US3871438A - Process for regenerating resin-bonded foundry sand - Google Patents
Process for regenerating resin-bonded foundry sand Download PDFInfo
- Publication number
- US3871438A US3871438A US333409A US33340973A US3871438A US 3871438 A US3871438 A US 3871438A US 333409 A US333409 A US 333409A US 33340973 A US33340973 A US 33340973A US 3871438 A US3871438 A US 3871438A
- Authority
- US
- United States
- Prior art keywords
- sand
- castings
- vessel
- cores
- synthetic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C5/00—Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
- B22C5/08—Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by sprinkling, cooling, or drying
- B22C5/085—Cooling or drying the sand together with the castings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S241/00—Solid material comminution or disintegration
- Y10S241/10—Foundry sand treatment
Definitions
- Snyder ABSTRACT Resin-bonded foundry sand which forms part of a mould and cores that have been used for the manufacture of castings, are regenerated by depositing the whole sand mould together with its hot castings and any sand cores into a rotating vessel and tumbling these materials in the vessel during a time period sufficient to ensure that the sand mould and cores are broken down to discrete particles and the resin of the sand particles is burned away by spontaneous inflammation and combustion due to heat transfer between castings and sand.
- An apparatus for effecting this regerenation process comprises essentially a rotatable drum with appropriate inlets and outlets.
- thermosetting resin Moulds and cores of crystal sand bonded by a thermosetting synthetic resin have found a widespread use for the manufacture of metal castings in recent years.
- the thermosetting resin therein may be e.g., a furane resin made by curing furfuryl alcohol at 250C in the presence of a phosphoric acid catalyst, or alternatively a ureaformaldehyde or phenol-formaldehyde resin.
- Such resins have the advantage of providing a satisfactory bonding strength and resulting in moulds and cores that retain their forms during utilisation.
- a disadvantage of the aforementioned synthetic resins is, however, that the foundry sand can hardly be regenerated after use and after removal of the castings.
- This used foundry sand comprises a non-neglectable amount of synthetic resin in the form of hard films around the sand grains and such films are extremely difficult to remove.
- the most widely practised method at the moment is to grind the moulds and cores after use to form discrete particles and then to blow these sand particles many times under high pressure against an abrasion-resistant wall. Thanks to collision against this wall and thanks to mutual friction of the sand particles, the resin films around the sand grains are broken then and are partially or completely pulverised, whereupon the resulting fines and grit are removed from the sand by means of suction.
- This process will consume much energy since many collisions are needed to remove the whole resin film from a sand particle. Moreover, this process has a deleterious effect on the sand grains resulting in the fact that only 50 percent of the grains is suitable for re-use in moulds and cores.
- An object of the invention is to provide a process of regenerating foundry sand which overcomes the above disadvantages.
- Another object is to provide a process of regenerating foundry sand which consumes less energy.
- a further object is to provide a process for regenerating foundry sand which has for its result that a high percentage of the regenerated sand grains can be re-used in moulds and cores.
- Still another object is to provide a process for regenerating foundry sand whereby the resin films around the sand grains may be removed effectively by burning them away.
- a further object is to provide a process for regenerating foundry sand wherein the sand is regenerated by means of hot castings.
- a still further object is to provide a process for regenerating foundry sand wherein the sand after regeneration together with hot castings is cooled down efficiently to ambiant temperature.
- the invention has for a further object to provide an apparatus for regenerating foundry sand which is capable of effecting the above-mentioned process.
- a further object of the invention is to provide an apparatus for regenerating foundry sand which is capable of effectively removing the resin films from sand grains bonded with synthetic resin.
- Still another object is to provide an apparatus for regenerating foundry sand which has for its result that a high percentage of the regenerated sand grains may be re-used in moulds and cores.
- a further object is to provide an apparatus for regenerating foundry sand wherein the sand is regenerated by means of hot castings.
- a still further object is to provide an apparatus for regenerating foundry sand wherein the sand after regeneration together with hot castings is cooled down efficiently to ambiant temperature.
- the invention provides a process of regenerating foundry sand bonded with a thermosetting synthetic resin and forming part of a mould and cores (if necessary) that have been used for the manufacture of castings.
- this process comprises the steps of depositing the whole sand mould together with its hot castings and any sand cores into a rotating vessel and tumbling these materials in that vessel during a time period sufficient to ensure that the sand mould and cores through contact with the hot castings are heated to such a temperature that the synthetic resin is removed from the sand by spontaneous inflammation and combustion and the sand mould and cores are completely broken down to discrete sand particles.
- this apparatus comprises a vessel in the form of a horizontal cylindrical drum which has an inlet for castings and sand moulds at one end and an outlet for castings and regenerated sand at its other end, said drum being mounted for rotation about its longitudinal axis, and being provided with one or more profile bars at the inner side of its cylindrical walls as well as with one or more burner tubes and conduits for supply of fuel gas and/or conduits for supply of an oxy' gen-containing gas at its inside.
- the effect of the vessel or rotating drum is two-fold.
- the sand moulds and sand cores are broken down during the tumbling step to discrete sand particles thanks to the castings which serve the function of grinding bodies.
- This has the advantage that only a minimum of energy is needed for grinding purposes because the bonding forces of the synthetic resin decrease at the temperatures existing in the drum.
- an intense heat transfer between the hot castings and the sand particles is taking place during this tumbling step and thanks to such heat transfer the sand is heated at a temperature of about 400C by the hot cast ings. Such a temperature is sufficient to ensure a spontaneous inflammation and combustion of the synthetic resin films around the sand grains.
- the synthetic resin at the surface of the sand particles is in contact with sufficient air or oxygen to ensure that the combustion is complete but, if desired, an additional quantity of air or oxygen may be introduced into the vessel through an appropriate conduit.
- an additional quantity of heat may be added by means of one or more burners fed with gas or oil.
- the sand grains are regenerated and cleaned completely in this way and the gaseous combustion products comprise substantially exclusively carbon dioxide and water vapour. Further, the sand is nearly completely dried during this tumbling step and this is an additional advantage.
- the resulting products may be discharged together and thereafter be separated and cooled individually.
- the sand is suitable then without any further operational steps for re-use in making moulds and cores.
- the resulting combination of hot castings and hot, regenerated sand may be passed as a whole to a cooling drum for further cooling of the products to ambiant temperature, whereupon the components are separated.
- a cooling drum may be of the type disclosed in British Pat. No. 1,125,757 and comprises a vessel in the form of a rotatably supported, horizontal drum having an inlet for castings and sand at one end and anoutlet for cooled castings at its other end. A portion of the cylindrical wall of the drum has been perforated and may cooperated with an outlet for separating and discharging cooled sand.
- any residual concentration of phosphoric acid in the sand may be neutralised by means of a slightly alkaline pH of the water spray introduced into the drum.
- FIG. I is a longitudinal section through this embodiment.
- FIG. 2 is an elevation of this embodiment on a smaller scale, when it has been coupled with an apparatus for cooling castings and sand.
- the apparatus of FIG. 1 comprises a vessel in the form of a cylindrical drum 1 supported horizontally on rollers 2 for rotation around its longitudinal axis.
- the cylindrical wall 3 of the drum is closed over its entire length and has at its inner side a number of profile bars 4 extending parallel to the longitudinal axis of the drum.
- the drum has an end wall 5 provided with a central inlet opening 6 at one of its ends.
- a stationary inlet chute 7 is projecting through opening 6 into the drum and has a branch tube 8 which may be connected to an 4 d hi hm be ked i h 2.
- 2- f d s red
- the lid 11 maybe 5 sliding lid.
- a burner tube 13 having vided with a valve 18. This conduit may be connected with a source of oxygen-containing gas such as oxygen,
- the apparatus as described is operating as follows:
- the drum-l is rotating with the aid of suitable driving means (not shown).
- suitable driving means not shown.
- Partially cooled mould flasks which comprise a sand mould with one or more fresh castings and, if necessary, sand cores contained therein, are advanced to the drum and opened, whereupon the whole contents of the mould flasks that is castings plus sand mould plus any sand cores is deposited into the drum through inlet chute 7. This material remains for some time in the rotating drum and is advanced gradually therein from its inlet end to its discharge end.
- the castings and sand moulds are continuously tumbled and mixedwhereby the castings have the function of grinding bodies to break the sand moulds and cores down to discrete sand particles.
- Subbling action of the drum however, an intense heat transfer is taking place, and the temperature of the sand will be raised thereby to an average value of 400C.
- the resin films around the sand grains as well as any free resin particles are capable of spontaneous inflammation and combustion.
- additional air or oxygen may be :supplied through conduit 17.
- the resulting combustion apparatus (not shown) for removal by suction of com- 5 bustion gases formed in the drum during operation.
- the drum 1 is covered at its other end by a stationary gases may be removed by suction through branch tube 8.
- the iron is capable of supplying sufficient heat to sustain the combustion of the resin from the mould sand and this resin will be burned away completely.
- a relatively small amount of iron is present, however, there will be transferred only a limited amount of heat from the iron to the sand and in that case, an additional amount of heat should be supplied by means of the burners 14.
- conduit 15 has been connected with a fuel source and conduit 17 has been connected with a source of oxygen-containing gas, then heat is supplied by means of the burners l4 and an excess of oxygen is introduced simultaneously through conduit 17.
- the profile bars 4 serve to take up the'sand each time and this sand when released falls down through the burner flames which ensures a good combustion of the resin in a short period of time.
- the drum may be operated continuously or discontinuously.
- the lid 11 is kept closed (dotted lines) and the contents of the drum are kept therin during a period of time sufficient to en sure that all synthetic resin of the mould sand has been burned away completely, whereupon the lid 11 is opened and the whole contents of the drum, that is castings plus sand, are discharged through the outlet 10.
- the lid 11 is always opened (or is ommitted) and the amount of material introduced into the drum is selected with regard to the length of the drum in such a way that the sand will be freed completely of resin when it has passed the whole drum. In this case too, the castings plus sand are discharged through the outlet 10. In both cases, the resulting sand is completely colourless due to the absence of resin and carbon particles.
- the mixture of hot castings and hot sand may be processed further in various different ways.
- the mixture may be seperated by means of a perforated conveyor belt, whereupon the sand falling through the perforations is cooled and the castings are passed further on the belt.
- perforations may be provided in the outlet in order to separate the sand from the castings.
- FIG. 2 At the left side of FIG. 2 is shown the same apparatus as in FIG. 1, that is a cylindrical drum 1 rotatably supported on rollers 2 and provided with a stationary inlet chute 7, with suction branch 8 and a stationary end wall 9 with outlet opening 10, as well as a burner tube 13 with flame apertures 14 and an oxygen conduit 17.
- the lid 11 is absent in this case so as to allow a continuous operation of the drum 1.
- This drum 1 is coupled to a cooling drum (at the right hand side of FIG. 2) comprising a vessel in the form of a cylindrical drum 19, supported in horizontal position on rollers for rotation around its longitudinal axis.
- the drum 19 has an end wall with central inlet opening 22 at one end and a stationary inlet chute 23 connected with the outlet 10 of the drum 1 is projecting inwardly through this opening 22 into drum 19.
- the inlet chute 23 is provided with a branch tube 24 which may be connected to an apparatus for removal of air and water vapour by means of suction.
- the drum 19 is covered at its other end by a stationary end wall 25 which has a central opening 26 for re ceiving a stream of cold air by suction and which has an outlet 27 for discharge of cooled castings.
- the cylindrical wall 28 ofthe drum 19 has a circumferentially perforated portion 29 for separating cooled sand from the drum and non-perforated portions 30 and 31 on either sideof it.
- the perforations in the perforated portion have a diameter of e.g., 20 millimeters portion is closely surrounded at the lower side of the drum 19 by a stationary outlet chute 32 for discharge of cooled sand.
- the portion 31 of the drum wall need not always be present and in that case the perforated portion 29 will extend until the discharge end of the drum.
- the portion 30 near the inlet end of the drum 19 is needed, however, for a good contact between castings and mould sand and it should have an axial length of at least half the axial length of the perforated portion 29. Further, the axial length of the perforated portion 29 may be varied between certain limits by means of two slidable sleeves 9 mounted around the drum wall for covering part of the perforated portion 29.
- a conduit 34 with spray apertures 35 has been provided within the drum 19 and is connected with a conduit 36 leading to the outside of the drum.
- This conduit 36 bearing a valve 37 may be connected with a source of water (not shown) and the water from this source is preferably made slightly alkaline.
- drum 1 has the same function as described above.
- the castings and hot sand leaving this drum are continuously fed to the rotating drum 19 through outlet 10 and inlet 23.
- the castings and sand are again tumbled and mixed and also advanced in the direction of the discharge end.
- the castings are again in intimate contact with the sand so as to ensure a good heat transfer.
- a stream of cold air is passed by suction through the drum 19 via opening 26 and branch tube 24 and this stream of cold air takes up a major part of the heat from the castings and sand.
- a water spray (not always necessary) may be introduced through conduit 31 into the drum.
- This water spray will absorb part of the heat from the sand and the castings and will then evaporate whereupon it is removed in vapour form by suction through branch tube 24. Another part of the heat from the sand and castings is removed by heat transfer through the drum wall to the surrounding atmosphere.
- the temperature of the sand and castings may be lowered to about the ambiant temperature. If the water spray has been made slightly alkaline (having a pH of about 8) then any phosphoric acid residue in the sand (derived from the catalyst of the synthetic resin) is also neutralised.
- the sand grains may be freed completely from synthetic resin and the size and shape of the sand grains are not substantially affected.
- the sand may be re-used immediately for making moulds and cores. Further, the sand is completely dry.
- a further advantage is that the moisture-free sand may be passed over a magnet in a layer of e.g., 5 millimeters, in order to remove any iron particles from it. The completely dried sand grains will not have any tendency of agglomeration during storage.
- a process of regenerating foundry sand bonded with a thermo-setting synthetic resin and forming part of a mould and cores that have been used for manufac@ turing castings comprising the steps of depositing said whole sand mould together with its hot castings and any sand cores into a rotating vessel and tumbling such materials in that vessel during a time period sufficient to ensure that the sand mould and cores through contact with said hot castings are heated to such a temperature that'the synthetic resin is removed from the. sand by spontaneous inflammation and combustion and the sand mould and cores are completely broken down to discrete sand particles.
- a process of regenerating foundry sand bonded with a thermo-setting synthetic resin and forming part of a mould and cores that have been used for manufacturing castings comprising the steps of depositing said whole sand mould together with its hot castings and any sand cores into a first rotating vessel and tumbling such.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Mold Materials And Core Materials (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL7201998A NL7201998A (fr) | 1972-02-16 | 1972-02-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3871438A true US3871438A (en) | 1975-03-18 |
Family
ID=19815374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US333409A Expired - Lifetime US3871438A (en) | 1972-02-16 | 1973-02-16 | Process for regenerating resin-bonded foundry sand |
Country Status (7)
Country | Link |
---|---|
US (1) | US3871438A (fr) |
JP (1) | JPS4893528A (fr) |
BE (1) | BE803565A (fr) |
DE (1) | DE2307773A1 (fr) |
GB (2) | GB1428422A (fr) |
IT (1) | IT988466B (fr) |
NL (1) | NL7201998A (fr) |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4004942A (en) * | 1974-06-10 | 1977-01-25 | Societe D'applications De Procedes Industriels Et Chimiques S.A.P.I.C. | Process and apparatus for cleaning particulate materials |
US4113510A (en) * | 1974-06-07 | 1978-09-12 | Societe D'applications De Procedes Industriels Et Chimiques S.A.P.I.C. | Process for regenerating foundry sand |
US4154290A (en) * | 1976-12-17 | 1979-05-15 | Expert N.V. | Device for cooling castings and for treating moulding sand |
US4211274A (en) * | 1977-05-12 | 1980-07-08 | Przedsiegiorstwo Projektowania I Wyposazania Odlewni "Prodlew" | Equipment for cooling and separation of castings and moulding sand |
US4566637A (en) * | 1982-04-16 | 1986-01-28 | Combustion Engineering, Inc. | Thermal sand reclamation system |
US4632320A (en) * | 1984-06-09 | 1986-12-30 | Hermann Finckh Maschinenfabrik Gmbh | Apparatus for dissolving and sorting waste paper |
US4674691A (en) * | 1985-10-24 | 1987-06-23 | Didion Manufacturing Company | Dual sand reclaimer |
US4709862A (en) * | 1987-01-30 | 1987-12-01 | Leidel Dieter S | Method of reclaiming green sand |
US5211215A (en) * | 1990-02-14 | 1993-05-18 | Sommer Hermann W | Process for neutralizing regenerated sand |
US5219123A (en) * | 1990-08-16 | 1993-06-15 | Georg Fischer Ag | Process for the selective reclamation treatment of used foundry sand |
US5294094A (en) * | 1989-09-29 | 1994-03-15 | Consolidated Engineering Company | Method and apparatus for heat treating metal castings |
EP0612276A1 (fr) † | 1992-08-13 | 1994-08-31 | Consolidated Engineering Company, Inc. | Traitement thermique de pieces coulees en metal et recuperation du sable dans le four |
US5350160A (en) * | 1989-09-29 | 1994-09-27 | Consolidated Engineering Company | Method and apparatus for heat treating metal castings |
US5354038A (en) * | 1989-09-29 | 1994-10-11 | Consolidated Engineering Company, Inc. | Heat treatment of metal castings and in-furnace sand reclamation |
AU663088B2 (en) * | 1991-05-24 | 1995-09-28 | Consolidated Engineering Company, Inc. | Method and apparatus for heat treating metal castings |
US5738162A (en) * | 1997-02-20 | 1998-04-14 | Consolidated Engineering Company, Inc. | Terraced fluidized bed |
US5901775A (en) * | 1996-12-20 | 1999-05-11 | General Kinematics Corporation | Two-stage heat treating decoring and sand reclamation system |
US5924473A (en) * | 1996-12-20 | 1999-07-20 | General Kinematics Corporation | Vibratory sand reclamation system |
US5957188A (en) * | 1996-02-23 | 1999-09-28 | Consolidated Engineering Company, Inc. | Integrated system and process for heat treating castings and reclaiming sand |
US6217317B1 (en) | 1998-12-15 | 2001-04-17 | Consolidated Engineering Company, Inc. | Combination conduction/convection furnace |
US6336809B1 (en) | 1998-12-15 | 2002-01-08 | Consolidated Engineering Company, Inc. | Combination conduction/convection furnace |
US6453982B1 (en) | 1996-12-20 | 2002-09-24 | General Kinematics Corporation | Sand cleaning apparatus |
US6622775B2 (en) | 2000-05-10 | 2003-09-23 | Consolidated Engineering Company, Inc. | Method and apparatus for assisting removal of sand moldings from castings |
US6672367B2 (en) | 1999-07-29 | 2004-01-06 | Consolidated Engineering Company, Inc. | Methods and apparatus for heat treatment and sand removal for castings |
FR2844732A1 (fr) * | 2002-09-25 | 2004-03-26 | Antea | Procede d'ensemencement par des micro-organismes, d'un sable de fonderie contenant des matieres biodegradables |
US20040108092A1 (en) * | 2002-07-18 | 2004-06-10 | Robert Howard | Method and system for processing castings |
US20050022957A1 (en) * | 1999-07-29 | 2005-02-03 | Crafton Scott P. | Methods and apparatus for heat treatment and sand removal for castings |
US20050072549A1 (en) * | 1999-07-29 | 2005-04-07 | Crafton Scott P. | Methods and apparatus for heat treatment and sand removal for castings |
US20050257858A1 (en) * | 2001-02-02 | 2005-11-24 | Consolidated Engineering Company, Inc. | Integrated metal processing facility |
US20050269751A1 (en) * | 2001-02-02 | 2005-12-08 | Crafton Scott P | Integrated metal processing facility |
US20060054294A1 (en) * | 2004-09-15 | 2006-03-16 | Crafton Scott P | Short cycle casting processing |
US20060103059A1 (en) * | 2004-10-29 | 2006-05-18 | Crafton Scott P | High pressure heat treatment system |
US20070289713A1 (en) * | 2006-06-15 | 2007-12-20 | Crafton Scott P | Methods and system for manufacturing castings utilizing an automated flexible manufacturing system |
US20080000609A1 (en) * | 2001-05-09 | 2008-01-03 | Lewis James L Jr | Methods and apparatus for heat treatment and sand removal for castings |
US20080011446A1 (en) * | 2004-06-28 | 2008-01-17 | Crafton Scott P | Method and apparatus for removal of flashing and blockages from a casting |
US20080236779A1 (en) * | 2007-03-29 | 2008-10-02 | Crafton Scott P | Vertical heat treatment system |
CN102886491A (zh) * | 2012-10-10 | 2013-01-23 | 安徽红星阀门有限公司 | 一种树脂砂再生系统 |
CN105251939A (zh) * | 2015-10-14 | 2016-01-20 | 嵊州市森威机械有限公司 | 一种宝珠砂冷却装置 |
US9370780B2 (en) * | 2014-09-17 | 2016-06-21 | Shane T. Nolan | Scrap separation system and device |
US10016763B1 (en) * | 2016-12-24 | 2018-07-10 | Murray J. Moran | Sand treatment systems and methods |
US11408062B2 (en) | 2015-04-28 | 2022-08-09 | Consolidated Engineering Company, Inc. | System and method for heat treating aluminum alloy castings |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2278423A1 (fr) * | 1974-06-07 | 1976-02-13 | Sapic | Procede et installation pour la regeneration d'une charge granuleuse liee par des resines |
JPS53149813A (en) * | 1976-12-15 | 1978-12-27 | Kijima Hajime | Method of regenerating foundry sand that use resin type or organice hardener |
EP0132493B1 (fr) | 1980-12-16 | 1988-06-15 | Cosworth Research And Development Limited | Appareil et procédé pour la régénération de sable de fonderie usé |
DE3309379A1 (de) * | 1983-03-16 | 1984-09-20 | Hubert Eirich | Verfahren zur regenerierung von giessereialtsand und vorrichtung zur durchfuehrung des verfahrens |
DE3400648A1 (de) * | 1984-01-11 | 1985-07-18 | Delta Engineering Beratung und Vermittlung Gesellschaft mbH, Irdning | Vorrichtung und verfahren zur regeneration von giesserei-schuttsand |
DE4427586C1 (de) * | 1994-06-15 | 1995-07-20 | Johann Muehlbauer | Vorrichtung zum Aufbereiten von Gießereialtsand |
JP6188502B2 (ja) * | 2013-09-06 | 2017-08-30 | 大木産業株式会社 | 鋳物砂の再生処理方法 |
CN103736911B (zh) * | 2014-01-27 | 2016-06-08 | 无锡锡南铸造机械股份有限公司 | 型砂用脱膜率可调式斗轮再生机 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1789860A (en) * | 1926-08-04 | 1931-01-20 | Cleveland Crane Eng | Carrier system for foundries |
US2821375A (en) * | 1956-05-02 | 1958-01-28 | Shell Cast Alloys Ltd | Apparatus for reclaiming foundry sand |
-
1972
- 1972-02-16 NL NL7201998A patent/NL7201998A/xx unknown
-
1973
- 1973-02-13 IT IT12455/73A patent/IT988466B/it active
- 1973-02-14 JP JP48018199A patent/JPS4893528A/ja active Pending
- 1973-02-14 GB GB2508575A patent/GB1428422A/en not_active Expired
- 1973-02-14 GB GB732173A patent/GB1428421A/en not_active Expired
- 1973-02-16 DE DE19732307773 patent/DE2307773A1/de active Pending
- 1973-02-16 US US333409A patent/US3871438A/en not_active Expired - Lifetime
- 1973-08-14 BE BE2052986A patent/BE803565A/xx unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1789860A (en) * | 1926-08-04 | 1931-01-20 | Cleveland Crane Eng | Carrier system for foundries |
US2821375A (en) * | 1956-05-02 | 1958-01-28 | Shell Cast Alloys Ltd | Apparatus for reclaiming foundry sand |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4113510A (en) * | 1974-06-07 | 1978-09-12 | Societe D'applications De Procedes Industriels Et Chimiques S.A.P.I.C. | Process for regenerating foundry sand |
US4004942A (en) * | 1974-06-10 | 1977-01-25 | Societe D'applications De Procedes Industriels Et Chimiques S.A.P.I.C. | Process and apparatus for cleaning particulate materials |
US4154290A (en) * | 1976-12-17 | 1979-05-15 | Expert N.V. | Device for cooling castings and for treating moulding sand |
US4211274A (en) * | 1977-05-12 | 1980-07-08 | Przedsiegiorstwo Projektowania I Wyposazania Odlewni "Prodlew" | Equipment for cooling and separation of castings and moulding sand |
US4566637A (en) * | 1982-04-16 | 1986-01-28 | Combustion Engineering, Inc. | Thermal sand reclamation system |
US4632320A (en) * | 1984-06-09 | 1986-12-30 | Hermann Finckh Maschinenfabrik Gmbh | Apparatus for dissolving and sorting waste paper |
US4674691A (en) * | 1985-10-24 | 1987-06-23 | Didion Manufacturing Company | Dual sand reclaimer |
US4709862A (en) * | 1987-01-30 | 1987-12-01 | Leidel Dieter S | Method of reclaiming green sand |
US5350160A (en) * | 1989-09-29 | 1994-09-27 | Consolidated Engineering Company | Method and apparatus for heat treating metal castings |
US5294094A (en) * | 1989-09-29 | 1994-03-15 | Consolidated Engineering Company | Method and apparatus for heat treating metal castings |
US5565046A (en) * | 1989-09-29 | 1996-10-15 | Consolidated Engineering Company, Inc. | Heat treatment of metal castings and integrated sand reclamation |
US5354038A (en) * | 1989-09-29 | 1994-10-11 | Consolidated Engineering Company, Inc. | Heat treatment of metal castings and in-furnace sand reclamation |
US5850866A (en) * | 1989-09-29 | 1998-12-22 | Consolidated Engineering Company, Inc. | Heat treatment of metal castings and in-furnace sand reclamation |
US5531423A (en) * | 1989-09-29 | 1996-07-02 | Consolidated Engineering Company, Inc. | Method and apparatus for heat treating metal castings |
US5551998A (en) * | 1989-09-29 | 1996-09-03 | Consolidated Engineering Company, Inc. | Method and apparatus for heat treating metal castings |
US5211215A (en) * | 1990-02-14 | 1993-05-18 | Sommer Hermann W | Process for neutralizing regenerated sand |
US5219123A (en) * | 1990-08-16 | 1993-06-15 | Georg Fischer Ag | Process for the selective reclamation treatment of used foundry sand |
AU663088B2 (en) * | 1991-05-24 | 1995-09-28 | Consolidated Engineering Company, Inc. | Method and apparatus for heat treating metal castings |
AU677774B2 (en) * | 1992-08-13 | 1997-05-08 | Consolidated Engineering Company, Inc. | Heat treatment of metal castings and integrated sand reclamation |
EP0612276B2 (fr) † | 1992-08-13 | 2004-11-17 | Consolidated Engineering Company, Inc. | Traitement thermique de pieces coulees en metal et recuperation du sable dans le four |
EP0612276A1 (fr) † | 1992-08-13 | 1994-08-31 | Consolidated Engineering Company, Inc. | Traitement thermique de pieces coulees en metal et recuperation du sable dans le four |
US5957188A (en) * | 1996-02-23 | 1999-09-28 | Consolidated Engineering Company, Inc. | Integrated system and process for heat treating castings and reclaiming sand |
US5901775A (en) * | 1996-12-20 | 1999-05-11 | General Kinematics Corporation | Two-stage heat treating decoring and sand reclamation system |
US5924473A (en) * | 1996-12-20 | 1999-07-20 | General Kinematics Corporation | Vibratory sand reclamation system |
US5967222A (en) * | 1996-12-20 | 1999-10-19 | General Kinematics Corporation | Vibratory sand reclamation system |
US6453982B1 (en) | 1996-12-20 | 2002-09-24 | General Kinematics Corporation | Sand cleaning apparatus |
US5738162A (en) * | 1997-02-20 | 1998-04-14 | Consolidated Engineering Company, Inc. | Terraced fluidized bed |
US6217317B1 (en) | 1998-12-15 | 2001-04-17 | Consolidated Engineering Company, Inc. | Combination conduction/convection furnace |
US6336809B1 (en) | 1998-12-15 | 2002-01-08 | Consolidated Engineering Company, Inc. | Combination conduction/convection furnace |
US6547556B2 (en) | 1998-12-15 | 2003-04-15 | Consolidated Engineering Company, Inc. | Combination conduction/convection furnace |
US20070289715A1 (en) * | 1999-07-29 | 2007-12-20 | Crafton Scott P | Methods and apparatus for heat treatment and sand removal for castings |
US6910522B2 (en) | 1999-07-29 | 2005-06-28 | Consolidated Engineering Company, Inc. | Methods and apparatus for heat treatment and sand removal for castings |
US7275582B2 (en) | 1999-07-29 | 2007-10-02 | Consolidated Engineering Company, Inc. | Methods and apparatus for heat treatment and sand removal for castings |
US6672367B2 (en) | 1999-07-29 | 2004-01-06 | Consolidated Engineering Company, Inc. | Methods and apparatus for heat treatment and sand removal for castings |
US20050022957A1 (en) * | 1999-07-29 | 2005-02-03 | Crafton Scott P. | Methods and apparatus for heat treatment and sand removal for castings |
US20050072549A1 (en) * | 1999-07-29 | 2005-04-07 | Crafton Scott P. | Methods and apparatus for heat treatment and sand removal for castings |
US7290583B2 (en) | 1999-07-29 | 2007-11-06 | Consolidated Engineering Company, Inc. | Methods and apparatus for heat treatment and sand removal for castings |
US6622775B2 (en) | 2000-05-10 | 2003-09-23 | Consolidated Engineering Company, Inc. | Method and apparatus for assisting removal of sand moldings from castings |
US20080264527A1 (en) * | 2001-02-02 | 2008-10-30 | Crafton Scott P | Integrated metal processing facility |
US20050257858A1 (en) * | 2001-02-02 | 2005-11-24 | Consolidated Engineering Company, Inc. | Integrated metal processing facility |
US20050269751A1 (en) * | 2001-02-02 | 2005-12-08 | Crafton Scott P | Integrated metal processing facility |
US7338629B2 (en) | 2001-02-02 | 2008-03-04 | Consolidated Engineering Company, Inc. | Integrated metal processing facility |
US7258755B2 (en) | 2001-02-02 | 2007-08-21 | Consolidated Engineering Company, Inc. | Integrated metal processing facility |
US7641746B2 (en) | 2001-02-02 | 2010-01-05 | Consolidated Engineering Company, Inc. | Integrated metal processing facility |
US20080000609A1 (en) * | 2001-05-09 | 2008-01-03 | Lewis James L Jr | Methods and apparatus for heat treatment and sand removal for castings |
US8066053B2 (en) | 2001-05-09 | 2011-11-29 | Consolidated Engineering Company, Inc. | Method and apparatus for assisting removal of sand moldings from castings |
US7331374B2 (en) | 2001-05-09 | 2008-02-19 | Consolidated Engineering Company, Inc. | Method and apparatus for assisting removal of sand moldings from castings |
US6901990B2 (en) | 2002-07-18 | 2005-06-07 | Consolidated Engineering Company, Inc. | Method and system for processing castings |
US20040108092A1 (en) * | 2002-07-18 | 2004-06-10 | Robert Howard | Method and system for processing castings |
FR2844732A1 (fr) * | 2002-09-25 | 2004-03-26 | Antea | Procede d'ensemencement par des micro-organismes, d'un sable de fonderie contenant des matieres biodegradables |
US20080011446A1 (en) * | 2004-06-28 | 2008-01-17 | Crafton Scott P | Method and apparatus for removal of flashing and blockages from a casting |
US20060054294A1 (en) * | 2004-09-15 | 2006-03-16 | Crafton Scott P | Short cycle casting processing |
US20090206527A1 (en) * | 2004-10-29 | 2009-08-20 | Crafton Scott P | High pressure heat treatment system |
US20060103059A1 (en) * | 2004-10-29 | 2006-05-18 | Crafton Scott P | High pressure heat treatment system |
US8663547B2 (en) | 2004-10-29 | 2014-03-04 | Consolidated Engineering Company, Inc. | High pressure heat treatment system |
US20070289713A1 (en) * | 2006-06-15 | 2007-12-20 | Crafton Scott P | Methods and system for manufacturing castings utilizing an automated flexible manufacturing system |
US20080236779A1 (en) * | 2007-03-29 | 2008-10-02 | Crafton Scott P | Vertical heat treatment system |
CN102886491A (zh) * | 2012-10-10 | 2013-01-23 | 安徽红星阀门有限公司 | 一种树脂砂再生系统 |
US9370780B2 (en) * | 2014-09-17 | 2016-06-21 | Shane T. Nolan | Scrap separation system and device |
US11408062B2 (en) | 2015-04-28 | 2022-08-09 | Consolidated Engineering Company, Inc. | System and method for heat treating aluminum alloy castings |
CN105251939A (zh) * | 2015-10-14 | 2016-01-20 | 嵊州市森威机械有限公司 | 一种宝珠砂冷却装置 |
US10016763B1 (en) * | 2016-12-24 | 2018-07-10 | Murray J. Moran | Sand treatment systems and methods |
US10654046B2 (en) | 2016-12-24 | 2020-05-19 | Murray J. Moran | Sand treatment systems and methods |
Also Published As
Publication number | Publication date |
---|---|
JPS4893528A (fr) | 1973-12-04 |
BE803565A (nl) | 1974-02-14 |
NL7201998A (fr) | 1973-08-20 |
GB1428422A (en) | 1976-03-17 |
DE2307773A1 (de) | 1973-08-23 |
IT988466B (it) | 1975-04-10 |
GB1428421A (en) | 1976-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3871438A (en) | Process for regenerating resin-bonded foundry sand | |
US2478461A (en) | Apparatus and method for treating foundry sand | |
US5045090A (en) | Process and device for reclaiming used foundry sands | |
JPH0338014B2 (fr) | ||
CN101862808B (zh) | 废旧型砂或芯砂再生设备 | |
US4952246A (en) | Plant and method for reconditioning green foundry sand | |
US4429642A (en) | Thermal reclaimer apparatus for a thermal sand reclamation system | |
BE1015743A3 (nl) | Inrichting voor het verwerken van biomassa en werkwijze daarbij toegepast. | |
US4508277A (en) | Apparatus for reclaiming foundry sand | |
US5385698A (en) | Dimensionally accurate expanded foam casting pattern | |
KR900001418B1 (ko) | 열재생기 및 모래 대 모래 열교환기 조합체 장치를 구비한 모래 재생 시스템 | |
US4549698A (en) | Method of reclaiming foundry sand | |
JP2004261825A (ja) | 鋳物砂の再生装置 | |
US4487372A (en) | Thermal sand reclamation system | |
US3257685A (en) | Method of and apparatus for the production of briquette-like shaped articles | |
US3169852A (en) | Pellet of iron ore and flux, and method for making same | |
US2400935A (en) | Char revivification apparatus | |
KR900000782B1 (ko) | 사용한 주물사의 열재생시스템 | |
US6019157A (en) | Method of regenerating foundry sand | |
JP2905089B2 (ja) | 鋳物砂再生方法 | |
JPS5842773B2 (ja) | 鋳造用砂を調製、殊に冷却し混合する方法及び装置 | |
US2326218A (en) | Process of reclaiming foundry sand | |
US4565328A (en) | Sand reclamation system with thermal pipe reclaimer apparatus | |
US2429667A (en) | Method of reclaiming spent material | |
US4533087A (en) | Apparatus with heat exchange means and transfer pipe for treating solid, granular and aggregate materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IJMI B.V., HOOFDWEG 1278, NIEUW-VENNEP, THE NETHER Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:EXPERT N.V.;REEL/FRAME:005556/0055 Effective date: 19901017 |