[go: up one dir, main page]

US3844827A - Process for modifying fibrous substrates with fluorinated terpolymers - Google Patents

Process for modifying fibrous substrates with fluorinated terpolymers Download PDF

Info

Publication number
US3844827A
US3844827A US32258873A US3844827A US 3844827 A US3844827 A US 3844827A US 32258873 A US32258873 A US 32258873A US 3844827 A US3844827 A US 3844827A
Authority
US
United States
Prior art keywords
copolymer
soil
copolymers
fabric
hme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
W Wasley
A Pittmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Agriculture USDA
Original Assignee
US Department of Agriculture USDA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US3706594D priority Critical patent/US3706594A/en
Priority to GB798072A priority patent/GB1372121A/en
Priority to FR7205697A priority patent/FR2126233B1/fr
Priority to DE19722208020 priority patent/DE2208020A1/en
Priority to US3773728D priority patent/US3773728A/en
Priority to FR7236086A priority patent/FR2155694A5/fr
Application filed by US Department of Agriculture USDA filed Critical US Department of Agriculture USDA
Priority to US05322588 priority patent/US3844827A/en
Priority to US38064873 priority patent/US3876589A/en
Priority to US05/453,912 priority patent/US4029867A/en
Priority to US49981174 priority patent/US3901998A/en
Application granted granted Critical
Publication of US3844827A publication Critical patent/US3844827A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/347Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated ethers, acetals, hemiacetals, ketones or aldehydes
    • D06M15/353Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated ethers, acetals, hemiacetals, ketones or aldehydes containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/12Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F16/14Monomers containing only one unsaturated aliphatic radical
    • C08F16/28Monomers containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/267Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having amino or quaternary ammonium groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/285Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31884Regenerated or modified cellulose
    • Y10T428/31891Where addition polymer is an ester or halide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/3188Next to cellulosic
    • Y10T428/31895Paper or wood
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31909Next to second addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2279Coating or impregnation improves soil repellency, soil release, or anti- soil redeposition qualities of fabric
    • Y10T442/2287Fluorocarbon containing

Definitions

  • This invention relates to and has among its objects the provision of novel polymers which are particularly useful for imparting soil-repellent and soil-release properties to fibrous materials.
  • the objects of the invention also include procedures for treating fibrous materials with the polymers, and the treated materials as new articles of manufacture. Further objects of the invention will be evident from the following description wherein parts and percentages are by weight unless otherwise specified.
  • soil repellency that is, the ability of the textile to resist staining when it is contacted with gravy, butter, grease, or other oily substances.
  • soil releasability Assuming that a textile has become stained, this property concerns the ease or difficulty of washing out the stains.
  • the soil repellency and soil releasability characteristics of a given textile depend on the kind of fiber from which it is made and the kind of finishing agent which has been applied to it. Natural fibers such as cotton and wool exhibit little soil repellency, but on the other hand when they do become soiled they are readily cleaned, that is, they exhibit a high level of soil releasability.
  • a particular object of the invention is to provide the means for alleviating the problems outlined above.
  • polymers which confer oilrepellence on fabrics so that they strongly resist staining e.g., by oily foods or the like.
  • these polymers confer soil-release properties on the fabric to which they are applied. This means that if the fabric does become stained, the stains can be readily washed out.
  • Another advantage is that these polymers confer anti-static properties on the fabric to which they are applied.
  • the polymers having this desirable combination of properties are copolymerization products of at least two different monomers, one imparting oleophobic properties, the other hydrophilic properties.
  • the oleophobic monomer is an ether of the structure wherein R represents H or CH and R; represents a fluoroalkyl radical containing a terminal perfluoroalkyl group having three to 18 perfluorinated carbon atoms.
  • This fluoroalkyl group can be of an open-chain (acyclic) configuration, straight or branched. Alternatively, it may be of a cyclic structure such as a perfluorocyclohexyl group, or it may be a combination of acyclic and cyclic structures. Generally, the acyclic structures are preferred.
  • methallyl ethers that is, the compounds wherein R is CH -since they yield copolymers of especially high molecular weight.
  • R a preferred embodiment thereof is a radical of the category wherein n is an integer from O to 7.
  • Such radicals contain a fluorine group in alpha position, that is, on the secondary carbon (marked by an asterisk in the formula above) which is joined to the ether oxygen.
  • the unique structure of these radicals provides the advantage that they confer a greater degree of oleophobicity for a given number of fluorinated carbon atoms than with other arrangements of fluorinated carbon atoms, for example, those in straight chains.
  • the hydrophilic monomer in accordance with the invention is maleic anhydride
  • the copolymers resulting from the copolymerization of the aforesaid monomers contain recurring units of the structure wherein R and R; have the meanings given above, and recurring units of the structure In general, the copolymers will contain the aforesaid units in a lzl mole ratio.
  • copolymers of the invention have a carbon-to-carbon backbone, plus pendant R, groups which provide oleophobicity, and plus pendant anhydride groups which provide hydrophilic (soil-release) properties.
  • a special feature of the invention is that it provides polymers of high molecular weight even though one of the comonomers (the oleophobic monomer) has an allyl structure. Normally, allyl monomers polymerize with difficulty and give products of low molecular weight. See Laible, Chemical Reviews, Vol. 58, pages 807-843, especially pages 807, 808, and BI l.
  • the copolymers of the invention are prepared by conventional polymerization methods using bulk, solution, or emulsion techniques.
  • the reactants may be copolymerized under the influence of heat, light, or a combination of heat and light.
  • the use of polymerization catalysts is preferred and for this purpose one may use peroxides such as benzoyl peroxide acetyl peroxide, lauroyl peroxide, di-tert-butyl peroxide, or an azo initiator such as 04,01-azo-diisobutyronitrile or a,a-azobis (a,'y-dimethylvalerontrile).
  • fluorinated solvents for example, benzotrifluoride, l,3-bis-(trifluoromethyl)-benzene, trichlorotrifluoroethane, or the like.
  • other (non-fluorinated) solvents such as benzene, toluene, xylene, etc. may be used.
  • temperatures of about 50-l00C. are generally used.
  • the copolymer products range from viscous liquids to semisolid or even solid materials.
  • the proportions of the monomers may be varied. In general, however, the monomers are used in approximately equimolar proportions.
  • copolymers of the invention encompass those which are prepared by copolymerization of the oleophobic and hydrophilic monomers as above described plus one or more monomers which are different from both of the basic reactants.
  • the additional monomer may be employed to modify the mechanical properties of the copolymer without materially affecting its ability to provide soil repellency and soil releasability.
  • Monomers which may be used to increase the adherence of the copolymer to fibrous substrates include acryloyl or methacryloyl chloride, N-methylol acrylamide, allyl acrylate, etc. In the event an additional monomer is added to the copolymerization system, it is employed in a proportion up to about 1 mole per mole of the oleophobic monomer.
  • the copolymers of the invention are useful in many areas, for example, as adhesives and coatings, textile sizes, binders and thickeners, etc.
  • the high molecularweight copolymers are useful for preparing filaments, films, foils, and shaped articles of all kinds.
  • the copolymers are particularly useful for the treatment of fibrous materials, such as textiles, in order to enhance their oil-, water-, and soil-repellency and concomitantly to make it easier to remove stains if they should become stained.
  • these improvements are attained without detriment to other properties of the fibrous substrate. For example, the treatment does not impair the color, hand, or strength of the substrate. Another point is that the improvements are durable; they are retained despite laundering and dry cleaning of the treated materials.
  • a typical procedure involves dissolving the copolymer in an inert volatile solvent, e.g., benzotrifiuoride, l,3-bistrifluoromethyl benzene, trichlorotrifluoroethane, tetrahydrofuran, or acetone.
  • an inert volatile solvent e.g., benzotrifiuoride, l,3-bistrifluoromethyl benzene, trichlorotrifluoroethane, tetrahydrofuran, or acetone.
  • the resulting solution is applied to the substrate by immersion, brushing, spraying, flooding, or the like.
  • conventional dipand-pad techniques are preferred.
  • the concentration of copolymer in solution the amount of copolymer deposited on the material may be varied.
  • the amount of copolymer may be from 0.l to 20 percent, based on the weight of fibrous material but it is obvious that higher or lower proportions can be used if desired.
  • the amount of copolymer is limited to about 0.1 to 5 percent to attain the desired repellency and soil release property without interference with the hand of the textile.
  • the copolymer is applied to the substrate, using water as the carrier for the copolymer. This is accomplished by forming an aqueous emulsion of the copolymer, using a conventional emulsifying agent to maintain the copolymer uniformly dispersed in the liquid. The emulsion is applied in any of the ways previously described and the amount of copolymer applied to the substrate is likewise as above.
  • the treated substrate is subjected to a curing operation in order to bond the polymer to the fibers.
  • the fibrous material is heated in the range of about 50 to 100C. for a period of 5 to 60 minutes.
  • the carrier from the copolymer solution or emulsion may be evaporated in a separate step prior to curing or it may simply be evaporated during the curing operation.
  • a dispersion i.e., solution, emulsion, or suspension
  • an inert liquid carrier the copolymer in accordance with the invention
  • the additional substance which may be, for instance, a mothproofing agent, fungicide, coloring material, optical bleach, size, etc.
  • the dispersion is applied and the treated fibrous material cured as disclosed previously.
  • the inert liquid carrier may be water or any of the solvents described above.
  • the invention may be utilized for improving the properties of all types of fibrous materials, for example, paper; cotton; linen; hemp; jute; ramie; sisal; cellulose acetate rayons; cellulose acetate-butyrate rayons; saponified acetate rayons; viscose rayons; cuprammonium rayons; ethyl cellulose; fibers prepared from amylose, algins, or pectins; wool; silk; animal hair; mohair; leather; fur; regenerated protein fibers prepared from casein, soybean, peanut proteins, zein, gluten, egg albumin, collagen, or keratins; nylon; polyurethane fibers; polyester fibers such as polyethylene terephthalate; polyacrylonitrile-based fibers; or fibers of inorganic origin such as asbestos, glass, etc.
  • fibrous materials for example, paper; cotton; linen; hemp; jute; ramie; sisal; cellulose acetate rayons; cellulose acetate-butyrate rayon
  • the invention may be applied to textile materials which are in the form of bulk fibers, filaments, yarns, threads, slivers, roving, top, webbing, cord, tape, woven or knitted fabrics, felts, or other nonwoven fabrics, garments or garment parts.
  • Oil Repellency The test used was the AATCC Test Method 1 l8l966T. Ratings are from 0 to 8 with the Composition 65:35 "Nujol” and n-hexadccane, by vol. n-hexadecane n-tctradecane n-dodecane n-decane n-octane n-hcptane
  • HAE heptafluoroisopropyl Allyl Ether
  • HME/MA and HAE/MA Copolymers A series of copolymers of heptafluoroisopropyl methallyl ether (HME) and maleic anhydride (MA), and copolymers of heptafluoroisopropyl allyl ether (HAE) and maleic anhydride (MA) were prepared using the following typical procedure.
  • HME, 2.4 g. (0.01 mole) and MA, 0.98 g. (0.01 mole) were placed in a thick-walled glass tube, with 5 ml. of benzene containing 0.0242 g. (1 X mole) of benzoyl peroxide.
  • the tube was sealed with a rubber cap and the mixture was frozen in Dry lce-acetone.
  • the tube was evacuated, thawed, filled with nitrogen, then re-frozen, etc.--the entire sequence being repeated three times. Finally, the tube was sealed under nitrogen at atmospheric pressure and then heated overnight in a steam bath. The product was removed from the tube and heated for 4-6 hours in a vacuum oven at 80 C. to remove solvent and any unreacted monomers.
  • the yield of copolymer was 2.9 g. (86 percent conversion).
  • the molecular weight (determined on a membrane osmometer) was 81,500.
  • the copolymer was soluble in acetone, dimethylformamide, and tetrahydrofuran; slightly soluble in benzotrifluoride; insoluble in benzene and Freon l 13.
  • EXAMPLE 8 if A E Preparation of Copolymer PAE/MA PAE (prepared as described in EXAMPLE 4 and maleic anhydride were copolymerized as in EXAMPLE 6, using equimolar quantities of PAE and MA and a 5 mole percent of benzoyl peroxide as the catalyst.
  • EX- AMPLE 9 Application of the Copolymers and Terpolymers to Textiles Solutions were made containing l and 2 percent of the copolymers and terpolymers previously described, using acetone as the solvent. These solutions were applied to fabrics, using the following technique.
  • a swatch of the fabric was wet out with the solution, squeezed in a roller to remove excess liquid, air-dried, and cured in an oven at C. for 10 minutes.
  • the treated fabrics and samples of the untreated fabric were then tested for oil repellency initially and after application of a standard laundering technique with a detergent-water formulation in a household-type washing machine.
  • EXAMPLE 6 Preparation of Copolymer PME/MA PME (prepared as described in EXAMPLE 3) was copolymerized with maleic anhydride, using the follow- Two different fabrics were used in meteus+a 100 percent wool fabric and a 50/50 wool and cotton blend fabric.
  • R is a hydrocarbon radical such as methyl, ethyl, butyl, hexyl, cyclohexyl, octyl, dodecyl, benzyl, phenyl, or the like, or an alkoxyalkyl radical such as (OCH CH ),,OR' wherein n is an integer from 1 to 12.
  • the modified copolymers of the invention are those which contain recurring units of the structure wherein R and R; are as described above, plus recurring units of the structure wherein X and Y are each a member of the group consisting of carboxyl, carboxylate, ester, and amide radicals.
  • the modified copolymers are useful for the same purposes as the unmodified copolymers, for example, to provide fibrous materials with both soil-repellent and soil-release qualities.
  • the modified copolymers are applied to fibrous materials in the same manner as previously described.
  • EXAMPLE 10 A sample of an HME/MA copolymer (intrinsic viscosity 0.15) was dissolved in a small quantity of acetone and hydrolyzed to the phenolphthalein endpoint by adding 0.5 N NaOH. This produced a copolymer containing repeating units of the structures c irg cent aqueous solution of the polymeric sodium salt described above. After removal of excess liquid in a squeeze roll, the fabrics were dried in air, and cured at 100 C. for 10 minutes.
  • Samples of the treated and untreated fabrics were evaluated for soil release properties, using AATCC test 130-1969.
  • Nujol mineral oil is applied to the fabric, then the fabric is subjected to washing with an aqueous detergent formulation.
  • the residual stain on the fabric is then rated on a scale of to l by comparison with a standard stain-release replica which displays a graduated series of stains. The highest number, 5, indicates complete stain removal while the lowest, 1, indicates virtually no stain removal.
  • EXAMPLE l 2 A sample of an HME/MA copolymer (intrinsic viscosity 0.15) was dissolved in acetonitrile. An excess of n-butyl amine was added, and the reaction mixture refluxed overnight. Then, solvent and excess were removed under vacuum, leaving a residue of a clear, slightly yellow solid modified copolymer which contained recurring units of the structures I l on Infrared analysis indicated that the structure shown above had been obtained.
  • EXAMPLE 13 A sample of a copolymer of maleic anhydride and heptafluoroisopropyl allyl ether (molecular weight 5,600, intrinsic viscosity 0.03), was dissolved in dimethylformamide to make a 5 percent solution. A sample of wool flannel weighing approximately 1 gram was immersed in 10 ml. of this solution and heated at 1 10 C. for minutes. The treated wool sample was removed from the solution and washed three times with acetone, in which the copolymer is very soluble. After drying, the weight increase of the fabric was 3 percent, indicating that the copolymer had been grafted to the wool.
  • a process for modifying a fibrous substrate which comprises:
  • the aforesaid units a, b, and c being in a molar ratio ll.
  • the said terpolymer being deposited as a dispersion in a volatile liquid carrier;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

Soil-repellent and soil-release properties are imparted to fibrous materials by depositing on them terpolymers of fluoroalkyl allyl (or methallyl) ethers and maleic anhydride, and then curing the treated material at 50*-150* C.

Description

United States Patent 1191 Wasley et al.
PROCESS FOR MODIFYING FIBROUS SUBSTRATES WITH FLUORINATED TERPOLYMERS Inventors: William L. Wasley, Berkeley; Allen G. Pittmann, El Cerrito, both of Calif.
The United States of America as represented by the Secretary of Agriculture, Washington, DC.
Filed: Jan. 10, 1973 Appl. No.: 322,588
Related US. Application Data Division of Ser. No. 271,894, July 14, 1972, Pat. No. 3,773,728, which is a division of Ser. No. 117,777, Feb. 22, 1971, Pat. No. 3,706,594.
Assignee:
us. 0. ..117/139.5 A, 117/13s.s F, 117/138.8N,
17/13s.s UA, 117/145, 117/161 11F,"
117/161 UT 1111. c1. C08j 1/44 Field of Search 117/139.5 A, 141, 161 UP, 117/143 A, 121,161 UT, 138.8 D, 138.8 UA, 145; 260/785 CL, 78.5 R
Primary Examiner-William D. Martin Assistant Examiner-Theodore G. Davis Attorney, Agent, or Firm-M. Howard Silverstein; Max D. Hensley; William Takacs [5 7 ABSTRACT Soil-repellent and soil-release propertiesare imparted to fibrous materials by depositing on them terpolymers of fluoroalkyl allyl (or methallyl) ethers and maleic anhydride, and then curing the treated material at 50150 C.
2 Claims, N0 Drawings PROCESS FOR MODIFYING FIBROUS SUBSTRATES WITH FLUORINATED TERPOLYMERS This is a division of our copending application, Ser. No. 271,894, filed July 14, 1972, now US. Pat. No. 3,773,728, which in turn is a division of Ser. No. 117,777, filed Feb. 22, 197], now US. Pat. No. 3,706,594.
A non-exclusive, irrevocable, royalty-free license in the invention herein described, throughout the world for all purposes of the United States Government, with the power to grant sublicenses for such purposes, is hereby granted to the Government of the United States of America.
This invention relates to and has among its objects the provision of novel polymers which are particularly useful for imparting soil-repellent and soil-release properties to fibrous materials. The objects of the invention also include procedures for treating fibrous materials with the polymers, and the treated materials as new articles of manufacture. Further objects of the invention will be evident from the following description wherein parts and percentages are by weight unless otherwise specified.
lt is not generally realized that maintaining textiles in a clean state involves two different properties of the textile. One is soil repellency, that is, the ability of the textile to resist staining when it is contacted with gravy, butter, grease, or other oily substances. The other is soil releasability. Assuming that a textile has become stained, this property concerns the ease or difficulty of washing out the stains. The soil repellency and soil releasability characteristics of a given textile depend on the kind of fiber from which it is made and the kind of finishing agent which has been applied to it. Natural fibers such as cotton and wool exhibit little soil repellency, but on the other hand when they do become soiled they are readily cleaned, that is, they exhibit a high level of soil releasability. Some of the synthetics, notably polyesters, not only exhibit a low level of soil repellency but also a low level of soil releasability. Thus the modern trend toward fabricating textiles from blends of cotton or wool with polyesters has aggravated the situation because such blends are easily soiled and the absorbed soil is difficult to wash out. The application of resins for providing durable press properties still further aggravates the soil release situation. Almost everyone has encountered a situation where a so-called wash-and-wear garment of resin-treated cotton/polyester or wool/ polyester blended material has become soiled by contact with an oily substance, and it is found that it takes repeated washings to remove the stains. ln efforts to circumvent these problems, fluorocarbon polymers have been applied to the textiles. Because of the oleophobic properties of most fluorocarbons, such treatments do enhance the soil repellence of the fabric. However, they tend to make the soil release properties even worse because the aqueous washing medium cannot properly wet the fabric, hence cannot remove stains. Another remedy has been to apply hydrophilic materials, generally polymeric, to the textiles. These generally make it easier to wash out stains, but they do not enhance the ability of the textile to resist staining when contacted with oily substances.
A particular object of the invention is to provide the means for alleviating the problems outlined above. The
2 invention provides polymers which confer oilrepellence on fabrics so that they strongly resist staining, e.g., by oily foods or the like. Concomitantly, these polymers confer soil-release properties on the fabric to which they are applied. This means that if the fabric does become stained, the stains can be readily washed out. Another advantage is that these polymers confer anti-static properties on the fabric to which they are applied.
The polymers having this desirable combination of properties are copolymerization products of at least two different monomers, one imparting oleophobic properties, the other hydrophilic properties. More specifically, the oleophobic monomer is an ether of the structure wherein R represents H or CH and R; represents a fluoroalkyl radical containing a terminal perfluoroalkyl group having three to 18 perfluorinated carbon atoms. This fluoroalkyl group can be of an open-chain (acyclic) configuration, straight or branched. Alternatively, it may be of a cyclic structure such as a perfluorocyclohexyl group, or it may be a combination of acyclic and cyclic structures. Generally, the acyclic structures are preferred. These monomers are known in the art and described in the literature.'
Representative examples of such monomers are listed below by way of illustration and not limitation:
It is generally preferred to use methallyl ethers-that is, the compounds wherein R is CH -since they yield copolymers of especially high molecular weight. With regard to R a preferred embodiment thereof is a radical of the category wherein n is an integer from O to 7. Such radicals contain a fluorine group in alpha position, that is, on the secondary carbon (marked by an asterisk in the formula above) which is joined to the ether oxygen. The unique structure of these radicals provides the advantage that they confer a greater degree of oleophobicity for a given number of fluorinated carbon atoms than with other arrangements of fluorinated carbon atoms, for example, those in straight chains. In fact, our investigations have shown that 3 fluorinated carbon atoms in our arrangement provides a degree of oleophobicity equivalent to 6 or 7 fluorinated carbon atoms in a straight chain or other configuration which lacks the critical alpha-fluoro configuration. A particularly preferred member of this category is the heptafluoroisopropyl radical (CF CF. Allyl and methylallyl ethers containing this radical can be readily made from the relatively inexpensive starting material hexafluoroacetone, as disclosed in our US. Pat. Nos. 3,382,222, 3,437,692, 3,522,084, and 3,541,159.
The hydrophilic monomer in accordance with the invention is maleic anhydride The copolymers resulting from the copolymerization of the aforesaid monomers contain recurring units of the structure wherein R and R; have the meanings given above, and recurring units of the structure In general, the copolymers will contain the aforesaid units in a lzl mole ratio.
It is evident from the above that the copolymers of the invention have a carbon-to-carbon backbone, plus pendant R, groups which provide oleophobicity, and plus pendant anhydride groups which provide hydrophilic (soil-release) properties.
A special feature of the invention is that it provides polymers of high molecular weight even though one of the comonomers (the oleophobic monomer) has an allyl structure. Normally, allyl monomers polymerize with difficulty and give products of low molecular weight. See Laible, Chemical Reviews, Vol. 58, pages 807-843, especially pages 807, 808, and BI l.
PREPARATION OF THE COPOLYMERS The copolymers of the invention are prepared by conventional polymerization methods using bulk, solution, or emulsion techniques. The reactants may be copolymerized under the influence of heat, light, or a combination of heat and light. The use of polymerization catalysts is preferred and for this purpose one may use peroxides such as benzoyl peroxide acetyl peroxide, lauroyl peroxide, di-tert-butyl peroxide, or an azo initiator such as 04,01-azo-diisobutyronitrile or a,a-azobis (a,'y-dimethylvalerontrile). Where the polymerization is conducted in solution, one may use fluorinated solvents, for example, benzotrifluoride, l,3-bis-(trifluoromethyl)-benzene, trichlorotrifluoroethane, or the like. However, other (non-fluorinated) solvents such as benzene, toluene, xylene, etc. may be used. In carrying out the copolymerization in solution, temperatures of about 50-l00C. are generally used. The copolymer products range from viscous liquids to semisolid or even solid materials. They are generally soluble in solvents such as acetone, methyl-ethyl ketone, and in fluorinated solvents such as benzotrifluoride, l,3-bis- (trifluoromethyl)-benzene, trichlorotrifluoroethane and the like.
In preparing the copolymers of the invention, the proportions of the monomers may be varied. In general, however, the monomers are used in approximately equimolar proportions.
The copolymers of the invention encompass those which are prepared by copolymerization of the oleophobic and hydrophilic monomers as above described plus one or more monomers which are different from both of the basic reactants. The additional monomer may be employed to modify the mechanical properties of the copolymer without materially affecting its ability to provide soil repellency and soil releasability. For such purpose one may use methyl, ethyl, butyl, or other alkyl acrylates or methacrylates, vinyl chloride, vinyl fluoride, ethylene, butadiene, etc. Monomers which may be used to increase the adherence of the copolymer to fibrous substrates include acryloyl or methacryloyl chloride, N-methylol acrylamide, allyl acrylate, etc. In the event an additional monomer is added to the copolymerization system, it is employed in a proportion up to about 1 mole per mole of the oleophobic monomer.
The copolymers of the invention are useful in many areas, for example, as adhesives and coatings, textile sizes, binders and thickeners, etc. The high molecularweight copolymers are useful for preparing filaments, films, foils, and shaped articles of all kinds. The copolymers are particularly useful for the treatment of fibrous materials, such as textiles, in order to enhance their oil-, water-, and soil-repellency and concomitantly to make it easier to remove stains if they should become stained. Moreover, these improvements are attained without detriment to other properties of the fibrous substrate. For example, the treatment does not impair the color, hand, or strength of the substrate. Another point is that the improvements are durable; they are retained despite laundering and dry cleaning of the treated materials.
In applying the copolymer to a substrate, a typical procedure involves dissolving the copolymer in an inert volatile solvent, e.g., benzotrifiuoride, l,3-bistrifluoromethyl benzene, trichlorotrifluoroethane, tetrahydrofuran, or acetone. The resulting solution is applied to the substrate by immersion, brushing, spraying, flooding, or the like. With textiles, conventional dipand-pad techniques are preferred. By varying the concentration of copolymer in solution, the amount of copolymer deposited on the material may be varied. Typically, the amount of copolymer may be from 0.l to 20 percent, based on the weight of fibrous material but it is obvious that higher or lower proportions can be used if desired. Usually, in treating textiles such as fabrics, the amount of copolymer is limited to about 0.1 to 5 percent to attain the desired repellency and soil release property without interference with the hand of the textile. In an alternative procedure, the copolymer is applied to the substrate, using water as the carrier for the copolymer. This is accomplished by forming an aqueous emulsion of the copolymer, using a conventional emulsifying agent to maintain the copolymer uniformly dispersed in the liquid. The emulsion is applied in any of the ways previously described and the amount of copolymer applied to the substrate is likewise as above.
After application of the copolymer, the treated substrate is subjected to a curing operation in order to bond the polymer to the fibers. As an example of such treatment, the fibrous material is heated in the range of about 50 to 100C. for a period of 5 to 60 minutes. The carrier (from the copolymer solution or emulsion) may be evaporated in a separate step prior to curing or it may simply be evaporated during the curing operation.
In applying the copolymers of the invention to fibrous substrates, they may be accompanied by other substances, e.g., conventional finishing agents. Thus, a dispersion (i.e., solution, emulsion, or suspension) is made of an inert liquid carrier, the copolymer in accordance with the invention, and the additional substance which may be, for instance, a mothproofing agent, fungicide, coloring material, optical bleach, size, etc. The dispersion is applied and the treated fibrous material cured as disclosed previously. The inert liquid carrier may be water or any of the solvents described above.
The invention may be utilized for improving the properties of all types of fibrous materials, for example, paper; cotton; linen; hemp; jute; ramie; sisal; cellulose acetate rayons; cellulose acetate-butyrate rayons; saponified acetate rayons; viscose rayons; cuprammonium rayons; ethyl cellulose; fibers prepared from amylose, algins, or pectins; wool; silk; animal hair; mohair; leather; fur; regenerated protein fibers prepared from casein, soybean, peanut proteins, zein, gluten, egg albumin, collagen, or keratins; nylon; polyurethane fibers; polyester fibers such as polyethylene terephthalate; polyacrylonitrile-based fibers; or fibers of inorganic origin such as asbestos, glass, etc. The invention may be applied to textile materials which are in the form of bulk fibers, filaments, yarns, threads, slivers, roving, top, webbing, cord, tape, woven or knitted fabrics, felts, or other nonwoven fabrics, garments or garment parts.
EXAMPLES The invention is further demonstrated by the following examples which are provided by way of illustration, not limitation.
TEST METHODS The tests referred to in the examples were carried out as described below:
Oil Repellency: The test used was the AATCC Test Method 1 l8l966T. Ratings are from 0 to 8 with the Composition 65:35 "Nujol" and n-hexadccane, by vol. n-hexadecane n-tctradecane n-dodecane n-decane n-octane n-hcptane EXAMPLE 1 Preparation of heptafluoroisopropyl Allyl Ether (HAE) A dry, 3-liter flask fitted with a stirring paddle, gas inlet tube, and a Dry Ice condenser was charged with 143.3 g. (2.5 mole) of anhydrous KF followed by 800 ml. of dry N,N-dimethylformamide. The mixture was stirred, and 410 g. (2.5 mole) of hexafluoroacetone was added at such a rate that the gas condensate dripped slowly from the Dry Ice condenser. A clear solution of the hexafluoroacetone-KF adduct resulted after the addition. Allyl bromide (280 g., 2.3 moles) was then added in one shot. The Dry lce condenser was replaced with a water-cooled condenser, and the solution was stirred and heated at C. for 12 hours. The product was then removed from the DMF solution under vacuum and collected in a Dry lce trap. Distillation on a short Vigreux column provided 453 g. (87 percent yield) of product; b.p. 63-64 C. at 760 mm.
EXAMPLE 2 Preparation of Heptafluoroisopropyl Methallyl Ether HME) This compound was prepared in a manner analogous to that used for the allyl ether (Example 1 using hexafluoroacetone, anhydrous KF, dimethylformamide, and methallyl chloride. Heptafluoroisopropyl methallyl ether was obtained in percent yield, B.P. 82 C/760 mm., N 1.3129.
EXAMPLE 3 Preparation of l-H,l-l-l-Pentadecafluorooctyl Methallyl Ether (PME) A dry, 500-ml., round bottom flask was charged with 62.5 g. of l-H,l-H-Pentadecafluorooctanol, 21 g. of methallyl chloride, 43 g. of potassium carbonate, and 75 ml. of acetone. The mixture was refluxed for 5 days. Then the liquid was filtered to remove the salt precipitate and the filtrate poured into water. The heavier (fluorocarbon) layer was separated, washed twice with water, dried, and distilled. The product was collected in a yield of 21 grams, b.p. l89-l90C. EXAMPLE 4 Preparation of l-l-l,l-H-Pentadecafluorooctyl Allyl Ether (PAE) This compound was prepared in a manner analogous to that used for PME (EXAMPLE 3), using 125 g. of 1-H,l-H-pentadecafluorooctanol, 56 g. of allyl bromide, 86 g. of K CO and 150 ml. of acetone. Distillation yielded 69 g. of pure product, b.p. 178 C/760 mm.
EXAMPLE 5 Preparation of HME/MA and HAE/MA Copolymers A series of copolymers of heptafluoroisopropyl methallyl ether (HME) and maleic anhydride (MA), and copolymers of heptafluoroisopropyl allyl ether (HAE) and maleic anhydride (MA) were prepared using the following typical procedure.
HME, 2.4 g. (0.01 mole) and MA, 0.98 g. (0.01 mole) were placed in a thick-walled glass tube, with 5 ml. of benzene containing 0.0242 g. (1 X mole) of benzoyl peroxide. The tube was sealed with a rubber cap and the mixture was frozen in Dry lce-acetone. The tube was evacuated, thawed, filled with nitrogen, then re-frozen, etc.--the entire sequence being repeated three times. Finally, the tube was sealed under nitrogen at atmospheric pressure and then heated overnight in a steam bath. The product was removed from the tube and heated for 4-6 hours in a vacuum oven at 80 C. to remove solvent and any unreacted monomers. The yield of copolymer was 2.9 g. (86 percent conversion). The molecular weight (determined on a membrane osmometer) was 81,500. Analysis Calculated for (C H F,O,),.: C, 39.05; H, 2.7; Found, C, 39.27; H, 2.89. The copolymer was soluble in acetone, dimethylformamide, and tetrahydrofuran; slightly soluble in benzotrifluoride; insoluble in benzene and Freon l 13.
A series of copolymers were prepared using the procedure described above, with changes in the nature of the catalyst and the proportion thereof. Also, in some of the runs, the heptafluoroisopropyl methallyl (HME) replaced by the corresponding allyl ether (HAE). The conditions employed and the results obtained are tabulated below.
ing technique. Fivethousanths of a mole each of PME and MA, 2 ml. of benzene, and 30 mg. of lauroyl peroxide were placed in a tube which was evacuated and sealed under nitrogen as previously described. The sealed tube was heated on a steam bath for 3 hours. The contents of the tube was removed and volatiles were vaporized under vacuum at about 80 C. The copolymer was obtained as a clear solid in a conversion of 95 percent. It was soluble in acetone and several other polar solvents.
EXAMPLE 7 Preparation of Terpolymer PME/HME/MA PME 0.005 mole HME 0.005 mole MA 0.01 mole Benzoyl peroxide mg. Benzene 3 ml.
The above ingredients were placed in a tube which was evacuated and sealed under vacuum. After heating for 3 hours on a steam bath, the contents of the tube was removed and heated under vacuum at C. to remove volatiles. A clear hard copolymer was obtained in percent conversion.
EXAMPLE 8 if A E Preparation of Copolymer PAE/MA PAE (prepared as described in EXAMPLE 4 and maleic anhydride were copolymerized as in EXAMPLE 6, using equimolar quantities of PAE and MA and a 5 mole percent of benzoyl peroxide as the catalyst. EX- AMPLE 9 Application of the Copolymers and Terpolymers to Textiles Solutions were made containing l and 2 percent of the copolymers and terpolymers previously described, using acetone as the solvent. These solutions were applied to fabrics, using the following technique.
A swatch of the fabric was wet out with the solution, squeezed in a roller to remove excess liquid, air-dried, and cured in an oven at C. for 10 minutes.
The treated fabrics and samples of the untreated fabric were then tested for oil repellency initially and after application of a standard laundering technique with a detergent-water formulation in a household-type washing machine.
*ln each case, a 1/1 mole ratio of fluorinated monomer to maleic ahhydride was used.
n.d. signifies not determined. ***lntrinsic viscosity determined in acetone solution at 25 C.
EXAMPLE 6 Preparation of Copolymer PME/MA PME (prepared as described in EXAMPLE 3) was copolymerized with maleic anhydride, using the follow- Two different fabrics were used in meteus+a 100 percent wool fabric and a 50/50 wool and cotton blend fabric.
The materials used and the results obtained are tabulated below:
TABLE u Treatment of Wool Fabric, Using l'7r Polymer Solution Oil repellency Polymer used Initial After washing HAE/MA 3 2 HME/MA 2 2 PAE/MA 6 5 PME/MA 6 5 HMElPME/MA 5 4 None used (control) 0 TABLE Ill Treatment of Wool Fabric, Using 2% Polymer Solution Oil re ellenc Polymer used lnitial After washing HAE/MA 4 3 HME/MA 3 3 PAE/MA 6 6 PME/MA 6 HME/PME/MA 5 5 None used (control) 0 0 TABLE IV Treatment of Wool/Cotton Fabric, Using l7: Polymer Solution Oil re cllenc initial After washing Polymer used HAE/MA 2 2 HME/MA 2 l PAE/MA 6 5 PME/MA 6 5 HME/PME/MA V S 4 None used (control) 0 0 TABLE V Treatment of Wool/Cotton Fabric, Using 2'7? Polymer Solution Oil rcpellency Polymer used lnitial After washing HAE/MA 3 3. HME/MA 2 2 PAE/MA 6 6 PMEIMA 6 5 HME/PME/MA i 4 None used (control) 0 0 MODIFIED COPOLYMERS wherein M is an alkali metal or ammonium.
l COOH COOR wherein R is a hydrocarbon radical such as methyl, ethyl, butyl, hexyl, cyclohexyl, octyl, dodecyl, benzyl, phenyl, or the like, or an alkoxyalkyl radical such as (OCH CH ),,OR' wherein n is an integer from 1 to 12.
wherein R is as defined above.
In general, the modified copolymers of the invention are those which contain recurring units of the structure wherein R and R; are as described above, plus recurring units of the structure wherein X and Y are each a member of the group consisting of carboxyl, carboxylate, ester, and amide radicals.
The modified copolymers are useful for the same purposes as the unmodified copolymers, for example, to provide fibrous materials with both soil-repellent and soil-release qualities. The modified copolymers are applied to fibrous materials in the same manner as previously described.
EXAMPLE 10 A sample of an HME/MA copolymer (intrinsic viscosity 0.15) was dissolved in a small quantity of acetone and hydrolyzed to the phenolphthalein endpoint by adding 0.5 N NaOH. This produced a copolymer containing repeating units of the structures c irg cent aqueous solution of the polymeric sodium salt described above. After removal of excess liquid in a squeeze roll, the fabrics were dried in air, and cured at 100 C. for 10 minutes.
Samples of the treated and untreated fabrics were evaluated for soil release properties, using AATCC test 130-1969. In this test, Nujol mineral oil is applied to the fabric, then the fabric is subjected to washing with an aqueous detergent formulation. The residual stain on the fabric is then rated on a scale of to l by comparison with a standard stain-release replica which displays a graduated series of stains. The highest number, 5, indicates complete stain removal while the lowest, 1, indicates virtually no stain removal.
It was found that the fabric which had been treated with the polymeric sodium salt gave a soil-release rating of 5 while a sample of the fabric which had been given only the durable press treatment had a rating of 2 EXAMPLE I l A sample of an HME/MA copolymer (intrinsic viscosity 0.l5) was dissolved in acetonitrile. An excess of methoxy triethylene glycol was added and the solution was refluxed overnight. Then, solvent and excess methoxy triethylene glycol were removed under vacuum, leaving a residue of a solid modified copolymer which contained repeating units of the structures nn -c1-I2c- Films of this copolymer showed the dual properties of being oil-repellent but hydrophilic. Drops of nhexadecane placed on the film surface remained stable with a contact angle of ca. 56, while water drops placed on the film surface gradually spread over the surface.
EXAMPLE l 2 A sample of an HME/MA copolymer (intrinsic viscosity 0.15) was dissolved in acetonitrile. An excess of n-butyl amine was added, and the reaction mixture refluxed overnight. Then, solvent and excess were removed under vacuum, leaving a residue of a clear, slightly yellow solid modified copolymer which contained recurring units of the structures I l on Infrared analysis indicated that the structure shown above had been obtained.
EXAMPLE 13 A sample of a copolymer of maleic anhydride and heptafluoroisopropyl allyl ether (molecular weight 5,600, intrinsic viscosity 0.03), was dissolved in dimethylformamide to make a 5 percent solution. A sample of wool flannel weighing approximately 1 gram was immersed in 10 ml. of this solution and heated at 1 10 C. for minutes. The treated wool sample was removed from the solution and washed three times with acetone, in which the copolymer is very soluble. After drying, the weight increase of the fabric was 3 percent, indicating that the copolymer had been grafted to the wool.
Having thus described our invention, we claim:
1. A process for modifying a fibrous substrate, which comprises:
l. depositing on the fibrous substrate an addition terpolymer which contains a. recurring units of the structure b. recurring units of the structure c. and recurring unitsof the structure HC=$H 0: 0:0
the aforesaid units a, b, and c being in a molar ratio ll. the said terpolymer being deposited as a dispersion in a volatile liquid carrier; and
Ill. curing the so-treated fibrous substrate by heating b. recurring units of the structure eand recurring units of the structure the aforesaid units a, b, and 0 being in a molar ratio

Claims (2)

1. A PROCESS FOR MODIFYING A FIBROUS SUBSTRATE, WHICH COMPRISES: I. DEPOSITING ON THE FIBROUS SUBSTRATE AN ADDITION TERPOLYMER WHICH CONTAINS A RECURRING UNITS OF THE STRUCTURE
2. As an article of manufacture, fibrous material carrying a deposit of an addition terpolymer which contains -a. recurring units of the structure
US05322588 1971-02-22 1973-01-10 Process for modifying fibrous substrates with fluorinated terpolymers Expired - Lifetime US3844827A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US3706594D US3706594A (en) 1971-02-22 1971-02-22 Fibrous substrate treated with copolymers of fluoroalkyl ethers and maleic anhydride
DE19722208020 DE2208020A1 (en) 1971-02-22 1972-02-21 Copolymers of fluoroalkyl ethers and maleic anhydride
GB798072A GB1372121A (en) 1971-02-22 1972-02-21 Copolymers of fluoroalkyl ethers and maleic anhydride and deriva tives thereof
FR7205697A FR2126233B1 (en) 1971-02-22 1972-02-21
US3773728D US3773728A (en) 1971-02-22 1972-07-14 Copolymers of fluoroalkyl ethers and maleic anhydride
FR7236086A FR2155694A5 (en) 1971-02-22 1972-10-12
US05322588 US3844827A (en) 1971-02-22 1973-01-10 Process for modifying fibrous substrates with fluorinated terpolymers
US38064873 US3876589A (en) 1971-02-22 1973-07-19 Highly fluorinated derivatives of copolymers of fluoroalkyl ethers and maleic anhydride
US05/453,912 US4029867A (en) 1971-02-22 1974-03-22 Terpolymers of fluoroalkyl ethers and maleic anhydride
US49981174 US3901998A (en) 1971-02-22 1974-08-22 Highly fluorinated derivatives of copolymers of fluoroalkyl ethers and maleic anhydride

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US11777771A 1971-02-22 1971-02-22
US27189472A 1972-07-14 1972-07-14
US05322588 US3844827A (en) 1971-02-22 1973-01-10 Process for modifying fibrous substrates with fluorinated terpolymers
US38064873 US3876589A (en) 1971-02-22 1973-07-19 Highly fluorinated derivatives of copolymers of fluoroalkyl ethers and maleic anhydride
US49981174 US3901998A (en) 1971-02-22 1974-08-22 Highly fluorinated derivatives of copolymers of fluoroalkyl ethers and maleic anhydride

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US27189472A Division 1971-02-22 1972-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/453,912 Division US4029867A (en) 1971-02-22 1974-03-22 Terpolymers of fluoroalkyl ethers and maleic anhydride

Publications (1)

Publication Number Publication Date
US3844827A true US3844827A (en) 1974-10-29

Family

ID=27537491

Family Applications (5)

Application Number Title Priority Date Filing Date
US3706594D Expired - Lifetime US3706594A (en) 1971-02-22 1971-02-22 Fibrous substrate treated with copolymers of fluoroalkyl ethers and maleic anhydride
US3773728D Expired - Lifetime US3773728A (en) 1971-02-22 1972-07-14 Copolymers of fluoroalkyl ethers and maleic anhydride
US05322588 Expired - Lifetime US3844827A (en) 1971-02-22 1973-01-10 Process for modifying fibrous substrates with fluorinated terpolymers
US38064873 Expired - Lifetime US3876589A (en) 1971-02-22 1973-07-19 Highly fluorinated derivatives of copolymers of fluoroalkyl ethers and maleic anhydride
US49981174 Expired - Lifetime US3901998A (en) 1971-02-22 1974-08-22 Highly fluorinated derivatives of copolymers of fluoroalkyl ethers and maleic anhydride

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US3706594D Expired - Lifetime US3706594A (en) 1971-02-22 1971-02-22 Fibrous substrate treated with copolymers of fluoroalkyl ethers and maleic anhydride
US3773728D Expired - Lifetime US3773728A (en) 1971-02-22 1972-07-14 Copolymers of fluoroalkyl ethers and maleic anhydride

Family Applications After (2)

Application Number Title Priority Date Filing Date
US38064873 Expired - Lifetime US3876589A (en) 1971-02-22 1973-07-19 Highly fluorinated derivatives of copolymers of fluoroalkyl ethers and maleic anhydride
US49981174 Expired - Lifetime US3901998A (en) 1971-02-22 1974-08-22 Highly fluorinated derivatives of copolymers of fluoroalkyl ethers and maleic anhydride

Country Status (4)

Country Link
US (5) US3706594A (en)
DE (1) DE2208020A1 (en)
FR (2) FR2126233B1 (en)
GB (1) GB1372121A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU656164B2 (en) * 1990-12-27 1995-01-27 E.I. Du Pont De Nemours And Company Maleic anhydride/vinyl or allyl ether polymer stain-resists
US5945493A (en) * 1998-06-19 1999-08-31 E. I. Du Pont De Nemours And Company Fluorine-containing maleic acid terpolymer soil and stain resists
US20090162682A1 (en) * 2007-12-19 2009-06-25 Stephen Ernest Jacobson Cyclic olefin-maleic acid copolymers for stain resists
US20150079865A1 (en) * 2013-09-17 2015-03-19 W.L. Gore & Associates, Inc. Conformable Microporous Fiber and Woven Fabrics Containing Same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706594A (en) * 1971-02-22 1972-12-19 Us Agriculture Fibrous substrate treated with copolymers of fluoroalkyl ethers and maleic anhydride
US4029867A (en) * 1971-02-22 1977-06-14 The United States Of America As Represented By The Secretary Of Agriculture Terpolymers of fluoroalkyl ethers and maleic anhydride
US4043923A (en) * 1974-02-26 1977-08-23 Minnesota Mining And Manufacturing Company Textile treatment composition
US4007305A (en) * 1974-12-23 1977-02-08 Basf Wyandotte Corporation Method of imparting nondurable soil release and soil repellency properties to textile materials
JPS6053641B2 (en) * 1978-12-29 1985-11-27 ダイキン工業株式会社 dehydrating agent
JPS6056165B2 (en) * 1978-12-29 1985-12-09 ダイキン工業株式会社 Production method of polymer having perfluoroalkyl group in side chain
JPS564776A (en) 1979-06-26 1981-01-19 Teijin Ltd Treatment of synthetic molded article
JPS60199845A (en) * 1984-03-22 1985-10-09 Daikin Ind Ltd Fluoroxyalkyl vinyl ether
US5232760A (en) * 1991-02-01 1993-08-03 Allied Signal Inc. Method and composition to enhance acid dye stain resistance of polyamides by improving resistance to detergent washings and products thereof
US5232743A (en) * 1991-02-01 1993-08-03 Allied-Signal Inc. Method and composition to enhance acid dye stain resistance of polyamides by improving resistance to detergent washings and products thereof
US5534167A (en) * 1994-06-13 1996-07-09 S. C. Johnson & Son, Inc. Carpet cleaning and restoring composition
US5408010A (en) * 1994-07-28 1995-04-18 E. I. Du Pont De Nemours And Company Fluoroorganic soli-resist agents
US5747141A (en) * 1995-07-17 1998-05-05 Westvaco Copration Paperboard packaging with an improved sizing layer including a styrene maleic anhydride binder for reducing edgewicking
US5770656A (en) * 1995-09-22 1998-06-23 E.I. Du Pont De Nemours And Company Partial fluoroesters or thioesters of maleic acid polymers and their use as soil and stain resists
US5696195A (en) * 1996-06-04 1997-12-09 E. I. Du Pont De Nemours And Company Solutions of perfluorinated polymers in SF6 with or without CO2
US20050015886A1 (en) 2003-07-24 2005-01-27 Shaw Industries Group, Inc. Methods of treating and cleaning fibers, carpet yarns and carpets
US7785374B2 (en) 2005-01-24 2010-08-31 Columbia Insurance Co. Methods and compositions for imparting stain resistance to nylon materials
GB0919014D0 (en) 2009-10-30 2009-12-16 3M Innovative Properties Co Soll and stain resistant coating composition for finished leather substrates
CN109534968B (en) * 2018-11-15 2022-07-08 广东广山新材料股份有限公司 Unsaturated fluorocarbon compound and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437692A (en) * 1965-02-18 1969-04-08 Us Agriculture Fluorinated allyl ethers and use thereof
US3522084A (en) * 1965-02-18 1970-07-28 Us Agriculture Process for treating fibrous materials with a fluorinated allyl ether
US3541159A (en) * 1965-02-18 1970-11-17 Us Agriculture Fluorinated allyl ethers and use thereof
US3547856A (en) * 1969-03-11 1970-12-15 Du Pont Fluorinated oil and water repellents
US3549705A (en) * 1969-05-28 1970-12-22 Nalco Chemical Co Hexafluoroisopropanol acrylamide
US3595944A (en) * 1967-04-24 1971-07-27 Ici Ltd Oil- and water-repellent fluorine-containing compositions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3384628A (en) * 1964-09-21 1968-05-21 Agriculture Usa Fluorinated ester compounds and use thereof
NL131186C (en) * 1964-12-24 1900-01-01
US3382222A (en) * 1965-02-18 1968-05-07 Agriculture Usa Fluorinated allyl ethers and use thereof
US3532659A (en) * 1967-04-26 1970-10-06 Pennsalt Chemicals Corp Fluorinated organic compounds and polymers thereof
US3686281A (en) * 1969-06-02 1972-08-22 Martin Knell Preparation of polyfluoroalkyl esters of fumaric and related acids
US3645990A (en) * 1970-01-29 1972-02-29 Du Pont Fluorinated oil- and water-repellent and dry soil resistant polymers
US3706594A (en) * 1971-02-22 1972-12-19 Us Agriculture Fibrous substrate treated with copolymers of fluoroalkyl ethers and maleic anhydride

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437692A (en) * 1965-02-18 1969-04-08 Us Agriculture Fluorinated allyl ethers and use thereof
US3522084A (en) * 1965-02-18 1970-07-28 Us Agriculture Process for treating fibrous materials with a fluorinated allyl ether
US3541159A (en) * 1965-02-18 1970-11-17 Us Agriculture Fluorinated allyl ethers and use thereof
US3595944A (en) * 1967-04-24 1971-07-27 Ici Ltd Oil- and water-repellent fluorine-containing compositions
US3547856A (en) * 1969-03-11 1970-12-15 Du Pont Fluorinated oil and water repellents
US3549705A (en) * 1969-05-28 1970-12-22 Nalco Chemical Co Hexafluoroisopropanol acrylamide

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU656164B2 (en) * 1990-12-27 1995-01-27 E.I. Du Pont De Nemours And Company Maleic anhydride/vinyl or allyl ether polymer stain-resists
US5945493A (en) * 1998-06-19 1999-08-31 E. I. Du Pont De Nemours And Company Fluorine-containing maleic acid terpolymer soil and stain resists
US6238792B1 (en) 1998-06-19 2001-05-29 E. I. Du Pont De Nemours And Company Fluorine-containing maleic acid terpolymer soil and stain resists
US6245116B1 (en) 1998-06-19 2001-06-12 E. I. Du Pont De Nemours And Company Fluorine-containing maleic acid terpolymer soil and stain resists
US20090162682A1 (en) * 2007-12-19 2009-06-25 Stephen Ernest Jacobson Cyclic olefin-maleic acid copolymers for stain resists
US7914890B2 (en) 2007-12-19 2011-03-29 E.I. Dupont De Nemours And Company Cyclic olefin-maleic acid copolymers for stain resists
US20150079865A1 (en) * 2013-09-17 2015-03-19 W.L. Gore & Associates, Inc. Conformable Microporous Fiber and Woven Fabrics Containing Same
CN107227536A (en) * 2013-09-17 2017-10-03 W.L.戈尔及同仁股份有限公司 Compliance microporous fibre and the braided fabric containing the fiber
RU2670537C2 (en) * 2013-09-17 2018-10-23 В. Л. Гор Энд Ассошиейтс, Инк. Conformable microporous fibre and woven fabrics containing same

Also Published As

Publication number Publication date
DE2208020A1 (en) 1972-09-07
FR2155694A5 (en) 1973-05-18
US3773728A (en) 1973-11-20
US3706594A (en) 1972-12-19
US3901998A (en) 1975-08-26
FR2126233A1 (en) 1972-10-06
GB1372121A (en) 1974-10-30
US3876589A (en) 1975-04-08
FR2126233B1 (en) 1973-06-29

Similar Documents

Publication Publication Date Title
US3844827A (en) Process for modifying fibrous substrates with fluorinated terpolymers
US3654244A (en) Polymers for soil-release textile finishes
EP0247489B1 (en) Fluorine containing water and oil repellent composition
US3574791A (en) Block and graft copolymers containing water-solvatable polar groups and fluoroaliphatic groups
US3919183A (en) Perfluoroalkyl groups containing polymerisation products
US3716518A (en) Siloxane polymers for soil-repellent and soil-release textile finishes
US4029867A (en) Terpolymers of fluoroalkyl ethers and maleic anhydride
US3393186A (en) Perfluoro-alkenylacrylates and polymers thereof
EP0609456A1 (en) Soil remover for dry cleaning
US3529995A (en) Fluorine-containing copolymer treated fabrics
JPS6399285A (en) Water and oil repellent
JP5397520B2 (en) Fluorine-containing composition and surface treatment agent
JP2013100494A (en) Fluorine-containing composition
JPS5947716B2 (en) Organic solution type water and oil repellent with excellent durability
US3501448A (en) Fluorinated acrylic and methacrylic esters
JP5397519B2 (en) Fluorine-containing composition and use thereof
JP5397521B2 (en) Fluorine-containing composition and fluorine-containing polymer
JPS5859277A (en) Water/oil repellent
JPS5871977A (en) Low temperature curing water and oil repellent
Bovenkamp et al. Fluoroalkyl-substituted siloxanes as liquid repellent fabric finishes
US3736300A (en) Perfluoroalkylsulfonamido-alkyl esters of fumaric acid and other ethylenically unsaturated polybasic acids and polymers thereof
US3698856A (en) Treatment of textile fibers
US3653956A (en) Fluorinated epoxides and use thereof
US3392046A (en) Fibrous organic material having affixed thereto a polyperfluoro alkyl methacrylate ester and method for making same
US3681314A (en) Polymers of acryloxyacyl chlorides and use thereof