[go: up one dir, main page]

US3872959A - Positioning typewriter - Google Patents

Positioning typewriter Download PDF

Info

Publication number
US3872959A
US3872959A US331486A US33148673A US3872959A US 3872959 A US3872959 A US 3872959A US 331486 A US331486 A US 331486A US 33148673 A US33148673 A US 33148673A US 3872959 A US3872959 A US 3872959A
Authority
US
United States
Prior art keywords
signals
type head
carriage
print
platen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US331486A
Inventor
An Wang
Ge Yao Chu
Edward S Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wang Laboratories Inc
Original Assignee
Wang Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wang Laboratories Inc filed Critical Wang Laboratories Inc
Priority to US331486A priority Critical patent/US3872959A/en
Application granted granted Critical
Publication of US3872959A publication Critical patent/US3872959A/en
Assigned to FIRST NATIONAL BANK OF BOSTON reassignment FIRST NATIONAL BANK OF BOSTON SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WANG LABORATORIES, INC.
Anticipated expiration legal-status Critical
Assigned to WANG LABORATORIES, INC. reassignment WANG LABORATORIES, INC. TERMINATION OF SECURITY INTEREST Assignors: FIRST NATIONAL BANK OF BOSTON, AS TRUSTEE
Assigned to CONGRESS FINANCIAL CORPORATION (NEW ENGLAND) reassignment CONGRESS FINANCIAL CORPORATION (NEW ENGLAND) SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WANG LABORATORIES, INC.
Assigned to WANG LABORATORIES, INC. reassignment WANG LABORATORIES, INC. RELEASE OF SECURITY INTEREST IN AND REASSIGNMENT OF U.S. PATENTS AND PATENT APPLICATIONS Assignors: CONGRESS FINANCIAL CORPORATION (NEW ENGLAND)
Assigned to BT COMMERCIAL CORPORATION (AS AGENT) reassignment BT COMMERCIAL CORPORATION (AS AGENT) SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WANG LABORATORIES, INC.
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J19/00Character- or line-spacing mechanisms
    • B41J19/76Line-spacing mechanisms
    • B41J19/78Positive-feed mechanisms
    • B41J19/96Variable-spacing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J19/00Character- or line-spacing mechanisms
    • B41J19/18Character-spacing or back-spacing mechanisms; Carriage return or release devices therefor
    • B41J19/20Positive-feed character-spacing mechanisms
    • B41J19/32Differential or variable-spacing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J25/00Actions or mechanisms not otherwise provided for
    • B41J25/20Auxiliary type mechanisms for printing distinguishing marks, e.g. for accenting, using dead or half-dead key arrangements, for printing marks in telegraph printers to indicate that machine is receiving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J5/00Devices or arrangements for controlling character selection
    • B41J5/30Character or syllable selection controlled by recorded information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S400/00Typewriting machines
    • Y10S400/903Stepping-motor drive for carriage feed

Definitions

  • ABSTRACT A writer selectively operable in a alpha-numric symbol printing mode and a positioning mode.
  • the writer includes a horizontally movable type head having a plurality of corresponding alpha-numeric printing symbols, operable in response to printing signals to print the symbols and horizontally movable in response to horizontal spacing function signals; and a platen rotatable in response to vertical spacing function signals.
  • Type head drive means are provided for incrementally horizontally moving the type head in fine increments,
  • the alpha-numeric spacing increments being an inte gral multiple thereof
  • platen drive means are provided for incrementally rotating the platen in line increments.
  • control means for operating the type head comprising horizontal lunc tion signal generating means for incrementally horizontally moving the type head in line increments
  • platen drive means comprising vertical function signal generating means for incrementally rotating the platen in fine increments
  • the function keys providing lunction signals being connected to the function signal generating means for generating a plurality of fine increment signals equal to an alpha-numeric increment.
  • This invention relates to typewriters and more particularly to those used as output writers for computers and the like.
  • the conventional computer input/output typewriter of the IBM Selectric type, for example, although widely used, has a number of significant limitations. Among the most important of these is its inability to position its symbols relatively to one another in other than alphanumeric spacing increments, which greatly restricts its effectiveness as a plotter, as well as its use for composition, justification or the like. Other such limitations are related to the speed of operation of the IBM typewriter, and include, for example, its practical inability to type reversibly both horizontally and vertically, its inability simultaneously to space horizontally and vertically, and its inability to space during the preliminary stages of a printing stroke.
  • a writer selectively operable in an alpha-numeric symbol printing mode and a positioning mode.
  • Such writer includes a keyboard with a plurality of symbol printing keys providing printing signal and horizontal spacing function signals representing alpha-numeric spacing increments and a plurality of function keys providing horizontal and vertical function signals representing alphanumeric spacing increments, including horizontal space and vertical index keys; at horizontally movable type head having a plurality of corresponding alphanumeric printing symbols, operable in response to the printing signals to print the symbols and horizontally movable in response to the horizontal spacing function signals; and a platen rotatable in response to the vertical spacing function signals.
  • a major characteristic unique to the invention is its unique provision of type head drive means for incrementally horizontally moving the type head in fine increments, the alpha-numeric spacing increments being an integral multiple thereof, and platen drive means for incrementally rotating the platen in fine increments.
  • control means for operating the type head comprising horizontal function signal generating means for incrementally horizontally moving the type head in fine increments
  • platen drive means comprising vertical function signal generating means for incrementally rotating the platen in fine increments
  • the function keys providing function signals being connected to the function signal generating means for generating a plurality of fine increment signals equal to an alpha-numeric increment.
  • FIG. 1 is a perspective view of the exterior of the typewriter
  • FIG. 2 is a perspective view of a portion of the typewriter, including a portion of the type head horizontal drive means;
  • FIG. 3 is a perspective view of a further portion of the type head horizontal drive means
  • FIG. 4 is a perspective view including the platen drive means and parts of the type head horizontal drive means;
  • FIG. 5 isa table of codes for generating printing signals and function signals
  • FIG. 6 is a typical typed product of the typewriter using fine increment spacing
  • FIG. 7 is a schematic detailed portion of the type head horizontal drive means
  • FIG. 8 is a perspective view of a portion of the type head horizontal drive means including left margin locating means
  • FIG. 9 is a timing diagram representing return to the left margin
  • FIGS. 10 and' 11 represent the logic circuitry of the typewriter.
  • a single print operation comprises the steps of selecting an alpha-numeric printing symbol, tilting and rotating the type head,
  • Modifications of the horizontal spacing and vertical indexing elements unique to the present invention enable the typewriter to accomplish accurate fine positioning of a printing symbol, preferably with a minimum step of 0.02 inch, or more desirably 0.01 inch, in both horizontal and vertical spacing operations.
  • the typewriter retains the capability of spacing in standard increments when desired, such standard increments being integral multiples of the fine increments.
  • the standard vertical and horizontal spacing operations have been modified by disabling the original mechanical linkages, and space rack detent, the mainspring, and platen drive, and removing the tabulation mechanism.
  • Two stepping motors of the type designated SLO-SYM and manufactured by the Superior Electric Co. of Bristol, Connecticut, have been added to drive the type head horizontally and to rotate the platen, either in sequence or simultaneously, and either in fine increments or in standard alphanumeric spacing and indexing increments as desired.
  • the keyboard has been modified and an auxiliary keyboard added to provide additional space function control keys for these motions, replacing other keys found on the unmodified typewriter.
  • the typewriter of this invention has been further modified, by the addition of solenoids and logic circuitry, similarly to a Selectric Input/Output Keyboard Printer.
  • the typewriter of the invention is contained in a housing 11 and provides a keyboard 12, a type head 14 and an associated ribbon mechanism 16, and a rotatable platen l8.
  • Keyboard 12 provides a plurality of alphanumeric symbol printing keys 19, including punctuation symbol keys.
  • Power to typewriter is controlled by on/off switch 20, while the source of operation control signals (keyboard or other) is determined by manual/automatic switch 22 (replacing the tab clear/set key).
  • Horizontal motion of type head 14 may be manually controlled by spacebar 24 and back space key 25, together with return key 26.
  • auxiliary keyboard 13 Vertical motion of the paper (indexing) results from rotation of platen 18, and may be manually controlled by index key 28, reverse index key 30 (replacing the tab key), and return key 26 (since each return to the left margin is accompanied by a vertical shift or index).
  • Additional controls mounted on auxiliary keyboard 13 for either manual or automatic operation may be provided in the form of fine increment keys 110 (step left, or .r), 112 (step right, or 114 (step up, or y+) and 116 (step down, or i'), each key determining a single fine increment step in the indicated direction.
  • type head 14 is carried on a carriage, shown schematically at 32, which slides horizontally on rotatable print shaft 34.
  • Carriage drive means are provided, including escapement cord 36, attached to carriage 32, which passes around pulley 38 through a tensioning device (not shown) to guide roller 40, and is wound onto escapement drum 42.
  • Drum 42 is rotated by escapement shaft 44.
  • a rotary force tending to wind up cord 36 onto drum 42 is supplied to shaft 44 by a mainspring.
  • the mainspring has been removed, and shaft 44 instead is connected through a pulley to the horizontal (.r) axis stepping motor 46 (FIG. 4).
  • Carriage return cord 48 attached to carriage 32, passes around pulleys 50 and 52 and guide roller 54 and is wound onto carriage return cord drum 56, which is rotated by shaft 44.
  • drum 42 provides a bevel gear 58, adapted to mesh with a tab governor pinion 59 (disabled in the present embodiment) and a carriage return pinion 60.
  • Main drive motor 66 through belt 67 drives the cycle clutch pulley 68 in the conventional manner.
  • cycle clutch pulley 68 Extending to the right from cycle clutch pulley 68 is the operational shaft 62, rotated by motor 66; shaft 62 in an unmodified typewriter drives the various spacing functions that are powered by stepping motors in the present embodiment.
  • Extending to the left of pulley 68 is the cycle shaft 64, which powers the rotation and tilt of type head 14 to the desired print symbol through cams 72.
  • Pulleys 68 rotates continuously whenever motor 66 is running, but cycle shaft 64 rotates only during a print operation.
  • a cycle clutch spring of the usual type (not shown) is used to engage and disengage shaft 64 with pulley 68.
  • a print cycle reed switch is operated by a magnet 121 car ried on the end of cycle shaft 64 and is actuated after each of rotation of shaft 64.
  • Platen l8 drive means are provided by vertical (y) axis stepping motor 74 (FIG. 4).
  • a signal from switch 120 is sent to horizontal stepping motor through logic circuitry to be described, and in response, the shaft of stepping motor 46 rotates through 10 steps to power the motion of carriage 32 to the right through 10 fine increments of 0.01 inch, which is equivalent to the standard typing space used with pica type.
  • Depression of space bar 24 or backspace key 25 on keyboard 12 similarly provides an appropriatesignal to stepping motor 46, which powers horizontal motion of carriage 32 through 10 fine increments in the indicated direction.
  • Rotation of the platen through 14 fine increments is powered by vertical stepping motor 74 in response to a signal generated by depression of the index key 28, reverse index key 30 or return key 26 on key-board 12.
  • both horizontal and vertical spacing may be modified by the use of the keys on auxiliary keyboard 13.
  • depression of .r-key 110 generates a signal which is transmitted to horizontal stepping motor 46, in response to which the stepping motor rotates through a single step, to power the horizontal motion of carriage 32 through one fine increment to the left.
  • the position at which the next alpha-numeric symbol will be printed is only 9 fine increments away from the previous symbol, rather than a standard 10.
  • Signals from the other fine increment keys similarly determine motion of the carriage through single fine increments to the right, and motion of the platen through single fine increments either up or down.
  • a typical plot, typed by the typewriter using fine increment spacing, is shown in FIG. 6.
  • .r-axis stepping motor 46 may be used to drive type head carriage 32 horizontally either in a positive or in a negative sense with equal ease, during the usual alpha-numeric symbol printing operation, characters are printed only during left to right motion of carriage 32. When a complete line has been printed, type head carriage 32 must return to the left margin before the next line can be printed. Because of the operating speeds of the stepping motors used in this modified typewriter, the maximum stepping rate is 300 steps or 3 inches per second. To wait while the carriage returns at this rate is undesirable.
  • margin rack 92 is mounted within housing '11 just in front of carriage 32.
  • the left margin position of carriage 32 is coarsely determined mechanically by impact of margin stop latch 93 on left margin stop 90.
  • the exact left margin position is determined by a mechanical detent involving a pawl which engages a tooth in margin rack 92.
  • that mechanism has been disabled to allow the use of stepping motors; therefore the precise left margin position must be determined in a different manner.
  • Rack 92 has a small amount of lateral play, and its left end is mounted through a spring 95; at most times, when carriage 32 is away from the left margin. spring 95 loads rack 92 to the right.
  • spring 95 loads rack 92 to the right.
  • stop latch 93 on carriage 32 strikes left margin stop 90, impelling rack 92 to the left.
  • the right end of rack 92 is attached by a Ushaped extension member 94 to a carriage return unlatching bell crank 96.
  • bellcrank 96 pulls clutch release link 97 to disengage clutch in the conventional manner, and at the same time the resultant motion of the carriage return clutch latch 99 opens carriage switch 124 to energize stepping motor 46.
  • Extension member 94 is also connected to a lever 98, which pivots about pin 100; end 102 of lever 98 carries a contact 104 whose position is adjustable by the motion of screw 106. Contact 104 engages a Contact 108 on double throw micro-switch 122.
  • lever 98 is caused to pivot about pin 100, separating contact 104 from contact 108 and thereby throwing left margin microswitch 122 into the position (NC) in which stepping motor 46 powers a rightward creep of carriage 32 at one quarter of the standard stepping speed.
  • NC position
  • Carriage 32 is moved toward the right until the recoil of rack 92 from its left overtravel again closes contacts 104 and 108, which throws left margin microswitch 122 back to its usual position (NO) and thereby stops the rightward creep of carriage 32.
  • the final left margin position of carriage 32 can be set with any desired accuracy.
  • Such operation in response to input codes may be performed in two ways, designated print mode", and plot (positioning) mode.
  • print mode'operation characters are printed line by line in a manner similar toconventional operation through keyboard 12. Each symbol print operation is automatically preceded by a horizontal space through a standard alpha-numeric spacing increment, and the fast return maybe used.
  • plot mode the automatic spacing before each print is inhibited, and input codes are interpreted to determine fine increment spacing through intervals that may vary at each step.
  • An input code of plot mode or print mode determines whether an automatic space is made with each printing operation.
  • each signal for printing a symbol or performing a function may if desired be generated in automatic operation by decoding a six-bit code.
  • the six bits are designated R1, R2, R2A, R5, T1 and T2. (These designations correspond to the conventional IBM designations of selector latches in the typewriter).
  • the combinations of bit values shown in the first 11 rows of the table are print codes used to generate signals for the printing of the symbols shown.
  • the last five rows contain function command codes used to generate signals for the functions shown.
  • the six bits are first partially decoded (in a manner to be more fully described later) to distinguish a print command from a function command.
  • the six bits are used to operate six solenoids (FIG. 10) which in turn control the mechanical selection of the print symbol by rotating and tilting the type head to the required orientation, in the same manner as selection is accomplished in the unmodified Selectric Input/Output typewriter.
  • Function command codes are used to control the operation of the stepping motors, by means of circuitry including clocks and a counter, in a manner to be more fully described in what follows.
  • the construction of the standard unmodified Selectric I/O typewriter is such that the spacing operation is initiated mechanically in response to completion of the select/print operation. Therefore, in an unmodified typewriter, neither the type head nor platen is capable of moving during symbol selection, and (except during the return operation) print head and platen can not move simultaneously; rather, these operations are all performed in sequence.
  • the symbol selection mechanism and print (symbol impact) mechanism have not been altered, but the carriage and platen drives have been separated, through the introduction of stepping motors, from theselection and print mechanisms. This makes it possible in plotting to perform several operations together and thereby to 7 save substantial amounts of time.
  • codes for diagonal spacing namely "step .r, v,” step y, step ,'y+, and "step v+,” shown in FIG. 5, may he transmit ted, and after decoding, appropriate signals will be generated for controlling stepping motors 46 and 74 for simultaneous carriage spacing and platen rotation. If desired, additional function keys could be provided on auxiliary keyboard 13 to permit manual control of these motions.
  • a ready/busy feedback signal is sent by the typewriter to the code source. While occupied in moving and printing, the typewriter sends a busy signal; when it is ready to accept another code, the ready signal is sent. Acceptance of new codes and speed of operation thus depend on the time required for each operation.
  • the spacing operations of the typewriter of the invention are all accomplished under the control of the logic circuitry of the typewriter, shown in FIGS. 10 and 11.
  • key input section 306 (Writer Switches) of FIG. 10 includes switches actuated by the function keys shown in FIG. 1, together with additional switches.
  • Print cycle reed switch 120 actuated by magnet 121 carried on the left end of cycle shaft 64 (FIG. 3), provides a mechanically determined indicator of the completion of a print function for initiation of automatic spacing.
  • Double-throw margin microswitch 122 (FIG. 8) is mechanically actuated during the fast return operation as previously described.
  • Carriage switch 124 is normally open, but is closed when carriage return clutch is engaged, in order to de-energize .t-stepping motor 46 and permit main motor 66 to power the fast return.
  • Code inputs which are not needed for manual operation of the typewriter, are indicated in section 300 (Print/FCN) of FIG. 10, together with a command trigger pulse 320 and a ready/busy feedback signal 322; command pulse 320 causes a stored six bit code to be transferred to the decoder, while ready/busy signal 322 indicates whether the control circuitry is ready to receive and respond to another command, either from the keyboards or from a code source.
  • Decode section 302 also not needed for manual typewriter operation, partially decodes input codes to distinguish print codes from function codes.
  • a print code causes a Print/W signal to appear on line 308..
  • Function codes are partially decoded and combined for use in the control circuitry, in the forms of mode signals and various spacing function signals as indicated in section 304.
  • Writer solenoid section 310 contains the six print selection solenoids, with three other solenoids and as sociated drive units.
  • the print solenoid again not used in manual operation, powers the mechanism that drives type lia i 14 against platen 18, in response to the Print/FCN signal on line 308.
  • the Return solenoid is driven in response either to a signal RTN manually input through key 26, or to a signal RTN, from decoder 304, and mechanically causes carriage return clutch 70 to be engaged.
  • Control section 312 receives signals from Writer Switch section 306 or from Print/Fm section 300 and Decode section 304, and controls the operation of stepping motors 46 and 74, as well as of the writer solenoids of section 310.
  • the timing of the spacing functions is controlled by clock pulse generator 330, which sends pulses to the space clock 332, index clock 334, and right creep clock 336.
  • Generator control 331 turns on generator 330 in response to function commands either from the keyboards l2 and 13 through Writer Switch section 306, or from decoder 304.
  • a reset signal on line 338 turns generator 330 off.
  • Space and index clocks 332 and 334 determine the number of steps taken by the space and index stepping motors.
  • the same four-bit counter 344 is used for both space and index operations and is enabled by a pulse from either clock; a count of 10 shuts off flip-flop 346 controlling space (xaxis) clock 332, a count of 14 shuts off flip-flop 348 controlling index (yaxis) clock 334.
  • the counter is reset by an appropriate polarity on reset line 338.
  • command pulse 320 When the typewriter operates in response to coded input, each operation is initiated by a command pulse 320, which is input to Print/function section 300 (FIG. 10) to trigger transfer of an assembled code to the decoder.
  • the command pulse 320 also initiates action by the decoder, and together with a print code from decoder 304, actuates the print solenoid (section 310, FIG. 10).
  • command pulse 320 is used to send a busy signal on Ready/busy line 340 to provide feedback signal 322 (section 300, FIG. 10).
  • a 150 msec busy signal is also provided in response to depression of any of the manual function keys (section 306, FIG. 10); or in response to codes for the spacing functions, shift and return functions.
  • the 75 msec pulse generated in response to a RTN signal is gated at 342 with a PLOT signal to inhibit otherwise automatic indexing after a fast return in plot mode.
  • a spacing function is initiated when depression of a function key on keyboard 12 or keyboard 13 generates an electrical function signal.
  • the signal is input to controlsection 312; here horizontal and vertical spacing signals are used to start the generation and counting of clock pulses, which in turn determine the number of steps moved by the appropriate stepping motor.
  • the signals further determine thedirection of motion.
  • a return signal initiates an automatic index operation through a standard index increment (unless inhibited in PLOT mode) and simultaneously initiates the fast return operation, as previously described.
  • codes are input to the Decode Section 304, which generates from the function codes electrical signals corresponding to those generated by depression of the function keys; these signals initiate spacing operations as described. Signals generated in response to print codes are used to drive print symbol selection solenoids, with or without automatic horizontal spacing, depending on the mode of operation.
  • the modified typewriter of the invention is thus operable under manual control as well as in response to stored commands, and can provide either fine increment spacing for the representation of graphical information or standard letter spacing and index spacing for use in typing in the usual manner, as desired.
  • An output writer responsive to input signals com prising horizontal space signals and selection and print signals, said writer having record sheet supporting means,
  • a type head providing a plurality of alpha-numeric symbols and operable to select and print an alphanumeric symbol on a record sheet carried on said supporting means
  • selection and printing means connected to said type head for moving said type head relative to said carriage means to select a particular alpha-numeric symbol and sequentially to print the selected alphanumeric symbol on the record sheet
  • selection and printing drive means including a main motor, said selection and printing drive means being responsive to input selection and print signals for operating said selection and printing means,
  • type head carriage means supporting said type head
  • said type head carriage means being driven independently of said selection and printing means for independent control and timing of said carriage means and said selection and printing means. and being horizontally movable with respect to said record sheet supporting means,
  • type head carriage drive means independent of said selection and printing drive means.
  • said type head carriage drive means including a stepping motor and responsive to input horizontal space signals for moving said carriage means horizontally with re spect to said record sheet supporting means,
  • said carriage drive means and said selection and printing drive means being independently responsive to the input horizontal space signals and the selection and printsignals respectively for causing said selection and printing means to select and print an alpha-numeric symbol and for causing said carriage to move horizontally with respect to said record sheet.
  • said carriage drive means being responsive to said print mode signal in combination with said select and print completion signal to move said type head carriage horizontally with respect to said record sheet through one standard letter space independently of said input horizontal space signals, and
  • said carriage drive means being responsive to said plot mode signal to respond to said input horizontal space signals independently of said select and print completion signal to move said type head carriage horizontally with respect to said record sheet through a distance defined by :said horizontal space signals.
  • said input signals further comprise vertical space signals
  • said writer further includes platen drive means includinga stepping motor for rotating said platen responsive to said input vertical space signals.
  • said input signals further comprise vertical space signals and a line return signal
  • said writer further includes platen drive means including a stepping motor for rotating said platen said platen drive means being responsive to said print mode signal in combination with said line return signal to rotate said platen through a standard line space independently of said input vertical space signals, and
  • said platen drive means being responsive to said plot mode signal to respond to said input vertical space signals independently of said select and print completion signal and said line return signal to rotate said platen through a distance defined by said vertical space signals.
  • An output writer responsive to input signals comprising horizontal space signals, vertical space signals, selection signals and print signals, said writer having a rotatable platen
  • a type head providing a plurality of alpha-numeric symbols and operable to select and print an alphanumeric symbol on a record sheet carried on said supporting means
  • type head carriage means supporting said type head, said type head carriage means being horizontally movable with respect to said record sheet supporting means,
  • selection means connected to said type head for moving said type head relative to said carriage means to select a particular alpha-numeric symbol responsive to an input selection signal
  • imprinting means connected to said type head for moving said type head relative to said type head carriage means to imprint the selected alphanumeric symbol on the record sheet responsive to an input print signal
  • type head carriage drive means independent of said selection means and said. imprinting means, said type head carriage drive means including a stepping motor for moving said carriage means horizontally with respect to said record sheet supporting means responsive to input horizontal space signals,
  • platen drive means including a stepping motor for rotating said platen responsive to said input vertical space signals
  • timing means responsive to the input horizontal space signals, vertical space signals, selection signals and print signals for producing timing signals.
  • said carriage drive means and said platen drive means being responsive to said timing signals and the input horizontal and vertical space signals simultaneously to move said carriage horizontally with respect to said record sheet and to rotatesaid platen to move said record sheet vertically with respect to said type head during operation of said writer.
  • timing means further being responsive to the selection and print signals for causing said selection means to operate during movement of'said carriage and platen drive means.

Landscapes

  • Character Spaces And Line Spaces In Printers (AREA)

Abstract

A writer selectively operable in an alpha-numric symbol printing mode and a positioning mode. The writer includes a horizontally movable type head having a plurality of corresponding alphanumeric printing symbols, operable in response to printing signals to print the symbols and horizontally movable in response to horizontal spacing function signals; and a platen rotatable in response to vertical spacing function signals. Type head drive means are provided for incrementally horizontally moving the type head in fine increments, the alpha-numeric spacing increments being an integral multiple thereof, and platen drive means are provided for incrementally rotating the platen in fine increments. In general, this is done by control means for operating the type head comprising horizontal function signal generating means for incrementally horizontally moving the type head in fine increments, and platen drive means comprising vertical function signal generating means for incrementally rotating the platen in fine increments, the function keys providing function signals being connected to the function signal generating means for generating a plurality of fine increment signals equal to an alpha-numeric increment.

Description

ilnite Sites Wang et a1.
[ Mar. 25, 1975 1 1 POSITIONING TYPEWRITER [73] Assignee: Wang Laboratories, Inc.,
Tewksbury, Mass.
[22] Filed: Feb. 12, 1973 [2]] Appl. No.: 331,486
Related US. Application Data [62] Division of Ser. Nov 130,281, April 1, 1971.
11.8. C1 197/19, 197/16 [511 int. Cl B4lj 5/30 Field of Search 197/18, 19, 50, 21), 16, 197/55, 1 R, 48; 101/93 C; 340/1725 [56] References Cited UNITED STATES PATENTS 3,256,969 6/1966 Bretti 197/50 X 3,452,851 7/1969 Holmes 197/19 3,534,847 10/1970 Willcox 04011971/04 3,620,344 11/1971 Clancy l. 197/50 X 3,724,630 4/1973 Manson 197/19 Primary Eraminer-Robert E. Pulfrey Assistant E.taminer-R. T. Rader [57] ABSTRACT A writer selectively operable in a alpha-numric symbol printing mode and a positioning mode. The writer includes a horizontally movable type head having a plurality of corresponding alpha-numeric printing symbols, operable in response to printing signals to print the symbols and horizontally movable in response to horizontal spacing function signals; and a platen rotatable in response to vertical spacing function signals. Type head drive means are provided for incrementally horizontally moving the type head in fine increments,
the alpha-numeric spacing increments being an inte gral multiple thereof, and platen drive means are provided for incrementally rotating the platen in line increments. In general, this is done by control means for operating the type head comprising horizontal lunc tion signal generating means for incrementally horizontally moving the type head in line increments, and platen drive means comprising vertical function signal generating means for incrementally rotating the platen in fine increments, the function keys providing lunction signals being connected to the function signal generating means for generating a plurality of fine increment signals equal to an alpha-numeric increment.
6 Claims, 11 Drawing Figures SHEET 0F 9 IFIG 5 Home 0 u .m i .u MU S 0 0 l P m m m 2 T H E C m 0 v. m 0 O J M S X P N m U D a m I m m m l O v .I m E W M H R I S S T vr Y v m t n ML W 0 1 R@ 1 n u u P S n .m q H J Y n1 1 z 2 mm m x x m s 0 0 E T n n H P HM S 3 R m O 0 l 1 1 0 0 m m B 1 1L 0 0 0 0 o m R K c m l 0 2B 1 1 0 1 1 1 1 R R K .1 1. 0 O 1 o 1 o R ozHFzHxm w UZHEOJE 3 3 HZHMm ZOHHQZQ h |||Y Return will be automatically PRINT MODE RIIENIEI T872359 sumspf 82 CONTROL 3|2 CR L SOLENOID IF I G. 7'
i i l RETURN KEY I L I SWITCH (7e) T I 75IvIs I RETURN I I {'1 I j I I T212241: MOTOR (46) OFF x HOLD I I CARRIAGE I I I SWITCH (I24) I I L F} I j I I 1 I L l ARRIAGE RETURN ENGAGED j DISENGAGED CLUTCH (70) I I I I I A R LEFT MOTION CARRIAGE LEFT I ENDS MOTION (32) I MAROIN MIcRo- ECLOSEO i SWITCH (HO) I I; U CLOSED I I :OPEN l I I l I i l TIME I I A BC RETURN m STEP x/ XY CD STEP Y/XY PLOT STEPX sTEP XY SOLENOIDS MAN STEP XY IIEET 8 OF 9 SHIFT 46 X HORIZONTAL STEP PING MOTOR 74 Y I VERTICAL STEPPING MOTOR (SHIFT) (STEP x) X k T P x 320 L ULSE 2 2 2 2 H H 2 H PATHJTEU Z /3OO PRINT/ FC N COMMAND TRIGGER P WRITER SWITCHES READY/BUSY ape PRINT CYCLE i0 (LOGIC) RETURN (2G) STEP x+ (II2) sPAcE (24) STEP x (no) BACK SPACE (25) STEP Y1- (H4) 7 (STEP Y+I x) x O -10 LOGIC AUTO-'MANQZ) H MAN NI -AuT0 CARRIAGE (I24) CAR }MARGIN [F G.
REv INDEX (30) MARGIN (I22) POSITIONING TYPEWRITER This application is a division of our application Ser. No I30, 281, filed Apr. 1,1971.
This invention relates to typewriters and more particularly to those used as output writers for computers and the like.
The conventional computer input/output typewriter, of the IBM Selectric type, for example, although widely used, has a number of significant limitations. Among the most important of these is its inability to position its symbols relatively to one another in other than alphanumeric spacing increments, which greatly restricts its effectiveness as a plotter, as well as its use for composition, justification or the like. Other such limitations are related to the speed of operation of the IBM typewriter, and include, for example, its practical inability to type reversibly both horizontally and vertically, its inability simultaneously to space horizontally and vertically, and its inability to space during the preliminary stages of a printing stroke.
Accordingly, it is a major object of the present invention to provide a novel positioning typewriter movable in fine increments, much less than an alpha-numeric spacing increment.
It is another object of the invention to provide such a typewriter while retaining its conventional operation, including manual operation.
It is still another object of the invention to provide such a typewriter by novel modifications to a typewriter of the IBM Selectric type.
Further objects of the invention are the provision of a typewriter capable of typing reversibly both horizontally and vertically, of simultaneously spacing both vertically and horizontally, and of spacing during the preliminary stages of a printing stroke.
The above and still further objects and features of the present invention are uniquely accomplished by providing, in a major aspect of the invention, a writer selectively operable in an alpha-numeric symbol printing mode and a positioning mode. Such writer includes a keyboard with a plurality of symbol printing keys providing printing signal and horizontal spacing function signals representing alpha-numeric spacing increments and a plurality of function keys providing horizontal and vertical function signals representing alphanumeric spacing increments, including horizontal space and vertical index keys; at horizontally movable type head having a plurality of corresponding alphanumeric printing symbols, operable in response to the printing signals to print the symbols and horizontally movable in response to the horizontal spacing function signals; and a platen rotatable in response to the vertical spacing function signals.
A major characteristic unique to the invention is its unique provision of type head drive means for incrementally horizontally moving the type head in fine increments, the alpha-numeric spacing increments being an integral multiple thereof, and platen drive means for incrementally rotating the platen in fine increments. In general, this is done by control means for operating the type head comprising horizontal function signal generating means for incrementally horizontally moving the type head in fine increments, and platen drive means comprising vertical function signal generating means for incrementally rotating the platen in fine increments, the function keys providing function signals being connected to the function signal generating means for generating a plurality of fine increment signals equal to an alpha-numeric increment.
Other objects, features, and advantages will appear from the following description of a preferred embodiment ofthe invention, taken together with the attached drawings thereof, in which:
FIG. 1 is a perspective view of the exterior of the typewriter;
FIG. 2 is a perspective view of a portion of the typewriter, including a portion of the type head horizontal drive means;
FIG. 3 is a perspective view ofa further portion of the type head horizontal drive means;
FIG. 4 is a perspective view including the platen drive means and parts of the type head horizontal drive means;
FIG. 5 isa table of codes for generating printing signals and function signals;
FIG. 6 is a typical typed product of the typewriter using fine increment spacing;
FIG. 7 is a schematic detailed portion of the type head horizontal drive means;
FIG. 8 is a perspective view of a portion of the type head horizontal drive means including left margin locating means; I
FIG. 9 is a timing diagram representing return to the left margin;
FIGS. 10 and' 11 represent the logic circuitry of the typewriter.
In the preferred embodiment described herein and shown in the drawings, most generally in FIG. 1, the inventive principles have been applied to an electric typewriter of the type designated Selectric, manufactured by International Business Machines, and described, for example, in U.S. Pat. No. 2,879,876, in the IBM Selectric Instruction Manual dated Jan., 1966, and in the IBM-Customer Engineering Manual of Instruction, Selectric I/0 Keyboard Printer."
In an unmodified typewriter, a single print operation comprises the steps of selecting an alpha-numeric printing symbol, tilting and rotating the type head,
striking the paper with the head, returning the head to rest position, and translating the head horizontally through a standard spacingincrement to the next printing space. In the'present embodiment, the mechanics of symbol selection, head tilting and rotation, striking and return are unaltered, and will not be described here. The horizontal motion of the type head to the next print space, however (as well as the vertical indexing), is accomplished in a novel manner in the present embodiment, as will be described.
Modifications of the horizontal spacing and vertical indexing elements unique to the present invention enable the typewriter to accomplish accurate fine positioning of a printing symbol, preferably with a minimum step of 0.02 inch, or more desirably 0.01 inch, in both horizontal and vertical spacing operations. At the same time, the typewriter retains the capability of spacing in standard increments when desired, such standard increments being integral multiples of the fine increments.
To accomplish this, the standard vertical and horizontal spacing operations have been modified by disabling the original mechanical linkages, and space rack detent, the mainspring, and platen drive, and removing the tabulation mechanism. Two stepping motors, of the type designated SLO-SYM and manufactured by the Superior Electric Co. of Bristol, Connecticut, have been added to drive the type head horizontally and to rotate the platen, either in sequence or simultaneously, and either in fine increments or in standard alphanumeric spacing and indexing increments as desired. The keyboard has been modified and an auxiliary keyboard added to provide additional space function control keys for these motions, replacing other keys found on the unmodified typewriter.
For use as an output device, the typewriter of this invention has been further modified, by the addition of solenoids and logic circuitry, similarly to a Selectric Input/Output Keyboard Printer.
These modificationscause the typewriter of the invention to space only in response to electrical spacing signals generated by manual depression of spacing function keys on the keyboard, or, when desired, derived from codes input from an external source, and to print symbols either in response to depression of a symbol printing key, or to electrical printing signals derived from input codes.
Referring now to FIG. 1, the typewriter of the invention, generally designated 10, is contained in a housing 11 and provides a keyboard 12, a type head 14 and an associated ribbon mechanism 16, and a rotatable platen l8. Keyboard 12 provides a plurality of alphanumeric symbol printing keys 19, including punctuation symbol keys. Power to typewriter is controlled by on/off switch 20, while the source of operation control signals (keyboard or other) is determined by manual/automatic switch 22 (replacing the tab clear/set key). Horizontal motion of type head 14 may be manually controlled by spacebar 24 and back space key 25, together with return key 26. Vertical motion of the paper (indexing) results from rotation of platen 18, and may be manually controlled by index key 28, reverse index key 30 (replacing the tab key), and return key 26 (since each return to the left margin is accompanied by a vertical shift or index). Additional controls mounted on auxiliary keyboard 13 for either manual or automatic operation may be provided in the form of fine increment keys 110 (step left, or .r), 112 (step right, or 114 (step up, or y+) and 116 (step down, or i'), each key determining a single fine increment step in the indicated direction.
Referring now to FIG. 2, type head 14 is carried on a carriage, shown schematically at 32, which slides horizontally on rotatable print shaft 34. Carriage drive means are provided, including escapement cord 36, attached to carriage 32, which passes around pulley 38 through a tensioning device (not shown) to guide roller 40, and is wound onto escapement drum 42. Drum 42 is rotated by escapement shaft 44. In an unmodified typewriter, a rotary force tending to wind up cord 36 onto drum 42 is supplied to shaft 44 by a mainspring. In the present embodiment, the mainspring has been removed, and shaft 44 instead is connected through a pulley to the horizontal (.r) axis stepping motor 46 (FIG. 4). Carriage return cord 48, attached to carriage 32, passes around pulleys 50 and 52 and guide roller 54 and is wound onto carriage return cord drum 56, which is rotated by shaft 44.
Referring to FIG. 3, drum 42 provides a bevel gear 58, adapted to mesh with a tab governor pinion 59 (disabled in the present embodiment) and a carriage return pinion 60. Main drive motor 66 through belt 67 drives the cycle clutch pulley 68 in the conventional manner.
Extending to the right from cycle clutch pulley 68 is the operational shaft 62, rotated by motor 66; shaft 62 in an unmodified typewriter drives the various spacing functions that are powered by stepping motors in the present embodiment. Extending to the left of pulley 68 is the cycle shaft 64, which powers the rotation and tilt of type head 14 to the desired print symbol through cams 72. Pulleys 68 rotates continuously whenever motor 66 is running, but cycle shaft 64 rotates only during a print operation. A cycle clutch spring of the usual type (not shown) is used to engage and disengage shaft 64 with pulley 68. Through gears 63, cycle shaft 64 turns print shaft 34 (FIG. 3) on which carrier 32 rides, to operate the print and ribbon mechanisms. A print cycle reed switch is operated by a magnet 121 car ried on the end of cycle shaft 64 and is actuated after each of rotation of shaft 64.
Platen l8 drive means are provided by vertical (y) axis stepping motor 74 (FIG. 4).
Stepping motors of the type of motors 46 and 74 nor' mally operate in two modes when energized; in one mode, the shaft rotates through a specified number of steps, providing an accurately defined displacement of the device whose motion is powered by the motor; in the second mode, the shaft is maintained at a fixed orientation to provide an accurate fixed position of the powered device. When the motor is not energized, the shaft rotates freely.
The finest practical increment for spacing by the stepping motors has been found to be about 0.01 to 0.02 inch. Finer increments have been found to be impractical, in part because most paper (except for specially prepared paper) is unstable under changes of humidity, and the dimensional alterations of the paper may be so great as to render plotting to finer accuracy useless. Also, increments of such dimensions are not readily resolved by the unaided eye, so that a series of periods, for example, appears as a continuous line.
Using the carriage and platen drive means described, when the modified typewriter is used in the alphanumeric symbol printing mode to provide standard typed material, a signal from switch 120 is sent to horizontal stepping motor through logic circuitry to be described, and in response, the shaft of stepping motor 46 rotates through 10 steps to power the motion of carriage 32 to the right through 10 fine increments of 0.01 inch, which is equivalent to the standard typing space used with pica type. Depression of space bar 24 or backspace key 25 on keyboard 12 similarly provides an appropriatesignal to stepping motor 46, which powers horizontal motion of carriage 32 through 10 fine increments in the indicated direction.
Rotation of the platen through 14 fine increments, providing a standard line index space, is powered by vertical stepping motor 74 in response to a signal generated by depression of the index key 28, reverse index key 30 or return key 26 on key-board 12.
However, for justification of typed lines, or for production of accurately plotted graphical material, both horizontal and vertical spacing may be modified by the use of the keys on auxiliary keyboard 13. For example, depression of .r-key 110 generates a signal which is transmitted to horizontal stepping motor 46, in response to which the stepping motor rotates through a single step, to power the horizontal motion of carriage 32 through one fine increment to the left. Thus the position at which the next alpha-numeric symbol will be printed is only 9 fine increments away from the previous symbol, rather than a standard 10. Signals from the other fine increment keys similarly determine motion of the carriage through single fine increments to the right, and motion of the platen through single fine increments either up or down. A typical plot, typed by the typewriter using fine increment spacing, is shown in FIG. 6.
While .r-axis stepping motor 46 may be used to drive type head carriage 32 horizontally either in a positive or in a negative sense with equal ease, during the usual alpha-numeric symbol printing operation, characters are printed only during left to right motion of carriage 32. When a complete line has been printed, type head carriage 32 must return to the left margin before the next line can be printed. Because of the operating speeds of the stepping motors used in this modified typewriter, the maximum stepping rate is 300 steps or 3 inches per second. To wait while the carriage returns at this rate is undesirable.
Therefore, the fast carriage return capability of a standard unmodified typewriter has been retained, although the mechanical control has been replaced by an electrical control, permitting this fast return function to be initiated in response to a code while the typewriter is controlled by an external device, as well as in response to depression of the return key, and permitting generation of an electrical signal to initiate automatic indexing. A switch and solenoid have been substituted for the mechanical linkage to the return key.
Referring now to FIG. 7, the mechanical linkage leading from Return key 26 in an unmodified typewriter has been disabled, and a return key switch 76 supplied, which is closed by depression of return key 26. Switch 76 actuates solenoid 78, which by pulling down on interposer 82 engages carriage return clutch 70 in the conventional manner. As clutch 70 is engaged, clutch latch 99 moves downward conventionally and thereby closes carriage switch 124, which causes .r-axis stepping motor 46 to be de-energized for free rotation during the return. This sequence of events is shown'at time point A in timing diagram of FIG. 9.
Since clutch 70 is engaged, operational shaft 62, turned by main motor 66, rotates carriage return pinion 60, which engages and rotates bevel gear 58 on drum 42. Rotation ofdrum 42 causes escapement shaft 44 to rotate in a direction to wind up carriage return cord 48 onto drum 56, while cord 36 is paid out from drum 42. Carriage 32 is moved to the left at the speed determined by main motor 66 (about 17 inch/sec).
Referring now to FIG. 8, margin rack 92 is mounted within housing '11 just in front of carriage 32. The left margin position of carriage 32 is coarsely determined mechanically by impact of margin stop latch 93 on left margin stop 90. In an unmodified typewriter, the exact left margin position is determined by a mechanical detent involving a pawl which engages a tooth in margin rack 92. However, in the present typewriter, that mechanism has been disabled to allow the use of stepping motors; therefore the precise left margin position must be determined in a different manner.
Rack 92 has a small amount of lateral play, and its left end is mounted through a spring 95; at most times, when carriage 32 is away from the left margin. spring 95 loads rack 92 to the right. During a fast return. when the carriage reaches the left margin, stop latch 93 on carriage 32 strikes left margin stop 90, impelling rack 92 to the left. The right end of rack 92 is attached by a Ushaped extension member 94 to a carriage return unlatching bell crank 96. When rack 92 moves to the left, bellcrank 96 pulls clutch release link 97 to disengage clutch in the conventional manner, and at the same time the resultant motion of the carriage return clutch latch 99 opens carriage switch 124 to energize stepping motor 46.
Extension member 94 is also connected to a lever 98, which pivots about pin 100; end 102 of lever 98 carries a contact 104 whose position is adjustable by the motion of screw 106. Contact 104 engages a Contact 108 on double throw micro-switch 122. When rack 92 is impelled to the left by impact of stop latch 93 on margin stop 90, lever 98 is caused to pivot about pin 100, separating contact 104 from contact 108 and thereby throwing left margin microswitch 122 into the position (NC) in which stepping motor 46 powers a rightward creep of carriage 32 at one quarter of the standard stepping speed. The circuitry which accomplishes this is shown in FIG. 12 and is more fully described in what follows. This sequence of events is shown at time point B in FIG. 9.
Carriage 32 is moved toward the right until the recoil of rack 92 from its left overtravel again closes contacts 104 and 108, which throws left margin microswitch 122 back to its usual position (NO) and thereby stops the rightward creep of carriage 32. By adjustment of screw 106, the final left margin position of carriage 32 can be set with any desired accuracy.
All of the described. operations of the modified typewriter, using both standard alpha-numeric spacing and fine increment spacing, may be controlled, if desired,
'by an external device, such as a calculator, tape, card reader, or the like. In such use, electrical codes are input to the logic circuitry (to be described) of the modified typewriter, where they are decoded to generate the signals that are otherwise generated by the various function and symbol print keys, as described.
Such operation in response to input codes may be performed in two ways, designated print mode", and plot (positioning) mode. In print mode'operation, characters are printed line by line in a manner similar toconventional operation through keyboard 12. Each symbol print operation is automatically preceded by a horizontal space through a standard alpha-numeric spacing increment, and the fast return maybe used. In plot mode, the automatic spacing before each print is inhibited, and input codes are interpreted to determine fine increment spacing through intervals that may vary at each step. An input code of plot mode or print mode determines whether an automatic space is made with each printing operation.
Referring now to the table of FIG. 5, each signal for printing a symbol or performing a function, normally generated by one of the keys on keyboard 12 and 13, may if desired be generated in automatic operation by decoding a six-bit code. The six bits are designated R1, R2, R2A, R5, T1 and T2. (These designations correspond to the conventional IBM designations of selector latches in the typewriter). The combinations of bit values shown in the first 11 rows of the table are print codes used to generate signals for the printing of the symbols shown. The last five rows contain function command codes used to generate signals for the functions shown. The six bits are first partially decoded (in a manner to be more fully described later) to distinguish a print command from a function command. In selecting a print symbol, the six bits are used to operate six solenoids (FIG. 10) which in turn control the mechanical selection of the print symbol by rotating and tilting the type head to the required orientation, in the same manner as selection is accomplished in the unmodified Selectric Input/Output typewriter. Function command codes are used to control the operation of the stepping motors, by means of circuitry including clocks and a counter, in a manner to be more fully described in what follows.
In plot mode, because of the use of stepping motors in the typewriter of this invention to replace standard spacing mechanisms, the symbol selection and spacing operations may be partially overlapped, which makes it possible to plot more rapidly than could otherwise be done. In addition, horizontal and vertical spacing may be carried out simultaneously.
The construction of the standard unmodified Selectric I/O typewriter is such that the spacing operation is initiated mechanically in response to completion of the select/print operation. Therefore, in an unmodified typewriter, neither the type head nor platen is capable of moving during symbol selection, and (except during the return operation) print head and platen can not move simultaneously; rather, these operations are all performed in sequence. In the present embodiment, the symbol selection mechanism and print (symbol impact) mechanism have not been altered, but the carriage and platen drives have been separated, through the introduction of stepping motors, from theselection and print mechanisms. This makes it possible in plotting to perform several operations together and thereby to 7 save substantial amounts of time.
About 55 msec is required for the mechanical process of symbol selection, tilt and rotation of type head, impact and rebound of the head. The paper and type head carriage must remain stationary during the portion of this time during which type head 14 is close enough to the paper that the printed symbol would be smeared by relative motion of paper and carriage. This period occupies about 10 msec of the total printing time. However, during the remainder of the selection time and initial motion of type head 14 towards the paper, the paper and carriage may still be in relative motion. Allowing about 5 msec for variations in the mechanical process of print symbol impact, this means that during about 40 msec ofthe select/print operation, carriage and platen may be in motion.
In automatic operation, codes for diagonal spacing, namely "step .r, v," step y, step ,'y+, and "step v+," shown in FIG. 5, may he transmit ted, and after decoding, appropriate signals will be generated for controlling stepping motors 46 and 74 for simultaneous carriage spacing and platen rotation. If desired, additional function keys could be provided on auxiliary keyboard 13 to permit manual control of these motions.
A ready/busy feedback signal is sent by the typewriter to the code source. While occupied in moving and printing, the typewriter sends a busy signal; when it is ready to accept another code, the ready signal is sent. Acceptance of new codes and speed of operation thus depend on the time required for each operation.
The spacing operations of the typewriter of the invention, whether determined by use of the function keys on keyboards 12 and 13 or by signals derived from I 8 input codes, including the fast return, and print operations in response to input codes, are all accomplished under the control of the logic circuitry of the typewriter, shown in FIGS. 10 and 11.
In FIGS. 10 and 11, wherein the subscript 0" to a signal designation indicates that the command is input manually through the keyboard, while the subscript 1" indicates a command input as a code, key input section 306 (Writer Switches) of FIG. 10 includes switches actuated by the function keys shown in FIG. 1, together with additional switches. Print cycle reed switch 120, actuated by magnet 121 carried on the left end of cycle shaft 64 (FIG. 3), provides a mechanically determined indicator of the completion of a print function for initiation of automatic spacing. Double-throw margin microswitch 122 (FIG. 8) is mechanically actuated during the fast return operation as previously described. Carriage switch 124 is normally open, but is closed when carriage return clutch is engaged, in order to de-energize .t-stepping motor 46 and permit main motor 66 to power the fast return.
In manual operation, signals from these switches directly determine operation of the timing devices and stepping motors, without the use of codes.
Code inputs, which are not needed for manual operation of the typewriter, are indicated in section 300 (Print/FCN) of FIG. 10, together with a command trigger pulse 320 and a ready/busy feedback signal 322; command pulse 320 causes a stored six bit code to be transferred to the decoder, while ready/busy signal 322 indicates whether the control circuitry is ready to receive and respond to another command, either from the keyboards or from a code source.
Decode section 302, also not needed for manual typewriter operation, partially decodes input codes to distinguish print codes from function codes. A print code causes a Print/W signal to appear on line 308.. Function codes are partially decoded and combined for use in the control circuitry, in the forms of mode signals and various spacing function signals as indicated in section 304.
Writer solenoid section 310 contains the six print selection solenoids, with three other solenoids and as sociated drive units. The print solenoid, again not used in manual operation, powers the mechanism that drives type lia i 14 against platen 18, in response to the Print/FCN signal on line 308. The Return solenoid is driven in response either to a signal RTN manually input through key 26, or to a signal RTN, from decoder 304, and mechanically causes carriage return clutch 70 to be engaged.
Control section 312, shown in greater detail in FIG. 11, receives signals from Writer Switch section 306 or from Print/Fm section 300 and Decode section 304, and controls the operation of stepping motors 46 and 74, as well as of the writer solenoids of section 310.
Referring to FIG. 11, the timing of the spacing functions is controlled by clock pulse generator 330, which sends pulses to the space clock 332, index clock 334, and right creep clock 336. Generator control 331 turns on generator 330 in response to function commands either from the keyboards l2 and 13 through Writer Switch section 306, or from decoder 304. In addition, a reset signal on line 338 turns generator 330 off. Space and index clocks 332 and 334 determine the number of steps taken by the space and index stepping motors.
The same four-bit counter 344 is used for both space and index operations and is enabled by a pulse from either clock; a count of 10 shuts off flip-flop 346 controlling space (xaxis) clock 332, a count of 14 shuts off flip-flop 348 controlling index (yaxis) clock 334. The counter is reset by an appropriate polarity on reset line 338.
When the typewriter operates in response to coded input, each operation is initiated by a command pulse 320, which is input to Print/function section 300 (FIG. 10) to trigger transfer of an assembled code to the decoder. The command pulse 320 also initiates action by the decoder, and together with a print code from decoder 304, actuates the print solenoid (section 310, FIG. 10). Finally, command pulse 320 is used to send a busy signal on Ready/busy line 340 to provide feedback signal 322 (section 300, FIG. 10). A 150 msec busy signal is also provided in response to depression of any of the manual function keys (section 306, FIG. 10); or in response to codes for the spacing functions, shift and return functions.
The 75 msec pulse generated in response to a RTN signal, either manual or coded, is gated at 342 with a PLOT signal to inhibit otherwise automatic indexing after a fast return in plot mode.
In manual operation, print symbols are selected and printed conventionally in response to depression of symbol selection keys on keyboard 12. A spacing function is initiated when depression of a function key on keyboard 12 or keyboard 13 generates an electrical function signal. The signal is input to controlsection 312; here horizontal and vertical spacing signals are used to start the generation and counting of clock pulses, which in turn determine the number of steps moved by the appropriate stepping motor. The signals further determine thedirection of motion. A return signal initiates an automatic index operation through a standard index increment (unless inhibited in PLOT mode) and simultaneously initiates the fast return operation, as previously described.
When operation is in response to stored commands, codes are input to the Decode Section 304, which generates from the function codes electrical signals corresponding to those generated by depression of the function keys; these signals initiate spacing operations as described. Signals generated in response to print codes are used to drive print symbol selection solenoids, with or without automatic horizontal spacing, depending on the mode of operation.
The modified typewriter of the invention is thus operable under manual control as well as in response to stored commands, and can provide either fine increment spacing for the representation of graphical information or standard letter spacing and index spacing for use in typing in the usual manner, as desired.
What is claimed is:
1. An output writer responsive to input signals com prising horizontal space signals and selection and print signals, said writer having record sheet supporting means,
a type head providing a plurality of alpha-numeric symbols and operable to select and print an alphanumeric symbol on a record sheet carried on said supporting means,
selection and printing means connected to said type head for moving said type head relative to said carriage means to select a particular alpha-numeric symbol and sequentially to print the selected alphanumeric symbol on the record sheet,
selection and printing drive means including a main motor, said selection and printing drive means being responsive to input selection and print signals for operating said selection and printing means,
type head carriage means supporting said type head,
said type head carriage means being driven independently of said selection and printing means for independent control and timing of said carriage means and said selection and printing means. and being horizontally movable with respect to said record sheet supporting means,
type head carriage drive means independent of said selection and printing drive means. said type head carriage drive means including a stepping motor and responsive to input horizontal space signals for moving said carriage means horizontally with re spect to said record sheet supporting means,
said carriage drive means and said selection and printing drive means being independently responsive to the input horizontal space signals and the selection and printsignals respectively for causing said selection and printing means to select and print an alpha-numeric symbol and for causing said carriage to move horizontally with respect to said record sheet.
2. An output writer as claimed in claim 1, wherein said input signals further comprise a select and print completion signal, a plot mode signal and a print mode signal,
said carriage drive means being responsive to said print mode signal in combination with said select and print completion signal to move said type head carriage horizontally with respect to said record sheet through one standard letter space independently of said input horizontal space signals, and
said carriage drive meansbeing responsive to said plot mode signal to respond to said input horizontal space signals independently of said select and print completion signal to move said type head carriage horizontally with respect to said record sheet through a distance defined by :said horizontal space signals.
3. The output writer of claim 1, wherein said record sheet supporting means is a rotatable platen,
said input signals further comprise vertical space signals, and
said writer further includes platen drive means includinga stepping motor for rotating said platen responsive to said input vertical space signals.
4. The output writer of claim 2,. wherein said record sheet supporting means is a rotatable platen,
said input signals further comprise vertical space signals and a line return signal, and
said writer further includes platen drive means including a stepping motor for rotating said platen said platen drive means being responsive to said print mode signal in combination with said line return signal to rotate said platen through a standard line space independently of said input vertical space signals, and
said platen drive means being responsive to said plot mode signal to respond to said input vertical space signals independently of said select and print completion signal and said line return signal to rotate said platen through a distance defined by said vertical space signals.
5. An output writer responsive to input signals, comprising horizontal space signals, vertical space signals, selection signals and print signals, said writer having a rotatable platen,
a type head providing a plurality of alpha-numeric symbols and operable to select and print an alphanumeric symbol on a record sheet carried on said supporting means,
type head carriage means supporting said type head, said type head carriage means being horizontally movable with respect to said record sheet supporting means,
selection means connected to said type head for moving said type head relative to said carriage means to select a particular alpha-numeric symbol responsive to an input selection signal,
imprinting means connected to said type head for moving said type head relative to said type head carriage means to imprint the selected alphanumeric symbol on the record sheet responsive to an input print signal,
type head carriage drive means independent of said selection means and said. imprinting means, said type head carriage drive means including a stepping motor for moving said carriage means horizontally with respect to said record sheet supporting means responsive to input horizontal space signals,
platen drive means including a stepping motor for rotating said platen responsive to said input vertical space signals,
timing means responsive to the input horizontal space signals, vertical space signals, selection signals and print signals for producing timing signals. said carriage drive means and said platen drive means being responsive to said timing signals and the input horizontal and vertical space signals simultaneously to move said carriage horizontally with respect to said record sheet and to rotatesaid platen to move said record sheet vertically with respect to said type head during operation of said writer.
6. The output writer of claim 5,
said timing means further being responsive to the selection and print signals for causing said selection means to operate during movement of'said carriage and platen drive means.

Claims (6)

1. An output writer responsive to input signals comprising horizontal space signals and selection and print signals, said writer having record sheet supporting means, a type head providing a plurality of alpha-numeric symbols and operable to select and print an alpha-numeric symbol on a record sheet carried on said supporting means, selection and printing means connected to said type head for moving said type head relative to said carriage means to select a particular alpha-numeric symbol and sequentially to print the selected alpha-numeric symbol on the record sheet, selection and printing drive means including a main motor, said selection and printing drive means being responsive to input selection and print signals for operating said selection and printing means, type head carriage means supporting said type head, said type head carriage means being driven independently of said selection and printing means for independent control and timing of said carriage means and said selection and printing means, and being horizontally movable with respect to said record sheet supporting means, type head carriage drive means independent of said selection and printing drive means, said type head carriage drive means including a stepping motor and responsive to input horizontal space signals for moving said carriage means horizontally with respect to said record sheet supporting means, said carriage drive means and said selection and printing drive means being independently responsive to the input horizontal space signals and the selection and print signals respectively for causing said selection and printing means to select and print an alpha-numeric symbol and for causing said carriage to move horizontally with respect to said record sheet.
2. An output writer as claimed in claim 1, wherein said input signals further comprise a select and print completion signal, a plot mode signal and a print mode signal, said carriage drive means being responsive to said print mode signal in combination with said select and print completion signal to move said type head carriage horizontally with respect to said record sheet through one standard letter space independently of said input horizontal space signals, and said carriage drive means being responsive to said plot mode signal to respond to said input horizontal space signals independently of said select and print completion signal to move said type head carriage horizontally with respect to said record sheet through a distance defined by said horizontal space signals.
3. The output writer of claim 1, wherein said record sheet supporting means is a rotatable platen, said input signals further comprise vertical space signals, and said writer further includes platen drive means including a stepping motor for rotating said platen responsive to said input vertical space signals.
4. The output writer of claim 2, wherein said record sheet supporting means is a rotatable platen, said input signals further comprise vertical space signals and a line return signal, and said writer further includes platen drive means including a stepping motor for rotating said platen said platen drive means being responsive to said print mode signal in combination with said line return signal to rotate said platen through a standard line space independently of sAid input vertical space signals, and said platen drive means being responsive to said plot mode signal to respond to said input vertical space signals independently of said select and print completion signal and said line return signal to rotate said platen through a distance defined by said vertical space signals.
5. An output writer responsive to input signals, comprising horizontal space signals, vertical space signals, selection signals and print signals, said writer having a rotatable platen, a type head providing a plurality of alpha-numeric symbols and operable to select and print an alpha-numeric symbol on a record sheet carried on said supporting means, type head carriage means supporting said type head, said type head carriage means being horizontally movable with respect to said record sheet supporting means, selection means connected to said type head for moving said type head relative to said carriage means to select a particular alpha-numeric symbol responsive to an input selection signal, imprinting means connected to said type head for moving said type head relative to said type head carriage means to imprint the selected alpha-numeric symbol on the record sheet responsive to an input print signal, type head carriage drive means independent of said selection means and said imprinting means, said type head carriage drive means including a stepping motor for moving said carriage means horizontally with respect to said record sheet supporting means responsive to input horizontal space signals, platen drive means including a stepping motor for rotating said platen responsive to said input vertical space signals, timing means responsive to the input horizontal space signals, vertical space signals, selection signals and print signals for producing timing signals, said carriage drive means and said platen drive means being responsive to said timing signals and the input horizontal and vertical space signals simultaneously to move said carriage horizontally with respect to said record sheet and to rotate said platen to move said record sheet vertically with respect to said type head during operation of said writer.
6. The output writer of claim 5, said timing means further being responsive to the selection and print signals for causing said selection means to operate during movement of said carriage and platen drive means.
US331486A 1971-04-01 1973-02-12 Positioning typewriter Expired - Lifetime US3872959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US331486A US3872959A (en) 1971-04-01 1973-02-12 Positioning typewriter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13028171A 1971-04-01 1971-04-01
US331486A US3872959A (en) 1971-04-01 1973-02-12 Positioning typewriter

Publications (1)

Publication Number Publication Date
US3872959A true US3872959A (en) 1975-03-25

Family

ID=26828320

Family Applications (1)

Application Number Title Priority Date Filing Date
US331486A Expired - Lifetime US3872959A (en) 1971-04-01 1973-02-12 Positioning typewriter

Country Status (1)

Country Link
US (1) US3872959A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074067A (en) * 1976-06-25 1978-02-14 Arthur Speckhard Digital printout arrangement with magnetic field carriage drive
FR2392824A1 (en) * 1977-06-03 1978-12-29 Computer Peripherals PRINTING DEVICE
US4181444A (en) * 1976-10-18 1980-01-01 Siemens Aktiengesellschaft Device for printing out indices and powers in typewriters
US4195940A (en) * 1976-07-26 1980-04-01 Siemens Aktiengesellschaft Line control for platen printing devices
US4264218A (en) * 1978-09-27 1981-04-28 Copal Company Limited Printing device
US4408918A (en) * 1981-05-01 1983-10-11 Scm Corporation Halfspace control system for electronic typewriter with correction register
US4571100A (en) * 1983-04-26 1986-02-18 Brother Kogyo Kabushiki Kaisha Electronic typewriter
US4695976A (en) * 1982-09-08 1987-09-22 Sharp Kabushiki Kaisha Combined electronic table preparation and graph drawing apparatus
EP0287364A2 (en) * 1987-04-14 1988-10-19 Brother Kogyo Kabushiki Kaisha Printer for normal line feed by a carriage return
US4896978A (en) * 1987-07-14 1990-01-30 Samsung Electronics Co., Ltd. Method for optional control of line spacing in electronic typewriter
US4906114A (en) * 1985-12-06 1990-03-06 Matsushita Electric Industrial Co., Ltd. Electronic typewriter
US7437782B1 (en) * 2006-01-06 2008-10-21 Joerns Healthcare Inc. Load sensing safety device for vertical lift

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3256969A (en) * 1962-12-17 1966-06-21 Olivetti & Co Spa High speed serial printing device
US3452851A (en) * 1966-10-19 1969-07-01 Lawrence Holmes Jr Typewriter baseplate enabling machine operation by and generation of electrical signal
US3534847A (en) * 1966-09-21 1970-10-20 Frederick P Willcox High speed teleprinter
US3620344A (en) * 1969-12-29 1971-11-16 Ibm Selection system for a dual-element typewriter
US3724630A (en) * 1970-10-08 1973-04-03 Mi Inc Input-output typewriter apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3256969A (en) * 1962-12-17 1966-06-21 Olivetti & Co Spa High speed serial printing device
US3534847A (en) * 1966-09-21 1970-10-20 Frederick P Willcox High speed teleprinter
US3452851A (en) * 1966-10-19 1969-07-01 Lawrence Holmes Jr Typewriter baseplate enabling machine operation by and generation of electrical signal
US3620344A (en) * 1969-12-29 1971-11-16 Ibm Selection system for a dual-element typewriter
US3724630A (en) * 1970-10-08 1973-04-03 Mi Inc Input-output typewriter apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4074067A (en) * 1976-06-25 1978-02-14 Arthur Speckhard Digital printout arrangement with magnetic field carriage drive
US4195940A (en) * 1976-07-26 1980-04-01 Siemens Aktiengesellschaft Line control for platen printing devices
US4181444A (en) * 1976-10-18 1980-01-01 Siemens Aktiengesellschaft Device for printing out indices and powers in typewriters
FR2392824A1 (en) * 1977-06-03 1978-12-29 Computer Peripherals PRINTING DEVICE
US4264218A (en) * 1978-09-27 1981-04-28 Copal Company Limited Printing device
US4408918A (en) * 1981-05-01 1983-10-11 Scm Corporation Halfspace control system for electronic typewriter with correction register
US4695976A (en) * 1982-09-08 1987-09-22 Sharp Kabushiki Kaisha Combined electronic table preparation and graph drawing apparatus
US4571100A (en) * 1983-04-26 1986-02-18 Brother Kogyo Kabushiki Kaisha Electronic typewriter
US4906114A (en) * 1985-12-06 1990-03-06 Matsushita Electric Industrial Co., Ltd. Electronic typewriter
EP0287364A2 (en) * 1987-04-14 1988-10-19 Brother Kogyo Kabushiki Kaisha Printer for normal line feed by a carriage return
EP0287364A3 (en) * 1987-04-14 1990-04-25 Brother Kogyo Kabushiki Kaisha Printer for normal line feed by a carriage return
US4896978A (en) * 1987-07-14 1990-01-30 Samsung Electronics Co., Ltd. Method for optional control of line spacing in electronic typewriter
US7437782B1 (en) * 2006-01-06 2008-10-21 Joerns Healthcare Inc. Load sensing safety device for vertical lift

Similar Documents

Publication Publication Date Title
US3872959A (en) Positioning typewriter
US3289805A (en) Typewriter having typelevers mounted on a rotating member
US3630336A (en) Proportional spacing printer incorporating word underscore control
US4846593A (en) Printing apparatus system with a plurality of interchangeable type units
US3893558A (en) Special symbol generator for high speed printer
US4561793A (en) Automatic work correcting system
US4388005A (en) Method and apparatus for printing partially overlapping characters
GB1053186A (en)
US3754631A (en) Positioning typewriter
ES344148A1 (en) Printing apparatus with no-print feature
US4197022A (en) Multiple spoked wheel printer
US3618736A (en) Variable force impact printer with backspace mechanism
US3829855A (en) Typing system with form programmed format control
EP0026286B1 (en) Hyphen code converting process for a text processing system
US4064983A (en) Japanese character word processing system
US4147438A (en) Serial printer for typewriters, teleprinters and data processors
US2811235A (en) Machine for typing a tape record and a proof sheet simultaneously
US4374626A (en) Erasing typewriter with automatic/manual selection
US3788443A (en) Character selection and impression control mechanism for typewriter
US4096935A (en) Input device
US3640216A (en) Parallel printing apparatus for recorded data
US4386863A (en) Printer mechanism for typewriter
CA1158588A (en) Erasing typewriter with automatic/manual selection
GB1078448A (en) Printer
US2842245A (en) Automatic transcriber and composer

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIRST NATIONAL BANK OF BOSTON, MASSACHUSETTS

Free format text: SECURITY INTEREST;ASSIGNOR:WANG LABORATORIES, INC.;REEL/FRAME:005296/0001

Effective date: 19890915

AS Assignment

Owner name: CONGRESS FINANCIAL CORPORATION (NEW ENGLAND), MASS

Free format text: SECURITY INTEREST;ASSIGNOR:WANG LABORATORIES, INC.;REEL/FRAME:006932/0047

Effective date: 19931220

Owner name: WANG LABORATORIES, INC., MASSACHUSETTS

Free format text: TERMINATION OF SECURITY INTEREST;ASSIGNOR:FIRST NATIONAL BANK OF BOSTON, AS TRUSTEE;REEL/FRAME:006932/0001

Effective date: 19930830

AS Assignment

Owner name: WANG LABORATORIES, INC., MASSACHUSETTS

Free format text: RELEASE OF SECURITY INTEREST IN AND REASSIGNMENT OF U.S. PATENTS AND PATENT APPLICATIONS;ASSIGNOR:CONGRESS FINANCIAL CORPORATION (NEW ENGLAND);REEL/FRAME:007341/0041

Effective date: 19950130

AS Assignment

Owner name: BT COMMERCIAL CORPORATION (AS AGENT), NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:WANG LABORATORIES, INC.;REEL/FRAME:007377/0072

Effective date: 19950130