[go: up one dir, main page]

US3847384A - Apparatus for collating sheet like elements - Google Patents

Apparatus for collating sheet like elements Download PDF

Info

Publication number
US3847384A
US3847384A US00328135A US32813573A US3847384A US 3847384 A US3847384 A US 3847384A US 00328135 A US00328135 A US 00328135A US 32813573 A US32813573 A US 32813573A US 3847384 A US3847384 A US 3847384A
Authority
US
United States
Prior art keywords
elements
sheet
conveyor
spaced
linear speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00328135A
Inventor
E Bethke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FL Smithe Machine Co Inc
Original Assignee
FL Smithe Machine Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FL Smithe Machine Co Inc filed Critical FL Smithe Machine Co Inc
Priority to US00328135A priority Critical patent/US3847384A/en
Priority to CA188,988A priority patent/CA1002075A/en
Priority to GB37574A priority patent/GB1435461A/en
Priority to DE2403838A priority patent/DE2403838A1/en
Priority to JP49012147A priority patent/JPS49105680A/ja
Priority to US05/494,191 priority patent/US3974748A/en
Application granted granted Critical
Publication of US3847384A publication Critical patent/US3847384A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/66Advancing articles in overlapping streams
    • B65H29/6609Advancing articles in overlapping streams forming an overlapping stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/38Delivering or advancing articles from machines; Advancing articles to or into piles by movable piling or advancing arms, frames, plates, or like members with which the articles are maintained in face contact
    • B65H29/40Members rotated about an axis perpendicular to direction of article movement, e.g. star-wheels formed by S-shaped members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/44Moving, forwarding, guiding material
    • B65H2301/447Moving, forwarding, guiding material transferring material between transport devices
    • B65H2301/4474Pair of cooperating moving elements as rollers, belts forming nip into which material is transported
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/44Moving, forwarding, guiding material
    • B65H2301/447Moving, forwarding, guiding material transferring material between transport devices
    • B65H2301/44765Rotary transport devices with compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/19Specific article or web
    • B65H2701/1916Envelopes and articles of mail

Definitions

  • ABSTRACT Apparatus for collating sheet like elements that ineludes initially feeding the sheet elements by a first conveyor in a spaced tandem relation at a high linear velocity into a spiral carrier.
  • the spiral carrier ineludes a plurality of areuate fingers having spiral slots formed therebetween.
  • the sheets traveling at the relatively high rate of speed are projected individually into the slots of the spiral carrier also traveling at a relatively high linear speed.
  • the stop plate directs the sheets radially outwardly from the slots of the spiral carrier into frictional engagement between the endless belts of a second conveyor.
  • the second conveyor traveling at a substantially lower linear speed feeds the sheets in a continuous stream exposing only a marginal edge between adjacent elements for completion of further production operations.
  • the sheet like elements are then supplied by the second conveyor in underlapped relation to a separator conveyor and are discharged therefrom onto a transfer conveyor.
  • 2,782,898 provides a mechanism for collating envelope blanks by transferring the blanks from a fast conveying means onto a slow conveying means positioned at a lower lever to thereby prevent interference between the slow advancing trailing edge of a blank with the faster advancing leading edge of the next following blank.
  • a resilient paddlewheel disposed betweenthe conveying means engages the blanks as they leave the bight of the faster conveyor providing continuous travel of the blanks at thefast linear speed to the lower plane wherethe blanks are engaged by the slowconveyor.
  • the paddle wheel maintains the traveling blank at the fast linear speed until the forward edge of the blank engages the rollers of the slow conveyor. The trailing edge of the slow moving blank then falls clear of the fast.
  • US. Pat. No. 1,681,162 discloses a delivery apparafold-laying rollers are arranged to contact the advance edge of the paper being carried downwardly and toward the left of the fly device. Contact with the paper edge moves the paper out of engagement with the fly device projecting the paper forwardly in advance of the position which the paper would otherwise have had upon the pile of papers on the belt.
  • the kicker device changes the position of one paper without changing the position of adjacent papers.
  • the kicker is actuated twice at each rotation of the cam to thereby change the position of one paper for every fifty papers received upon the belts to provide for separation of the papers in unit piles.
  • the spaced out envelope blanks are transferred with the bottom flap leading and the seal flap trailing from a first suction drum to a second suction drum where the fold along the bottom flap is initiated as the blank advances over the drum.
  • a continuously rotating pressure roller picks up the bottom flap of the blank released by the second suction drum and folds it over the body portion of the blank.
  • Suction means on the second drum holds the leading margin of the seal flap portion to the drum while the body portion is folded over onto the seal flap portion. Thereafter, the folded blanks are discharged individually by the second drum at a relatively high initial rate of travel upwardly into the spiral slots of a comparatively slow revolving slotted carrier.
  • the slotted carrier includes a plurality of overlapping curved slots which spiral inwardly in the direction of rotation of the carrier.
  • the blanks are decelerated in the slots and are arrested by a stationary horizontal table which extends secant to the slotted carrier.
  • the table acts to eject the blanks from the slots as the carrier continues tus for printing presses arranged to separate newspapers into unit piles coming from a press.
  • the printed papers are initially folded and collected for delivery be tween a pair of overlying fold-laying rollers which direct successively moving folded papers downwardly along the face of a plurality of guide bars.
  • the papers advancing downwardly along the faces of the guide bars are discharged into slots between adjacent arms of a plurality of rotary fly devices.
  • the rotary fly devices rotate in a clockwise direction and deliver successive to rotate downwardly. In this manner, all the blanks are stacked so that the lower edges are pressedagainst the table with the blanks arranged in a fully overlapped re lation. As each envelope is added to the stack, the stack is pushed along the table by the carrier to the extent of the thickness of the added blank.
  • the slotted carrier is not arranged to discharge the blanks from the surface of the table; consequently, the blanks come to a complete rest in a stacked relation.
  • US. Pat. No. 1,266,737 describes an apparatus for directing a plurality of folded sheets in a first direction and then a plurality of folded sheets in another direction. The two bundles of sheets are then arranged into one pile in which the folded edges face in opposite directions.
  • folded sheets are delivered by a pair papers one at a time upon the delivery belts providing of cylinders between two guides in a continuous stream.
  • a pair of fans are positioned adjacent each other with their fan blades arranged tangent to the opening'between the guides.
  • the fans are supported for oscillating motion on shafts which arepositioned in the side frame at different levels so that the blades of one fan may be arranged to receive folded sheets discharged from between the guides while the blades of the other fan are withdrawn from the path of the sheets.
  • the blades of one fan receive the folded sheets and deliver them to a conveyor in stacked relation, the succeeding sheet positioned upon the preceding sheet. Then after a predetermined number of sheets have been stacked, the first fan is withdrawn from the guide path and the other fan is oscillate'd into position to receive the sheets. The second fan revolving in the reverse direction of the first fan, delivers the sheets in reverse position upon the stack of sheets positioned beneath the blades of the first fan. When the desired number of sheets have been stacked, an elevator removes the bundle for further processing.
  • the hereinafter described invention relates to apparatus for collating a plurality of sheet like elements that are initially conveyed in spaced tandem relation at a first preselected linear speed.
  • a first conveying means transfers the separated sheet elements at a high linear speed into a collating mechanism.
  • the collating mechanism includes a pair of spaced spiral carriers each having a plurality of slots arranged to receive the sheet elements as they are discharged from, the fast moving conveyor.
  • the spiral carrier receives the sheet elements in the receiving slots and the sheets are then directed inwardly along the spiral path of the slots.
  • the bottom edges of the sheets contact a stop plate interposed between the spaced spiral carriers.
  • the stop plates arrest the circular motion of the sheets and direct the sheets radially outwardly in the slots.
  • the sheets positioned in the slots are deceleratedand are discharged fromthe slots in underlapped relation as they are positioned on a secondconveying means.
  • the linear speed of the second conveying means is sufficiently lower than the linear speed of the first conveying means so that the sheet elements are arranged in underlapped relation to expose a marginal edge between adjacent sheets.
  • sealing adhesive is continuously applied to the exposed edge by'an adhesive applicator.
  • the sheets are conveyed through the endless belts of the second conveying means into frictional engagement with a separating conveying means in underlapped relation. Thereafter, the separating conveying means discharges the underlapped sheet elements to a transfer conveying means.
  • the separating conveying means includes an endless belt that conveys the sheets around an enlarged drum arranged to travel at sufficiently greater linear speed than the second conveying means so that the sheets may be separated from their underlapped relation and positioned on the transfer conveying means for subsequent feeding to a drier section before the sheets are suitably stacked for further operations.
  • the principal object of this invention is to provide an apparatus for collating sheet elements in underlapped relation by efficiently decelerating the separated sheets.
  • Another object of this invention is to provide an apparatus for collating sheet elements that maintains proper alignmentof the sheets as they are being fed from a fast moving conveyor into a spiral carrier and thereafter to a slow moving conveyor.
  • Another object of this invention is toprovide an apparatus for collating sheet elements that positions successive elements in underlapped relation without requiring relative movement of one element with respect to another element having a different linear speed.
  • Still another object of this invention is to provide an apparatus for collating formed envelopes having window patches secured thereto so that successive envelopes are lapped for application of gumming adhesive without having thefollowing edge of a preceding envelope hooking thewindow patch of the succeeding envelope.
  • FIG. 1 is a schematic illustration in side elevation of the apparatus for collating sheet elements.
  • FIG. 2 is a diagrammatic view illustrating the sequential steps of forming an envelope and arranging the formed envelopes in underlapped relation for application of the sealing adhesive.
  • FIG. 3 is an enlarged schematic view in elevation of the collator section according to the invention.
  • FIG. 4 is a fragmentary view in cross'section illustrating the collator section according to the invention.
  • collating apparatus is intended to designate apparatus for rearranging blanks which are advanced at high speed in spaced relation into a slow moving band of blanks arrangedin lapped relation.
  • FIG. 1 there is illustrated the apparatus for collating sheet like elements generally designated by the numeral 10 having a feed conveyor 11 from which the sheet like elements are initially supplied at a high preselected linear speed in spaced tandem relation for collating in an orderly arrangement and for additional production operations thereafter.
  • the sheet like elements are hereinafter referred to as folded envelopes or envelopes 12; however, it should be understood that envelope blanks, folded or unfolded as shown in FIG. 2, or any other type of sheet like material also may be supplied by the feed conveyor 11 to the collating apparatus 10.
  • FIG. I of the illustrated embodiment of this invention a plurality of folded envelopes 12 are supplied in spaced tandem relation by the feed conveyor 11 after completion of preceding operations such as cutting, patching, folding, etc. in station 14.
  • the feed conveyor 11 includes a plurality of suitable pressure rollers 15 arranged in abutting overlying relation and supported in the envelope machine side member (not shown).
  • the pressure rollers 15 revolving at a preselected high peripheral velocity continually advance the envelopes 12 at a fixed high linear speed along the feedline 13 in the direction indicated by the arrow and into frictional engagement with a backing roll 16.
  • the friction type backing roll 16 is supported by a pivot arm 18 that is, in turn, pivotally connected by pin 20 to the machine side member.
  • the backing roll 16 abuts end pressure roller 21 and is driven at the same peripheral velocity thereof.
  • the guide plate 22 extends downwardly from a location adjacent the nip between the end pressure roller 21 and the backing roll B6.
  • the fast moving envelopes 112 are directed downwardly through the nip between the end pressure roller 21 and the backing roll 16 and along the guide plate 22 into the collating mechanism generally designated by the numeral '25.
  • the collating mechanism 25 includes a spiral carrier 26 having a plur'alityof spaced slotted discs or a single cylindrical member with a plurality of spaced slots therein mounted on the shaft 28 as illustrated in FIG. 4..
  • the discs 26 have a plurality of pockets or slots 36 formed therein which are shaped as segments of a spiral.
  • the particular configuration of the arcuate fingers 32 that form the slots 30 therebetween is such that there is a substantial opening in the slot adjacent the periphery of the discs 26.
  • Each of the plurality of the slotted discs 26 is retained from relative movement on the shaft 28 journaled in the side frames 29 and 31 by a collar 34 nonrotatably mounted on shaft 28 by a set screw 36 threadably engaged to the shaft 28.
  • the shoulder portion 38 of the collar 34 frictionally abuts the central bore 40 of the disc 26 for rotational movement therewith.
  • the collar 34 is, in turn, retained from rotating on the shaft 28 by the hub 42 suitably clamped onto the shaft 28.
  • Conventional drive gears are carried on the shaft 28 for imparting rotation thereto at a preselected speed by a suitable power source.
  • the configuration of the arcuate fingers 32 of the disc 26 is such that a substantial opening is provided in the slots 36 to receive the envelopes l2 traveling at the relatively high speed.
  • the discs 26 are driven by the gearing 35 at a preselected peripheral velocity which may be greater than the velocity of the pressure rollers 15.
  • the configuration of each of the plurality of spiral carriers 26 is such that there are provided substantially more slots than are necessary to receive the envelopes l2 supplied to the spiral carrier 26 from the feed conveyor Ill.
  • the slot configuration is such that it will enter the next successive slot and the next finished envelope the follows may enter the next successive slot, or it may miss one or two successive slots before entering a slot so positioned to receive the envelope as it is propelled by the end pressure roller 21 and the backing roll 16 along the guide plate 22.
  • the envelopes 12 contained in the slots 30 travel inwardly along the spiral path thereof and contact the stop plates 48 interposed between the spaced spiral carriers 26, as illustrated in FIG. 4.
  • the stop plate 48 is supported by a pivot arm 56 displaced transversely to the longitudinal axis of the shaft 28 so that the surface of the stop plate 48 is in juxtaposition to the carrier 26.
  • the pivot arm 56 is connected to the end portion of lever 52 by pin 54.
  • the lever 52 is nonrotatably mounted at its other end portion to a shaft 56 nonrotatably journaled in the machine side frames 29 and 31.
  • the envelopes 12 are projected into the slots 30 from the feed conveyor 111 with the envelope bottom edge 57 (shown in FIG. 2) foremost and decelerate as they follow the inwardly spiral path underlapping the preceding slot.
  • the downward circular motion of the envelopes 12 positioned in the slots 30 is arrested by the stop plate 48.
  • the envelopes 12 are directed along the horizontal surface of the stop plate 48 and radially outwardly in the slots 30.
  • the envelopes 12 are discharged from the slots 30 at a continually decelerating rate of speed onto a pair of substantially slower moving conveyor belts 58, only one of which is shown.
  • the conveyor belt 58 is arranged in a position adjacent the periphery of the spiral carrier 26 and along a vertical plane substantially at a right angle to a horizontal plate passing through the transverse axis of the shaft 28. However, it should be understood that conveyor belt 58 may be positioned at any other suitable location adjacent the periphery of the spiral carrier 26.
  • the conveyor belt 58 is reeved around end pulley 60 and the hub 62 of end pulley 64 wit takeup pulley 70 positioned therebetween.
  • the hub 62 is seated by a key 66 in a keyway of the shaft 68 for rotation therewith.
  • Each of the conveyor belts 58 has a conveying reach 72 which is in abutting relation with overlying conveying reach 74 of each of the pair of endless belts 76, only one of which is shown.
  • the endless belt 76 is reeved about end pulleys 78 and 80 and has takeup pulley 82.
  • Suitable drive means (not shown) are provided to propel the conveyor belt 58 and the endless belt 76 at substantially the same preselected linear speed.
  • a tension control pulley 84 is suitably arranged to maintain a preselected tension in the endless belt 76.
  • the spiral carrier 26 transfers without interruption the separated envelopes l2 from the fast moving conveyor ll into frictional engagement between the slow moving conveyor belts 58 and 76.
  • the bottom edge 57 of a preceding envelope 12 is discharged from the slot 36 by the stop plate 48 and thrust into frictional engagement between the slow moving belts 58 and 76.
  • the envelopes l2 discharged separately fromthe spiral carrier 26 are arranged in underlapped relation having a narrow margin exposed be tween adjacent seal flaps when received by the belts 58 and 76; therefore, no relative movement takes place between adjacent envelopes which would tend to skew the-envelopes advancing in a continuous stream between the belts 53 and 76.
  • the stream of envelopes pass in underlapped relation between the conveying reaches 72 and 74 into frictional engagement with an adhesive applicator roller 33 arranged between the pairs of belts 53 and 76.
  • the roller 88 is provided to transfer a selected amount of adhesive onto the exposed margin of the closely adjacent envelope seal flaps.
  • the periphery of the applicator roller 88 is continuously supplied with seal flap adhesive by a transfer roller 90 positioned in abutting relation with an adhesive roller 92.
  • a continuous supply of the sealing adhesive is delivered from the reservoir 94 to the adhesive roller 92 and, in turn, to the applicator roller 88.
  • the envelopes 12 are conveyed between the conveyor belts 58 and 76 in underlapped relation with the seal flap portions 85 of the envelopes aligned closely adjacent each other as illustrated in FIG. 2.
  • the band of envelopes are discharged from between the endless belts 58 and 76 into contact with a guide plate 95 and are thereafter introduced in the same underlapped relation onto endless belt 96 that conveys the envelopes 12 around the periphery of the enlarged drum 98.
  • the endless belt 96 is reeved about the drum 98 and end pulleys 100 and 102 and maintained at a preselected tension by takeup pulleys 104 and 106.
  • a series of carriage rolls 108 are pivotally secured to shafts 110 by levers 112 and are urged against the endless belt 96 around the periphery of the drum 98 by suitable resilient means.
  • Guide bars 114 extend forwardly from the carriage roll shafts 110 and maintain the underlapped envelopes 12 in abutting relation with the. endless belt 96 as the envelopes are conveyed around the circumference of the drum 98.
  • the drum 98 has a shaft 115 suitably mounted in the envelope machine frame and is driven at a preselected linear speed which'is greater than the linear speed of the endless belts 58 and 76 so that the envelopes are separated, increasing the area of the marginal edges exposed between adjacent envelopes.
  • the underlapped envelopes 12 are then fed into frictional engagement between the endless belts 96 and 116 after they have been conveyed around the circumference of the drum 98 by the cooperating guide bars 114 and the endless belt 96.
  • the endless belt 116 is reeved about suitable end pulleys 118 and 120 and takeup pulley 122 in abutting relationship with an overlying conveying reach 124 of endless belt 96.
  • the envelopes 12 are discharged from between the endless belts 96 and 116 and are supplied therefrom to the transfer conveyor 126 located in the envelope machine drier section generally designated by the numeral 128, as illustrated in FIG. 1.
  • the conveyor 126 is formed from endless tapes 130 and 132 that are reeved around suitable end pulleys 134 and 136 and have takeup devices 138.
  • the endless tapes 130 and 132 of the conveyor 126 are preferably driven at a slightly higher speed than the endless belts 116 and 96 to thereby increase the speed between the bottom edges 57 of adjacent envelopes as they are engaged by the conveyor '126.
  • the abrupt increase in linear speed separates the seal flap portion 85 of adjacent envelopes to prevent the envelopes 12 from adhering to each other after drying in section 128.
  • Suitable drive means 140 is provided to propel the endless tapes 130 and 132 for conveying the envelopes 12 through the drier section 128 and for discharging thereafter onto a suitable stacking device (not shown). It should be understood that other suitable drive means may be provided to propel the endless tapes 130 and 132, and the schematic belt drives illustrated in FIG. 1 are exemplary only.
  • Apparatus for collating sheet like elements comprising,
  • first conveyor means for conveying a plurality of sheet like elements in spaced tandem relation at a first preselected linear speed
  • second conveyor means for conveying said sheet like elements in lapped relation as a continuous stream for further processing at a second preselected linear speed, said second conveyor means spaced from said first conveyor means
  • collator mechanism positioned adjacent the discharge end of said first conveyor means, said collator mechanism including a plurality of circular spaced disc members having spaced arcuate slots therein, said slots having a configuration of a segment of a spiral,
  • stop plate means arranged between said plurality of spaced disc members, said stop plate means terminating within the periphery of said circular spaced disc members, and
  • said collator mechanism arranged to receive said sheet like elements in spaced tandem ralation from said first conveyor means at a first preselected linear speed and said stop plate means arranged to arrest the circular movement of said sheet like elements and move said sheet like elements radially outwardly in said spaced arcuate slots and along the surface of said stop means at a decelerating linear speed to discharge said sheet like elements in lapped relation as a continuous stream at a reduced linear velocity to said second conveyor means for further processing.
  • spaced arcuate slots arranged to direct said moving sheet like elements inwardly along the circular path in the spirals of said spaced arcuate slots
  • said collator mechanism positioned below the discharge end of said first conveyor means.
  • said arcuate slots in said disc members have an enlarged open end adjacent the periphery of said disc member for receiving said sheet like elements.
  • said second conveyor means includes endless conveyor belts positioned in abutting, overlying relation,
  • one of said endless conveyor belts positioned closely adjacent to said stop plate means with a portion of said conveyor belt within the periphery of said circular disc members.
  • endless conveyor belts arranged to frictionally engage the sheet like elements abutting said stop plate means in lapped relation from said spaced arcuate slots
  • separator conveying means for separating said plurality of sheet like elements having preselected linear of spaced arcuate slots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Making Paper Articles (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)

Abstract

Apparatus for collating sheet like elements that includes initially feeding the sheet elements by a first conveyor in a spaced tandem relation at a high linear velocity into a spiral carrier. The spiral carrier includes a plurality of arcuate fingers having spiral slots formed therebetween. The sheets traveling at the relatively high rate of speed are projected individually into the slots of the spiral carrier also traveling at a relatively high linear speed. As each of the sheets follows the inwardly spiraling path of the slots, their linear velocity is substantially reduced so that when the sheet edges contact a stop plate, they are decelerated from the initial high linear speed. The stop plate directs the sheets radially outwardly from the slots of the spiral carrier into frictional engagement between the endless belts of a second conveyor. The second conveyor traveling at a substantially lower linear speed feeds the sheets in a continuous stream exposing only a marginal edge between adjacent elements for completion of further production operations. The sheet like elements are then supplied by the second conveyor in underlapped relation to a separator conveyor and are discharged therefrom onto a transfer conveyor.

Description

ltl States atent r191 ethlte 1 Nov, 12, 11974 [75] Inventor: Erwin Eetlnlte, Erkelenz-Keyenberg,
Germany [73] Assignee: F. L. Smithe Machine Company,
llnc., Duneansville, Pa.
[22] Filed: Jan. 30, 1973 [21] Appl. No.: 328,135
[52] US. Cl 271/80, 93/62, 271/2, 271/187, 271/202 [51] int. Cl B6511 29/66 [58] Field of Search 271/2, 69, 70, 80, 76, 271/151, 187., 202; 93/62 [56] References Cited UNITED STATES PATENTS 2,172,364 9/1939 De Manna 3,096,977 7/1963 Winkler et a1. 3,116,668 1/1964 Novick 3,630,125 5/1970 3,650,527 3/1972 Helm 271/76 Primary Examiner-Richard A. Schacher Assistant Examiner-Bruee H. Stoner, Jr.
[57] ABSTRACT Apparatus for collating sheet like elements that ineludes initially feeding the sheet elements by a first conveyor in a spaced tandem relation at a high linear velocity into a spiral carrier. The spiral carrier ineludes a plurality of areuate fingers having spiral slots formed therebetween. The sheets traveling at the relatively high rate of speed are projected individually into the slots of the spiral carrier also traveling at a relatively high linear speed. As each of the sheets follows the inwardly spiraling path of the slots, their linear velocity is substantially reduced so that when the sheet edges contact a stop plate, they are decelerated from the initial high linear speed. The stop plate directs the sheets radially outwardly from the slots of the spiral carrier into frictional engagement between the endless belts of a second conveyor. The second conveyor traveling at a substantially lower linear speed feeds the sheets in a continuous stream exposing only a marginal edge between adjacent elements for completion of further production operations. The sheet like elements are then supplied by the second conveyor in underlapped relation to a separator conveyor and are discharged therefrom onto a transfer conveyor.
8 Claims, 4 Drawing Figures APPARATUS FOR COLLATTNG SHEET LIKE ELEMENTS BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an apparatus for collating sheet like elements and more particularly to an appara tus for collating envelope blanks in unclerlapped relation for application of sealing adhesive to the marginal edges of the seal flap left exposed between adjacent envelopes.
2. Descriptionof the Prior Art The application of gumming adhesive to a marginal area of the seal flap of an envelope by conveying individual envelope blanks from a fast moving mechanism to a slow moving mechanism for arranging the blanks in a staggered or lapped relation to permit continuous application of a gumming adhesive by a roller applicator to the marginal edges ofthe blanks is known, as illustrated in US. Pat. Nos. 3,141,667; 3,096,977; 2,918,278; 3,479,025 and 3,672,667. US. Pat. No. 2,782,898 provides a mechanism for collating envelope blanks by transferring the blanks from a fast conveying means onto a slow conveying means positioned at a lower lever to thereby prevent interference between the slow advancing trailing edge of a blank with the faster advancing leading edge of the next following blank. A resilient paddlewheel disposed betweenthe conveying means engages the blanks as they leave the bight of the faster conveyor providing continuous travel of the blanks at thefast linear speed to the lower plane wherethe blanks are engaged by the slowconveyor.
The paddle wheel maintains the traveling blank at the fast linear speed until the forward edge of the blank engages the rollers of the slow conveyor. The trailing edge of the slow moving blank then falls clear of the fast.
moving leading edge of the succeeding blank which then is thrust into the feed'bight of the slow conveyor. With this arrangement the succeeding blank overlap moves at a higher relative speed into overlapped relation with the preceding blank subsequently engaged in the feed bight of the slow conveyor. 1n the collating of formed envelopes having window patches secured thereto, relative movement between successive envelopes in lapped relation frequently results in the hooking of window patches by the following edge of the preceding envelope to skew the entire stream of envelopes.
US. Pat. No. 1,681,162 discloses a delivery apparafold-laying rollers are arranged to contact the advance edge of the paper being carried downwardly and toward the left of the fly device. Contact with the paper edge moves the paper out of engagement with the fly device projecting the paper forwardly in advance of the position which the paper would otherwise have had upon the pile of papers on the belt. With this arrangement, the kicker device changes the position of one paper without changing the position of adjacent papers. Preferably, the kicker is actuated twice at each rotation of the cam to thereby change the position of one paper for every fifty papers received upon the belts to provide for separation of the papers in unit piles.
In US. Pat. No. 3,116,668, an envelope folding and delivery mechanism performs the operations of folding and adhering of the bottom flap of an envelope blank,
folding of the dried seal flap, and delivery of the tinished envelopes one by one into stack fonnation. The spaced out envelope blanks are transferred with the bottom flap leading and the seal flap trailing from a first suction drum to a second suction drum where the fold along the bottom flap is initiated as the blank advances over the drum. A continuously rotating pressure roller picks up the bottom flap of the blank released by the second suction drum and folds it over the body portion of the blank. Suction means on the second drum holds the leading margin of the seal flap portion to the drum while the body portion is folded over onto the seal flap portion. Thereafter, the folded blanks are discharged individually by the second drum at a relatively high initial rate of travel upwardly into the spiral slots of a comparatively slow revolving slotted carrier. The slotted carrier includes a plurality of overlapping curved slots which spiral inwardly in the direction of rotation of the carrier. The blanks are decelerated in the slots and are arrested by a stationary horizontal table which extends secant to the slotted carrier. The table acts to eject the blanks from the slots as the carrier continues tus for printing presses arranged to separate newspapers into unit piles coming from a press. The printed papers are initially folded and collected for delivery be tween a pair of overlying fold-laying rollers which direct successively moving folded papers downwardly along the face of a plurality of guide bars. The papers advancing downwardly along the faces of the guide bars are discharged into slots between adjacent arms of a plurality of rotary fly devices. The rotary fly devices rotate in a clockwise direction and deliver successive to rotate downwardly. In this manner, all the blanks are stacked so that the lower edges are pressedagainst the table with the blanks arranged in a fully overlapped re lation. As each envelope is added to the stack, the stack is pushed along the table by the carrier to the extent of the thickness of the added blank. The slotted carrier is not arranged to discharge the blanks from the surface of the table; consequently, the blanks come to a complete rest in a stacked relation.
US. Pat. No. 1,266,737 describes an apparatus for directing a plurality of folded sheets in a first direction and then a plurality of folded sheets in another direction. The two bundles of sheets are then arranged into one pile in which the folded edges face in opposite directions. Initially, folded sheets are delivered by a pair papers one at a time upon the delivery belts providing of cylinders between two guides in a continuous stream. A pair of fans are positioned adjacent each other with their fan blades arranged tangent to the opening'between the guides. The fans are supported for oscillating motion on shafts which arepositioned in the side frame at different levels so that the blades of one fan may be arranged to receive folded sheets discharged from between the guides while the blades of the other fan are withdrawn from the path of the sheets. With this arrangement, the blades of one fan receive the folded sheets and deliver them to a conveyor in stacked relation, the succeeding sheet positioned upon the preceding sheet. Then after a predetermined number of sheets have been stacked, the first fan is withdrawn from the guide path and the other fan is oscillate'd into position to receive the sheets. The second fan revolving in the reverse direction of the first fan, delivers the sheets in reverse position upon the stack of sheets positioned beneath the blades of the first fan. When the desired number of sheets have been stacked, an elevator removes the bundle for further processing.
There is need for an envelope collating mechanism that does not require elaborate apparatus to efficiently reduce the speed'of the individually conveyed envelope blanks for orderly arrangement in lapped relation for further processing. Further, there is need for a collating apparatus which arranges successive blanks in a lapped relation without necessitating relative movement between blanks as they are positioned in lapped relation.
SUMMARY OF THE INVENTION The hereinafter described invention relates to apparatus for collating a plurality of sheet like elements that are initially conveyed in spaced tandem relation at a first preselected linear speed. A first conveying means transfers the separated sheet elements at a high linear speed into a collating mechanism. The collating mechanism includes a pair of spaced spiral carriers each having a plurality of slots arranged to receive the sheet elements as they are discharged from, the fast moving conveyor. The spiral carrier receives the sheet elements in the receiving slots and the sheets are then directed inwardly along the spiral path of the slots. The bottom edges of the sheets contact a stop plate interposed between the spaced spiral carriers. The stop plates arrest the circular motion of the sheets and direct the sheets radially outwardly in the slots. The sheets positioned in the slots are deceleratedand are discharged fromthe slots in underlapped relation as they are positioned on a secondconveying means.
The linear speed of the second conveying means is sufficiently lower than the linear speed of the first conveying means so that the sheet elements are arranged in underlapped relation to expose a marginal edge between adjacent sheets. As the underlapped sheets are fed between the endless belts of the second slower conveying means sealing adhesive is continuously applied to the exposed edge by'an adhesive applicator.
The sheets are conveyed through the endless belts of the second conveying means into frictional engagement with a separating conveying means in underlapped relation. Thereafter, the separating conveying means discharges the underlapped sheet elements to a transfer conveying means. The separating conveying means includes an endless belt that conveys the sheets around an enlarged drum arranged to travel at sufficiently greater linear speed than the second conveying means so that the sheets may be separated from their underlapped relation and positioned on the transfer conveying means for subsequent feeding to a drier section before the sheets are suitably stacked for further operations.
Accordingly, the principal object of this invention is to provide an apparatus for collating sheet elements in underlapped relation by efficiently decelerating the separated sheets.
Another object of this invention is to provide an apparatus for collating sheet elements that maintains proper alignmentof the sheets as they are being fed from a fast moving conveyor into a spiral carrier and thereafter to a slow moving conveyor.
Another object of this invention is toprovide an apparatus for collating sheet elements that positions successive elements in underlapped relation without requiring relative movement of one element with respect to another element having a different linear speed.
Still another object of this invention is to provide an apparatus for collating formed envelopes having window patches secured thereto so that successive envelopes are lapped for application of gumming adhesive without having thefollowing edge of a preceding envelope hooking thewindow patch of the succeeding envelope.
These and other objects of this invention will be more completely disclosed and described in the following specification, the accompanying drawings and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic illustration in side elevation of the apparatus for collating sheet elements.
FIG. 2 is a diagrammatic view illustrating the sequential steps of forming an envelope and arranging the formed envelopes in underlapped relation for application of the sealing adhesive.
FIG. 3 is an enlarged schematic view in elevation of the collator section according to the invention.
FIG. 4 is a fragmentary view in cross'section illustrating the collator section according to the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS The term collating apparatus is intended to designate apparatus for rearranging blanks which are advanced at high speed in spaced relation into a slow moving band of blanks arrangedin lapped relation.
Referring to the drawings, and particularly FIG. 1, there is illustrated the apparatus for collating sheet like elements generally designated by the numeral 10 having a feed conveyor 11 from which the sheet like elements are initially supplied at a high preselected linear speed in spaced tandem relation for collating in an orderly arrangement and for additional production operations thereafter. For purposes of illustration only, the sheet like elements are hereinafter referred to as folded envelopes or envelopes 12; however, it should be understood that envelope blanks, folded or unfolded as shown in FIG. 2, or any other type of sheet like material also may be supplied by the feed conveyor 11 to the collating apparatus 10.
In FIG. I of the illustrated embodiment of this invention a plurality of folded envelopes 12 are supplied in spaced tandem relation by the feed conveyor 11 after completion of preceding operations such as cutting, patching, folding, etc. in station 14. The feed conveyor 11 includes a plurality of suitable pressure rollers 15 arranged in abutting overlying relation and supported in the envelope machine side member (not shown). The pressure rollers 15 revolving at a preselected high peripheral velocity continually advance the envelopes 12 at a fixed high linear speed along the feedline 13 in the direction indicated by the arrow and into frictional engagement with a backing roll 16. The friction type backing roll 16 is supported by a pivot arm 18 that is, in turn, pivotally connected by pin 20 to the machine side member. The backing roll 16 abuts end pressure roller 21 and is driven at the same peripheral velocity thereof. A guide plate 22, as illustrated in FIG. 3, threadably secured to a support disc 23, which is suitably mounted in the machine side member, has an arcuate end portion 24. The guide plate 22 extends downwardly from a location adjacent the nip between the end pressure roller 21 and the backing roll B6.
The fast moving envelopes 112 are directed downwardly through the nip between the end pressure roller 21 and the backing roll 16 and along the guide plate 22 into the collating mechanism generally designated by the numeral '25. The collating mechanism 25 includes a spiral carrier 26 having a plur'alityof spaced slotted discs or a single cylindrical member with a plurality of spaced slots therein mounted on the shaft 28 as illustrated in FIG. 4.. The discs 26 have a plurality of pockets or slots 36 formed therein which are shaped as segments of a spiral. The particular configuration of the arcuate fingers 32 that form the slots 30 therebetween is such that there is a substantial opening in the slot adjacent the periphery of the discs 26. Each of the plurality of the slotted discs 26 is retained from relative movement on the shaft 28 journaled in the side frames 29 and 31 by a collar 34 nonrotatably mounted on shaft 28 by a set screw 36 threadably engaged to the shaft 28. The shoulder portion 38 of the collar 34 frictionally abuts the central bore 40 of the disc 26 for rotational movement therewith. The collar 34 is, in turn, retained from rotating on the shaft 28 by the hub 42 suitably clamped onto the shaft 28. Conventional drive gears are carried on the shaft 28 for imparting rotation thereto at a preselected speed by a suitable power source.
Referring to FIG. 3, the configuration of the arcuate fingers 32 of the disc 26 is such that a substantial opening is provided in the slots 36 to receive the envelopes l2 traveling at the relatively high speed. The discs 26 are driven by the gearing 35 at a preselected peripheral velocity which may be greater than the velocity of the pressure rollers 15. The configuration of each of the plurality of spiral carriers 26 is such that there are provided substantially more slots than are necessary to receive the envelopes l2 supplied to the spiral carrier 26 from the feed conveyor Ill. In the event an envelope misses one slot, the slot configuration is such that it will enter the next successive slot and the next finished envelope the follows may enter the next successive slot, or it may miss one or two successive slots before entering a slot so positioned to receive the envelope as it is propelled by the end pressure roller 21 and the backing roll 16 along the guide plate 22.
As the spiral carrier 26 rotates in the direction indicated by the arrow, the envelopes 12 contained in the slots 30 travel inwardly along the spiral path thereof and contact the stop plates 48 interposed between the spaced spiral carriers 26, as illustrated in FIG. 4. Preferably, the stop plate 48 is supported by a pivot arm 56 displaced transversely to the longitudinal axis of the shaft 28 so that the surface of the stop plate 48 is in juxtaposition to the carrier 26. The pivot arm 56 is connected to the end portion of lever 52 by pin 54. The lever 52 is nonrotatably mounted at its other end portion to a shaft 56 nonrotatably journaled in the machine side frames 29 and 31.
The envelopes 12 are projected into the slots 30 from the feed conveyor 111 with the envelope bottom edge 57 (shown in FIG. 2) foremost and decelerate as they follow the inwardly spiral path underlapping the preceding slot. The downward circular motion of the envelopes 12 positioned in the slots 30 is arrested by the stop plate 48. As the spiral carrier 26 continues to re volve clockwise, the envelopes 12 are directed along the horizontal surface of the stop plate 48 and radially outwardly in the slots 30. The envelopes 12 are discharged from the slots 30 at a continually decelerating rate of speed onto a pair of substantially slower moving conveyor belts 58, only one of which is shown. The conveyor belt 58 is arranged in a position adjacent the periphery of the spiral carrier 26 and along a vertical plane substantially at a right angle to a horizontal plate passing through the transverse axis of the shaft 28. However, it should be understood that conveyor belt 58 may be positioned at any other suitable location adjacent the periphery of the spiral carrier 26.
The conveyor belt 58 is reeved around end pulley 60 and the hub 62 of end pulley 64 wit takeup pulley 70 positioned therebetween. The hub 62 is seated by a key 66 in a keyway of the shaft 68 for rotation therewith. Each of the conveyor belts 58 has a conveying reach 72 which is in abutting relation with overlying conveying reach 74 of each of the pair of endless belts 76, only one of which is shown. The endless belt 76 is reeved about end pulleys 78 and 80 and has takeup pulley 82. Suitable drive means (not shown) are provided to propel the conveyor belt 58 and the endless belt 76 at substantially the same preselected linear speed. A tension control pulley 84 is suitably arranged to maintain a preselected tension in the endless belt 76.
The spiral carrier 26 transfers without interruption the separated envelopes l2 from the fast moving conveyor ll into frictional engagement between the slow moving conveyor belts 58 and 76. With this arrangement, the bottom edge 57 of a preceding envelope 12 is discharged from the slot 36 by the stop plate 48 and thrust into frictional engagement between the slow moving belts 58 and 76. The envelopes l2 discharged separately fromthe spiral carrier 26 are arranged in underlapped relation having a narrow margin exposed be tween adjacent seal flaps when received by the belts 58 and 76; therefore, no relative movement takes place between adjacent envelopes which would tend to skew the-envelopes advancing in a continuous stream between the belts 53 and 76. The stream of envelopes pass in underlapped relation between the conveying reaches 72 and 74 into frictional engagement with an adhesive applicator roller 33 arranged between the pairs of belts 53 and 76. The roller 88 is provided to transfer a selected amount of adhesive onto the exposed margin of the closely adjacent envelope seal flaps. The periphery of the applicator roller 88 is continuously supplied with seal flap adhesive by a transfer roller 90 positioned in abutting relation with an adhesive roller 92. A continuous supply of the sealing adhesive is delivered from the reservoir 94 to the adhesive roller 92 and, in turn, to the applicator roller 88. The envelopes 12 are conveyed between the conveyor belts 58 and 76 in underlapped relation with the seal flap portions 85 of the envelopes aligned closely adjacent each other as illustrated in FIG. 2.
The band of envelopes are discharged from between the endless belts 58 and 76 into contact with a guide plate 95 and are thereafter introduced in the same underlapped relation onto endless belt 96 that conveys the envelopes 12 around the periphery of the enlarged drum 98. The endless belt 96 is reeved about the drum 98 and end pulleys 100 and 102 and maintained at a preselected tension by takeup pulleys 104 and 106. A series of carriage rolls 108 are pivotally secured to shafts 110 by levers 112 and are urged against the endless belt 96 around the periphery of the drum 98 by suitable resilient means. Guide bars 114 extend forwardly from the carriage roll shafts 110 and maintain the underlapped envelopes 12 in abutting relation with the. endless belt 96 as the envelopes are conveyed around the circumference of the drum 98.
The drum 98 has a shaft 115 suitably mounted in the envelope machine frame and is driven at a preselected linear speed which'is greater than the linear speed of the endless belts 58 and 76 so that the envelopes are separated, increasing the area of the marginal edges exposed between adjacent envelopes. The underlapped envelopes 12 are then fed into frictional engagement between the endless belts 96 and 116 after they have been conveyed around the circumference of the drum 98 by the cooperating guide bars 114 and the endless belt 96. The endless belt 116 is reeved about suitable end pulleys 118 and 120 and takeup pulley 122 in abutting relationship with an overlying conveying reach 124 of endless belt 96.
The envelopes 12 are discharged from between the endless belts 96 and 116 and are supplied therefrom to the transfer conveyor 126 located in the envelope machine drier section generally designated by the numeral 128, as illustrated in FIG. 1. The conveyor 126 is formed from endless tapes 130 and 132 that are reeved around suitable end pulleys 134 and 136 and have takeup devices 138. The endless tapes 130 and 132 of the conveyor 126 are preferably driven at a slightly higher speed than the endless belts 116 and 96 to thereby increase the speed between the bottom edges 57 of adjacent envelopes as they are engaged by the conveyor '126. The abrupt increase in linear speed separates the seal flap portion 85 of adjacent envelopes to prevent the envelopes 12 from adhering to each other after drying in section 128. Suitable drive means 140, schematically illustrated in FIG. 1, is provided to propel the endless tapes 130 and 132 for conveying the envelopes 12 through the drier section 128 and for discharging thereafter onto a suitable stacking device (not shown). It should be understood that other suitable drive means may be provided to propel the endless tapes 130 and 132, and the schematic belt drives illustrated in FIG. 1 are exemplary only.
According to the provisions of the patent statutes, I have explained the principle, preferred construction and mode of operation of my invention and have illustrated and described what I now consider to represent its best embodiments. However, I desire to have it understood that, within the scope of the appended claims, the invention may be practiced otherwise than as specifically illustrated and described.
I claim: 1. Apparatus for collating sheet like elements comprising,
first conveyor means for conveying a plurality of sheet like elements in spaced tandem relation at a first preselected linear speed, second conveyor means for conveying said sheet like elements in lapped relation as a continuous stream for further processing at a second preselected linear speed, said second conveyor means spaced from said first conveyor means,
a collator mechanism positioned adjacent the discharge end of said first conveyor means, said collator mechanism including a plurality of circular spaced disc members having spaced arcuate slots therein, said slots having a configuration of a segment of a spiral,
said plurality of spaced disc members coaxially mounted on a shaft for rotational movement therewith at a preselected peripheral velocity,
means for rotating said plurality of spaced disc members at a higher speed than said first preselected linear speed of said first conveyor means,
stop plate means arranged between said plurality of spaced disc members, said stop plate means terminating within the periphery of said circular spaced disc members, and
said collator mechanism arranged to receive said sheet like elements in spaced tandem ralation from said first conveyor means at a first preselected linear speed and said stop plate means arranged to arrest the circular movement of said sheet like elements and move said sheet like elements radially outwardly in said spaced arcuate slots and along the surface of said stop means at a decelerating linear speed to discharge said sheet like elements in lapped relation as a continuous stream at a reduced linear velocity to said second conveyor means for further processing.
2. Apparatus for collating sheet like elements as set forth in claim 1 in which,
said spaced arcuate slots arranged to direct said moving sheet like elements inwardly along the circular path in the spirals of said spaced arcuate slots,
said second conveyor means positioned below and at an angle to said first conveyor means,
said collator mechanism positioned below the discharge end of said first conveyor means.
3. Apparatus for collating sheet like elements as set forth in claim 1 in which,
said arcuate slots in said disc members have an enlarged open end adjacent the periphery of said disc member for receiving said sheet like elements.
4. Apparatus for collating sheet like elements as set forth in claim 1 in which,
said second conveyor means includes endless conveyor belts positioned in abutting, overlying relation,
one of said endless conveyor belts positioned closely adjacent to said stop plate means with a portion of said conveyor belt within the periphery of said circular disc members.
5. Apparatus for collating sheet like elements as set forth in claim 4 in which,
said endless conveyor belts of said second conveyor means driven at said second preselected linear speed less than said first preselected linear speed of said first conveyor means,
said endless conveyor belts arranged to frictionally engage the sheet like elements abutting said stop plate means in lapped relation from said spaced arcuate slots,
said sheet like elements discharged from said spaced arcuate slots are frictionally engaged by said endless conveyor belts in a continuous stream arranged in lapped relation and moving uniformly at said second preselected linear speed. 6. Apparatus for collating sheet like elements as set forth in claim in which,
said first conveyor means positioned substantially horizontal to the axis of rotation of said collator mechanism, said endless conveyor belts of said second conveyor means are positioned substantially perpendicular to the axis of rotation of said collator mechanism with a portion of said endless conveyor belts within the periphery of said circular disc members. 7. Apparatus for collating sheet like elements as set forth in claim 1 which includes,
separator conveying means for separating said plurality of sheet like elements having preselected linear of spaced arcuate slots.

Claims (8)

1. Apparatus for collating sheet like elements comprising, first conveyor means for conveying a plurality of sheet like elements in spaced tandem relation at a first preselected linear speed, second conveyor means for conveying said sheet like elements in lapped relation as a continuous stream for further processing at a second preselected linear speed, said second conveyor means spaced from said first conveyor means, a collator mechanism positioned adjacent the discharge end of said first conveyor means, said collator mechanism including a plurality of circular spaced disc members having spaced arcuate slots therein, said slots having a configuration of a segment of a spiral, said plurality of spaced disc members coaxially mounted on a shaft for rotational movement therewith at a preselected peripheral velocity, means for rotating said plurality of spaced disc members at a higher speed than said first preselected linear speed of said first conveyor means, stop plate means arranged between said plurality of spaced disc members, said stop plate means terminating within the periphery of said circular spaced disc members, and said collator mechanism arranged to receive said sheet like elements in spaced tandem ralation from said first conveyor means at a first preselected linear speed and said stop plate means arranged to arrest the circular movement of said sheet like elements and move said sheet like elements radially outwardly in said spaced arcuate slots and along the surface of said stop means at a decelerating linear speed to discharge said sheet like elements in lapped relation as a continuous stream at a reduced linear velocity to said second conveyor means for further processing.
2. Apparatus for collating sheet like elements as set forth in claim 1 in which, said spaced arcuate slots arranged to direct said moving sheet like elements inwardly along the circular path in the spirals of said spaced arcuate slots, said second conveyor means positioned below and at an angle to said first conveyor means, said collator mechanism positioned below the discharge end of said first conveyor means.
3. Apparatus for collating sheet like elements as set forth in claim 1 in which, said arcuate slots in said disc members have an enlarged open end adjacent the periphery of said disc member for receiving said sheet like elements.
4. Apparatus for collating sheet like elements as set forth in claim 1 in which, said second conveyor means includEs endless conveyor belts positioned in abutting, overlying relation, one of said endless conveyor belts positioned closely adjacent to said stop plate means with a portion of said conveyor belt within the periphery of said circular disc members.
5. Apparatus for collating sheet like elements as set forth in claim 4 in which, said endless conveyor belts of said second conveyor means driven at said second preselected linear speed less than said first preselected linear speed of said first conveyor means, said endless conveyor belts arranged to frictionally engage the sheet like elements abutting said stop plate means in lapped relation from said spaced arcuate slots, said sheet like elements discharged from said spaced arcuate slots are frictionally engaged by said endless conveyor belts in a continuous stream arranged in lapped relation and moving uniformly at said second preselected linear speed.
6. Apparatus for collating sheet like elements as set forth in claim 5 in which, said first conveyor means positioned substantially horizontal to the axis of rotation of said collator mechanism, said endless conveyor belts of said second conveyor means are positioned substantially perpendicular to the axis of rotation of said collator mechanism with a portion of said endless conveyor belts within the periphery of said circular disc members.
7. Apparatus for collating sheet like elements as set forth in claim 1 which includes, separator conveying means for separating said plurality of sheet like elements having preselected linear speed greater than the linear speed of said second conveyor means, and transfer conveying means for receiving said plurality of sheet like elements from said separator conveying means and transferring said elements, said transfer conveying means being positioned adjacent said separator conveying means.
8. Apparatus for collating sheet like elements as set forth in claim 1 which includes, fixed arcuate guide means adjacent the end of said first conveyor means, said fixed arcuate guide means arranged to guide each of said sheet like elements discharged from said first conveyor means into one of said plurality of spaced arcuate slots.
US00328135A 1973-01-30 1973-01-30 Apparatus for collating sheet like elements Expired - Lifetime US3847384A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US00328135A US3847384A (en) 1973-01-30 1973-01-30 Apparatus for collating sheet like elements
CA188,988A CA1002075A (en) 1973-01-30 1973-12-27 Apparatus for collating sheet like elements
GB37574A GB1435461A (en) 1973-01-30 1974-01-04 Apparatus for effecting the overlapping of a plurality of sheet-like elements
DE2403838A DE2403838A1 (en) 1973-01-30 1974-01-28 DEVICE FOR ASSEMBLING OR COLLATION OF FLAT OBJECTS, ESPECIALLY LETTER ENVELOPES
JP49012147A JPS49105680A (en) 1973-01-30 1974-01-29
US05/494,191 US3974748A (en) 1973-01-30 1974-08-02 Apparatus for collating sheet like elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00328135A US3847384A (en) 1973-01-30 1973-01-30 Apparatus for collating sheet like elements

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/494,191 Division US3974748A (en) 1973-01-30 1974-08-02 Apparatus for collating sheet like elements

Publications (1)

Publication Number Publication Date
US3847384A true US3847384A (en) 1974-11-12

Family

ID=23279674

Family Applications (1)

Application Number Title Priority Date Filing Date
US00328135A Expired - Lifetime US3847384A (en) 1973-01-30 1973-01-30 Apparatus for collating sheet like elements

Country Status (5)

Country Link
US (1) US3847384A (en)
JP (1) JPS49105680A (en)
CA (1) CA1002075A (en)
DE (1) DE2403838A1 (en)
GB (1) GB1435461A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088314A (en) * 1977-04-22 1978-05-09 Eastman Kodak Company Synchronous stacking device
US4126948A (en) * 1975-07-31 1978-11-28 Ga-Vehren Engineering Company Envelope drying machine
US4385756A (en) * 1980-08-29 1983-05-31 Xerox Corporation Sheet inverting and stacking apparatus
US4420153A (en) * 1980-09-19 1983-12-13 Brandt, Inc. Document handling counting and examining device incorporating high speed rotary gating means
US4431177A (en) * 1980-08-29 1984-02-14 Xerox Corporation Sheet offsetting and registering apparatus
US4690396A (en) * 1985-04-27 1987-09-01 Albert-Frankenthal Ag Delivery device
WO1992002442A1 (en) * 1990-08-06 1992-02-20 Gutov Sergei K Device for discharging of printed newspapers from folding apparatus of roll-rotary machine
US5125885A (en) * 1990-09-28 1992-06-30 National Service Industries, Inc. Bonded envelope stack and method and apparatus for making same
US5421700A (en) * 1993-04-29 1995-06-06 Tension Envelope Corporation Envelope flap up pick and place apparatus and method
USD419183S (en) * 1998-03-16 2000-01-18 Stouffer Industries, Inc. Locking hub

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3123406C2 (en) * 1981-06-12 1985-12-12 Albert-Frankenthal Ag, 6710 Frankenthal Device for product alignment
GB8711499D0 (en) * 1987-05-15 1987-06-17 De La Rue Syst Sheet handling apparatus
DE10241448A1 (en) * 2002-09-06 2004-03-18 Bahmüller Maschinenbau und Präzisionswerkzeug GmbH Folding machine with increased throughput

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2172364A (en) * 1937-02-12 1939-09-12 Hoe & Co R Delivery mechanism
US3096977A (en) * 1959-12-05 1963-07-09 Berkley Machine Co Apparatus for squamiform lapping of blanks
US3116668A (en) * 1960-11-15 1964-01-07 Smithe Machine Co Inc F L Rotary envelope machine
US3630125A (en) * 1970-05-14 1971-12-28 Smithe Machine Co Inc F L Apparatus for regulating the seal gum width on envelope and bag machinery
US3650527A (en) * 1970-03-16 1972-03-21 Smithe Machine Co Inc F L Apparatus for feeding a band of overlapped blanks to a separator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2172364A (en) * 1937-02-12 1939-09-12 Hoe & Co R Delivery mechanism
US3096977A (en) * 1959-12-05 1963-07-09 Berkley Machine Co Apparatus for squamiform lapping of blanks
US3116668A (en) * 1960-11-15 1964-01-07 Smithe Machine Co Inc F L Rotary envelope machine
US3650527A (en) * 1970-03-16 1972-03-21 Smithe Machine Co Inc F L Apparatus for feeding a band of overlapped blanks to a separator
US3630125A (en) * 1970-05-14 1971-12-28 Smithe Machine Co Inc F L Apparatus for regulating the seal gum width on envelope and bag machinery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126948A (en) * 1975-07-31 1978-11-28 Ga-Vehren Engineering Company Envelope drying machine
US4088314A (en) * 1977-04-22 1978-05-09 Eastman Kodak Company Synchronous stacking device
US4385756A (en) * 1980-08-29 1983-05-31 Xerox Corporation Sheet inverting and stacking apparatus
US4431177A (en) * 1980-08-29 1984-02-14 Xerox Corporation Sheet offsetting and registering apparatus
US4420153A (en) * 1980-09-19 1983-12-13 Brandt, Inc. Document handling counting and examining device incorporating high speed rotary gating means
US4690396A (en) * 1985-04-27 1987-09-01 Albert-Frankenthal Ag Delivery device
WO1992002442A1 (en) * 1990-08-06 1992-02-20 Gutov Sergei K Device for discharging of printed newspapers from folding apparatus of roll-rotary machine
US5261656A (en) * 1990-08-06 1993-11-16 Gutov Sergei K Device for receiving printed products from a product folding apparatus of a revolvingly driven machine
US5125885A (en) * 1990-09-28 1992-06-30 National Service Industries, Inc. Bonded envelope stack and method and apparatus for making same
US5421700A (en) * 1993-04-29 1995-06-06 Tension Envelope Corporation Envelope flap up pick and place apparatus and method
US5464316A (en) * 1993-04-29 1995-11-07 Tension Envelope Corporation Envelope accumulation, batching and compression apparatus and method
USD419183S (en) * 1998-03-16 2000-01-18 Stouffer Industries, Inc. Locking hub

Also Published As

Publication number Publication date
CA1002075A (en) 1976-12-21
GB1435461A (en) 1976-05-12
JPS49105680A (en) 1974-10-07
DE2403838A1 (en) 1974-08-01

Similar Documents

Publication Publication Date Title
US3847384A (en) Apparatus for collating sheet like elements
US3253384A (en) Envelope filling apparatus
US2772880A (en) Sheet stacker
US4604851A (en) Method and apparatus for the intermediate storage of printed products arriving in an imbricated product formation such as newspapers, periodicals and the like
US4073487A (en) Discharging and stacking device for flat articles
US3291482A (en) Mechanism for feeding envelopes, cards or other sheets from under a pile into a machine for their processing
US2278188A (en) Method of and apparatus for delivering sheets
US4428574A (en) Paper delivery apparatus for use in rotary printing presses
US2172364A (en) Delivery mechanism
US3502321A (en) Sheet delivery and collating machine
US3380353A (en) Apparatus for producing lined envelopes
EP0212565A2 (en) Apparatus for folding and delivering sheet material
US3477323A (en) Sheet stacking apparatus
US4106762A (en) High speed insert handling mechanism and method
EP0013476B1 (en) Method of and apparatus for slowing sheets carried by high-speed conveyors before deposit on stationary platforms or low-speed conveyors
US4479643A (en) Method and apparatus for transferring newspapers from pockets to an overlapped stream
JP2516640Y2 (en) Paper dodger
JPH06191014A (en) Device and method for transporting printing product in rotary press
US3974748A (en) Apparatus for collating sheet like elements
US4266654A (en) Method and apparatus for separating groups of workpieces being conveyed in superposed overlapping formation
US3228273A (en) Sheet delivery mechanism
JPH11139649A (en) Device to deliver section from folding machine to conveyor of printing machine
US3200719A (en) Envelope attaching machine
US3741085A (en) Apparatus for forming a continuous assembly of envelopes or the like
US3650527A (en) Apparatus for feeding a band of overlapped blanks to a separator