US3865548A - Analytical apparatus and process - Google Patents
Analytical apparatus and process Download PDFInfo
- Publication number
- US3865548A US3865548A US338358A US33835873A US3865548A US 3865548 A US3865548 A US 3865548A US 338358 A US338358 A US 338358A US 33835873 A US33835873 A US 33835873A US 3865548 A US3865548 A US 3865548A
- Authority
- US
- United States
- Prior art keywords
- barrier
- cuvette
- reagent
- test
- compartment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 19
- 230000008569 process Effects 0.000 title description 4
- 230000004888 barrier function Effects 0.000 claims abstract description 112
- 238000012360 testing method Methods 0.000 claims abstract description 97
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 91
- 239000012530 fluid Substances 0.000 claims description 32
- 238000004458 analytical method Methods 0.000 claims description 20
- 239000000126 substance Substances 0.000 claims description 12
- 125000006850 spacer group Chemical group 0.000 claims description 7
- 239000000470 constituent Substances 0.000 claims description 4
- 230000002829 reductive effect Effects 0.000 claims description 4
- 238000013098 chemical test method Methods 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 239000012528 membrane Substances 0.000 abstract description 32
- 230000002209 hydrophobic effect Effects 0.000 abstract description 6
- 230000004048 modification Effects 0.000 abstract description 6
- 238000012986 modification Methods 0.000 abstract description 6
- 210000004379 membrane Anatomy 0.000 description 29
- 238000006243 chemical reaction Methods 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 11
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 6
- 108010054147 Hemoglobins Proteins 0.000 description 6
- 102000001554 Hemoglobins Human genes 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 5
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 5
- 229910002091 carbon monoxide Inorganic materials 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229940116269 uric acid Drugs 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 229920000298 Cellophane Polymers 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000000502 dialysis Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 239000012085 test solution Substances 0.000 description 3
- BPYKTIZUTYGOLE-IFADSCNNSA-N Bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 TeflonĀ® Polymers 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 108010036302 hemoglobin AS Proteins 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000013022 venting Methods 0.000 description 2
- INGWEZCOABYORO-UHFFFAOYSA-N 2-(furan-2-yl)-7-methyl-1h-1,8-naphthyridin-4-one Chemical compound N=1C2=NC(C)=CC=C2C(O)=CC=1C1=CC=CO1 INGWEZCOABYORO-UHFFFAOYSA-N 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 102000003929 Transaminases Human genes 0.000 description 1
- 108090000340 Transaminases Proteins 0.000 description 1
- 108010092464 Urate Oxidase Proteins 0.000 description 1
- 239000012445 acidic reagent Substances 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- DDJSLGMHWKYCDI-UHFFFAOYSA-N azane carbon monoxide Chemical compound N.[C-]#[O+] DDJSLGMHWKYCDI-UHFFFAOYSA-N 0.000 description 1
- 238000010876 biochemical test Methods 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000004848 nephelometry Methods 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012088 reference solution Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
- A61B10/0045—Devices for taking samples of body liquids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150015—Source of blood
- A61B5/15003—Source of blood for venous or arterial blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150053—Details for enhanced collection of blood or interstitial fluid at the sample site, e.g. by applying compression, heat, vibration, ultrasound, suction or vacuum to tissue; for reduction of pain or discomfort; Skin piercing elements, e.g. blades, needles, lancets or canulas, with adjustable piercing speed
- A61B5/150061—Means for enhancing collection
- A61B5/150099—Means for enhancing collection by negative pressure, other than vacuum extraction into a syringe by pulling on the piston rod or into pre-evacuated tubes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150206—Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
- A61B5/150213—Venting means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150206—Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
- A61B5/150236—Pistons, i.e. cylindrical bodies that sit inside the syringe barrel, typically with an air tight seal, and slide in the barrel to create a vacuum or to expel blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150206—Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
- A61B5/150244—Rods for actuating or driving the piston, i.e. the cylindrical body that sits inside the syringe barrel, typically with an air tight seal, and slides in the barrel to create a vacuum or to expel blood
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150389—Hollow piercing elements, e.g. canulas, needles, for piercing the skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150381—Design of piercing elements
- A61B5/150503—Single-ended needles
- A61B5/150519—Details of construction of hub, i.e. element used to attach the single-ended needle to a piercing device or sampling device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150534—Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
- A61B5/15058—Joining techniques used for protective means
- A61B5/150587—Joining techniques used for protective means by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150374—Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
- A61B5/150534—Design of protective means for piercing elements for preventing accidental needle sticks, e.g. shields, caps, protectors, axially extensible sleeves, pivotable protective sleeves
- A61B5/150694—Procedure for removing protection means at the time of piercing
- A61B5/150717—Procedure for removing protection means at the time of piercing manually removed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/150007—Details
- A61B5/150755—Blood sample preparation for further analysis, e.g. by separating blood components or by mixing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/153—Devices specially adapted for taking samples of venous or arterial blood, e.g. with syringes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/508—Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
- B01L3/5082—Test tubes per se
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/49—Blood
- G01N33/492—Determining multiple analytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S435/00—Chemistry: molecular biology and microbiology
- Y10S435/808—Optical sensing apparatus
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/14—Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
- Y10T436/145555—Hetero-N
- Y10T436/147777—Plural nitrogen in the same ring [e.g., barbituates, creatinine, etc.]
- Y10T436/148888—Uric acid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/17—Nitrogen containing
- Y10T436/177692—Oxides of nitrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/18—Sulfur containing
- Y10T436/186—Sulfur dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/20—Oxygen containing
- Y10T436/204998—Inorganic carbon compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/25—Chemistry: analytical and immunological testing including sample preparation
- Y10T436/25375—Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
- Y10T436/255—Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.] including use of a solid sorbent, semipermeable membrane, or liquid extraction
Definitions
- the barrier may be floating on the reagent.
- the barrier may be microporous or be a semipermeable membrane, hy- [56] References cued drophobic or hydrophilic, depending on the test.
- the cuvette is the barrel of a hypodermic 2,888,331 5/1959 Carpenter 23/253 R syringe and the test reagent is held in the far compart- 3,000,706 9/]96l Royce 23/254 R X ment in the barrel of the syringe Numergus modifieag tions of the system are also disclosed. 0e ere a. 3,367,850 2/1968 Johnson 23/254 R X 17 Claims, 13 Drawing Figures PHEHTEB FEB!
- This invention relates to apparatus for performing chemical analysis and in particular to small load operation biomedicaltest needs.
- the object of this invention is to provide improved small load analysis systems.
- the rationale of the present invention is that many of the chemical reactions involved in biochemical tests can be carried out in a multichambered cuvette.
- the desired components of the sample can transport across a porous membrane from a sample chamber into a second chamber of the cuvette, to there undergo a chemical reaction indicative of that reactant.
- a chemical reaction indicative of that reactant for example, the available CO present in a sample of blood or another fluid will diffuse from a sample chamber through a hydrophobic semipermeable membrane (e.g., Teflon) into a chamber containing an aqueous alkaline solution of a color reagent like phenolphthalein and react therein with the solution, changing its color.
- a colorimeter measurement taken of the color indicatorsolution will serve to determine accurately the available CO present in the sample. If the sample chamber contains an acid reagent in addition, then the total CO content of the original sample will be released to diffuse through the membrane and the colorimeter reading will measure the total CO in the sample.
- FIG. 1 diagrammatically illustrates the basic structure of the multi-ch'amber cuvette
- FIG. 2 is an exploded perspective of one form of the barriers of the invention
- FIG. 3 illustrates a modified form of multichambered cuvette
- FIG. 4 is a diagrammatic view of another embodiment of the invention.
- FIG. 5 is a modification of the device of FIG. 4;
- FIG. 6 is a diagram of another embodiment of the invention with membranes at right angles to each other;
- FIG. 7 is a diagram of an embodiment of the invention using electric potential to assist in carrying out the test
- FIG. 8 shows a diagrammatic cross-section of a modification of the cuvette or barrel which eliminates or reduces distortion caused by curved sides;
- FIG. 8A is another way to eliminate or reduce curvature distortion by the use of lenses
- FIG. 9 is a convenient way of maintaining the membranes at the desired distance from each other.
- FIG. 9A is a modification of the device of FIG. 9 wherein the membranes are separated by a tube;
- FIG. 10 is a diagram of the device of FIG. 9A mounted in a sled ready for insertion into the cuvette or barrel;
- FIG. I is a diagram ofa form of the invention capable of carrying out two tests on the same sample at the same time.
- the basic structure of the present invention involves a vial or cuvette l0 separated into at least two (three being illustrated) chambers or compartments l2, l4 l6 fixed in place by barrier spacers l8 and 20.
- cuvette I0 is sealed at its open end by a cap 22.
- Chambers 14 and 16 are filled by appropriate test fluids.
- chamber 12 is empty of test reagent, inclusion of a test reagent in chamber 12 is also contemplated.
- chamber 12 is charged with test sample, e.g., by aperturing cap 22 with a hypodermic needle and forcing the sample in through the needle.
- An important aspect of the present invention is that all the analytic tests contemplated for the present cuvette structure involve passage of one component derived from the test sample through a porous barrier.
- the barrier is a semipermeable membrane, but for some tests the pore size of the barrier may be larger. Accordingly, the carrier can best be described as porous, including within the meaning of the term, microporous membranes and semi-porous membranes.
- the barrier may be hydrophilic or hydrophobic in na ture. The exact character of the membrane is predetermined by the analytic test for which the cuvette is constructed. However, all of the analytic tests for which the present cuvette structure is adapted require that the barrier prevent migration of all interfering component or components.
- the tests involve transport of some desired component or constituent from the test sample across the barrier 18 into the test fluid in chamber 14.
- an additional barrier 20 and chamber 16 are provided.
- the reaction in chamber 14 creates or liberates a component which transports from the fluid in chamber 14 through the barrier 20 into chamber 16.
- the cuvette structure of the present invention normally is employed with an optical read-out instrument which, depending on the analytic test, may be a colorimeter, a fluorometer, a nephelometer, in short. Any of the many optical systems already being employed to measure chemical, biochemical or biomedical test results. Therefore, cuvette 10 is sized to fit into whatever standard optical measurement device is appropriate to the particular test for which the cuvette has been constructed. Appropriate optical measuring equipment is widely available commercially, and virtually every analytical test where optical measurement of the test results is made has been calibrated to standard optical equipment, e.g., colorimeter, nephelometer, fluorometer, etc. Actually, many of the recent advances in auto mated analysis have involved a change in analysis technique or chemistry so that the test results can be meaured by optical means.
- a principal object of the present invention is to provide a manual one-at-a-time or low-load counterpart to widely used automated analysis systems.
- Practice of this invention contemplates making the test results (automated or manual) strictly comparable. Repeat tests or later tests analyzed in the automated laboratory can be compared directly to the results of the manual test carried out in the cuvette structure of the present invention.
- the porous barrier layer structures and filling procedures should minimize creationof air bubbles so that the barrier maintains liquid on both surfaces thereof.
- practice of the present invention involves floating the barrier.
- the barriers 18, 20 may be made free to move inside cuvette 10. Their exact position within cuvette 10 is determined entirely by the volume of fluid in the chambers 14 and 16 bound bybarriers 18, 20. Thus, barrier 20 floats, so to speak, on the test fluid inside chamber 16; barrier 18 floats on the test fluid inside chamber 14. Needles to say, the dimensions of cuvette 10 must be uniform and accurate, so that free barriers l8 and 20 can slide the length of cuvette 10 and still seal against fluid leakage from chamber to chamber.
- a small air bubble may deliberately be introduced into chambers containing the liquid reagents so as to act as a means of mechanical mixing; e.g., by rotating or vibrating the device. Mixing would favor reaction rates and reduce back diffusion of reaction products, thus shortening the time required for the test. In other cases, reaction rates are so fast that no mixing is necessary.
- porous membrane 30 which may be a microporous membrane or a semipermeable membrane which is hydrophilic or hydrophobic, depending on the analysis involved, is a circular piece sandwiched peripherally between centrally apertured members, hoop 32 and 34. These three members are fused, glued or otherwise secured to form a unitary barrier structure.
- the hoop portions 32, 34 of the barrier constitute a continuous foot having significant bearing area contacting the inside wall of cuvette'10. This ensures that the barrier has sufficient structural rigidity to prevent buckling and makes certain that the porous barriers l8 and 20 remain across cuvette l and freely rest on the underlying test liquid.
- circular membrane 30 and hoops 32, 34 are preferably made of thermoplastic materials. They may. be heat joined readily; the hoops may be directly molded on around the peripheral edge of porous membrane 30 which may be bonded chemically to one of the hoops.
- an air vent or aperture (not shown) may be provided through hoops 32, 34.
- a satisfactory way of providing the device depicted in FIG. I is to start with a cuvette having a venting hole at the bottom. Barrier 20 is then introduced, and advane ed a set distance down the. tube, the reagent for chamber 14 being layered over it so that when the proper amount is reached, its meniscus forms a convex surface atthe lip of the tube. Barrier 18 is then deposited on this 'l iquid surface and pushed some distance down the tube, pushing barrier 20 and reagent l4 further down in the process. The device is then inverted, the proper reagent for chamber 16 is delivered atop barrier 20 through the vent hole, barrier 18 is pushed up to expel residual air in chamber 16, and the vent hole is then sealed.
- a modified form of cuvette is illustrated in' FIG. 3.
- the cuvette is part of a hypodermic syringe arrangement, being the barrel of a standard hypodermic syringe with the usual plunger 102 structure closely fitted thereto.
- a restraining yoke 104 on the rear of barrel 100 serves to limit rearward movement of plunger 102 and assures that a predetermined volume of sample fluid is taken up through the needle 106.
- a protective cap 108 may be used to surround and shield needle I06 and keep it bacteriologically sterile, if desired.
- two spacedapart floating porous barriers 110, 112 are provided. For many, and perhaps most, biomedical tests only one such barrier is required.
- one test reagent is in barrel chamber 114 between barriers and 112, and a second test reagent is in barrel chamber 116 between plunger 102 and barrier 110.
- the volume 118 between 112 and the needle 106 may be air filled, evacuated, or filled with a dliuent such as saline solution.
- the protective cap 108 is removed, and a predetermined quantity of sample, e.g., expired air or blood, is drawn through needle 106 into sample region 118 by rearward movement of plunger 102 to the limited end of its rearward travel.
- a predetermined quantity of sample e.g., expired air or blood
- the porous barriers 110 and 112 and the test reagents in chambers 114and 116 are drawn rearwardly (by the suction), enlarging chamber 118 as the sample is drawn into it.
- a component from the sample or test reagent traverses porous barrier 112; for example, in a total CO test, I-I+ ion crosses barrier 112 from the sample chamber, then CO diffuses across barrier 112 entering chamber 114, crosses chamber 114, traverses porous barrier 110 and enters the test reagent inside chamber 116 altering an optical characteristic of the reagent.
- the cuvette is inserted into an optical instrument, the optical path being, for example, along line X- X through barrel 100 which normally is transparent glass or plastic, and through the test solution in chamber
- the reaction takes place on or within the membrane itself.
- amembrane would be transparent or at least translucent in order to make the test results It is also within the scope of this invention to use a syringe having a hollow plunger.
- the hollow in the plunger can then act as a chamber to hold a reagent, in which case the leading face of the plunger consists of an appropriate barrier, or it can contain a standard solution to be used as a comparison for the color change resulting from the test reaction, in which case the end is sealed.
- hollow plunger 36 fits inside syringe barrel 11 with membrane across its mouth. Sample chamber 37 is provided and the reaction takes place in substantially the same way as in the device of FIG. 3, except that the hollow plunger 36 forms one of the chambers.
- sample chamber 37 and reagent chamber 38 are separated by barrier 35.
- Standard chamber 39 is provided in hollow plunger 36 to hold a reference solution to assist in comparing the results of the test with a desired standard.
- FIG. 6 shows a device having a hollow plunger 36 carrying membrane 44 with its plane axially aligned. Another membrane 43 is placed as in the device of FIG. 5.
- a light source 51 and a photoelectric cell 52 are so positioned as to permit a beam of light to pass through membrane 44 and impinge on cell 52. Any change in opacity of membrane 44 can easily be read.
- This form of the device is particularly suitable for use with samples which are not clear, such as blood.
- Membrane 43 prevents the passage of the occluding components of the sample (e.g., blood cells) so that reagent chamber 38 contains only clear material which will not interfere with the effect of the test reaction on the light beam and photoelectric cell 52.
- This embodiment is also useful inn those situations in which a reaction product is precipitated on or within the barrier, that is, in which the desired sample component passes through barrier 43, diffuses freely through a carrier fluid or reagent in chamber 38, and then reacts on the surface of a within the body of barrier 44 to produce a color deposit or a change in the membrane lucency.
- indicator particles may adsorb on the barrier surface.
- the plunger 36 ofthis embodiment can, of course, be
- an electromotive force is impressed across syringe l0 and plunger 41 by means of conductor connected to a source of current 42.
- This can be alternating or direct current, or a variant thereof, to help drive the reagent and/or sample in the desired direction.
- FIGS. 8 and 8A In certain types of visual or photometric measurement, the distortion caused by curvature of the cuvette or barrel is undesirable. This can be minimized or eliminated by the devices shown in FIGS. 8 and 8A.
- a barrel 11 In FIG. 8, a barrel 11 is shown which has four flat portions 49. Light source 51 is directed through portions 49 to give an undistorted view of the results of the test. This is particularly useful in nephelometry, since the Tyndall effect can be observed readily by viewing at a right angle to the light beam. Of course it is not necessary to have flats all around, since it is not always necessary to view in all directions. Only those portions through which it is intended to view need be flat.
- compensating lenses 50 are formed in or attached to the cuvette or barrel 1] in the viewing area.
- FIG. 9 In those forms of the invention in which a double membrane is desirable, the embodiment of FIG. 9 will prove useful. Membranes 43 and 44 are held in the desired relationship to each other by spacer rods 45. This has the advantage of fixing the distance between the barriers and preventing them from jamming or leaking.
- hollow tube 47 extends from barrier 43 to barrier 44.
- FIG. 10 there is shown a device using the tube structure of FIG. 9A.
- Sled 46 surrounds tube 47 and is intended to fit within the barrel of cuvette.
- Portions 53 seal against the inner wall of the cuvette or barrel substantially preventing passage of fluid except selectively through barriers 43 and 44 of tube 47.
- FIG. 11 A still further modification of the invention is shown in FIG. 11.
- Barriers 43 and 44 may be the same or different.
- reagent chambers 38 and 38a may contain the same or different reagents.
- Sample chamber 37 is common to both reagent chambers. This form of the invention permits the running of two tests simultaneously in the same apparatus using a single sample. It can also be used to incorporate a standard for comparison to the test result. In the latter case, no barrier is present on one side of the plunger and the standard is sealed in.
- the present invention is useful for conducting one test at a time.
- the structure has the advantages of being lightweight, portable, self-contained, and is well suited for use directly in a physicians office, at bedside, even in an ambulance or in other emergency situations.
- the test device can be employed in hospitals during off hours, when the automated laboratory equipment is down and laboratory personnel are unavailable. Few special skills are needed to conduct the tests and unskilled nursing or paramedical personnel, regulatory agency personnel (for food inspection, environmental control, police, etc.) can conduct the analyses accurately.
- the ultimate reaction product is stable enough so that the test may be stored, e.g., for legal purposes.
- test procedures and reagents form no part of the present invention, the widespread applicability of the multi-chamber cuvette described above is noteworthy. The following tests can be carried out therewith:
- BUN Uric Acid Alcohol blood/ Bilirubin Glucose expired air
- Albumin Carbon Dioxide Transaminase Ammonia Carbon Monoxide Alk.
- phosphatase Antigen-antibody reactions Many of the analytic tests, such as for example, the available CO test, require only a single barrier cuvette.
- the first barrier should be hydrophilic, and may, for example, be a cellophane dialysis membrane. After the blood sample has been drawn into the sample chamber, uric acid present in the blood will diffuse through the cellophane dialysis mem brane into the first reaction chamber, and there react with uricase (present in the preloaded reagent) to produce C0 The CO will diffuse back through the cello phane membrane into the sample compartment, as well as forward into the second reaction chamber.
- the second barrier should be a hydrophobic semipermeable membrane, being for example, a fluorocarbon dialysis membrane (Teflon).
- the second chamber test solution is an aqueous alkaline indicator so that the CO crossing the hydrophobic semipermeable barrier will react to cause a color change in the indicator solution. Since the CO product is related to the original concentration of uric acid in the blood sample, an optical color reading of the indicator solution will constitute a measurement of the uric acid concentration in the blood sample.
- hemoglobin as the test reagent. This can be either in liquid form (e.g., as a solution) or in solid form (e.g., microcrystals). This material is particularly useful in testing for carbon monoxide in the presence of various air pollutants such as carbon dioxide, sulfur dioxide, and nitrogen oxides. The following description will be specifically directed to testing for the presence of carbon monoxide, but the principles are,'of course, applicable to other similarly reacting materials as well.
- Hemoglobin reacts with oxygen to form-a compound which is a brownish color. Carbon monoxide also reacts with hemoglobin to form a slightly different material which has a cherry red color. Obviously, the color change can be observed visually or colorimetrically and compared with a reference standard if desired.
- a color filter can be placed between a source of radiation (e.g., light) and the test solution.
- the wavelengths which the filter will pass should be those which correspond with the absorption peaks of the carbon monoxide hemoglobin derivative. These are to be found at 535.and 570.9 millimicrons.
- a source of mono-chromatic light can be used, again corresponding with these absorption peaks.
- a radiation-sensitive cell such as a photocell is placed in the path of the beam from the source so that thelight impinges on it after passing through the test chamber.
- the photocell can easily and automatically read these. Thismethod will enhance the sensitivity of the test and permit more accurate readings.
- a still further improvement on this method and device consists of splitting the radiation into two beams and passing each beam through a separate filter before the beams pass through the reaction chamber.
- One filter is of the same character described in the preceding to pass, that is, wavelengths such that both the oxygen derivative and the carbon monoxide derivative of hemoglobin absorb equally.
- a radiationsensitive cell in this case a photocell
- the device will automatically correct for variations in source intensity or with changes in airborne particles which might reduce transmission independently of the test reaction (c.g., smoke, fog, etc.).
- hemoglobin as a test reagent for various types of pollutants in air is generally suitable.
- analogs of the theme moiety of hemoglobins such as polypyridine derivatives are also satisfactory for this purpose.
- porous barriers are maintained in an axially spaced-apart relationship by at least one spacer extending from said first barrier to said second barrier.
- An apparatus adapted for chemical analysis comrising a cuvette having therein a first porous barrier which serves to compartmentalize said cuvette, and a tac with the two sai spacer co first test reagent fluid in a first reagent compartment in the cuvette, said barrier being in direct contact there'- with, said cuvette having at least one lens located in an area through which test results are sensed, said cuvette having a curvature in said area, said lens compensating for distortion caused by said curvature.
- a method of carrying out chemical testing comprising introducing a fluid sample to be tested into a chamber, said sample being in contact with a first porous barrier and a second porous barrier, permitting at said first barrier and contact a first fluid reagent, at least some of said constituents passing through said second barrier to contact a second fluid reagent whereby the light transmission characteristics of at least one of said reagents are altered.
- An apparatus adapted for chemical analysis comprising a cuvette having therein a first porous barrier which serves to compartmentalize said cuvette, and a first test reagent fluid in a first reagent compartment in the cuvette, said barrier being in direct contact therewith, said apparatus having means to provide an electromotive force across said cuvette in the axial direction towards said barrier, whereby said first reagent is driven across said first barrier.
- An apparatus adapted for chemical analysis comprising a cuvette having therein a first porous barrier which serves to compartmentalize said cuvette, and a first test reagent fluid in a first reagent compartment in the cuvette, said barrier being in direct contact there with, said cuvette comprising the barrel of a hypodermic syringe having a needle point extending from one, the test reagent being in the far compartment relative to the needle point, the first reagent compartment being in the plunger of said syringe.
- said plunger is of reduced cross-section adjacent the end of said plunger nearest said point, said barrier being on the reduced cross-section of said plunger, the plane of said barrier being parallel to the axis of said plunger.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Clinical Laboratory Science (AREA)
- Dermatology (AREA)
- Pain & Pain Management (AREA)
- Optics & Photonics (AREA)
- Ecology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
A low load analytic system is proposed, comprising a cuvette divided into separate chambers by a porous barrier which may be free to move inside the cuvette, and a test reagent in one compartment. The barrier may be floating on the reagent. The barrier may be microporous or be a semipermeable membrane, hydrophobic or hydrophilic, depending on the test. In one mode, the cuvette is the barrel of a hypodermic syringe and the test reagent is held in the far compartment, in the barrel of the syringe. Numerous modifications of the system are also disclosed.
Description
O United States Patent 1191 Padawer 1 1 Feb. 11, 1975 [54] ANALYTICAL APPARATUS AND PROCESS 3,480,399 11/1969 Hamilton 23/253 R P 3,539,300 ll/l970 Stone 23/253 R [751 lnvemol- JacqPes Maw", 3,573,470 4/1971 Haley 356/246 ux flastmss-on-Hudson. NY 3,657,073 4/1972 Burton et al.... 195/127 [73] Assigneez Ame" Einstein College of Medicine 3,660,037 5/1972 Sokol 2 3/253 R of Yeshiva University Bronx NY. 3,706,381 l2/l972 Joynes et a]. 23/253 R X 3,748,098 7/l973 Dutch 23/253 R [221 Filed OTHER PUBLlCATlONS [21] Appl- 338,358 Searcy, Diagnostic Biochemistry," p. 274 (1969).
Related U.S. Application Data [63] Continuation-impart of Ser. No. 262,183, June l3, Pr'mary Examlner"j9seph Scovronek 1972, abandoned. Attorney, Agent, or Fzrm-B1erman & Blerman [52] U.S. Cl. 23/230 R, 23/230 B, 23/253 R, [57] ABSTRACT 23/254 195/103 195/5 195/127 356/246 A low load analytic system is proposed, comprising a [51] Int. CL... G0ln l/l0,G0ln 31/00, G0ln 33/16 H d t t h b b 58 Field of Search 23/230 R 230 B 253 R e e y a 23/259 292 206/47 219 356/246f barrier wh1ch may be free to move 1ns1de the cuvette, 95/127 128/2 and a test reagent in one compartment. The barrier may be floating on the reagent. The barrier may be microporous or be a semipermeable membrane, hy- [56] References cued drophobic or hydrophilic, depending on the test. In UNITED STATES PATENTS one mode, the cuvette is the barrel of a hypodermic 2,888,331 5/1959 Carpenter 23/253 R syringe and the test reagent is held in the far compart- 3,000,706 9/]96l Royce 23/254 R X ment in the barrel of the syringe Numergus modifieag tions of the system are also disclosed. 0e ere a. 3,367,850 2/1968 Johnson 23/254 R X 17 Claims, 13 Drawing Figures PHEHTEB FEB! 1 I975 SHEET 1 BF 2 PATENTED FEB] H975 SHEET 2 OF 2 ANALYTICAL APPARATUS AND PROCESS This application is a continuation-in-part of copending application Ser. No. 262,l83 filed June I3. 1972, now abandoned.
This invention relates to apparatus for performing chemical analysis and in particular to small load operation biomedicaltest needs.
Recent advances in biochemistry have engendered many biomedical diagnostic tests useful to the practicing physician. Tremendous numbers of biomedical tests are routinely carried out daily in hospitals and in independent medical laboratories, some even in the doctors office. The very number of tests has created a demand for automated test procedures and equipment, and a well-equipped medical laboratory can routinely conduct tests by the thousands. However, creation of automated test facilities does not constitute a complete response to the ever-increasing usage of test procedures. Instances will always arise wherein the automated facilities of the biomedical laboratory are simply not available, for example, off-hour emergencies and isolated geographical areas.
Accordingly, a real and substantial need exists for small load analytic systems capable of operation by relatively untrained technicians. The object of this invention is to provide improved small load analysis systems.
Basically the rationale of the present invention is that many of the chemical reactions involved in biochemical tests can be carried out in a multichambered cuvette. The desired components of the sample can transport across a porous membrane from a sample chamber into a second chamber of the cuvette, to there undergo a chemical reaction indicative of that reactant. Thus, for example, the available CO present in a sample of blood or another fluid will diffuse from a sample chamber through a hydrophobic semipermeable membrane (e.g., Teflon) into a chamber containing an aqueous alkaline solution of a color reagent like phenolphthalein and react therein with the solution, changing its color. A colorimeter measurement taken of the color indicatorsolution will serve to determine accurately the available CO present in the sample. If the sample chamber contains an acid reagent in addition, then the total CO content of the original sample will be released to diffuse through the membrane and the colorimeter reading will measure the total CO in the sample.
For further understanding of the invention, reference is now made to the attached drawings wherein:
FIG. 1 diagrammatically illustrates the basic structure of the multi-ch'amber cuvette;
FIG. 2 is an exploded perspective of one form of the barriers of the invention;
FIG. 3 illustrates a modified form of multichambered cuvette;
FIG. 4 is a diagrammatic view of another embodiment of the invention;
FIG. 5 is a modification of the device of FIG. 4;
FIG. 6 is a diagram of another embodiment of the invention with membranes at right angles to each other;
FIG. 7 is a diagram of an embodiment of the invention using electric potential to assist in carrying out the test;
FIG. 8 shows a diagrammatic cross-section of a modification of the cuvette or barrel which eliminates or reduces distortion caused by curved sides;
FIG. 8A is another way to eliminate or reduce curvature distortion by the use of lenses;
FIG. 9 is a convenient way of maintaining the membranes at the desired distance from each other;
FIG. 9A is a modification of the device of FIG. 9 wherein the membranes are separated by a tube;
FIG. 10 is a diagram of the device of FIG. 9A mounted in a sled ready for insertion into the cuvette or barrel; and
FIG. I] is a diagram ofa form of the invention capable of carrying out two tests on the same sample at the same time.
Referring now to the drawings, it may be seen that the basic structure of the present invention involves a vial or cuvette l0 separated into at least two (three being illustrated) chambers or compartments l2, l4 l6 fixed in place by barrier spacers l8 and 20. In the basic form of the invention shown in FIG. 1, cuvette I0 is sealed at its open end by a cap 22. Chambers 14 and 16 are filled by appropriate test fluids. Although in the form illustrated in FIG. 1 chamber 12 is empty of test reagent, inclusion of a test reagent in chamber 12 is also contemplated. For purposes of the analysis, chamber 12 is charged with test sample, e.g., by aperturing cap 22 with a hypodermic needle and forcing the sample in through the needle.
An important aspect of the present invention is that all the analytic tests contemplated for the present cuvette structure involve passage of one component derived from the test sample through a porous barrier. Normally the barrier is a semipermeable membrane, but for some tests the pore size of the barrier may be larger. Accordingly, the carrier can best be described as porous, including within the meaning of the term, microporous membranes and semi-porous membranes. The barrier may be hydrophilic or hydrophobic in na ture. The exact character of the membrane is predetermined by the analytic test for which the cuvette is constructed. However, all of the analytic tests for which the present cuvette structure is adapted require that the barrier prevent migration of all interfering component or components. To repeat, the tests involve transport of some desired component or constituent from the test sample across the barrier 18 into the test fluid in chamber 14. In those tests where the analytic procedure requires a second reaction, an additional barrier 20 and chamber 16 are provided. In such instances, the reaction in chamber 14 creates or liberates a component which transports from the fluid in chamber 14 through the barrier 20 into chamber 16.
The cuvette structure of the present invention normally is employed with an optical read-out instrument which, depending on the analytic test, may be a colorimeter, a fluorometer, a nephelometer, in short. any of the many optical systems already being employed to measure chemical, biochemical or biomedical test results. Therefore, cuvette 10 is sized to fit into whatever standard optical measurement device is appropriate to the particular test for which the cuvette has been constructed. Appropriate optical measuring equipment is widely available commercially, and virtually every analytical test where optical measurement of the test results is made has been calibrated to standard optical equipment, e.g., colorimeter, nephelometer, fluorometer, etc. Actually, many of the recent advances in auto mated analysis have involved a change in analysis technique or chemistry so that the test results can be meaured by optical means.
A principal object of the present invention is to provide a manual one-at-a-time or low-load counterpart to widely used automated analysis systems. Practice of this invention contemplates making the test results (automated or manual) strictly comparable. Repeat tests or later tests analyzed in the automated laboratory can be compared directly to the results of the manual test carried out in the cuvette structure of the present invention.
Since many of the analytical test procedures to which the apparatus of the present invention is adapted require liquid phase to liquid phase transport of one component through a porous membrane, the porous barrier layer structures and filling procedures should minimize creationof air bubbles so that the barrier maintains liquid on both surfaces thereof. To insure such complete contact, practice of the present invention according to one preferred mode thereof involves floating the barrier. The barriers 18, 20 may be made free to move inside cuvette 10. Their exact position within cuvette 10 is determined entirely by the volume of fluid in the chambers 14 and 16 bound bybarriers 18, 20. Thus, barrier 20 floats, so to speak, on the test fluid inside chamber 16; barrier 18 floats on the test fluid inside chamber 14. Needles to say, the dimensions of cuvette 10 must be uniform and accurate, so that free barriers l8 and 20 can slide the length of cuvette 10 and still seal against fluid leakage from chamber to chamber.
In some cases, a small air bubble may deliberately be introduced into chambers containing the liquid reagents so as to act as a means of mechanical mixing; e.g., by rotating or vibrating the device. Mixing would favor reaction rates and reduce back diffusion of reaction products, thus shortening the time required for the test. In other cases, reaction rates are so fast that no mixing is necessary.
Illustrated in FIG. 2 is a preferred form of barrier, wherein porous membrane 30, which may be a microporous membrane or a semipermeable membrane which is hydrophilic or hydrophobic, depending on the analysis involved, is a circular piece sandwiched peripherally between centrally apertured members, hoop 32 and 34. These three members are fused, glued or otherwise secured to form a unitary barrier structure. The hoop portions 32, 34 of the barrier constitute a continuous foot having significant bearing area contacting the inside wall of cuvette'10. This ensures that the barrier has sufficient structural rigidity to prevent buckling and makes certain that the porous barriers l8 and 20 remain across cuvette l and freely rest on the underlying test liquid. For assembly purposes, circular membrane 30 and hoops 32, 34 are preferably made of thermoplastic materials. They may. be heat joined readily; the hoops may be directly molded on around the peripheral edge of porous membrane 30 which may be bonded chemically to one of the hoops. For filling the cuvette mode illustrated in the drawings, an air vent or aperture (not shown) may be provided through hoops 32, 34.
A satisfactory way of providing the device depicted in FIG. I is to start with a cuvette having a venting hole at the bottom. Barrier 20 is then introduced, and advane ed a set distance down the. tube, the reagent for chamber 14 being layered over it so that when the proper amount is reached, its meniscus forms a convex surface atthe lip of the tube. Barrier 18 is then deposited on this 'l iquid surface and pushed some distance down the tube, pushing barrier 20 and reagent l4 further down in the process. The device is then inverted, the proper reagent for chamber 16 is delivered atop barrier 20 through the vent hole, barrier 18 is pushed up to expel residual air in chamber 16, and the vent hole is then sealed.
A modified form of cuvette is illustrated in' FIG. 3. The cuvette is part of a hypodermic syringe arrangement, being the barrel of a standard hypodermic syringe with the usual plunger 102 structure closely fitted thereto. A restraining yoke 104 on the rear of barrel 100 serves to limit rearward movement of plunger 102 and assures that a predetermined volume of sample fluid is taken up through the needle 106. A protective cap 108 may be used to surround and shield needle I06 and keep it bacteriologically sterile, if desired.
A procedure, similar to that relating to the device of FIG. 1, can be followed for filling the modified form of the device shown in FIG. 3, except that the needle acts as a venting hole to allow filling the reagents and barriers from above, and that barrier 112 is then advanced until fully seated near the needle, thus reducing the prospective sample chamber volume to nearly zero.
In the construction illustrated by FIG 3, two spacedapart floating porous barriers 110, 112 are provided. For many, and perhaps most, biomedical tests only one such barrier is required. In the illustrated mode, one test reagent is in barrel chamber 114 between barriers and 112, and a second test reagent is in barrel chamber 116 between plunger 102 and barrier 110. The volume 118 between 112 and the needle 106 may be air filled, evacuated, or filled with a dliuent such as saline solution.
For conducting a test, the protective cap 108 is removed, and a predetermined quantity of sample, e.g., expired air or blood, is drawn through needle 106 into sample region 118 by rearward movement of plunger 102 to the limited end of its rearward travel. As plunger 102 is drawn back, the porous barriers 110 and 112 and the test reagents in chambers 114and 116 are drawn rearwardly (by the suction), enlarging chamber 118 as the sample is drawn into it. Thereafter, a component from the sample or test reagent traverses porous barrier 112; for example, in a total CO test, I-I+ ion crosses barrier 112 from the sample chamber, then CO diffuses across barrier 112 entering chamber 114, crosses chamber 114, traverses porous barrier 110 and enters the test reagent inside chamber 116 altering an optical characteristic of the reagent. After a given time interval, the cuvette is inserted into an optical instrument, the optical path being, for example, along line X- X through barrel 100 which normally is transparent glass or plastic, and through the test solution in chamber In a particular embodiment of the invention, the reaction takes place on or within the membrane itself. Normally, such amembrane would be transparent or at least translucent in order to make the test results It is also within the scope of this invention to use a syringe having a hollow plunger. The hollow in the plunger can then act as a chamber to hold a reagent, in which case the leading face of the plunger consists of an appropriate barrier, or it can contain a standard solution to be used as a comparison for the color change resulting from the test reaction, in which case the end is sealed. In FIG. 4, hollow plunger 36 fits inside syringe barrel 11 with membrane across its mouth. Sample chamber 37 is provided and the reaction takes place in substantially the same way as in the device of FIG. 3, except that the hollow plunger 36 forms one of the chambers.
In FIG. 5, sample chamber 37 and reagent chamber 38 are separated by barrier 35. Standard chamber 39 is provided in hollow plunger 36 to hold a reference solution to assist in comparing the results of the test with a desired standard.
FIG. 6 shows a device having a hollow plunger 36 carrying membrane 44 with its plane axially aligned. Another membrane 43 is placed as in the device of FIG. 5. A light source 51 and a photoelectric cell 52 are so positioned as to permit a beam of light to pass through membrane 44 and impinge on cell 52. Any change in opacity of membrane 44 can easily be read.
This form of the device is particularly suitable for use with samples which are not clear, such as blood. Membrane 43 prevents the passage of the occluding components of the sample (e.g., blood cells) so that reagent chamber 38 contains only clear material which will not interfere with the effect of the test reaction on the light beam and photoelectric cell 52.
This embodiment is also useful inn those situations in which a reaction product is precipitated on or within the barrier, that is, in which the desired sample component passes through barrier 43, diffuses freely through a carrier fluid or reagent in chamber 38, and then reacts on the surface of a within the body of barrier 44 to produce a color deposit or a change in the membrane lucency. In some cases, indicator particles may adsorb on the barrier surface.
The plunger 36 ofthis embodiment can, of course, be
used. in accordance with the devices of FIGS. 3, 4 and 5 as well as in the manner heretofore described.
4 In yet modification of this invention as shown in FIG. 7, an electromotive force is impressed across syringe l0 and plunger 41 by means of conductor connected to a source of current 42. This can be alternating or direct current, or a variant thereof, to help drive the reagent and/or sample in the desired direction.
In certain types of visual or photometric measurement, the distortion caused by curvature of the cuvette or barrel is undesirable. This can be minimized or eliminated by the devices shown in FIGS. 8 and 8A. In FIG. 8, a barrel 11 is shown which has four flat portions 49. Light source 51 is directed through portions 49 to give an undistorted view of the results of the test. This is particularly useful in nephelometry, since the Tyndall effect can be observed readily by viewing at a right angle to the light beam. Of course it is not necessary to have flats all around, since it is not always necessary to view in all directions. Only those portions through which it is intended to view need be flat.
This same problem can be solved by the device of FIG. 8A. Here, in order to minimize the distortion (or lens effect) caused by the curved cuvette or barrel,
compensating lenses 50 are formed in or attached to the cuvette or barrel 1] in the viewing area.
In those forms of the invention in which a double membrane is desirable, the embodiment of FIG. 9 will prove useful. Membranes 43 and 44 are held in the desired relationship to each other by spacer rods 45. This has the advantage of fixing the distance between the barriers and preventing them from jamming or leaking.
A variation of this form is shown in FIG. 9A. Instead of a plurality of spacer rods, hollow tube 47 extends from barrier 43 to barrier 44.
In FIG. 10, there is shown a device using the tube structure of FIG. 9A. Sled 46 surrounds tube 47 and is intended to fit within the barrel of cuvette. Portions 53 seal against the inner wall of the cuvette or barrel substantially preventing passage of fluid except selectively through barriers 43 and 44 of tube 47.
A still further modification of the invention is shown in FIG. 11. Barriers 43 and 44 may be the same or different. Similarly, reagent chambers 38 and 38a may contain the same or different reagents. Sample chamber 37 is common to both reagent chambers. This form of the invention permits the running of two tests simultaneously in the same apparatus using a single sample. It can also be used to incorporate a standard for comparison to the test result. In the latter case, no barrier is present on one side of the plunger and the standard is sealed in.
As can be seen from the foregoing description, the present invention is useful for conducting one test at a time. The structure has the advantages of being lightweight, portable, self-contained, and is well suited for use directly in a physicians office, at bedside, even in an ambulance or in other emergency situations. The test device can be employed in hospitals during off hours, when the automated laboratory equipment is down and laboratory personnel are unavailable. Few special skills are needed to conduct the tests and unskilled nursing or paramedical personnel, regulatory agency personnel (for food inspection, environmental control, police, etc.) can conduct the analyses accurately. In some instances, the ultimate reaction product is stable enough so that the test may be stored, e.g., for legal purposes.
Although the test procedures and reagents form no part of the present invention, the widespread applicability of the multi-chamber cuvette described above is noteworthy. The following tests can be carried out therewith:
BUN Uric Acid Alcohol (blood/ Bilirubin Glucose expired air) Albumin Carbon Dioxide Transaminase Ammonia Carbon Monoxide Alk. phosphatase Antigen-antibody reactions Many of the analytic tests, such as for example, the available CO test, require only a single barrier cuvette.
Other tests require the two barrier assemblies as illustrated in the drawing. One such test is the determination 0 uric acid. For this test, the first barrier should be hydrophilic, and may, for example, be a cellophane dialysis membrane. After the blood sample has been drawn into the sample chamber, uric acid present in the blood will diffuse through the cellophane dialysis mem brane into the first reaction chamber, and there react with uricase (present in the preloaded reagent) to produce C0 The CO will diffuse back through the cello phane membrane into the sample compartment, as well as forward into the second reaction chamber. The second barrier should be a hydrophobic semipermeable membrane, being for example, a fluorocarbon dialysis membrane (Teflon). The second chamber test solution is an aqueous alkaline indicator so that the CO crossing the hydrophobic semipermeable barrier will react to cause a color change in the indicator solution. Since the CO product is related to the original concentration of uric acid in the blood sample, an optical color reading of the indicator solution will constitute a measurement of the uric acid concentration in the blood sample.
Another particularly useful test uses hemoglobin as the test reagent. This can be either in liquid form (e.g., as a solution) or in solid form (e.g., microcrystals). This material is particularly useful in testing for carbon monoxide in the presence of various air pollutants such as carbon dioxide, sulfur dioxide, and nitrogen oxides. The following description will be specifically directed to testing for the presence of carbon monoxide, but the principles are,'of course, applicable to other similarly reacting materials as well.
Hemoglobin reacts with oxygen to form-a compound which is a brownish color. Carbon monoxide also reacts with hemoglobin to form a slightly different material which has a cherry red color. Obviously, the color change can be observed visually or colorimetrically and compared with a reference standard if desired.
As an additional variation, a color filter can be placed between a source of radiation (e.g., light) and the test solution. The wavelengths which the filter will pass should be those which correspond with the absorption peaks of the carbon monoxide hemoglobin derivative. These are to be found at 535.and 570.9 millimicrons. Alternatively, a source of mono-chromatic light can be used, again corresponding with these absorption peaks. A radiation-sensitive cell such as a photocell is placed in the path of the beam from the source so that thelight impinges on it after passing through the test chamber. Thus, the changes brought on by the test will result in variations in the amount and type of transmitted light. The photocell can easily and automatically read these. Thismethod will enhance the sensitivity of the test and permit more accurate readings.
A still further improvement on this method and device consists of splitting the radiation into two beams and passing each beam through a separate filter before the beams pass through the reaction chamber. One filter is of the same character described in the preceding to pass, that is, wavelengths such that both the oxygen derivative and the carbon monoxide derivative of hemoglobin absorb equally. There is provided a radiationsensitive cell (in this case a photocell) for each of the beams, and the difference between the two readings is compared. By using this method, the device will automatically correct for variations in source intensity or with changes in airborne particles which might reduce transmission independently of the test reaction (c.g., smoke, fog, etc.).
Of course, these methods can be connected up to an alarm or other warning device which will trip when the concentration of the undesired pollutant reaches a predetermined level. Similarly, a relay could be used to close or open doors or windows or to turn on ventillating fans and the like.
Many of the pollutants found in air are deleterious because they have undesired'reactions with hemoglobin. Some of these reactions'are irreversible and result in permanet damage while others like the carbon monoxide specifically referred to can be reversed if caught in time. For this reason, the use of hemoglobin as a test reagent for various types of pollutants in air is generally suitable. in fact, analogs of the theme moiety of hemoglobins such as polypyridine derivatives are also satisfactory for this purpose.
While only a limited number of embodiments of the inventin have been specifically disclosed, such variations as would be apparent to one having reasonable skill in the art can be made without departing from the scope or spirit thereof. The invention is to be broadly construed and not tobe limited except by the character of the claims appended hereto.
It is obvious to anyone having ordinary skill that these methods can be used with gases as well as with liquids where the nature of the test so permits.
1 claim:
1. An apparatus adapted for chemical analysis com prising a cuvette having therein a first porous barrier which serves to compartmentalize said cuvette, and a first test reagent fluid in a first reagent compartment in the cuvette, said barrier being in direct contact therewith, a second porous barrier and a second test reagent fluid being present, the second test reagent being disposed in a second compartment on the side of said second barrier away from said first reagent compartment, the second barrier being in direct test reagents.
2. The apparatus of claim 1 wherein said porous barriers are maintained in an axially spaced-apart relationship by at least one spacer extending from said first barrier to said second barrier.
3. The apparatus of claim 2 wher eiii prises a hollow tube.
4. The apparatus of claim 3 wherein there is provided a generally cylindrical sled surrounding at least part of said tube, said sled having at least one sealing portion disposed circumferentially around said sled and adapted to substantially seal against the inner wall of said cuvette. i
5. An apparatus adapted for chemical analysis comrising a cuvette having therein a first porous barrier which serves to compartmentalize said cuvette, and a tac with the two sai spacer co first test reagent fluid in a first reagent compartment in the cuvette, said barrier being in direct contact there'- with, said cuvette having at least one lens located in an area through which test results are sensed, said cuvette having a curvature in said area, said lens compensating for distortion caused by said curvature.
6. The apparatus of claim 5 wherein there are two said lenses and a source of light directed through both of said lenses.
7. The apparatus of claim 6 wherein said two lenses are on opposite sides of said cuvette, and have their axes substantially in alignment, and a third lens having its axis at substantially a right angle to the other axes.
8. A method of carrying out chemical testing comprising introducing a fluid sample to be tested into a chamber, said sample being in contact with a first porous barrier and a second porous barrier, permitting at said first barrier and contact a first fluid reagent, at least some of said constituents passing through said second barrier to contact a second fluid reagent whereby the light transmission characteristics of at least one of said reagents are altered.
9. The method according to claim 8 wherein said first reagent and said second reagent are the same.
10. The method according to claim 8 wherein said first reagent and said second reagent are different.
11. An apparatus adapted for chemical analysis comprising a cuvette having therein a first porous barrier which serves to compartmentalize said cuvette, and a first test reagent fluid in a first reagent compartment in the cuvette, said barrier being in direct contact therewith, said apparatus having means to provide an electromotive force across said cuvette in the axial direction towards said barrier, whereby said first reagent is driven across said first barrier.
12. An apparatus adapted for chemical analysis comprising a cuvette having therein a first porous barrier which serves to compartmentalize said cuvette, and a first test reagent fluid in a first reagent compartment in the cuvette, said barrier being in direct contact there with, said cuvette comprising the barrel of a hypodermic syringe having a needle point extending from one, the test reagent being in the far compartment relative to the needle point, the first reagent compartment being in the plunger of said syringe.
13. The apparatus of claim 12 wherein there is provided a second reagent compartment containing a second reagent, a second porous barrier in contact with said second reagent compartment and said reagent therein, a sample chamber in said syringe adjacent said point, both said first barrier and said second barrier in contact with said sample chamber and the sample contained therein.
14. The apparatus of claim 13 wherein said reagents are different, whereby two different tests can be run simultaneously on said sample.
15. The apparatus of claim 12 wherein there is provided a second compartment in said plunger, said second compartment containing a reference fluid.
16. The apparatus of claim 12 wherein said plunger is of reduced cross-section adjacent the end of said plunger nearest said point, said barrier being on the reduced cross-section of said plunger, the plane of said barrier being parallel to the axis of said plunger.
17. An apparatus adapted for chemical analysis com prising a cuvette having therein a first porous barrier which serves to compartmentalize said cuvette, and a first test reagent fluid in a first reagent compartment in the cuvette, said barrier being in direct contact therewith, said cuvette comprising the barrel of a hypodermic syringe having a needle point extending from one end, the test reagent being in the far compartment relative to the needle point, there being a chamber in the plunger of said syringe, said chamber containing a ref
Claims (17)
1. An apparatus adapted for chemical analysis comprising a cuvette having therein a first porous barrier which serves to compartmentalize said cuvette, and a first test reagent fluid in a first reagent compartment in the cuvette, said barrier being in direct contact therewith, a second porous barrier and a second test reagent fluid being present, the second test reagent being disposed in a second compartment on the side of said second barrier away from said first reagent compartment, the second barrier being in direct contact with the two test reagents.
2. The apparatus of claim 1 wherein said porous barriers are maintained in an axially spaced-apart relationship by at least one spacer extending from said first barrier to said second barrier.
3. The apparatus of claim 2 wherein said spacer comprises a hollow tube.
4. The apparatus of claim 3 wherein there is provided a generally cylindrical sled surrounding at least part of said tube, said sled having at least one sealing portion disposed circumferentially around said sled and adapted to substantially seal against the inner wall of said cuvette.
5. An apparatus adapted for chemical analysis comrising a cuvette having therein a first porous barrier which serves to compartmentalize said cuvette, and a first test reagent fluid in a first reagent compartment in the cuvette, said barrier being in direct contact therewith, said cuvette having at least one lens located in an area through which test results are sensed, said cuvette having a curvature in said area, said lens compensating for distortion caused by said curvature.
6. The apparatus of claim 5 wherein there are two said lenses and a source of light directed through both of said lenses.
7. The apparatus of claim 6 wherein said two lenses are on opposite sides of said cuvette, and have their axes substantially in alignment, and a third lens having its axis at substantially a right angle to the other axes.
8. A METHOD OF CARRYING OUT CHEMICAL TESTING COMPRISING INTRODUCING A FLUID SAMPLE TO BE TESTED INTO A CHAMBER, SAID SAMPLE BEING IN CONTACT WITH A FIRST POROUS BARRIER AND A SECOND POROUS BARRIER, PERMITTING AT LEAST SOME CONSTITUENTS OF SAID SAMPLE TO PASS THROUGH SAID FIRST BARRIER AND CONTACT A FIRST FLUID REAGENT, AT LEAST SOME OF SAID CONSTITUENTS PASSING THROUGH SAID SECOND BARRIER TO CONTACT A SECOND FLUID REAGENT
9. The method according to claim 8 wherein said first reagent and said second reagent are the same.
10. The method according to claim 8 wherein said first reagent and said second reagent are different.
11. An apparatus adapted for chemical analysis comprising a cuvette having therein a first porous barrier which serves to compartmentalize said cuvette, and a first test reagent fluid in a first reagent compartment in the cuvette, said barrier being in direct contact therewith, said apparatus having means to provide an electromotive force across said cuvette in the axial direction towards said barrier, whereby said first reagent is driven across said first barrier.
12. An apparatus adapted for chemical analysis comprising a cuvette having therein a first porous barrier which serves to compartmentalize said cuvette, and a first test reagent fluid in a first reagent compartment in the cuvette, said barrier being in direct contact therewith, said cuvette comprising the barrel of a hypodermic syringe having a needle point extending from one, the test reagent being in the far compartment relative to the needle point, the first reagent compartment being in the plunger of said syringe.
13. The apparatus of claim 12 wherein there is provided a second reagent compartment containing a second reagent, a second porous barrier in contact with said second reagent compartment and said reagent therein, a sample chamber in said syringe adjacent said point, both said first barrier and said second barrier in contact with said sample chamber and the sample contained therein.
14. The apparatus of claim 13 wherein said reagents are different, whereby two different tests can be run simultaneously on said sample.
15. The apparatus of claim 12 wherein there is provided a second compartment in said plunger, said second compartment containing a reference fluid.
16. The apparatus of claim 12 wherein said plunger is of reduced cross-section adjacent the end of said plunger nearest said point, said barrier being on the reduced cross-section of said plunger, the plane of said barrier being parallel to the axis of said plunger.
17. An apparatus adapted for chemical analysis comprising a cuvette having therein a first porous barrier which serves to compartmentalize said cuvette, and a first test reagent fluid in a first reagent compartment in the cuvette, said barrier being in direct contact therewith, said cuvette comprising the barrel of a hypodermic syringe having a needle point extending from one end, the test reagent being in the far compartment relative to the needle point, there being a chamber in the plunger of said syringe, said chamber containiNg a reference fluid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US338358A US3865548A (en) | 1972-06-13 | 1973-03-05 | Analytical apparatus and process |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US26218372A | 1972-06-13 | 1972-06-13 | |
US338358A US3865548A (en) | 1972-06-13 | 1973-03-05 | Analytical apparatus and process |
Publications (1)
Publication Number | Publication Date |
---|---|
US3865548A true US3865548A (en) | 1975-02-11 |
Family
ID=26949070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US338358A Expired - Lifetime US3865548A (en) | 1972-06-13 | 1973-03-05 | Analytical apparatus and process |
Country Status (1)
Country | Link |
---|---|
US (1) | US3865548A (en) |
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4035150A (en) * | 1975-09-24 | 1977-07-12 | The United States Of America As Represented By The Secretary Of The Department Of Health, Education And Welfare | Test for occult blood in an emulsified aqueous/organic system |
DE2616952A1 (en) * | 1976-04-17 | 1977-11-03 | Zander Rolf | Analysis of blood or breath - using e.g. pyrocatechol and Mohr's salt for oxygen, diluted blood for carbon monoxide and fuchsin and hydrazine hydrate for carbon dioxide |
US4066512A (en) * | 1974-09-06 | 1978-01-03 | Millipore Corporation | Biologically active membrane material |
US4070263A (en) * | 1975-09-16 | 1978-01-24 | Degremont | Apparatus for the measurement of the mobility of colloids in an electric field |
US4083638A (en) * | 1975-08-27 | 1978-04-11 | Technicon Instruments Corporation | Cuvette and method of use |
US4227810A (en) * | 1978-01-26 | 1980-10-14 | Technicon Instruments Corporation | Cuvette and method of use |
EP0047176A2 (en) * | 1980-09-02 | 1982-03-10 | Warner-Lambert Company | Device suitable for sampling blood |
US4391780A (en) * | 1981-07-06 | 1983-07-05 | Beckman Instruments, Inc. | Container for sample testing |
US4420254A (en) * | 1980-02-19 | 1983-12-13 | Smeaton John R | Cuvet and associated apparatus and method for using same |
US4636361A (en) * | 1985-11-18 | 1987-01-13 | Miklos Marian | Device for separating liquid fractions |
US4654197A (en) * | 1983-10-18 | 1987-03-31 | Aktiebolaget Leo | Cuvette for sampling and analysis |
FR2593920A1 (en) * | 1986-02-04 | 1987-08-07 | Orion Yhtymae Oy | LIQUID ANALYSIS METHOD AND ANALYSIS ELEMENT FOR USE IN THE PROCESS |
EP0254203A2 (en) * | 1986-07-22 | 1988-01-27 | Personal Diagnostics, Inc. | Optical analyzer |
FR2624609A1 (en) * | 1987-12-09 | 1989-06-16 | Draegerwerk Ag | COLORIMETRIC TEST TUBE |
US4851195A (en) * | 1987-08-17 | 1989-07-25 | Pfizer Hospital Products Group, Inc. | Carbon dioxide sensor |
US4865813A (en) * | 1986-07-07 | 1989-09-12 | Leon Luis P | Disposable analytical device |
US4871683A (en) * | 1985-04-18 | 1989-10-03 | Beckman Instruments, Inc. | Apparatus and method using a new reaction capsule |
EP0404527A2 (en) * | 1989-01-10 | 1990-12-27 | La Mina Ltd. | Modular fluid sample preparation assembly |
US5073341A (en) * | 1985-08-21 | 1991-12-17 | Biotope, Inc. | Devices for conducting specific binding assays |
US5081041A (en) * | 1990-04-03 | 1992-01-14 | Minnesota Mining And Manufacturing Company | Ionic component sensor and method for making and using same |
US5081042A (en) * | 1990-03-20 | 1992-01-14 | Minnesota Mining And Manufacturing Company | Ionic component sensor and method for making and using same |
US5175016A (en) * | 1990-03-20 | 1992-12-29 | Minnesota Mining And Manufacturing Company | Method for making gas sensing element |
US5188803A (en) * | 1988-12-01 | 1993-02-23 | Abbott Laboratories | Device for preparing a medical sensor for use |
EP0555109A2 (en) * | 1992-01-06 | 1993-08-11 | Microbyx Corporation | Multifunction collecting device and method for body fluids |
US5322800A (en) * | 1991-06-26 | 1994-06-21 | The United States Of America As Represented By The Secretary Of The Interior | Method and device for safely preserving aqueous field samples using acid or base |
US5462052A (en) * | 1987-01-30 | 1995-10-31 | Minnesota Mining And Manufacturing Co. | Apparatus and method for use in measuring a compositional parameter of blood |
EP0695937A1 (en) * | 1988-12-22 | 1996-02-07 | Radiometer Medical A/S | Photometric method for the in vitro determination of a gas in a blood sample |
US5490971A (en) * | 1994-10-25 | 1996-02-13 | Sippican, Inc. | Chemical detector |
WO1998006496A1 (en) * | 1996-08-12 | 1998-02-19 | Hampshire Advisory And Technical Services Limited | Diagnostic test container |
WO1998008594A3 (en) * | 1996-08-26 | 1998-05-07 | Max Planck Gesellschaft | Method for producing microporous elements, the microporous elements thus produced and uses thereof |
FR2768632A1 (en) * | 1997-09-23 | 1999-03-26 | Andre Cohen | Self-sampling and assay device |
US6121055A (en) * | 1987-12-01 | 2000-09-19 | Roche Diagnostics Corporation | Methods and devices for conducting specific binding assays |
US6184040B1 (en) | 1998-02-12 | 2001-02-06 | Polaroid Corporation | Diagnostic assay system and method |
US6328930B1 (en) | 1999-02-11 | 2001-12-11 | Polaroid Corporation | Apparatus for performing diagnostic testing |
US6331715B1 (en) | 1998-10-14 | 2001-12-18 | Polaroid Corporation | Diagnostic assay system and method having a luminescent readout signal |
US20020061596A1 (en) * | 2000-11-17 | 2002-05-23 | Hsieh Yuch Ping | Microrespirometer and associated methods |
US6432358B2 (en) | 1999-01-27 | 2002-08-13 | Polaroid Corporation | Diagnostic assay device |
US6451260B1 (en) | 1997-08-26 | 2002-09-17 | Dyax Corp. | Method for producing microporous elements, the microporous elements thus produced and uses thereof |
US6495373B1 (en) | 1998-10-14 | 2002-12-17 | Polaroid Corporation | Method and apparatus for performing diagnostic tests |
US6555060B1 (en) | 1998-10-14 | 2003-04-29 | Polaroid Corporation | Apparatus for performing diagnostic testing |
US6641782B1 (en) | 2000-11-15 | 2003-11-04 | Polaroid Corporation | Apparatus for performing diagnostic testing |
GB2392854A (en) * | 2002-09-14 | 2004-03-17 | Secr Defence | Apparatus for isolating a filtrate from a sample |
US20040171055A1 (en) * | 1997-04-17 | 2004-09-02 | Cytonix Corporation | Method for detecting the presence of a single target nucleic acid in a sample |
US20040241874A1 (en) * | 2001-08-31 | 2004-12-02 | Mohamed Abdel-Rehim | Method and apparatus for sample preparation using solid phase microextraction |
EP1618847A2 (en) * | 2004-07-21 | 2006-01-25 | Idexx Laboratories, Inc. | Tissue homogenizer device and method |
US20080183122A1 (en) * | 2007-01-25 | 2008-07-31 | Depuy Spine, Inc. | Syringe with energy delivery component and method of use |
US20090177143A1 (en) * | 2007-11-21 | 2009-07-09 | Markle William H | Use of an equilibrium intravascular sensor to achieve tight glycemic control |
US20090215998A1 (en) * | 2005-11-21 | 2009-08-27 | Barofoid, Inc. | Devices and methods for high-pressure refolding of proteins |
US20090264719A1 (en) * | 2008-04-17 | 2009-10-22 | Glumetrics, Inc. | Sensor for percutaneous intravascular deployment without an indwelling cannula |
US20090317300A1 (en) * | 2003-01-16 | 2009-12-24 | Prohaska Otto J | Method and apparatus for determining a concentration of a component in an unknown mixture |
US7785466B1 (en) * | 1996-04-10 | 2010-08-31 | Smith James C | Membrane filtered pipette tip |
US20100272613A1 (en) * | 2000-10-16 | 2010-10-28 | Foss Analytical Ab | Filtration container |
US20110077477A1 (en) * | 2009-09-30 | 2011-03-31 | Glumetrics, Inc. | Sensors with thromboresistant coating |
US20110105866A1 (en) * | 2009-11-04 | 2011-05-05 | Glumetrics, Inc. | Optical sensor configuration for ratiometric correction of blood glucose measurement |
US20110152658A1 (en) * | 2009-12-17 | 2011-06-23 | Glumetrics, Inc. | Identification of aberrant measurements of in vivo glucose concentration using temperature |
US20110318843A1 (en) * | 2008-12-16 | 2011-12-29 | Abraham Robert De Kraker | Device for evaluating a heat exchange fluid |
US20120085152A1 (en) * | 2010-10-07 | 2012-04-12 | Funk Donald A | Fluid analysis tool |
EP2607883A1 (en) * | 2011-12-19 | 2013-06-26 | F. Hoffmann-La Roche AG | System for photometric measurement of liquids |
US8738107B2 (en) | 2007-05-10 | 2014-05-27 | Medtronic Minimed, Inc. | Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement |
US8838195B2 (en) | 2007-02-06 | 2014-09-16 | Medtronic Minimed, Inc. | Optical systems and methods for ratiometric measurement of blood glucose concentration |
US20160258850A1 (en) * | 2015-03-06 | 2016-09-08 | Horizon Technology, Inc. | Water Separation From Solvent |
US20180373050A1 (en) * | 2017-06-27 | 2018-12-27 | The Boeing Company | Curved Beam Replicator |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2888331A (en) * | 1954-12-27 | 1959-05-26 | Virginia C Carpenter | Testing device |
US3000706A (en) * | 1958-04-22 | 1961-09-19 | Boots Pure Drug Co Ltd | Control of bacteriological sterilisation |
US3123444A (en) * | 1964-03-03 | Zero gravity gas analyzer | ||
US3227523A (en) * | 1962-01-09 | 1966-01-04 | Hoefker | Chemical analyzer |
US3367850A (en) * | 1964-12-07 | 1968-02-06 | Exxon Research Engineering Co | Method and apparatus for determining moisture content of hydrocarbon fluids |
US3480399A (en) * | 1967-12-26 | 1969-11-25 | Xerox Corp | Chemical package |
US3539300A (en) * | 1967-10-23 | 1970-11-10 | Schering Corp | Body fluid collector and separator having improved flow rate |
US3573470A (en) * | 1968-03-28 | 1971-04-06 | California Inst Of Techn | Plural output optimetric sample cell and analysis system |
US3657073A (en) * | 1966-05-12 | 1972-04-18 | Boeing Co | Apparatus for detecting viable organisms |
US3660037A (en) * | 1970-08-10 | 1972-05-02 | Kurt Rudolf Sokol | Device for measuring blood sedimentation rate |
US3706381A (en) * | 1970-05-19 | 1972-12-19 | Pye Ltd | Chromatographic apparatus |
US3748098A (en) * | 1971-05-24 | 1973-07-24 | P Dutch | Portable testing kit for narcotics and dangerous and other drugs |
-
1973
- 1973-03-05 US US338358A patent/US3865548A/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3123444A (en) * | 1964-03-03 | Zero gravity gas analyzer | ||
US2888331A (en) * | 1954-12-27 | 1959-05-26 | Virginia C Carpenter | Testing device |
US3000706A (en) * | 1958-04-22 | 1961-09-19 | Boots Pure Drug Co Ltd | Control of bacteriological sterilisation |
US3227523A (en) * | 1962-01-09 | 1966-01-04 | Hoefker | Chemical analyzer |
US3367850A (en) * | 1964-12-07 | 1968-02-06 | Exxon Research Engineering Co | Method and apparatus for determining moisture content of hydrocarbon fluids |
US3657073A (en) * | 1966-05-12 | 1972-04-18 | Boeing Co | Apparatus for detecting viable organisms |
US3539300A (en) * | 1967-10-23 | 1970-11-10 | Schering Corp | Body fluid collector and separator having improved flow rate |
US3480399A (en) * | 1967-12-26 | 1969-11-25 | Xerox Corp | Chemical package |
US3573470A (en) * | 1968-03-28 | 1971-04-06 | California Inst Of Techn | Plural output optimetric sample cell and analysis system |
US3706381A (en) * | 1970-05-19 | 1972-12-19 | Pye Ltd | Chromatographic apparatus |
US3660037A (en) * | 1970-08-10 | 1972-05-02 | Kurt Rudolf Sokol | Device for measuring blood sedimentation rate |
US3748098A (en) * | 1971-05-24 | 1973-07-24 | P Dutch | Portable testing kit for narcotics and dangerous and other drugs |
Cited By (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4066512A (en) * | 1974-09-06 | 1978-01-03 | Millipore Corporation | Biologically active membrane material |
US4083638A (en) * | 1975-08-27 | 1978-04-11 | Technicon Instruments Corporation | Cuvette and method of use |
US4070263A (en) * | 1975-09-16 | 1978-01-24 | Degremont | Apparatus for the measurement of the mobility of colloids in an electric field |
US4035150A (en) * | 1975-09-24 | 1977-07-12 | The United States Of America As Represented By The Secretary Of The Department Of Health, Education And Welfare | Test for occult blood in an emulsified aqueous/organic system |
DE2616952A1 (en) * | 1976-04-17 | 1977-11-03 | Zander Rolf | Analysis of blood or breath - using e.g. pyrocatechol and Mohr's salt for oxygen, diluted blood for carbon monoxide and fuchsin and hydrazine hydrate for carbon dioxide |
US4227810A (en) * | 1978-01-26 | 1980-10-14 | Technicon Instruments Corporation | Cuvette and method of use |
US4420254A (en) * | 1980-02-19 | 1983-12-13 | Smeaton John R | Cuvet and associated apparatus and method for using same |
EP0047176A2 (en) * | 1980-09-02 | 1982-03-10 | Warner-Lambert Company | Device suitable for sampling blood |
EP0047176A3 (en) * | 1980-09-02 | 1982-04-28 | Warner-Lambert Company | Device suitable for sampling blood |
US4391780A (en) * | 1981-07-06 | 1983-07-05 | Beckman Instruments, Inc. | Container for sample testing |
US4654197A (en) * | 1983-10-18 | 1987-03-31 | Aktiebolaget Leo | Cuvette for sampling and analysis |
US4871683A (en) * | 1985-04-18 | 1989-10-03 | Beckman Instruments, Inc. | Apparatus and method using a new reaction capsule |
US5073341A (en) * | 1985-08-21 | 1991-12-17 | Biotope, Inc. | Devices for conducting specific binding assays |
US4636361A (en) * | 1985-11-18 | 1987-01-13 | Miklos Marian | Device for separating liquid fractions |
FR2593920A1 (en) * | 1986-02-04 | 1987-08-07 | Orion Yhtymae Oy | LIQUID ANALYSIS METHOD AND ANALYSIS ELEMENT FOR USE IN THE PROCESS |
US4865813A (en) * | 1986-07-07 | 1989-09-12 | Leon Luis P | Disposable analytical device |
EP0254203A3 (en) * | 1986-07-22 | 1988-10-05 | Personal Diagnostics, Inc. | Optical analyzer |
EP0254203A2 (en) * | 1986-07-22 | 1988-01-27 | Personal Diagnostics, Inc. | Optical analyzer |
US5462052A (en) * | 1987-01-30 | 1995-10-31 | Minnesota Mining And Manufacturing Co. | Apparatus and method for use in measuring a compositional parameter of blood |
US4851195A (en) * | 1987-08-17 | 1989-07-25 | Pfizer Hospital Products Group, Inc. | Carbon dioxide sensor |
US6121055A (en) * | 1987-12-01 | 2000-09-19 | Roche Diagnostics Corporation | Methods and devices for conducting specific binding assays |
FR2624609A1 (en) * | 1987-12-09 | 1989-06-16 | Draegerwerk Ag | COLORIMETRIC TEST TUBE |
US5188803A (en) * | 1988-12-01 | 1993-02-23 | Abbott Laboratories | Device for preparing a medical sensor for use |
EP0695937A1 (en) * | 1988-12-22 | 1996-02-07 | Radiometer Medical A/S | Photometric method for the in vitro determination of a gas in a blood sample |
EP0404527A2 (en) * | 1989-01-10 | 1990-12-27 | La Mina Ltd. | Modular fluid sample preparation assembly |
EP0404527A3 (en) * | 1989-01-10 | 1991-07-17 | La Mina Ltd. | Modular fluid sample preparation assembly |
US5175016A (en) * | 1990-03-20 | 1992-12-29 | Minnesota Mining And Manufacturing Company | Method for making gas sensing element |
US5284775A (en) * | 1990-03-20 | 1994-02-08 | Minnesota Mining And Manufacturing Company | Gas sensing element and method for making same |
US5081042A (en) * | 1990-03-20 | 1992-01-14 | Minnesota Mining And Manufacturing Company | Ionic component sensor and method for making and using same |
US5081041A (en) * | 1990-04-03 | 1992-01-14 | Minnesota Mining And Manufacturing Company | Ionic component sensor and method for making and using same |
US5322800A (en) * | 1991-06-26 | 1994-06-21 | The United States Of America As Represented By The Secretary Of The Interior | Method and device for safely preserving aqueous field samples using acid or base |
EP0555109A3 (en) * | 1992-01-06 | 1995-08-09 | Microbyx Corp | Multifunction collecting device and method for body fluids |
EP0555109A2 (en) * | 1992-01-06 | 1993-08-11 | Microbyx Corporation | Multifunction collecting device and method for body fluids |
US5490971A (en) * | 1994-10-25 | 1996-02-13 | Sippican, Inc. | Chemical detector |
US7785466B1 (en) * | 1996-04-10 | 2010-08-31 | Smith James C | Membrane filtered pipette tip |
WO1998006496A1 (en) * | 1996-08-12 | 1998-02-19 | Hampshire Advisory And Technical Services Limited | Diagnostic test container |
US6506346B1 (en) | 1996-08-12 | 2003-01-14 | Hampshire Advisory And Technical Services Limited | Diagnostic test container and method of sampling |
WO1998008594A3 (en) * | 1996-08-26 | 1998-05-07 | Max Planck Gesellschaft | Method for producing microporous elements, the microporous elements thus produced and uses thereof |
US20080169184A1 (en) * | 1997-04-17 | 2008-07-17 | Cytonix | Device having regions of differing affinities to fluid, methods of making such devices, and methods of using such devices |
US20090035759A1 (en) * | 1997-04-17 | 2009-02-05 | Cytonix | Method and device for detecting the presence of a single target nucleic acid in a sample |
US7972778B2 (en) | 1997-04-17 | 2011-07-05 | Applied Biosystems, Llc | Method for detecting the presence of a single target nucleic acid in a sample |
US8257925B2 (en) | 1997-04-17 | 2012-09-04 | Applied Biosystems, Llc | Method for detecting the presence of a single target nucleic acid in a sample |
US8278071B2 (en) | 1997-04-17 | 2012-10-02 | Applied Biosystems, Llc | Method for detecting the presence of a single target nucleic acid in a sample |
US8551698B2 (en) | 1997-04-17 | 2013-10-08 | Applied Biosystems, Llc | Method of loading sample into a microfluidic device |
US8563275B2 (en) | 1997-04-17 | 2013-10-22 | Applied Biosystems, Llc | Method and device for detecting the presence of a single target nucleic acid in a sample |
US8822183B2 (en) | 1997-04-17 | 2014-09-02 | Applied Biosystems, Llc | Device for amplifying target nucleic acid |
US20080213766A1 (en) * | 1997-04-17 | 2008-09-04 | Cytonix | Method and device for detecting the presence of a single target nucleic acid in samples |
US8859204B2 (en) | 1997-04-17 | 2014-10-14 | Applied Biosystems, Llc | Method for detecting the presence of a target nucleic acid sequence in a sample |
US20080171324A1 (en) * | 1997-04-17 | 2008-07-17 | Cytonix | Method for quantifying number of molecules of target nucleic acid contained in a sample |
US20040171055A1 (en) * | 1997-04-17 | 2004-09-02 | Cytonix Corporation | Method for detecting the presence of a single target nucleic acid in a sample |
US20080171326A1 (en) * | 1997-04-17 | 2008-07-17 | Cytonix | Method and device for detecting the presence of a single target nucleic acid in a sample |
US20080171327A1 (en) * | 1997-04-17 | 2008-07-17 | Cytonix | Method and device for detecting the presence of a single target nucleic acid in a sample |
US9506105B2 (en) | 1997-04-17 | 2016-11-29 | Applied Biosystems, Llc | Device and method for amplifying target nucleic acid |
US20080171382A1 (en) * | 1997-04-17 | 2008-07-17 | Cytonix | Method and device for detecting the presence of a single target nucleic acid in a sample |
US20080138815A1 (en) * | 1997-04-17 | 2008-06-12 | Cytonix | Method of loading sample into a microfluidic device |
US20080153091A1 (en) * | 1997-04-17 | 2008-06-26 | Cytonix | Method and device for detecting the presence of target nucleic acids in a sample, and microfluidic device for use in such methods |
US20080160525A1 (en) * | 1997-04-17 | 2008-07-03 | Cytonix | Method and device for detecting the presence of a single target nucleic acid in a sample |
US8067159B2 (en) | 1997-04-17 | 2011-11-29 | Applied Biosystems, Llc | Methods of detecting amplified product |
US20080171380A1 (en) * | 1997-04-17 | 2008-07-17 | Cytomix | Microfluidic assembly with reagent |
US20080171325A1 (en) * | 1997-04-17 | 2008-07-17 | Cytonix | Method and device for detecting the presence of a single target nucleic acid in a sample |
US6451260B1 (en) | 1997-08-26 | 2002-09-17 | Dyax Corp. | Method for producing microporous elements, the microporous elements thus produced and uses thereof |
FR2768632A1 (en) * | 1997-09-23 | 1999-03-26 | Andre Cohen | Self-sampling and assay device |
US6184040B1 (en) | 1998-02-12 | 2001-02-06 | Polaroid Corporation | Diagnostic assay system and method |
US6495373B1 (en) | 1998-10-14 | 2002-12-17 | Polaroid Corporation | Method and apparatus for performing diagnostic tests |
US20040081586A1 (en) * | 1998-10-14 | 2004-04-29 | Polaroid Corporation | Method and apparatus for performing diagnostic testing |
US6331715B1 (en) | 1998-10-14 | 2001-12-18 | Polaroid Corporation | Diagnostic assay system and method having a luminescent readout signal |
US6555060B1 (en) | 1998-10-14 | 2003-04-29 | Polaroid Corporation | Apparatus for performing diagnostic testing |
US6432358B2 (en) | 1999-01-27 | 2002-08-13 | Polaroid Corporation | Diagnostic assay device |
US6328930B1 (en) | 1999-02-11 | 2001-12-11 | Polaroid Corporation | Apparatus for performing diagnostic testing |
US20100272613A1 (en) * | 2000-10-16 | 2010-10-28 | Foss Analytical Ab | Filtration container |
US8388911B2 (en) * | 2000-10-16 | 2013-03-05 | Foss Analytical Ab | Filtration container |
US6641782B1 (en) | 2000-11-15 | 2003-11-04 | Polaroid Corporation | Apparatus for performing diagnostic testing |
US7141430B2 (en) * | 2000-11-17 | 2006-11-28 | Yuch Ping Hsieh | Microrespirometer and associated methods |
US20020061596A1 (en) * | 2000-11-17 | 2002-05-23 | Hsieh Yuch Ping | Microrespirometer and associated methods |
US20040241874A1 (en) * | 2001-08-31 | 2004-12-02 | Mohamed Abdel-Rehim | Method and apparatus for sample preparation using solid phase microextraction |
GB2392854A (en) * | 2002-09-14 | 2004-03-17 | Secr Defence | Apparatus for isolating a filtrate from a sample |
US20090317300A1 (en) * | 2003-01-16 | 2009-12-24 | Prohaska Otto J | Method and apparatus for determining a concentration of a component in an unknown mixture |
EP1618847A2 (en) * | 2004-07-21 | 2006-01-25 | Idexx Laboratories, Inc. | Tissue homogenizer device and method |
EP1618847A3 (en) * | 2004-07-21 | 2006-06-14 | Idexx Laboratories, Inc. | Tissue homogenizer device and method |
US20090215998A1 (en) * | 2005-11-21 | 2009-08-27 | Barofoid, Inc. | Devices and methods for high-pressure refolding of proteins |
US10814065B2 (en) | 2007-01-25 | 2020-10-27 | DePuy Synthes Products, Inc. | Syringe with energy delivery component and method of use |
US9895494B2 (en) * | 2007-01-25 | 2018-02-20 | DePuy Synthes Products, Inc. | Syringe with energy delivery component and method of use |
US20080183122A1 (en) * | 2007-01-25 | 2008-07-31 | Depuy Spine, Inc. | Syringe with energy delivery component and method of use |
US9839378B2 (en) | 2007-02-06 | 2017-12-12 | Medtronic Minimed, Inc. | Optical systems and methods for ratiometric measurement of blood glucose concentration |
US8838195B2 (en) | 2007-02-06 | 2014-09-16 | Medtronic Minimed, Inc. | Optical systems and methods for ratiometric measurement of blood glucose concentration |
US8738107B2 (en) | 2007-05-10 | 2014-05-27 | Medtronic Minimed, Inc. | Equilibrium non-consuming fluorescence sensor for real time intravascular glucose measurement |
US8535262B2 (en) | 2007-11-21 | 2013-09-17 | Glumetrics, Inc. | Use of an equilibrium intravascular sensor to achieve tight glycemic control |
US8088097B2 (en) | 2007-11-21 | 2012-01-03 | Glumetrics, Inc. | Use of an equilibrium intravascular sensor to achieve tight glycemic control |
US8979790B2 (en) | 2007-11-21 | 2015-03-17 | Medtronic Minimed, Inc. | Use of an equilibrium sensor to monitor glucose concentration |
US20090177143A1 (en) * | 2007-11-21 | 2009-07-09 | Markle William H | Use of an equilibrium intravascular sensor to achieve tight glycemic control |
US20090264719A1 (en) * | 2008-04-17 | 2009-10-22 | Glumetrics, Inc. | Sensor for percutaneous intravascular deployment without an indwelling cannula |
US8512245B2 (en) | 2008-04-17 | 2013-08-20 | Glumetrics, Inc. | Sensor for percutaneous intravascular deployment without an indwelling cannula |
US8900875B2 (en) * | 2008-12-16 | 2014-12-02 | Shell Oil Company | Device for evaluating a heat exchange fluid |
US20110318843A1 (en) * | 2008-12-16 | 2011-12-29 | Abraham Robert De Kraker | Device for evaluating a heat exchange fluid |
US8715589B2 (en) | 2009-09-30 | 2014-05-06 | Medtronic Minimed, Inc. | Sensors with thromboresistant coating |
US20110077477A1 (en) * | 2009-09-30 | 2011-03-31 | Glumetrics, Inc. | Sensors with thromboresistant coating |
US8467843B2 (en) | 2009-11-04 | 2013-06-18 | Glumetrics, Inc. | Optical sensor configuration for ratiometric correction of blood glucose measurement |
US8700115B2 (en) | 2009-11-04 | 2014-04-15 | Glumetrics, Inc. | Optical sensor configuration for ratiometric correction of glucose measurement |
US20110105866A1 (en) * | 2009-11-04 | 2011-05-05 | Glumetrics, Inc. | Optical sensor configuration for ratiometric correction of blood glucose measurement |
US20110152658A1 (en) * | 2009-12-17 | 2011-06-23 | Glumetrics, Inc. | Identification of aberrant measurements of in vivo glucose concentration using temperature |
US20120085152A1 (en) * | 2010-10-07 | 2012-04-12 | Funk Donald A | Fluid analysis tool |
EP2607883A1 (en) * | 2011-12-19 | 2013-06-26 | F. Hoffmann-La Roche AG | System for photometric measurement of liquids |
US20160258850A1 (en) * | 2015-03-06 | 2016-09-08 | Horizon Technology, Inc. | Water Separation From Solvent |
US10293276B2 (en) * | 2015-03-06 | 2019-05-21 | Horizon Technology, Inc. | Water separation from solvent |
US20180373050A1 (en) * | 2017-06-27 | 2018-12-27 | The Boeing Company | Curved Beam Replicator |
US10901228B2 (en) * | 2017-06-27 | 2021-01-26 | The Boeing Company | Cavity with curved beam replicator and method of determining a characteristic of a medium therein |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3865548A (en) | Analytical apparatus and process | |
US5844686A (en) | System for pipetting and photometrically evaluating samples | |
EP0534945B1 (en) | A METHOD OF PHOTOMETRIC $i(IN VITRO) DETERMINATION OF THE CONTENT OF AN ANALYTE IN A SAMPLE OF WHOLE BLOOD | |
Skeggs Jr et al. | Multiple automatic sequential analysis | |
US7632462B2 (en) | Assay system | |
EP1921439B1 (en) | Measuring device, measuring instrument and method of measuring | |
US20060228259A1 (en) | Joint-diagnostic spectroscopic and biosensor meter | |
US5837199A (en) | Measurement apparatus for analyzing fluids | |
GB1007224A (en) | Method and apparatus for performing multiple analysis | |
US4762798A (en) | Device and method for determining a characteristic of a fluid sample | |
US4635467A (en) | Calibration cell for the calibration of gaseous or non-gaseous fluid constituent sensors | |
JP2019090829A (en) | Optical measurement cuvette having sample chambers | |
EA032436B1 (en) | MECHANICAL WASHING AND MEASURING DEVICE FOR PERFORMING ANALYSIS | |
US3463615A (en) | Method for treating eluate from a chromatographic column | |
US3666631A (en) | Bacterial contamination monitor | |
US4249826A (en) | Method and device for analyzing and measuring out constituents of solid or liquid media | |
US4283141A (en) | Sample cell and stirrer for spectrophotometry | |
US2748074A (en) | Electrophoretic microcell | |
TW200307127A (en) | Body-fluid censoring unit | |
US20200166450A1 (en) | Sensor Element and Use of Same | |
US3841765A (en) | Microdiffusion cell | |
JP2601727Y2 (en) | Liquid analyzer | |
US20250044252A1 (en) | Sensor assembly with wicking member for liquid junction wet up | |
CN213482063U (en) | Bubble detecting system in liquid path of full-automatic chemiluminescence immunoassay analyzer | |
US3453082A (en) | Automatic analysis of gases |