 2021-11-09 | 西安航天动力技术研究所 | 一种多次脉冲激励装置 |
CN111762343B (zh) * | 2020-06-09 | 2023-09-08 | 上海宇航系统工程研究所 | 一种航天器用可抛离双组元环形贮箱 |
CN117307359B (zh) * | 2023-11-28 | 2024-03-19 | 西安现代控制技术研究所 | 一种固体火箭发动机喷管耐腐蚀唇型密封堵结构 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2835269A (en) * | 1953-04-10 | 1958-05-20 | Smith Corp A O | Vessel closure |
US2977879A (en) * | 1957-09-18 | 1961-04-04 | Atlantic Res Corp | Rocket projectile |
US3040517A (en) * | 1960-06-27 | 1962-06-26 | Carl V Ryden | Releasable rocket nozzle |
US3112615A (en) * | 1962-05-29 | 1963-12-03 | Harold G Cook | Electrical connector for boost sustained rocket motor |
US3115008A (en) * | 1959-02-03 | 1963-12-24 | Cohen William | Integral rocket ramjet missile propulsion system |
US3442084A (en) * | 1966-07-22 | 1969-05-06 | Dynamit Nobel Ag | Multistage solid fuel rocket propulsion unit for the placing of depth charges |
-
1972
- 1972-06-22 DE DE2230457A patent/DE2230457C3/de not_active Expired
-
1973
- 1973-06-20 IT IT50931/73A patent/IT986191B/it active
- 1973-06-21 FR FR7322779A patent/FR2189646B1/fr not_active Expired
- 1973-06-21 BE BE132535A patent/BE801230A/xx unknown
- 1973-06-22 GB GB2990973A patent/GB1401400A/en not_active Expired
- 1973-06-22 US US372515A patent/US3879942A/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2835269A (en) * | 1953-04-10 | 1958-05-20 | Smith Corp A O | Vessel closure |
US2977879A (en) * | 1957-09-18 | 1961-04-04 | Atlantic Res Corp | Rocket projectile |
US3115008A (en) * | 1959-02-03 | 1963-12-24 | Cohen William | Integral rocket ramjet missile propulsion system |
US3040517A (en) * | 1960-06-27 | 1962-06-26 | Carl V Ryden | Releasable rocket nozzle |
US3112615A (en) * | 1962-05-29 | 1963-12-03 | Harold G Cook | Electrical connector for boost sustained rocket motor |
US3442084A (en) * | 1966-07-22 | 1969-05-06 | Dynamit Nobel Ag | Multistage solid fuel rocket propulsion unit for the placing of depth charges |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4075832A (en) * | 1974-12-09 | 1978-02-28 | Dynamit Nobel Aktiengesellschaft | Partition for rocket motors |
US4007685A (en) * | 1975-07-30 | 1977-02-15 | The United States Of America As Represented By The Secretary Of The Army | Gas generator |
US4028886A (en) * | 1975-10-23 | 1977-06-14 | Mcdonnell Douglas Corporation | Passive chamber wall fragmenter |
US4050243A (en) * | 1976-05-17 | 1977-09-27 | The United States Of America As Represented By The Secretary Of The Navy | Combination solid fuel ramjet injector/port cover |
EP0211703B1 (fr) * | 1985-07-03 | 1990-03-14 | Societe Nationale Des Poudres Et Explosifs | Dispositif de fermeture temporaire d'un orifice interne d'un propulseur |
US5201644A (en) * | 1987-12-23 | 1993-04-13 | 3H Invent A/S | Valve arrangement for pump or compressor |
US5125229A (en) * | 1988-05-10 | 1992-06-30 | Societe Nationale Des Poudres Et Explosifs | Nozzleless propulsion unit of low aspect ratio |
WO1990001634A1 (en) * | 1988-08-11 | 1990-02-22 | Fike Corporation | Reverse bulged forward acting scored rupture disc bulkhead structure for multi-stage rocket motor |
WO1990001633A1 (en) * | 1988-08-11 | 1990-02-22 | Fike Corporation | Reverse bulged forward acting scored rupture disc bulkhead structure for multi-stage rocket motor |
US5160070A (en) * | 1988-08-11 | 1992-11-03 | Fike Corporation | Reverse bulged forward acting scored rupture disc bulkhead structure for multi-stage rocket motor |
US5311902A (en) * | 1991-07-02 | 1994-05-17 | Overfield Norbert W | Reciprocating compressor valve |
US5411054A (en) * | 1991-07-02 | 1995-05-02 | Overfield; Norbert W. | Positive displacement compressor |
US5431643A (en) * | 1992-04-02 | 1995-07-11 | The Procter & Gamble Company | Absorbent article having a nonwoven topsheet with fluid impervious areas |
WO2009032447A1 (en) * | 2007-08-02 | 2009-03-12 | Aerojet-General Corporation | Multi-functional pulse-divided rocket |
US8291691B2 (en) | 2007-08-02 | 2012-10-23 | Aerojet-General Corporation | Multi-functional pulse-divided rocket |
US20090229241A1 (en) * | 2008-03-07 | 2009-09-17 | Haight Stephen D | Hybrid missile propulsion system with reconfigurable multinozzle grid |
US8117847B2 (en) * | 2008-03-07 | 2012-02-21 | Raytheon Company | Hybrid missile propulsion system with reconfigurable multinozzle grid |
US20100288516A1 (en) * | 2009-05-14 | 2010-11-18 | Airbus France | Fluid ejection device |
US9032737B2 (en) | 2009-12-30 | 2015-05-19 | Rolls-Royce North American Technologies, Inc. | Combustor added to a gas turbine engine to increase thrust |
EP3015697A1 (de) * | 2014-10-29 | 2016-05-04 | Bayern-Chemie Gesellschaft für flugchemische Antriebe mbH | Integriertes flugkörperantriebssystem |
CN104977168A (zh) * | 2015-07-15 | 2015-10-14 | 江西洪都航空工业集团有限责任公司 | 一种堵盖释放装置 |
US20170191569A1 (en) * | 2015-12-31 | 2017-07-06 | Boe Technology Group Co., Ltd. | Vacuum-pumping device and method for operating the same |
RU2704058C1 (ru) * | 2018-11-20 | 2019-10-23 | Акционерное общество "Машиностроительное конструкторское бюро "Искра" имени Ивана Ивановича Картукова" (АО "МКБ "Искра") | Разделительное днище многоимпульного ракетного двигателя на твердом топливе |
RU2704058C9 (ru) * | 2018-11-20 | 2019-12-18 | Акционерное общество "Машиностроительное конструкторское бюро "Искра" имени Ивана Ивановича Картукова" (АО "МКБ "Искра") | Разделительное днище многоимпульсного ракетного двигателя на твердом топливе |
CN110145412A (zh) * | 2019-05-27 | 2019-08-20 | 北京理工大学 | 门式固体火箭发动机 |
Also Published As
Publication number | Publication date |
---|---|
DE2230457C3 (de) | 1981-05-27 |
FR2189646A1 (it) | 1974-01-25 |
DE2230457A1 (de) | 1974-01-10 |
GB1401400A (en) | 1975-07-16 |
FR2189646B1 (it) | 1978-01-06 |
BE801230A (fr) | 1973-10-15 |
DE2230457B2 (de) | 1980-07-03 |
IT986191B (it) | 1975-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3879942A (en) | Partition for rocket engines | |
US4335657A (en) | Ammunition round with retained piston | |
DE69517689T2 (de) | Zweiphasiger feststoffraketenmotor | |
US4676136A (en) | Apparatus for recoilless firing of projectiles from a lauching tube | |
US3861627A (en) | Foldable control flap unit, especially for rockets | |
SE438377B (sv) | Teleskopartad hylslos ammunition | |
US2503271A (en) | Rocket projectile | |
US2924174A (en) | Combustible pre-spin turbine for spinner rockets | |
US3177809A (en) | Semi-fixed artillery round | |
US3044255A (en) | Powder propulsive for rockets or other self-propelled projectiles | |
US3790104A (en) | High/low aspect ratio dual-mode fin design | |
US3069850A (en) | Rocket nozzle with directional control | |
US3142152A (en) | Hybrid rocket motor | |
US5491973A (en) | Self-actuating control for rocket motor nozzle | |
US2297130A (en) | Drag preventing means for projectiles | |
US3921937A (en) | Projectile or rocket preferably with unfolded tail unit | |
US3024729A (en) | Ram jet projectile | |
US4397149A (en) | Variable thrust solid propellant rocket motor | |
US4198896A (en) | Self-propelled engine with separable stages | |
US3578796A (en) | Spinning and stabilizing system for solid propellant rocket or missiles | |
US3132475A (en) | Hybrid rocket propulsion system | |
US4050243A (en) | Combination solid fuel ramjet injector/port cover | |
US3903802A (en) | Shell construction sealing washer | |
US3038408A (en) | Combination rocket and ram jet power plant | |
US2897649A (en) | Igniter |