[go: up one dir, main page]

US3844793A - Photosensitive azido material - Google Patents

Photosensitive azido material Download PDF

Info

Publication number
US3844793A
US3844793A US00313378A US31337872A US3844793A US 3844793 A US3844793 A US 3844793A US 00313378 A US00313378 A US 00313378A US 31337872 A US31337872 A US 31337872A US 3844793 A US3844793 A US 3844793A
Authority
US
United States
Prior art keywords
azido
material according
sensitizer
coating
diazidonaphthalene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00313378A
Inventor
B Singh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wyeth Holdings LLC
Original Assignee
American Cyanamid Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Cyanamid Co filed Critical American Cyanamid Co
Priority to US00313378A priority Critical patent/US3844793A/en
Priority to US05/483,483 priority patent/US3933497A/en
Application granted granted Critical
Publication of US3844793A publication Critical patent/US3844793A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/695Compositions containing azides as the photosensitive substances

Definitions

  • This invention relates to unique photosensitive compositions containing volatile peri-substituted aromatic azido compounds. It further relates to dry processes for the formation of thermally fixed non-vesicular images therefrom. It further relates to imaging processes and photosensitive compositions employing certain perisubstituted aromatic azido compounds. lt further relates to the intensification and modification of the images produced from said peri-substituted aromatic azido compounds.
  • Photosensitive compounds, compositions and processes play an essential role in photography and related arts dealing with the formation of images with the aid of some activating influence, such as light. heat. etc.
  • Costly materials such as silver salts
  • Liquid solutions of chemicals are often required in the fixing or development stages of the imaging process, causing both inconvenience and delay.
  • Many photochemicals require excessive access time and result in poor image quality from such factors as poor color stability, poor speed, acuity, resolution, tonal range, etc. Accordingly, a new photoimaging process which would overcome one or more of these limitations would provide a substantial advance in the art.
  • volatile peri-substituted aromatic azido compounds are particularly well adapted for the formation of fixed images by a convenient dry imaging process. Furthermore, it has been unexpectedly found that the image colors are modified by heating the fixed image prepared from certain perisubstituted aromatic azido compounds or by exposing them to ultraviolet radiation.
  • VOLATILE PERI-SUBSTITUTED AROMATIC AZlDO COMPOUNDS Certain volatile peri-substituted aromatic azido compounds are preferred for use in the present invention due to the fact that the images produced on exposure can be intensified and fixed by heating. The fixed images can be modified to neutral tones by further heating or exposure to ultraviolet light. The resulting images having the advantage of enhanced contrast with a colorless or white background for easier reading and the aesthetic advantage of having purple, blue and neutral tones resembling conventional printing and writing inks.
  • Peri-substituted aro' matic azido compound is defined as a naphthalene having an azido substituent in the l or 8 position and located peri to one of the five groups mentioned above.
  • l-amino-8-azidonaphthalene, l-azido-8- trifluoroacetamidonaphthalcne and l-azido-8- hydroxynaphthalene are especially preferred due to their ease of preparation and the developing and fixing achievable therewith.
  • Non-volatile aromatic azido compounds are not suitable for use in the present invention.
  • the expression non-volatile compounds refers to those compounds which decompose at temperatures below that at which they volatilize from the photosensitive'compositions. Accordingly, high molecular weight compounds, such as, polymeric aromatic azido compounds, and aromatic compounds having substituents, such as, carboxylic acid salts, are unsuitable for use in the present invention.
  • any of the wide variety of standard procedures for preparing aromatic azido compounds may be employed to prepare the photosensitive compounds employed in the present invention, such as, for example, those described in U.S. Pat. No. 3,123,621 or in Houben-Weyl, Methoden Der Organischen Chemie, Band 10/3, pp. 777-836 and references cited therein.
  • lower alkyl groups having from 1 to 6 carbon atoms, such as, methyl, ethyl, n-propyl, iso-propyl, n-butyl, t-butyl, npentyl, n-hexyl, cyclohexyl, etc.; lower alkoxy groups having from 1 to 6 carbon atoms, such as, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, t-butoxy, npentoxy, n-hexoxy, cyclohexyloxy, etc.; amino, lower alkyl amino and di-lower alkyl amino, said lower alkyl groups being defined above;
  • the photosensitive compositions of the present invention are prepared by uniformly distributing a layer of the volatile, aromatic azido compound in a conventional binder, such as, a polymer dope, over the surface of a conventional photographic substrate.
  • a conventional binder such as, a polymer dope
  • Suitable substrates include, for example, such materials as paper, plastic, wood, metal and glass.
  • Suitable binders include, for example, one or more of the following polyvinyl chloride, polyethylene, polymethylmethacrylate, polyvinyl acetate, cellulose acetate and copolymers of the corresponding monomers. Polyvinyl chloride is especially preferred.
  • any of the variety of standard coating methods can be used to apply the coating composition to the base material.
  • the Fixed Blade Method, the imbibing Method and the Meyer Rod Method are among the preferred techniques.
  • the base material is positioned under a fixed blade and an excess of the coating material is placed on the base.
  • the base is then passed under the blade to produce a uniform coating having a thickness determined by the distance between the mounted blade and the base material.
  • a base stock having a plastic surface is coated with the active compound by passing it under a roller, through a solution of the azido compound.
  • the excess coating is removed from the surface by an air knife.
  • paper coated with polyvinyl chloride, polyvinyl acetate or polymethylmethacrylate through a solution of 1,8-diazidonaphthalene in a solvent such as tetrahydrofuran, methyl ethyl ketone, acetone or toluene or mixtures thereof.
  • the coating composition is placed at one end of the base material and a metal rod wound with fine wire is passed through the liquid causing it to be spread over the surface of the base material.
  • the thickness of the coating produced by this method is determined by the size of the wire used in the winding. 7
  • concentrations -of azido compound advantageously employed in the coating compositions and the thickness of the layer applied to the base may be varied to tailor the photosensitive system to achieve the desired degree of image intensity, speed, length of fixing period, etc.
  • Optimum concentrations and thicknesses will, of course, vary depending on the particularphotsensitive compound employed, the binder material and thickness of the binder layer used, fixing time and temperature, among other factors.
  • satisfactory photoimages can be produced using binder compositions having from about 3 percent to about percent by weight of the azido compound with coatings of from about 0.05 to about 1.00 mils in thickness.
  • Preferred concentrations and thicknesses are about 15 percent and 0.3 mils, respectively.
  • the aromatic azido compounds are themselves generally sensitive to radiation containing wavelengths within the ultraviolet region.
  • a sensitizing agent to the polymer binder, the sensitivity can be extended into the range of from 360 my. to 470 my. or greater.
  • the energy transfer of such systems is surprisingly efficient in view of the typically high viscosity of the binder polymer systems being sensitized.
  • sensitized systems permit the use of apparatus equipped with inexpensive and convenient light sources, such as incandescent lamps, and allow projection printing through various optical systems with normal optical glass. They also permit the simultaneous use of both direct and indirect excitation of azido compounds through simultaneous exposure of the photosensitive compounds to both visible and ultraviolet light. Alternatively, enhanced absorption can be achieved by using an ultraviolet absorbing sensitizer in combination with the azido composition.
  • Suitable sensitizers include, for example, fluoranthene, thioxanthone, fluorenone, perylene, benzanthrone, benzophenone, phenazine and thioacridone.
  • Sensitizers which absorb light in the visible spectrum are of necessity colored compounds. Where the colors caused thereby are found to be objectionable, it is preferred to employ unsensitized systems or compositions containing a colorless, ultraviolet absorbing sensitizer or a member of a class of volatile, colored sensitizers which diffuse out of the binder composition during the fixing or image modification steps.
  • unsensitized systems or compositions containing a colorless, ultraviolet absorbing sensitizer or a member of a class of volatile, colored sensitizers which diffuse out of the binder composition during the fixing or image modification steps.
  • Illustrative of the preferred, volatile colored sensitizers are fluorenone and benzanthrone.
  • Optimum concentrations of the sensitizer and azido compound will, of course, vary with the particular system being employed. Generally, energy transfer is favored by high concentrations of the azido compound. It is preferred to employ the sensitizer in a sufficient concentration to absorb the incident light. However, excessively high concentrations of the sensitizer will cause complete absorption of the incident light at the surface of the plastic matrix and may thereby reduce the efficiency of the system.
  • IMAGING Non-vesicular imaging is achieved by exposing the photosensitive compositions to patterned activating radiation, namely, an information containing beam of visible or ultraviolet light.
  • a convenient source of ultraviolet radiation is provided by lamps which emit a wide range of ultraviolet frequencies.
  • ultraviolet-rich black-light fluorescent lamps such as, l5 Watt Black Light. No. Fl5T8-BL by General Electric and Rayonet Photochemical Reactor Lamps, No. RPR 3000A by The Southern New England Ultraviolet Company provides a convenient source of activating radiation.
  • Conventional azo printing machines, equipped with high pressure mercury vapor lamps may also be employed. Since they emit both visible and ultraviolet light, they are especially well adapted for use with those compositions having sensitizers to visible light.
  • Absorption of incident light can be maximized by matching the frequencies of the incident light with the absorption frequencies of the aromatic azido compound or the sensitizer.
  • Patterning of the activating radiation can generally by achieved by any of the conventional methods. Suitable methods include passing the light through a film transparency or a template, use of a cathode ray tube containing an ultraviolet phosphor, such as, a Litton Industries Cathode Ray Tube, Ser. No. 4188, which contains a P16 phosphor; and using an ultraviolet pen light, such as Ultraviolet Products, Inc. Pen-Light, or ultraviolet laser, such as might be used in spatial frequency modulation.
  • an ultraviolet pen light such as Ultraviolet Products, Inc. Pen-Light, or ultraviolet laser, such as might be used in spatial frequency modulation.
  • Optimum periods of irradiation will vary widely, depending upon the particular photosensitive composition, opacity of transparency, and light source employed. Exposure for a few seconds in a conventional azo printer is generally adequate while periods of two minutes or more may be required for a source such as the abovementioned light table.
  • the imaged compositions are developed by merely heating the exposed compositions. Optimum heating temperatures and periods will vary widely depending upon the compositions employed and the means by which heat is transferred. In the case of l,8- diazidonaphthalene, oven temperatures in the range of from about lO0C. to about 150C. are generally suitable and about 135C. is generally preferred. At 150C. developing is usually complete after about 20 seconds, whereas periods of up to about 7 minutes may be required for complete development at 135C. Contact heating with a platen permits more rapid heating and reduces fixing time over that in an oven.
  • the peri-azido aromatic compounds unexpectedly undergo a 6 to 10 fold increase in the optical density measured at 560 my during development.
  • the initially formed images are typically grey-green or brownish. After development, they generally appear deep purple. This image intensification is unique to the perisubstituted compounds.
  • l,8- diazidonaphthalene initially forms a grey-green 1mage which develops to a high optical density purple image; while positional isomers, such as 1,5- diazidonaphthalene, form tan or brown images with no substantial enhancement in optical density on heating at 200C.
  • FIXING The developed images are fixed by merely heating to effect volatilization of the unreacted aromatic azido compound. This is conveniently achieved by merely prolonging the period of heating used for development. Again the optimum temperature and heating period will vary upon the particular system employed. In the case of l,8-diazidonaphthalene in polyvinyl chloride, permanent fixing can generally be achieved by heating the exposed compositions at C. for a periodof from about 1 to about 5 minutes.
  • MODIFICATION OF IMAGE COLOR ages again the time and temperature can be widely varied. Treatment for about 3 to 4 minutes at from about 190C. to about 200C. is generally sufficient to produce neutral images.
  • the precipitated bis-diazonium salt was added in small portions with vigorous stirring to a cold solution composed of NaN (30 g., 0.46 mole) dissolved in a mixture of 100 ml. of water and 100 g. of ice.
  • the l,8- diazidonaphthalene precipitated out of solution in the form of a thick paste. It was removed by filtration, washed with water and dissolved in diethyl ether.
  • the ether solution was filtered through charcoal and the yellow mother liquor was concentrated whereupon the l,8-diazidonaphthalene crystallized out of solution in the form of long, thin silky needles which were collected by filtration and air dried to give a 60 percent yield of l,8-diazidonaphthalene having a melting point of l20-l 22C. Further purification may be effected by recrystallization from ether, methanol, ethanol or by chromatography on silica gel or alumina columns with a hexane eluent.
  • a stock solution of polyvinylchloride (PVC) was prepared by combining 20 g. of PVC powder (Geon 101 by B. F. Goodrich Chemicals Co.) with 200 ml. of tetrahydrofuran and stirring the resulting mixture at 60C. overnight.
  • a 0.7N solution of 1,8-diazidonaphthalene was prepared by adding 1.0 g. of the azido compound to the cooled polymer solution. After stirring for 11 period of about 2 hours, the resulting solution was applied to 32 lb. white paper in the form of a film having a thickness in the range of about 0.2 mil. to about 0.3 mil. Uniform distribution of the polymer solution on the paper was effected by the Mayer rod technique. The coated paper was dried in the dark at room temperature overnight.
  • EXAMPLE 7 1,8-Diazidonaphthalene Photoirnaging Process
  • the photosensitive composition of Example 6 was placed over a negative transparency having both printed material for sharp line contrasts and a photograph for continuous tonal variations, and the pair were placed upon the lens of a bank of blacklight blue fluorescent lamps for a period of 30 seconds, producing a grey-green positive reproduction of the negative image.
  • Example 8 Thermal Image Enhancement and Fixing of 1,8 Diazidonaphthalene lmage
  • the photoimage of Example 7 was fixed by passing it over a heated drum while passing hot air (both from C. to C.) over its surface for about 30 seconds.
  • a deep purple image having very high resolution and excellent quality of tonal range was produced.
  • the substantially colorless background was stable to fogging upon prolonged exposure to sunlight.
  • EXAMPLE 1 1 EXAMPLE 12 Photoimaging with Azidonaphthalene (AcAN) 1 -Acetamido-8-
  • Azidonaphthalene AcAN
  • -Acetamido-8- photosensitive compositions of AcAN were prepared by disserving manger/sen in 3E1. era PVC stool? EQEF TEE iTi'iif rate of 6016i fEiFm'rfih' W0 the'sens iing solution.
  • the coating solution was prepared by dissolving 7.0 g. of PVC (Geon 101 in 100 ml. of tetrahydrofuran.
  • composition was imaged by the general procedure of Example 7.
  • the grey-brown image produced was developed to a partially fixed deep purple image by heating at 130C.l55C.
  • the fixed image was modified to neutral tones by heating at 180C. for about 4 minutes.
  • Example l3 Photoimaging with Trifluoroacetamidonaphthalene (ATN) The procedure of Example 12 was substantially repeated using 57.2 mg. of ATN in place of the AcAN. The initial image was light brown. Development produced a deep purple image which formed a neutral image on theraml modification.
  • ATN Trifluoroacetamidonaphthalene
  • EXAMPLE 14 Photoimaging with 1-Azido-8-Hydroxynaphthalene (AHN) The procedure of Example 12 was substantially repeated using 37.0 mg. of AHN in place of the AcAN and using 2 ml. of the stock solution.
  • AHN 1-Azido-8-Hydroxynaphthalene
  • the initial image was light grey in color. Heating at 130C.-140C. for about 4 minutes produced an intensified image of neutral shade.
  • EXAMPLE EXAMPLE l6 Sensitized Photoimaging Diazidonaphthalene A stock solution of polyvinyl chloride was prepared by combining 100 g. of PVC powder (Geon 101) with 1000 ml. of THF and stirring for 24 hours at room temperature. A sample of the resulting polymer dope was made 0.67N in l,8-diazidonaphthalene and 0.5N in perylene. The normalities are relative to the dried binder. The sensitized polymer mixture was uniformly distributed over the surface of a Mylar polyester film by means of a fixed blade. The blade was adjusted to produce a binder layer having a thickness of 8.4 X 10' cm. The coated film was dried in the dark at room temperature overnight.
  • tized system was obtained by determining the initial slope of the curve formed by plotting the optical density of each film, measured at 545 mp., against the exposure time.
  • the efficiency of the sensitized system is expressed in alternative manners. Firstly, it is expressed as the ratio of R for the sensitized system (R,) over the corresponding value for the unsensitized system with excitation at the same wavelength (R Secondly, it is expressed as the ratio of R, over the corresponding value for the unsensitized system with direct excitation at 320 mp. (R The values observed are as follows: RJR 26.0; R,/R,,,, 0.53.
  • EXAMPLE 17 Employing the general procedure of Example 16 using a polymer dope which was 1.2N in thioacridone in substitution for the perylene used therein, and using an excitation frequency of 470 my. is substituted for the amino; hydroxy; azido; trifluoroacetamido;
  • R is lower alkyl having from C C or phenyl.
  • a material according to claim 1 wherein the azido compound is l,8-diazidonaphthalene, l-acetamido-S- azidonaphthalene, 1-azido-8- trifluoracetamidonaphthalene, 1-amino-8- azidonaphthalene or l-azido-8-hydroxynaphthalene.
  • a material according to claim 2 wherein the coating is polyvinyl chloride having'from about 3 percent to about 15 percent by weight of the azido compound and a thickness of from about 0.05 mils to about 1.00 mils.
  • a material according to claim 3 wherein the azido compound is 1,8-diazidonaphthalene.
  • a material according to claim 1 further comprising a spectral sensitizer that extends the sensitivity of the said azido compound to a longer wave-length than 360 mp. from the group consisting of ultraviolet or visible
  • the dried film was exposed to a light source emitting light absorbing sensitizers within the coating.
  • sensitizer is a volatile, visible light absorbing sensitizer.
  • sensitizer is fluorenone or benzanthrone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Abstract

Dry photoimaging processes and compositions employing photosensitve coatings of volatile peri-substituted aromatic azido compounds in a permeable film-forming plastic are disclosed.

Description

United States Patent 1191 m1 3,844,793
Singh 1*Oct. 29, 1974 PHOTOSENSITIVE AZIDO MATERIAL 3,072,485 1/1963 3 ,092,494 6/1963 [75] Inventor: Balwant Smgh, Stamford, Conn. 3 100,702 8/1963 [73] Assignee: American Cyanmid Company, 2 3339%; i322 Stamford, Conn. M970 Notice: The portion of the term of this 3,598,586 10/1971 patent subsequent to Oct. 16, 1989, 3,660,093 5/1972 has been disclaimed. 3,699,130 10/1972 3,748,135 7/1973 [22] Filed: Dec. 8, 1972 3,752,671 8/1973 [21] Appl. No.: 313,378, OTHER PUBLICATIONS Related US, Application Data Hoffman (it 3.1., J. Chem SOC. C., 1969, p. 769-772. [63] Continuation-impart of Ser. No. 82,129, Oct. 19, Anon Research Dlsclosures, 11/1971 P- 98400- 1970, abandoned, which is a continuation-in-part of Kosar, J., Light-Sensitive Systems, 1965, p. 276-282 Ser. No. 29,527, March 17, 1970, abandoned. and 330-336.
U-S- Cl. N, HD, Prima y Examiner charles L Bowers In [51] I t CI G03 ll s z doi lg7g Attorney, Agent, or Firm-H. G. Jackson n c c [58] Field of Search 96/61 N, 75, 49, 115 R,
96/90 R, 90 PC; 250/65 T; 117/368, 36.9 [57], ABSTRACT Dry photoimagmg processes and composmons em- 5 References Cited ploying photosensitive coatings of volatile 1 peri- UNITED STATES PATENTS substituted aromatic azldo compounds in a permeable film-forming plastic are disclosed. 1,845,989 2/1932 Schmidt et al 96/91 2,692,826 10/1954 Neugebauer et al 96/91 N 7 Claims, N0 Drawings This application is a continuation-in-part of my copending application for Letters Patent, Ser. No. 82, l 29 filed Oct. 19, 1970 which is a continuation-in-part of my Ser. No. 29,527 filed Mar. 17, i970 both applications now abandoned.
This invention relates to unique photosensitive compositions containing volatile peri-substituted aromatic azido compounds. It further relates to dry processes for the formation of thermally fixed non-vesicular images therefrom. It further relates to imaging processes and photosensitive compositions employing certain perisubstituted aromatic azido compounds. lt further relates to the intensification and modification of the images produced from said peri-substituted aromatic azido compounds.
Photosensitive compounds, compositions and processes play an essential role in photography and related arts dealing with the formation of images with the aid of some activating influence, such as light. heat. etc. Among the currently available methods of image formation, several problems are typically encountered. Costly materials, such as silver salts, are often required. Liquid solutions of chemicals are often required in the fixing or development stages of the imaging process, causing both inconvenience and delay. Many photochemicals require excessive access time and result in poor image quality from such factors as poor color stability, poor speed, acuity, resolution, tonal range, etc. Accordingly, a new photoimaging process which would overcome one or more of these limitations would provide a substantial advance in the art.
The sensitivity of aromatic azido compounds to ultraviolet light and their use in photoimaging is well known in the photographic arts, see, for example, U.S. Pat. Nos. 1,845,989, 3,096,3ll and 3,282,693. However, such processes are limited to those involving one or more wet steps in the formation of a light stable image; and, typically, suffer from one or more of the other aforementioned disadvantages.
Accordingly, objects of the present invention are to provide novel photosensitive compositions and dry imaging processes substantially overcoming one or more of the aforementioned prior art'limitations.
In accordance with the present invention, it has been unexpectedly found that volatile peri-substituted aromatic azido compounds are particularly well adapted for the formation of fixed images by a convenient dry imaging process. Furthermore, it has been unexpectedly found that the image colors are modified by heating the fixed image prepared from certain perisubstituted aromatic azido compounds or by exposing them to ultraviolet radiation.
VOLATILE PERI-SUBSTITUTED AROMATIC AZlDO COMPOUNDS Certain volatile peri-substituted aromatic azido compounds are preferred for use in the present invention due to the fact that the images produced on exposure can be intensified and fixed by heating. The fixed images can be modified to neutral tones by further heating or exposure to ultraviolet light. The resulting images having the advantage of enhanced contrast with a colorless or white background for easier reading and the aesthetic advantage of having purple, blue and neutral tones resembling conventional printing and writing inks.
The volatile, peri-substituted aromatic azido compounds have a substituent selected from the group consisting of: azido, hydroxy, trifluoroacetamido, amine and wherein R is lower alkyl as defined below. Otherwise, they may be substituted and characterized as the aromatic azido compounds, as mentioned below. The azido group may be represented as -N It is believed to have resonance structures represented as follows:
Peri-substituted aro' matic azido compound is defined as a naphthalene having an azido substituent in the l or 8 position and located peri to one of the five groups mentioned above. The 1,8-disubstituted-naphthalenes, such as, l,8-
diazidonaphthalene, l-acetamido-8-azidonaphthalene,
l-amino-8-azidonaphthalene, l-azido-8- trifluoroacetamidonaphthalcne and l-azido-8- hydroxynaphthalene are especially preferred due to their ease of preparation and the developing and fixing achievable therewith.
Non-volatile aromatic azido compounds are not suitable for use in the present invention. As used herein, the expression non-volatile compounds refers to those compounds which decompose at temperatures below that at which they volatilize from the photosensitive'compositions. Accordingly, high molecular weight compounds, such as, polymeric aromatic azido compounds, and aromatic compounds having substituents, such as, carboxylic acid salts, are unsuitable for use in the present invention.
In general, any of the wide variety of standard procedures for preparing aromatic azido compounds may be employed to prepare the photosensitive compounds employed in the present invention, such as, for example, those described in U.S. Pat. No. 3,123,621 or in Houben-Weyl, Methoden Der Organischen Chemie, Band 10/3, pp. 777-836 and references cited therein.
Among the numerous and diverse suitable substituents, the following are among the preferred: lower alkyl groups having from 1 to 6 carbon atoms, such as, methyl, ethyl, n-propyl, iso-propyl, n-butyl, t-butyl, npentyl, n-hexyl, cyclohexyl, etc.; lower alkoxy groups having from 1 to 6 carbon atoms, such as, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, t-butoxy, npentoxy, n-hexoxy, cyclohexyloxy, etc.; amino, lower alkyl amino and di-lower alkyl amino, said lower alkyl groups being defined above;
and
The photosensitive compositions of the present invention are prepared by uniformly distributing a layer of the volatile, aromatic azido compound in a conventional binder, such as, a polymer dope, over the surface of a conventional photographic substrate.
Suitable substrates include, for example, such materials as paper, plastic, wood, metal and glass.
Suitable binders include, for example, one or more of the following polyvinyl chloride, polyethylene, polymethylmethacrylate, polyvinyl acetate, cellulose acetate and copolymers of the corresponding monomers. Polyvinyl chloride is especially preferred.
Any of the variety of standard coating methods can be used to apply the coating composition to the base material. The Fixed Blade Method, the imbibing Method and the Meyer Rod Method are among the preferred techniques.
In the Fixed Blade Method, the base material is positioned under a fixed blade and an excess of the coating material is placed on the base. The base is then passed under the blade to produce a uniform coating having a thickness determined by the distance between the mounted blade and the base material.
In the Imbibing Method, a base stock having a plastic surface is coated with the active compound by passing it under a roller, through a solution of the azido compound. The excess coating is removed from the surface by an air knife. By way of illustration, one may mention passing paper coated with polyvinyl chloride, polyvinyl acetate or polymethylmethacrylate through a solution of 1,8-diazidonaphthalene in a solvent such as tetrahydrofuran, methyl ethyl ketone, acetone or toluene or mixtures thereof.
In the Meyer Rod Method, the coating composition is placed at one end of the base material and a metal rod wound with fine wire is passed through the liquid causing it to be spread over the surface of the base material. The thickness of the coating produced by this method is determined by the size of the wire used in the winding. 7
The concentrations -of azido compound advantageously employed in the coating compositions and the thickness of the layer applied to the base may be varied to tailor the photosensitive system to achieve the desired degree of image intensity, speed, length of fixing period, etc. Optimum concentrations and thicknesses will, of course, vary depending on the particularphotsensitive compound employed, the binder material and thickness of the binder layer used, fixing time and temperature, among other factors. In general, satisfactory photoimages can be produced using binder compositions having from about 3 percent to about percent by weight of the azido compound with coatings of from about 0.05 to about 1.00 mils in thickness. Preferred concentrations and thicknesses are about 15 percent and 0.3 mils, respectively.
Background colorup is generally minimized by selecting azido compounds of maximum thermal stability and volatility and binders of maximum permeability to azido compounds, applied in minimum thicknesses.
Generally, background colorup and diffusion time increase exponentially with film thickness. However, they are relatively unaffected by increases in the concentration of the azido compounds. The relationship between binder thickness and the time required for 90 4 percent removal of the 1,8-diazidonaphthalene (DAN) from polyvinyl chloride (Geon-IOI by B. F. Goodrich Chemicals Co.) on a polyester film (Mylar by E. I. Du- Pont deNemours & Co.) as shown in Table l.
The aromatic azido compounds are themselves generally sensitive to radiation containing wavelengths within the ultraviolet region. By means of the addition of a sensitizing agent to the polymer binder, the sensitivity can be extended into the range of from 360 my. to 470 my. or greater. The energy transfer of such systems is surprisingly efficient in view of the typically high viscosity of the binder polymer systems being sensitized.
Several advantages are provided by the use of sensitized systems. They permit the use of apparatus equipped with inexpensive and convenient light sources, such as incandescent lamps, and allow projection printing through various optical systems with normal optical glass. They also permit the simultaneous use of both direct and indirect excitation of azido compounds through simultaneous exposure of the photosensitive compounds to both visible and ultraviolet light. Alternatively, enhanced absorption can be achieved by using an ultraviolet absorbing sensitizer in combination with the azido composition.
Suitable sensitizers include, for example, fluoranthene, thioxanthone, fluorenone, perylene, benzanthrone, benzophenone, phenazine and thioacridone.
Sensitizers which absorb light in the visible spectrum are of necessity colored compounds. Where the colors caused thereby are found to be objectionable, it is preferred to employ unsensitized systems or compositions containing a colorless, ultraviolet absorbing sensitizer or a member of a class of volatile, colored sensitizers which diffuse out of the binder composition during the fixing or image modification steps. Illustrative of the preferred, volatile colored sensitizers are fluorenone and benzanthrone.
Optimum concentrations of the sensitizer and azido compound will, of course, vary with the particular system being employed. Generally, energy transfer is favored by high concentrations of the azido compound. It is preferred to employ the sensitizer in a sufficient concentration to absorb the incident light. However, excessively high concentrations of the sensitizer will cause complete absorption of the incident light at the surface of the plastic matrix and may thereby reduce the efficiency of the system.
IMAGING Non-vesicular imaging is achieved by exposing the photosensitive compositions to patterned activating radiation, namely, an information containing beam of visible or ultraviolet light.
A convenient source of ultraviolet radiation is provided by lamps which emit a wide range of ultraviolet frequencies. A light table equipped with a film transparency (positive or negative) and a bank of ultraviolet-rich black-light fluorescent lamps. such as, l5 Watt Black Light. No. Fl5T8-BL by General Electric and Rayonet Photochemical Reactor Lamps, No. RPR 3000A by The Southern New England Ultraviolet Company provides a convenient source of activating radiation. Conventional azo printing machines, equipped with high pressure mercury vapor lamps may also be employed. Since they emit both visible and ultraviolet light, they are especially well adapted for use with those compositions having sensitizers to visible light.
Absorption of incident light can be maximized by matching the frequencies of the incident light with the absorption frequencies of the aromatic azido compound or the sensitizer.
Patterning of the activating radiation can generally by achieved by any of the conventional methods. Suitable methods include passing the light through a film transparency or a template, use of a cathode ray tube containing an ultraviolet phosphor, such as, a Litton Industries Cathode Ray Tube, Ser. No. 4188, which contains a P16 phosphor; and using an ultraviolet pen light, such as Ultraviolet Products, Inc. Pen-Light, or ultraviolet laser, such as might be used in spatial frequency modulation.
Optimum periods of irradiation will vary widely, depending upon the particular photosensitive composition, opacity of transparency, and light source employed. Exposure for a few seconds in a conventional azo printer is generally adequate while periods of two minutes or more may be required for a source such as the abovementioned light table.
DEVELOPING The imaged compositions are developed by merely heating the exposed compositions. Optimum heating temperatures and periods will vary widely depending upon the compositions employed and the means by which heat is transferred. In the case of l,8- diazidonaphthalene, oven temperatures in the range of from about lO0C. to about 150C. are generally suitable and about 135C. is generally preferred. At 150C. developing is usually complete after about 20 seconds, whereas periods of up to about 7 minutes may be required for complete development at 135C. Contact heating with a platen permits more rapid heating and reduces fixing time over that in an oven.
The peri-azido aromatic compounds unexpectedly undergo a 6 to 10 fold increase in the optical density measured at 560 my during development. The initially formed images are typically grey-green or brownish. After development, they generally appear deep purple. This image intensification is unique to the perisubstituted compounds. For example, l,8- diazidonaphthalene initially forms a grey-green 1mage which develops to a high optical density purple image; while positional isomers, such as 1,5- diazidonaphthalene, form tan or brown images with no substantial enhancement in optical density on heating at 200C.
FIXING The developed images are fixed by merely heating to effect volatilization of the unreacted aromatic azido compound. This is conveniently achieved by merely prolonging the period of heating used for development. Again the optimum temperature and heating period will vary upon the particular system employed. In the case of l,8-diazidonaphthalene in polyvinyl chloride, permanent fixing can generally be achieved by heating the exposed compositions at C. for a periodof from about 1 to about 5 minutes.
MODIFICATION OF IMAGE COLOR ages, again the time and temperature can be widely varied. Treatment for about 3 to 4 minutes at from about 190C. to about 200C. is generally sufficient to produce neutral images.
Preparation of various aromatic azido compounds and the processes and compositions of the invention are further illustrated by the following examples which are not to be taken as limitative thereof. All parts specified therein are by weight unless otherwise indicated.
EXAMPLE 1 Preparation of l,8-Diazidonaphthalene Into a three-necked 2 liter flask equipped with a mechanical stirrer, a low temperature thermometer and a dropping funnel were placed l,8-diaminonaphthalene (31.6 g., 0.2 mole), 120 ml. of concentrated hydrochloric acid, ml. of water and NaBF, (55.0 g., 0.5 mole). The suspension was vigorously stirred and cooled in a salt-ice bath to 20C. A solution of NaNO (30 g., 0.435 mole) in 60 ml. of water was added dropwise with vigorous stirring. The resulting bis-diazonium fluoroborate precipitated out of solution as a beige solid. lt was removed by filtration, washed once with cold ether and converted to the diazide immediately.
The precipitated bis-diazonium salt was added in small portions with vigorous stirring to a cold solution composed of NaN (30 g., 0.46 mole) dissolved in a mixture of 100 ml. of water and 100 g. of ice. The l,8- diazidonaphthalene precipitated out of solution in the form of a thick paste. It was removed by filtration, washed with water and dissolved in diethyl ether. The ether solution was filtered through charcoal and the yellow mother liquor was concentrated whereupon the l,8-diazidonaphthalene crystallized out of solution in the form of long, thin silky needles which were collected by filtration and air dried to give a 60 percent yield of l,8-diazidonaphthalene having a melting point of l20-l 22C. Further purification may be effected by recrystallization from ether, methanol, ethanol or by chromatography on silica gel or alumina columns with a hexane eluent.
Analysis:
7 EXAMPLE 2 Preparation of 1-Amino-8-Azidonaphthalene The compound was prepared by the rearrangement reactions of l-aminonaphtho(l,8-de)triazene and 2- aminonaphtho-(l,8-de)triazene [C.W. Rees and R. C. Storr, J. Chem. Soc. '(C), 756 1969); R. W. Hoffmann, G. Guhn, M. Preiss and D. Dittrich, ibid, 769 (1969)] which are obtained by the amination of naphtho( 1,8- de)triazine [H. Waldmann and S. Back, Ann. 545, 52 (1940)]. The overall yield was 40 percent, m.p. 80C8lC., Lit. M.P. 80C.
EXAMPLE 3 Preparation of l-Acetamido-8-Azidonaphthalene To a stirred solution of 8-azido-l-naphthylamine (1.84 g., 0.01 mole) in 70 ml. of pyridine was added a solution of acetyl chloride (0.784 g., 0.01 mole) in ml. of ether. The mixture was warmed on a steam bath for 30 minutes. The solvents were removed in vacuo and the residue washed with water and dried. Recrystallization from hexane provided l-acetamido-S- azidonaphthalene in the form of colorless, long needles having 'a yield of 2.1 g., 93 percent, m.p. 148C.l49C., Lit. m.p. l47C.l48C. and an analysis of:
Calcd. for CIZHWN4OI C, H, N,
Found: C, 63.90; H, 4.14; N, 24.66
EXAMPLE 4 Preparation of Trifluoracetamidonaphthalene A sample of 8-azido-l-naphthylamine 192 mg., 1.04 mole) was treated at room temperature with 10 ml. of trifluoracetic anhydride. An exothermic reaction took place. The mixture was warmed at 40C. for 10 minutes and then evaporated to dryness under a stream of nitrogen. The residual solid was recrystallized from nhexane to yield l-azido-8- trifluoracetamidonaphthalene in the form of light yellow needles in a yield of 215 mg., 77 percent, m.p. l02C.l03C. and an analysis of:
Calcd: C, 51.50; H, 2.50; N, 20.50; F, 20.70
Found: C, 51.75; H, 2.37; N, 19.74; F, 20.07
EXAMPLE 5 Preparationof l-Azido-8-Hydroxynaphthalene A sample of 8-azido-l-naphthylamine (0.368 g., 0.02 mole) was dissolved in warm, dilute sulfuric acid (3 ml.
l-Azido-8- of conc. H SO diluted with 30 ml. of water). The solution was cooled to 0C. and diazotized with a solution of NaNO 160 mg., 0.023 mole) in 2 ml. of water. The excess of nitrous acid was destroyed by the addition of urea. The yellow solution of the diazonium salt was diluted with 100 ml. of water and heated at 60 for 1.5 hr. The precipitated material was washed with water, dried and filtered through activated charcoal. Removal of ether left a residue which weighed 35 mg. Recrystallization from petroleum ether gave l'-'azido-8- hydroxynaphthalene in the form of pale yellow needles (20 mg., 5.4 percent), m.p. 65C.-67C.
EXAMPLE 6 1,8-Diazidonaphthalen Photosensitive Composition I A stock solution of polyvinylchloride (PVC) was prepared by combining 20 g. of PVC powder (Geon 101 by B. F. Goodrich Chemicals Co.) with 200 ml. of tetrahydrofuran and stirring the resulting mixture at 60C. overnight. A 0.7N solution of 1,8-diazidonaphthalene was prepared by adding 1.0 g. of the azido compound to the cooled polymer solution. After stirring for 11 period of about 2 hours, the resulting solution was applied to 32 lb. white paper in the form of a film having a thickness in the range of about 0.2 mil. to about 0.3 mil. Uniform distribution of the polymer solution on the paper was effected by the Mayer rod technique. The coated paper was dried in the dark at room temperature overnight.
EXAMPLE 7 1,8-Diazidonaphthalene Photoirnaging Process The photosensitive composition of Example 6 was placed over a negative transparency having both printed material for sharp line contrasts and a photograph for continuous tonal variations, and the pair were placed upon the lens of a bank of blacklight blue fluorescent lamps for a period of 30 seconds, producing a grey-green positive reproduction of the negative image.
, EXAMPLE 8 Thermal Image Enhancement and Fixing of 1,8 Diazidonaphthalene lmage The photoimage of Example 7 was fixed by passing it over a heated drum while passing hot air (both from C. to C.) over its surface for about 30 seconds. A deep purple image having very high resolution and excellent quality of tonal range was produced. The substantially colorless background was stable to fogging upon prolonged exposure to sunlight.
EXAMPLES 9-10 of Fixed 1,8-
EXAMPLE 1 1 EXAMPLE 12 Photoimaging with Azidonaphthalene (AcAN) 1 -Acetamido-8- By the general procedure'of Example 6, photosensitive compositions of AcAN were prepared by disserving manger/sen in 3E1. era PVC stool? EQEF TEE iTi'iif rate of 6016i fEiFm'rfih' W0 the'sens iing solution. The coating solution was prepared by dissolving 7.0 g. of PVC (Geon 101 in 100 ml. of tetrahydrofuran.
The composition was imaged by the general procedure of Example 7. The grey-brown image produced was developed to a partially fixed deep purple image by heating at 130C.l55C. The fixed image was modified to neutral tones by heating at 180C. for about 4 minutes.
EXAMPLE l3 Photoimaging with Trifluoroacetamidonaphthalene (ATN) The procedure of Example 12 was substantially repeated using 57.2 mg. of ATN in place of the AcAN. The initial image was light brown. Development produced a deep purple image which formed a neutral image on theraml modification.
EXAMPLE 14 Photoimaging with 1-Azido-8-Hydroxynaphthalene (AHN) The procedure of Example 12 was substantially repeated using 37.0 mg. of AHN in place of the AcAN and using 2 ml. of the stock solution.
The initial image was light grey in color. Heating at 130C.-140C. for about 4 minutes produced an intensified image of neutral shade.
EXAMPLE EXAMPLE l6 Sensitized Photoimaging Diazidonaphthalene A stock solution of polyvinyl chloride was prepared by combining 100 g. of PVC powder (Geon 101) with 1000 ml. of THF and stirring for 24 hours at room temperature. A sample of the resulting polymer dope was made 0.67N in l,8-diazidonaphthalene and 0.5N in perylene. The normalities are relative to the dried binder. The sensitized polymer mixture was uniformly distributed over the surface of a Mylar polyester film by means of a fixed blade. The blade was adjusted to produce a binder layer having a thickness of 8.4 X 10' cm. The coated film was dried in the dark at room temperature overnight.
l-Azid0-8- with 1,8-
tized system was obtained by determining the initial slope of the curve formed by plotting the optical density of each film, measured at 545 mp., against the exposure time.
The efficiency of the sensitized system is expressed in alternative manners. Firstly, it is expressed as the ratio of R for the sensitized system (R,) over the corresponding value for the unsensitized system with excitation at the same wavelength (R Secondly, it is expressed as the ratio of R, over the corresponding value for the unsensitized system with direct excitation at 320 mp. (R The values observed are as follows: RJR 26.0; R,/R,,,, 0.53.
Further heating or UV re-exposure of the fixed image pl'OdalCCS image modification as described in Examples 9 an 10.
EXAMPLE 17 Employing the general procedure of Example 16 using a polymer dope which was 1.2N in thioacridone in substitution for the perylene used therein, and using an excitation frequency of 470 my. is substituted for the amino; hydroxy; azido; trifluoroacetamido;
wherein R is lower alkyl having from C C or phenyl.
2. A material according to claim 1 wherein the azido compound is l,8-diazidonaphthalene, l-acetamido-S- azidonaphthalene, 1-azido-8- trifluoracetamidonaphthalene, 1-amino-8- azidonaphthalene or l-azido-8-hydroxynaphthalene.
3. A material according to claim 2 wherein the coating is polyvinyl chloride having'from about 3 percent to about 15 percent by weight of the azido compound and a thickness of from about 0.05 mils to about 1.00 mils.
4. A material according to claim 3 wherein the azido compound is 1,8-diazidonaphthalene.
5. A material according to claim 1 further comprising a spectral sensitizer that extends the sensitivity of the said azido compound to a longer wave-length than 360 mp. from the group consisting of ultraviolet or visible The dried film was exposed to a light source emitting light absorbing sensitizers within the coating.
a Mh Q r slate"?! fQFYEFlQEiBSTlQdi ranging from about 10 seconds to about 100. The exposed film was heated at C. for 10 minutes to produce a fixed purple image with a yellow background.
6. A material according to claim 5 wherein the sensitizer is a volatile, visible light absorbing sensitizer. 7. A material according to claim 6 wherein the sensitizer is fluorenone or benzanthrone.

Claims (7)

1. AN IMAGE-FORMING MATERIAL COMPRISING A SUITABLE PHOTOGRAPHIC SUBSTRATE HAVING A COATING DEPOSITED THEREON, THE COATING COMPRISING A PERMEABLE FILM-FORMING PLASTIC HAVING A PHOTOSENSITIVE, VOLATILE, PERI-SUBSTITUTED NAPHTHALENE AZIDO COMPOUND DISPERSED THEREIN WHEREIN THE AZIDO COMPOUND HAS ONE OF THE FOLLOWING SUBSTITUENTS ORIENTED PERI TO THE AZIDO GROUP: AMINO, HYDROXY; AZIDO; TRIFLUOROACETAMIDO;
2. A material according to claim 1 wherein the azido compound is 1,8-diazidonaphthalene, 1-acetamido-8-azidonaphthalene, 1-azido-8-trifluoracetamidonaphthalene, 1-amino-8-azidonaphthalene or 1-azido-8-hydroxynaphthalene.
3. A material according to claim 2 wherein the coating is polyvinyl chloride having from about 3 percent to about 15 percent by weight of the azido compound and a thickness of from about 0.05 mils to about 1.00 mils.
4. A material according to claim 3 wherein the azido compound is 1,8-diazidonaphthalene.
5. A material according to claim 1 further comprising a spectral sensitizer that extends the sensitivity of the said azido compound to a longer wave-length than 360 m Mu from the group consisting of ultraviolet or visible light absorbing sensitizers within the coating.
6. A material according to claim 5 wherein the sensitizer is a volatile, visible light absorbing sensitizer.
7. A material according to claim 6 wherein the sensitizer is fluorenone or benzanthrone.
US00313378A 1970-10-19 1972-12-08 Photosensitive azido material Expired - Lifetime US3844793A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00313378A US3844793A (en) 1970-10-19 1972-12-08 Photosensitive azido material
US05/483,483 US3933497A (en) 1972-12-08 1974-06-27 Photosensitive azido processes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8212970A 1970-10-19 1970-10-19
US00313378A US3844793A (en) 1970-10-19 1972-12-08 Photosensitive azido material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US8212970A Continuation-In-Part 1970-04-17 1970-10-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/483,483 Division US3933497A (en) 1972-12-08 1974-06-27 Photosensitive azido processes

Publications (1)

Publication Number Publication Date
US3844793A true US3844793A (en) 1974-10-29

Family

ID=26767080

Family Applications (1)

Application Number Title Priority Date Filing Date
US00313378A Expired - Lifetime US3844793A (en) 1970-10-19 1972-12-08 Photosensitive azido material

Country Status (1)

Country Link
US (1) US3844793A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933497A (en) * 1972-12-08 1976-01-20 American Cyanamid Company Photosensitive azido processes
US4019907A (en) * 1973-10-24 1977-04-26 Hodogaya Chemical Co., Ltd. Photosensitive azido color-forming element
US4116692A (en) * 1976-06-07 1978-09-26 Agency Of Industrial Science & Technology Photographic method utilizing a photosensitive composition containing a 2-azidobiphenyl and a triplet sensitizer
US4268603A (en) * 1978-12-07 1981-05-19 Tokyo Ohka Kogyo Kabushiki Kaisha Photoresist compositions
US4356255A (en) * 1979-06-28 1982-10-26 Fuji Photo Film Co., Ltd. Photosensitive members and a process for forming patterns using the same
WO1992001082A1 (en) * 1990-07-10 1992-01-23 Hedgcoth Virgle L Slotted cylindrical hollow cathode/magnetron sputtering device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1845989A (en) * 1928-11-03 1932-02-16 Kalle & Co Ag Light-sensitive layers and process of preparing them
US2692826A (en) * 1949-10-10 1954-10-26 Azoplate Corp Lithographic plates
US3072485A (en) * 1960-08-24 1963-01-08 Eastman Kodak Co Optically sensitized azido polymers for photomechanical resist compositions
US3092494A (en) * 1953-05-28 1963-06-04 Azoplate Corp Light sensitive azides, printing plates comprising such compounds and process for the production thereof
US3100702A (en) * 1960-03-30 1963-08-13 Eastman Kodak Co Dry processed photothermographic printing plate and process
US3282693A (en) * 1960-02-05 1966-11-01 Eastman Kodak Co Photographic printout methods and materials utilizing organic azide compounds and coupler compounds therefor
US3287128A (en) * 1963-04-22 1966-11-22 Martin Mariatta Corp Lithographic plates and coatings
US3519425A (en) * 1967-08-02 1970-07-07 Eastman Kodak Co Vesicular compositions and photographic elements containing 2-azido-1,4-quinones
US3598586A (en) * 1967-07-26 1971-08-10 Bela Gaspar Aromatic azide material and process for producing color images
US3660093A (en) * 1968-07-08 1972-05-02 Agfa Gevaert Ag Dry azido thermal diffusion copying process
US3699130A (en) * 1971-05-26 1972-10-17 American Cyanamid Co Halo azido naphthalenes
US3748135A (en) * 1972-05-18 1973-07-24 American Cyanamid Co Photoimaging processes and compositions
US3752671A (en) * 1972-08-02 1973-08-14 American Cyanamid Co Material containing photosensitive halo azido naphthalenes

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1845989A (en) * 1928-11-03 1932-02-16 Kalle & Co Ag Light-sensitive layers and process of preparing them
US2692826A (en) * 1949-10-10 1954-10-26 Azoplate Corp Lithographic plates
US3092494A (en) * 1953-05-28 1963-06-04 Azoplate Corp Light sensitive azides, printing plates comprising such compounds and process for the production thereof
US3282693A (en) * 1960-02-05 1966-11-01 Eastman Kodak Co Photographic printout methods and materials utilizing organic azide compounds and coupler compounds therefor
US3100702A (en) * 1960-03-30 1963-08-13 Eastman Kodak Co Dry processed photothermographic printing plate and process
US3072485A (en) * 1960-08-24 1963-01-08 Eastman Kodak Co Optically sensitized azido polymers for photomechanical resist compositions
US3287128A (en) * 1963-04-22 1966-11-22 Martin Mariatta Corp Lithographic plates and coatings
US3598586A (en) * 1967-07-26 1971-08-10 Bela Gaspar Aromatic azide material and process for producing color images
US3519425A (en) * 1967-08-02 1970-07-07 Eastman Kodak Co Vesicular compositions and photographic elements containing 2-azido-1,4-quinones
US3660093A (en) * 1968-07-08 1972-05-02 Agfa Gevaert Ag Dry azido thermal diffusion copying process
US3699130A (en) * 1971-05-26 1972-10-17 American Cyanamid Co Halo azido naphthalenes
US3748135A (en) * 1972-05-18 1973-07-24 American Cyanamid Co Photoimaging processes and compositions
US3752671A (en) * 1972-08-02 1973-08-14 American Cyanamid Co Material containing photosensitive halo azido naphthalenes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Anon, Research Disclosures, 11/1971, p. 98 100. *
Hoffman et al., J. Chem. Soc. C., 1969, p. 769 772. *
Kosar, J., Light-Sensitive Systems, 1965, p. 276 282 and 330 336. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933497A (en) * 1972-12-08 1976-01-20 American Cyanamid Company Photosensitive azido processes
US4019907A (en) * 1973-10-24 1977-04-26 Hodogaya Chemical Co., Ltd. Photosensitive azido color-forming element
US4116692A (en) * 1976-06-07 1978-09-26 Agency Of Industrial Science & Technology Photographic method utilizing a photosensitive composition containing a 2-azidobiphenyl and a triplet sensitizer
US4268603A (en) * 1978-12-07 1981-05-19 Tokyo Ohka Kogyo Kabushiki Kaisha Photoresist compositions
US4356255A (en) * 1979-06-28 1982-10-26 Fuji Photo Film Co., Ltd. Photosensitive members and a process for forming patterns using the same
WO1992001082A1 (en) * 1990-07-10 1992-01-23 Hedgcoth Virgle L Slotted cylindrical hollow cathode/magnetron sputtering device

Similar Documents

Publication Publication Date Title
US3445234A (en) Leuco dye/hexaarylbiimidazole imageforming composition
US3617288A (en) Propenone sensitizers for the photolysis of organic halogen compounds
US3640718A (en) Spectral sentization of photosensitive compositions
US3810762A (en) Photochromic composition containing polyhalogenated hydrocarbon,spiropyran compound and poly-n-vinylcarbazole and the use thereof
US3390994A (en) Photodeactivatable light-sensitive color-forming composition
JPH0326765A (en) Thermal bleaching dye constituent
US3825427A (en) Recording member of photocolor developing and eliminating material and the recording method
US4008085A (en) Photosensitive material containing an organic polyhalogen compound and a dye precursor and the use thereof
US3615481A (en) Leuco dye/hexaarylbiimidazole thermally activated imaging process
US3844793A (en) Photosensitive azido material
US3113025A (en) Diazotype materials for the production of black images
US3579342A (en) Leuco triarylmethane/hexaarylbiimidazole color forming system containing a deactivator
US3933497A (en) Photosensitive azido processes
US3630736A (en) Leuco dye/hexaarylbiimidazole compositions and processes
US5244769A (en) Light-sensitive image forming material
US3082086A (en) Fixing of print-out images
US3164469A (en) One-component diazo process
US3748135A (en) Photoimaging processes and compositions
US3752671A (en) Material containing photosensitive halo azido naphthalenes
US3628954A (en) Diazo material and visible light development process therefore
SU878210A3 (en) Sheet material for producing images
US3095303A (en) Styryl dye base composition and photographic processes for producing lithographic surfaces photoresists and prints therewith
US3699130A (en) Halo azido naphthalenes
US3526506A (en) Heat reactive,light desensitizing compositions
US4130426A (en) Heat developable light-sensitive diazotype materials and process of use