US3875454A - Low-pressure mercury vapour discharge lamp and method of manufacturing said lamp - Google Patents
Low-pressure mercury vapour discharge lamp and method of manufacturing said lamp Download PDFInfo
- Publication number
- US3875454A US3875454A US412606A US41260673A US3875454A US 3875454 A US3875454 A US 3875454A US 412606 A US412606 A US 412606A US 41260673 A US41260673 A US 41260673A US 3875454 A US3875454 A US 3875454A
- Authority
- US
- United States
- Prior art keywords
- coating
- lamp
- pressure mercury
- low
- tin oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/30—Vessels; Containers
- H01J61/35—Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/38—Devices for influencing the colour or wavelength of the light
- H01J61/42—Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/02—Details
- H01J61/38—Devices for influencing the colour or wavelength of the light
- H01J61/42—Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
- H01J61/46—Devices characterised by the binder or other non-luminescent constituent of the luminescent material, e.g. for obtaining desired pouring or drying properties
Definitions
- the number of operating hours after which the radiation absorption becomes inadmissible due to the grey discoloration and the lamp thus has to be replaced is firstly dependent on the current density in the lamp, i.e. the number of mA/sq.cm of the cross-section of the discharge space. Furthermore, as regards the grey discoloration, it is a great difference whether the wall of the lamp is bare or is coated with a luminescent coating. In a bare lamp having a bare wall the grey discoloration, both at high and at low current densities, i.e.
- an apertured part of the glass wall extending longitudinally is not coated with a luminescent material.
- S-lamp a luminescent coating
- the glass in the aperture is directly exposed to the mercury discharge and a very strong grey discoloration occurs after a very short time at that area especially when the current density in the discharge is chosen to be high so as to obtain an intensive radiation.
- a low-pressure mercury vapour discharge lamp according to the invention having a glass envelope whose inner side has a luminescent coating and a transparent metal oxide coating located between this coating and the wall is characterized in that the metal oxide coating consists of tin oxide and has a resistance per square of at least 10,000 Ohm.
- connection resistance per square of the tin oxide coating is understood to means the resistance measured between 2 strip-shaped parallel electrodes of 1 cm length pressed on the tin oxide coating and being spaced 1 cm apart.
- the resistance per square of the tin oxide coating must be higher than 10,000 Ohm because otherwise the protective coating is conducting in such a manner that it detrimentally interferes with the gas discharge so that black spots and specks are produced after a given number of operating hours.
- the tin oxide coating is very satisfactorily transparent and quite scratch resistant.
- the tin oxide can also easily be provided during a bulk manufacturing process.
- the invention is of special importance for those kinds of lamps (furthermore denoted by F-lamps) in which the lamp wall not only has a luminescent coating but also a reflective coating.
- a reflective coating serves to concentrate the light generated in the luminescent coating in a given direction.
- the reflective coating is present between the glass wall and the luminescent coating but it is not provided over the entire circumference of the glass envelope.
- Two differ ent types of lamps can be distinguished in this respect, namely those in which the luminescent coating extends over the entire circumference and those in which the luminescent coating and hence the reflective coating leave a apertured part of the glass wall uncoated.
- Lamps of the latter type are thus the same as the S-lamps described above, but have a reflective coating between the luminescent coating and the glass wall.
- the reflective coating and the luminescent coating may extend or not extend over the same circumferential angle.
- Granular titanium dioxide is commonly used as a material for the reflective coatmg.
- the reflective coating may alternatively be firstly provided on the wall, followed by the protective coating and the luminescent coating. It is true that a slightly better adhesion of the reflective coating is then obtained, but when using a protective coating of titanium dioxide three times sintering remains necessary. In addition a large quantity of titanium dioxide is required to form the protective coating because the sintered reflective coating is very porous.
- a protective coating of tin oxide according to the invention may be formed in situ from a suitable organic tin compound such as, for example, dibutyltinmaleate on a reflective coating which has not been previously sintered. Thus one of thr three sintering operations is then omitted. Moreover, less material is used for the protective coating because this coating in case of a suitable solvent being chosen is directly provided on the reflective coating which still comprises binder and is thus not porous for the organic tin compound.
- a suitable organic tin compound such as, for example, dibutyltinmaleate
- lamps are obtained in which the tin oxide is directly supportted by the glass wall at those areas where there is no reflective coating and is located between the reflective coating and the luminescent coating in the other part of the lamp.
- the tin oxide coating of a suitably chosen organic tin compound such as, for example, dibutyltinmaleate may of course alternatively be provided in situ in lamps in which the protective tin oxide coating is directly supported by the glass wall over the entire circumference of the lamp.
- the drawing shows in a cross-sectional view an F- lamp in which the protective coating of tin oxide in the aperture is supported by the glass wall and is furthermore located between the reflective coating and the luminescent coating.
- FIG. 1 is the glass wall
- 2 is the reflective coating, for example, of titanium dioxide
- 3 is the tin oxide coating having a resistance per square of more than 10,000 Ohm
- 4 is the luminescent coating, for example, of willemite.
- the drawing clearly shows that in the aperture which is denoted by 5 the glass wall I is only coated with the protective tin oxide coating 4. There is no reflective coating and no luminescent coating in the aperture.
- the glass tube 1 is brought to a vertical position before the stems with the electrodes and the exhaust tube are provided and is coated with the desired reflective coating by injection or raising a titanium dioxide suspension.
- the suspension used for this purpose is prepared by suspending 800 gms of granular TiO in 400 ml of butylacetate to which 25 ml of dibutylphtalate have been added. After this suspension has been ground for 7 hours in a ball mill, 280 ml of a 1% solution of nitrocellulose in butylacetate is added and grinding takes place for another hour.
- the TiO -coating After the TiO -coating is provided it is dried with the aid of hot air of l 8-25C for approximately 10 minutes and butylacetate evaporates but nitrocellulose and dibutylphtalate remain. Subsequently a strip-shaped part of the TiO, coating is wiped off over the entire tube length with the aid of a vulcalon plate.
- the partly coated tube wall thus obtained is then coated, by means of injection or raising in the tube, with a thin coating of a solution having the following composition:
- the tube having the two coatings is introduced into a furnace and heated for 50 to 150 seconds at a temperature of approximately 580C.
- Dibutylphtalate, nitrocellulose and ethylcellulose thereby evaporate and burn out and dibutyltinmaleate is converted into a tin oxide layer having a resistance per square of at least 10,000 Ohm.
- the luminescent coating is provided by injecting or raising a suspension of willemite in the vertically placed tube.
- the suspension used for this purpose is manufactured by grinding gms of willemite for 2 hours in a ball mill in 400 mls of a 1% solution of nitrocellulose in a mixture of 95% butylacetate and 5% rnonoethylglycolaether to which V2% by volume of dibutylphthalate, 2 gms of Sb O and 6 gms of Sr,P O, have been added.
- the tube having three coatings obtained after this operation is finished in known manner to a fluorescent lamp particularly intended for photo-copying purposes by providing steps with electrodes, exhausting, filling, operating etc.
- a low-pressure mercury vapour discharge lamp which comprises a glass envelope whose inner side has a luminescent coating and a transparent metal oxide coating, said metal oxide coating consists of tin oxide and has a resistance per square of at least 10,000 Ohm.
- a low-pressure mercury vapour discharge lamp as claimed in claim 1 in which a light reflective coating is provided between the glass wall and part of the luminescent coating, wherein the tin oxide coating is directly provided on the glass wall at the area where there' is no light reflective coating and is located between the light reflective coating and the luminescent coating in the other part of the lamp.
Landscapes
- Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)
- Vessels And Coating Films For Discharge Lamps (AREA)
Abstract
In a low-pressure mercury vapour discharge lamp a tin oxide coating having a resistance per square of more than 10,000 Ohm is provided on the wall so as to avoid blackening of the glass. Particularly this coating is used in the aperture of a lamp for photo-copying purposes.
Description
United States Patent Van Der Wolf et a1.
LOW-PRESSURE MERCURY VAPOUR DISCHARGE LAMP AND METHOD OF MANUFACTURING SAID LAMP Inventors: Rein Willemse Van Der Wolf;
Thomas Hendrik De Vette, both of Emmasingel, Eindhoven,
Netherlands Assignee: U.S. Philips Corporation, New
York, NY.
Filed: Nov. 5, 1973 Appl. No.: 412,606
Foreign Application Priority Data Nov. 25, 1972 Netherlands 7216025 US. Cl 313/488, 117/97, 313/220,
313/493, 313/489 Int. Cl [-101] 1/70, HOlj 61/35 Field of Search 313/108 R, 109, 220221, 313/110, 113, I34, 44, 488, 493; 117/97 Primary Examiner.lames W. Lawrence Assistant ExaminerMarvin Nussbaum [57] ABSTRACT In a low-pressure mercury vapour discharge lamp a tin oxide coating having a resistance per square of more than 10,000 Ohm is provided on the wall so as to avoid blackening of the glass. Particularly this coating is used in the aperture of a lamp for photo-copying purposes.
2 Claims, 1 Drawing Figure LOW-PRESSURE MERCURY VAPOUR DISCHARGE LAMP AND METHOD OF MANUFACTURING SAID LAMP ln low-pressure mercury vapour discharge lamps in which the energy in the gas discharge is converted into radiation, particularly into light the phenomenon often occurs that the glass wall gets a grey appearance after a number of operating hours. This grey discoloration which is caused by an interaction of mercury and the glass wall results in radiation absorption and an unesthetic appearance of the lamp.
The number of operating hours after which the radiation absorption becomes inadmissible due to the grey discoloration and the lamp thus has to be replaced is firstly dependent on the current density in the lamp, i.e. the number of mA/sq.cm of the cross-section of the discharge space. Furthermore, as regards the grey discoloration, it is a great difference whether the wall of the lamp is bare or is coated with a luminescent coating. In a bare lamp having a bare wall the grey discoloration, both at high and at low current densities, i.e. above and below a value of 50 mA/sq.cm is already inadmissible after a number of operating hours which in lamps having a luminescent coating on the wall does not result in a disturbing grey discoloration. At a low current density the grey discoloration in lamps having a luminescent coating on the inner side of the glass wall of the lamp is often so little that no special steps are necessary.
In a given type of lamp having a luminescent coating (furthermore denoted by S-lamp) an apertured part of the glass wall extending longitudinally is not coated with a luminescent material. in such lamps which are particularly used for photo-copying equipment the glass in the aperture is directly exposed to the mercury discharge and a very strong grey discoloration occurs after a very short time at that area especially when the current density in the discharge is chosen to be high so as to obtain an intensive radiation.
To inhibit the grey discoloration it has already been proposed to coat the glass with a transparent protective coating of a metal oxide namely titanium dioxide. This titanium dioxide coating is always formed in practice from a solution of tetrabutyltitanate. ln S-lamps the glass in the aperture must then be coated in any case with such a protective coating. Often, however, the entire glass wall is coated prior to the luminescent coating being provided because this is simpler than providing the protective coating alone in the aperture with the aid of special equipment.
A low-pressure mercury vapour discharge lamp according to the invention, having a glass envelope whose inner side has a luminescent coating and a transparent metal oxide coating located between this coating and the wall is characterized in that the metal oxide coating consists of tin oxide and has a resistance per square of at least 10,000 Ohm.
In this connection resistance per square of the tin oxide coating is understood to means the resistance measured between 2 strip-shaped parallel electrodes of 1 cm length pressed on the tin oxide coating and being spaced 1 cm apart.
The resistance per square of the tin oxide coating must be higher than 10,000 Ohm because otherwise the protective coating is conducting in such a manner that it detrimentally interferes with the gas discharge so that black spots and specks are produced after a given number of operating hours.
Likewise as the above-mentioned known protective coating consisting of titanium dioxide the tin oxide coating is very satisfactorily transparent and quite scratch resistant. The tin oxide can also easily be provided during a bulk manufacturing process.
The invention is of special importance for those kinds of lamps (furthermore denoted by F-lamps) in which the lamp wall not only has a luminescent coating but also a reflective coating. Such a reflective coating serves to concentrate the light generated in the luminescent coating in a given direction. To this end the reflective coating is present between the glass wall and the luminescent coating but it is not provided over the entire circumference of the glass envelope. Two differ ent types of lamps can be distinguished in this respect, namely those in which the luminescent coating extends over the entire circumference and those in which the luminescent coating and hence the reflective coating leave a apertured part of the glass wall uncoated. Lamps of the latter type (further denoted by FS-lamps) are thus the same as the S-lamps described above, but have a reflective coating between the luminescent coating and the glass wall. The reflective coating and the luminescent coating may extend or not extend over the same circumferential angle. Granular titanium dioxide is commonly used as a material for the reflective coatmg.
Both in F-lamps and in FS-lamps it is possible to provide the known protective coating of titanium dioxide or the tin oxide coating according to the invention as a first coating on the glass wall likewise as in lamps without a reflective coating, and to subsequently provide the reflective coating on the protective coating and finally provide the luminescent coating. To adhere the coatings to the wall or to a previously provided coating a separate heat treatment, the so-called sintering treatment, is always necessary in order to remove the solvent and binder used for the formation of the coating. Thus the lamp is to be placed three times in a furnace, heated, cooled and removed. These operations make the manufacture of such types of lamps time-consuming and expensive.
Departing from the above-described manufacture the reflective coating may alternatively be firstly provided on the wall, followed by the protective coating and the luminescent coating. It is true that a slightly better adhesion of the reflective coating is then obtained, but when using a protective coating of titanium dioxide three times sintering remains necessary. In addition a large quantity of titanium dioxide is required to form the protective coating because the sintered reflective coating is very porous.
Unlike a protective coating of titanium dioxide, a protective coating of tin oxide according to the invention may be formed in situ from a suitable organic tin compound such as, for example, dibutyltinmaleate on a reflective coating which has not been previously sintered. Thus one of thr three sintering operations is then omitted. Moreover, less material is used for the protective coating because this coating in case of a suitable solvent being chosen is directly provided on the reflective coating which still comprises binder and is thus not porous for the organic tin compound.
When using the method described in the previous paragraph lamps are obtained in which the tin oxide is directly supportted by the glass wall at those areas where there is no reflective coating and is located between the reflective coating and the luminescent coating in the other part of the lamp.
The tin oxide coating of a suitably chosen organic tin compound such as, for example, dibutyltinmaleate may of course alternatively be provided in situ in lamps in which the protective tin oxide coating is directly supported by the glass wall over the entire circumference of the lamp.
Further advantages of the use of organic tin compounds over tetrabutyltitanate are that the solution of the tin compounds from which tin oxide can be forced in situ does not foam, does not hydrolize and does not form a gel. Also the rate of coating of the lamps may be much faster than when using titanium dioxide particularly because foaming does not occur.
The invention will now be described in greater detail with reference to a drawing of an FS-lamp and a description of an example of its manufacture.
The drawing shows in a cross-sectional view an F- lamp in which the protective coating of tin oxide in the aperture is supported by the glass wall and is furthermore located between the reflective coating and the luminescent coating. In this FIG. 1 is the glass wall, 2 is the reflective coating, for example, of titanium dioxide, 3 is the tin oxide coating having a resistance per square of more than 10,000 Ohm and 4 is the luminescent coating, for example, of willemite. The drawing clearly shows that in the aperture which is denoted by 5 the glass wall I is only coated with the protective tin oxide coating 4. There is no reflective coating and no luminescent coating in the aperture.
In the manufacture ofa lamp as shown in the drawing the glass tube 1 is brought to a vertical position before the stems with the electrodes and the exhaust tube are provided and is coated with the desired reflective coating by injection or raising a titanium dioxide suspension. The suspension used for this purpose is prepared by suspending 800 gms of granular TiO in 400 ml of butylacetate to which 25 ml of dibutylphtalate have been added. After this suspension has been ground for 7 hours in a ball mill, 280 ml of a 1% solution of nitrocellulose in butylacetate is added and grinding takes place for another hour.
After the TiO -coating is provided it is dried with the aid of hot air of l 8-25C for approximately 10 minutes and butylacetate evaporates but nitrocellulose and dibutylphtalate remain. Subsequently a strip-shaped part of the TiO, coating is wiped off over the entire tube length with the aid of a vulcalon plate.
The partly coated tube wall thus obtained is then coated, by means of injection or raising in the tube, with a thin coating of a solution having the following composition:
750 ml ethanol 250 ml isobutanol l% by volume of ethylcellulose by volume of dibutyltinmaleate. At this manufacturing stage the tin coating of the solution adheres both to the TiO, coating and to the glass in the wiped-out aperture. The binder of the TiO, coating does not dissolve in this solution and the TiO: coating thus remains intact.
After drying at room temperature for approximately 2 minutes the tube having the two coatings is introduced into a furnace and heated for 50 to 150 seconds at a temperature of approximately 580C. Dibutylphtalate, nitrocellulose and ethylcellulose thereby evaporate and burn out and dibutyltinmaleate is converted into a tin oxide layer having a resistance per square of at least 10,000 Ohm.
After the tube has been removed from the furnace and has cooled, the luminescent coating is provided by injecting or raising a suspension of willemite in the vertically placed tube. The suspension used for this purpose is manufactured by grinding gms of willemite for 2 hours in a ball mill in 400 mls of a 1% solution of nitrocellulose in a mixture of 95% butylacetate and 5% rnonoethylglycolaether to which V2% by volume of dibutylphthalate, 2 gms of Sb O and 6 gms of Sr,P O, have been added. After drying (at 20 25C for approximately 10 minutes) of the suspension coating thus provided an aperture is wiped out with the aid of a vulcalon plate in the dried suspension coating at the same area where the aperture has been wiped out of the TiO, coating. Subsequently the tube is again introduced into a furnace and heated for 50 to seconds at approximately 530C during which nitrocellulose completely evaporated and burns out.
The tube having three coatings obtained after this operation is finished in known manner to a fluorescent lamp particularly intended for photo-copying purposes by providing steps with electrodes, exhausting, filling, operating etc.
What is claimed is 1. A low-pressure mercury vapour discharge lamp which comprises a glass envelope whose inner side has a luminescent coating and a transparent metal oxide coating, said metal oxide coating consists of tin oxide and has a resistance per square of at least 10,000 Ohm.
2. A low-pressure mercury vapour discharge lamp as claimed in claim 1 in which a light reflective coating is provided between the glass wall and part of the luminescent coating, wherein the tin oxide coating is directly provided on the glass wall at the area where there' is no light reflective coating and is located between the light reflective coating and the luminescent coating in the other part of the lamp.
l i l l
Claims (2)
1. A LOW-PRESSURE MERCURY VAPOUR DISCHARGE LAMP WHICH COMPRISES A GLASS ENVELOPE WHOSE INNER SIDE HAS A LUMINESCENT COATING AND A TRANSPARENT METAL OXIDE COATING, SAID METAL OXIDE COATING CONSISTS OF TIN OXIDE AND HAS A RESISTANCE PER SQUARE OF AT LEAST 10,000 OHM.
2. A low-pressure mercury vapour discharge lamp as claimed in claim 1 in which a light reflective coating is provided between the glass wall and part of the luminescent coating, wherein the tin oxide coating is directly provided on the glass wall at the area where there is no light reflective coating and is located between the light reflective coating and the luminescent coating in the other part of the lamp.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US05/516,633 US3984589A (en) | 1972-11-25 | 1974-10-21 | Method of manufacturing a low pressure mercury vapor discharge lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NLAANVRAGE7216025,A NL171756C (en) | 1972-11-25 | 1972-11-25 | LOW-PRESSURE MERCURY DISCHARGE LAMP AND METHOD FOR THE MANUFACTURE THEREOF. |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/516,633 Division US3984589A (en) | 1972-11-25 | 1974-10-21 | Method of manufacturing a low pressure mercury vapor discharge lamp |
Publications (1)
Publication Number | Publication Date |
---|---|
US3875454A true US3875454A (en) | 1975-04-01 |
Family
ID=19817430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US412606A Expired - Lifetime US3875454A (en) | 1972-11-25 | 1973-11-05 | Low-pressure mercury vapour discharge lamp and method of manufacturing said lamp |
Country Status (8)
Country | Link |
---|---|
US (1) | US3875454A (en) |
JP (1) | JPS5139955B2 (en) |
BE (1) | BE807769A (en) |
CA (1) | CA984891A (en) |
DE (1) | DE2355268C2 (en) |
FR (1) | FR2208189B3 (en) |
GB (1) | GB1450785A (en) |
NL (1) | NL171756C (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2644821A1 (en) * | 1975-10-06 | 1977-04-14 | Gte Sylvania Inc | FLUORESCENT LAMP WITH REFLECTIVE LAYER |
US4058639A (en) * | 1975-12-09 | 1977-11-15 | Gte Sylvania Incorporated | Method of making fluorescent lamp |
US4500810A (en) * | 1980-11-25 | 1985-02-19 | North American Philips Lighting Corporation | Fluorescent lamp having integral light-filtering means and starting aid |
EP0402878A1 (en) * | 1989-06-13 | 1990-12-19 | Mitsubishi Denki Kabushiki Kaisha | Low pressure rare gas discharge lamp |
US5557170A (en) * | 1993-12-24 | 1996-09-17 | U.S. Philips Corporation | Low-pressure discharge lamp and method of manufacturing a low-pressure discharge lamp |
US20030234611A1 (en) * | 2002-06-19 | 2003-12-25 | Klinedinst Keith A. | Control of leachable mercury in fluorescent lamps |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3205394A (en) * | 1960-04-06 | 1965-09-07 | Sylvania Electric Prod | Fluorescent lamp having a sio2 coating on the inner surface of the envelope |
US3225241A (en) * | 1959-07-09 | 1965-12-21 | Sylvania Electric Prod | Aperture fluorescent lamp |
US3350598A (en) * | 1965-12-29 | 1967-10-31 | Sylvania Electric Prod | High pressure electric discharge device containing a fill of mercury, halogen and an alkali metal and barrier refractory oxide layers |
US3624444A (en) * | 1969-07-05 | 1971-11-30 | Philips Corp | Low-pressure mercury vapor discharge lamp |
US3676729A (en) * | 1969-06-23 | 1972-07-11 | Sylvania Electric Prod | Arc discharge lamp having a thin continuous film of indium oxide on the inner surface thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL111360C (en) * | 1957-01-12 | |||
US3141990A (en) * | 1960-04-06 | 1964-07-21 | Sylvania Electric Prod | Fluorescent lamp having a tio2 coating on the inner surface of the bulb |
-
1972
- 1972-11-25 NL NLAANVRAGE7216025,A patent/NL171756C/en not_active IP Right Cessation
-
1973
- 1973-11-05 US US412606A patent/US3875454A/en not_active Expired - Lifetime
- 1973-11-06 DE DE2355268A patent/DE2355268C2/en not_active Expired
- 1973-11-13 CA CA185,667A patent/CA984891A/en not_active Expired
- 1973-11-22 FR FR7341598A patent/FR2208189B3/fr not_active Expired
- 1973-11-22 GB GB5415373A patent/GB1450785A/en not_active Expired
- 1973-11-22 JP JP48130860A patent/JPS5139955B2/ja not_active Expired
- 1973-11-23 BE BE138141A patent/BE807769A/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3225241A (en) * | 1959-07-09 | 1965-12-21 | Sylvania Electric Prod | Aperture fluorescent lamp |
US3205394A (en) * | 1960-04-06 | 1965-09-07 | Sylvania Electric Prod | Fluorescent lamp having a sio2 coating on the inner surface of the envelope |
US3350598A (en) * | 1965-12-29 | 1967-10-31 | Sylvania Electric Prod | High pressure electric discharge device containing a fill of mercury, halogen and an alkali metal and barrier refractory oxide layers |
US3676729A (en) * | 1969-06-23 | 1972-07-11 | Sylvania Electric Prod | Arc discharge lamp having a thin continuous film of indium oxide on the inner surface thereof |
US3624444A (en) * | 1969-07-05 | 1971-11-30 | Philips Corp | Low-pressure mercury vapor discharge lamp |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2644821A1 (en) * | 1975-10-06 | 1977-04-14 | Gte Sylvania Inc | FLUORESCENT LAMP WITH REFLECTIVE LAYER |
US4058639A (en) * | 1975-12-09 | 1977-11-15 | Gte Sylvania Incorporated | Method of making fluorescent lamp |
US4500810A (en) * | 1980-11-25 | 1985-02-19 | North American Philips Lighting Corporation | Fluorescent lamp having integral light-filtering means and starting aid |
EP0402878A1 (en) * | 1989-06-13 | 1990-12-19 | Mitsubishi Denki Kabushiki Kaisha | Low pressure rare gas discharge lamp |
US5187415A (en) * | 1989-06-13 | 1993-02-16 | Mitsubishi Denki Kabushiki Kaisha | Low-pressure rare gas discharge lamp and method for lighting same |
US5557170A (en) * | 1993-12-24 | 1996-09-17 | U.S. Philips Corporation | Low-pressure discharge lamp and method of manufacturing a low-pressure discharge lamp |
US20030234611A1 (en) * | 2002-06-19 | 2003-12-25 | Klinedinst Keith A. | Control of leachable mercury in fluorescent lamps |
US6741030B2 (en) * | 2002-06-19 | 2004-05-25 | Osram Sylvania Inc. | Control of leachable mercury in fluorescent lamps |
Also Published As
Publication number | Publication date |
---|---|
BE807769A (en) | 1974-05-24 |
NL7216025A (en) | 1974-05-28 |
GB1450785A (en) | 1976-09-29 |
FR2208189B3 (en) | 1976-10-08 |
NL171756C (en) | 1983-05-02 |
CA984891A (en) | 1976-03-02 |
DE2355268A1 (en) | 1974-06-06 |
DE2355268C2 (en) | 1983-07-28 |
JPS4983277A (en) | 1974-08-10 |
JPS5139955B2 (en) | 1976-10-30 |
FR2208189A1 (en) | 1974-06-21 |
NL171756B (en) | 1982-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0279254B1 (en) | Pre-water based suspension phosphor treatment process | |
US2706691A (en) | Method of coating glass bulbs | |
US3875454A (en) | Low-pressure mercury vapour discharge lamp and method of manufacturing said lamp | |
US2238784A (en) | Electric discharge device | |
US5227693A (en) | Fluorescent lamp with uv suppressing film and its manufacturing method | |
US3833399A (en) | Surface treatment of fluorescent lamp bulbs and other glass objects | |
US2806970A (en) | Electron emission coatings and method of preparing air stabilized barium oxide | |
US3676729A (en) | Arc discharge lamp having a thin continuous film of indium oxide on the inner surface thereof | |
US4088802A (en) | Process for coating envelope for reflector-type fluorescent lamp and the lamp resulting therefrom | |
US4952422A (en) | A method of coating a layer of an yttrium vanadate phosphor contained in a fluorescent lamp with Y2 O3 or Al2 O3 and lamps made therefrom | |
US2948635A (en) | Phosphor evaporation method and apparatus | |
US3563797A (en) | Method of making air stable cathode for discharge device | |
US3984589A (en) | Method of manufacturing a low pressure mercury vapor discharge lamp | |
US4342937A (en) | Metal halogen vapor lamp provided with a heat reflecting layer | |
US3847643A (en) | Surface treatment of fluorescent lamp bulbs and other glass objects | |
US2829295A (en) | Internally conductively coated lamp and method of manufacture | |
US2918595A (en) | Coating composition for electric lamps | |
US2936246A (en) | Burn-resistant phosphors and the method of preparation thereof | |
US2707687A (en) | Method of forming luminescent coating | |
US3821578A (en) | Stabilization of mercury vapor discharge lamps | |
JPS583574B2 (en) | How to enclose a mount structure in the neck of a cathode ray tube | |
US2959702A (en) | Lamp and mount | |
US1670483A (en) | Electron device and method of activation | |
US3006783A (en) | Method of applying light-diffusing layers to glass surfaces and glass objects | |
JPH07288107A (en) | Small-sized rare gas discharge lamp eleltrode and manufacture thereof |