[go: up one dir, main page]

US3841187A - Method and apparatus for holding sheet material - Google Patents

Method and apparatus for holding sheet material Download PDF

Info

Publication number
US3841187A
US3841187A US00282554A US28255472A US3841187A US 3841187 A US3841187 A US 3841187A US 00282554 A US00282554 A US 00282554A US 28255472 A US28255472 A US 28255472A US 3841187 A US3841187 A US 3841187A
Authority
US
United States
Prior art keywords
sheet material
cutting
carriage
tool
cage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00282554A
Inventor
H Gerber
D Pearl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gerber Technology LLC
Original Assignee
Gerber Garment Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerber Garment Technology Inc filed Critical Gerber Garment Technology Inc
Priority to US00282554A priority Critical patent/US3841187A/en
Application granted granted Critical
Publication of US3841187A publication Critical patent/US3841187A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/38Cutting-out; Stamping-out
    • B26F1/3806Cutting-out; Stamping-out wherein relative movements of tool head and work during cutting have a component tangential to the work surface
    • B26F1/3813Cutting-out; Stamping-out wherein relative movements of tool head and work during cutting have a component tangential to the work surface wherein the tool head is moved in a plane parallel to the work in a coordinate system fixed with respect to the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/01Means for holding or positioning work
    • B26D7/02Means for holding or positioning work with clamping means
    • B26D7/025Means for holding or positioning work with clamping means acting upon planar surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S83/00Cutting
    • Y10S83/929Particular nature of work or product
    • Y10S83/936Cloth or leather
    • Y10S83/939Cloth or leather with work support
    • Y10S83/94Cutter moves along bar, bar moves perpendicularly
    • Y10S83/941Work support comprising penetratable bed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/748With work immobilizer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/748With work immobilizer
    • Y10T83/7487Means to clamp work
    • Y10T83/7573Including clamping face of specific structure

Definitions

  • the method and apparatus for holding sheet material while it is worked upon by a tool employ a support table having a surface on which the sheet material is spread and a cage which holds a plurality of spherical weights over a given portion of the sheet material.
  • the weights rest either directly or indirectly on the material and press the material against the support surface.
  • the spherical weights are held within the cage so that they rotate freely over the material when the cage is moved relative to the material.
  • the region of the sheet material which is subjected to the pressure of the spherical weights may be localized in that region which is immediately adjacent the tool and, accordingly, there is less opportunity for the sheet material to move or shift under the influence of the tool during the work operation.
  • the present invention relatesto method and apparatus for holding sheet material in a fixed and compressed condition against a surface on which the material is supported. More particularly, the invention is concerned with method and apparatus that employ a plurality of spherically shaped weights to hold limp sheet material, such as cloth or fabric material, while it is worked upon.
  • Materials such as cloth are spread in a multi-tiered layup on a work surface for cutting, notching, drilling or similar operations in which a tool generally plunges through each tier of the layup in perpendicular relationship to the sheet material forming the layup. If the material is particularly fluffy, it is desirable to compress the layup to a reduced height. With the material compressed, the distance through the layup which the too] must penetrate is reduced and a more uniform operation on the upper and lower tiers of the layup results. Compressed material also tends to be normalized, that is, materials having different degrees of fluffiness and different textures and shearing characteristics tend to react to a tool in a more uni-form manner.
  • U.S. Pat. No. 3,495,492 having the same assignee as the present invention.
  • the patent discloses a vacuum table on which the sheet material is compressed by generating a vacuum within the layup so that atmospheric pressure forces the material into a compressed condition against'the supporting surface of the table.
  • the present invention may be used in conjunction with any of the above mentioned holding systems.
  • the present invention resides in method and apparatus for holding sheet material in a generally flat and compressed condition while it is worked on by a tool.
  • the apparatus which operates in accordance with the method comprises support means, such as a fiat table, defining a support surface for supporting a sheet material in a spread condition with one side of at least one sheetexposed.
  • support means such as a fiat table, defining a support surface for supporting a sheet material in a spread condition with one side of at least one sheetexposed.
  • a plurality of spherically shaped and weighted bodies are positioned for free, rolling movement above the exposed side of the one sheet with the weight of the bodies supported by the sheet material.
  • Caging means for capturing the weighted bodies in a closely packed relationship above a portion of the exposed side of the sheet material assures that'the combined weight of the bodies is localized at a given region of the sheet materialand holds that region compressed against the supporting surface of the table.
  • the spherical bodies tend to compress the layup into a normalized condition and the caging means is connected to a drive means to cause the locally compressed region of the layup to move with and remain adjacent to the cutting tool as the sheet material is cut.
  • FIG. 1 is a perspective view of an automatic cloth cutting system employing the holding apparatus of the present invention.
  • FIG. 2 is a fragmentary cross-sectional view of the cutting mechanism in the FIG. 1 system and shows the freely rolling spherical weights and associated cage of the holding apparatus.
  • FIG. 3 is a fragmentary cross-sectional view of the cutting mechanism positioned adjacent the edge of a layup with the cutting blade withdrawn from'operative engagement with the layup.
  • FIG. 4 is a perspective view of a cutting system employing an alternate embodiment of the holding apparatus.
  • FIG. 5 is a fragmentary sectional view of thecutting mechanism and the holding apparatus as viewed along the sectioning line 5-'5 of FIGJ4.
  • the particular material being cut may be a cloth, textile, plastic, foil or other pliable material and is held in a fxecl position so that a predetermined line of cut can be accurately traversed in each ply of the layup by the cutting tool during the cutting operation.
  • the holding apparatus is disclosed in a cutting machine; the apparatus has suitable applications in other mechanisms where the sheet material must not operation.
  • the carriage l6, hereafter referred to as the Ycar-' a layup L of the sheet material spread on a support table 18.
  • a control computer having a program tape 22 defining the paths or lines of cut to be followed by the blade 12 is connected to the carriages 14 and 16 by a control cable 24 to regulate the operation and the motions of the cutting blade 12 as it performs the cutting operation on the layup L.
  • the program tape 22 may define cutting commands which are translated by the control computer 20 into signals recognized by the carriages 14 and 16 and other control components for the cutting blade 12 to cause the blade to cut out pattern pieces for wearing apparel, upholstery or other products.
  • the table 18 includes a frame 30 supported on a plurality of upright legs 32. Within the frame 30 is a bed 34 that can be penetrated by the reciprocating cutting blade 12 without damaging the blade.
  • the bed 34 may be formed by replaceable, blocks of foamed plastic, bristle or other easily penetrated material and defines the support surfaceon which the layup L of sheet material is spread during the cutting operation.
  • the carraige l4 referred to hereafter as the X carriage, travels back and forth over the support surface of the table 34 in the X coordinate direction indicated on the layup L.
  • the X carriage 14 is supported above the bed 34 on gear racks 40, 42 connected to the frame 30 of the table 18 by a plurality of brackets 44.
  • An X drive motor 48 rotates a pair of pinions (not shown) engaged respectively with the racks 40 and 42 to cause the carriage to be driven back and forth in the longitudinal or X direction over the table 34.
  • Composite motions of the X and Y carriages permit the cutting blade 12 to move over the support surface of the bed 34 relative to the layup Lso that lines of cut can be'generated in any desired direction through the layup
  • the Y carriage 16 is supported on the X carriage 14 by means of a transversely extending guide rail 50 and a lead screw 52'threadably engaged with thecarriage 16.
  • a Y drive motor-54 connects withthe lead screw 52 to position the carriage 16 on the rail 50 and screw 52 and to correspondingly position the cutting blade 12 in the Y coordinate direction.
  • the drive motor 54 is I also regulated by the control computer 20 in accordance with commands derived from the program tape
  • the cutting blade 12 is supported on the Y carriage 16 by a Z carriage which is translatable relative to the Y carriage 16 along the vertical axis perpendicular to the support surface of the bed 34.
  • the elevating motionsof the Z carriage 60 produced by a drive motor (not shown) also regulated by the control computer 20 cause the cutting blade 12 to be lowered into a cutting position relative to the layup as shown in FIG. 2 or raised away from the cutting position above the layup as shown in FIG. 3.
  • the motions of the Z carriage 60 should not be confused with the reciprocating motions of the blade 12 when the Z carriage is in the lower or cutting position.
  • the reciprocating drive motor (not shown) is mounted to the carriage 60 for vertical movement with the cutting blade.
  • the stroke of the cutting blade 12 is fixed by the drive linkage connecting the blade with the motor; however, when it is desired to cut the layup, the carriage 60 is lowered to the point indicated in FIG. 2 so that the blade 12 at the lower extreme of its reciprocation penetrates into the bed 34 and assures that the lowest ply of sheet material in the layup is cut.
  • the upper and lower limits of the blade stroke are indicated in FIG. 2 by the solid-line and phantom positions of the bottom of the blade.
  • FIGS. 1, 2 and 3 a cage capturing a plurality of spherically shaped andweighted bodies 72 is suspended from the Y carriage 16 immediately adjacent the cutting blade 12.
  • the cage 70 comprises a circular member to which a pair of brackets 74 and 76 are connected.
  • a pair of support rods 78 and 80 extend down-, wardly to the brackets 74 and 76 respectively from adjustable clamp assemblies 82 and 84 connected to the Y carriage 16.
  • a clamping bolt 86 locks the rod 78 in the clamp assembly 82 and clamping.
  • bolt 88 locks the rod 80 in the assembly 84.
  • the height of the cage'70 above the layup L is determined bythe adjustment of the rods 78 and 80 in the assemblies 82 and 84 and is preferably selected at the beginning of each cutting operation to permit translation of the cage over the layup without touching theuppermost ply and without allowing the spherical bodies 72 to escape under the lower edges of the circular member.
  • the spherical bodies 72 are held loosely in the cage 70 and rotate freely relative to one another and to the cage 70 so that as the carriages 14 and 16 cause the knife 12. to be translated over the layup, the bodies 72 roll freely on the exposed surface of the uppermost ply in the layup.
  • the entire weight of the bodies 72 is supported by the layup and, by forming the bodies as balls from a dense material, preferablya heavy metal such as steel having good wear characteristics, a circular region of the layup underlying the cage 70 and surroundingthe cutting blade 12 is placed in compression.
  • each plyof the layup L is exposed to a slight compressive-force in a region surrounding the blade as the blade travels along a'desired line of cut.
  • Friction between each of the plies of sheet materialin the region under pressure tends to prevent'the plies from shifting relative to one another and relative to the bed 34. Pattern pieces cut from the uppermost and bottommost plies of the layup, therefore,'are more uniform in size and shape. Also, the weighted spherical bodies 72 prevent the upper plies of the layup from lifting during the upstroke of the reciprocating blade and thereby assist the cutting operation by holding the material fixedly adjacent the cutting edge of thereciprocating blade 12.
  • the brackets 74 and 76 support a knife sheath 100 at the center of the cage 70and surrounding the blade 12.
  • the sheath 100 is cylindrical and has an inside diameter which permits the blade to pass in closely spaced relationship with the inner surfaces of the sheath without touching the sheath and to be rotated about the O-axis relative to the sheath.
  • the sheath 100 may envelope a blade guide suspended from the carriage in addition to the blade 12 itself and permit rotation of the. guide with the blade about the O-axis.
  • the sheath 100 permits the cutting blade 12 to be lowered from the raised position for slewing as shown in FIG. 3 to the cutting position shown in FIG. 2 without necessitating that the blade penetrate through the planar array of spherical bodies 72 captured within the cage and permits the blade to reciprocate through and rotate freely in the array of bodies.
  • edge blocksll0 along each edge of the layup L it is desirable to position edge blocksll0 along each edge of the layup L so that the blade 12 can cut in close proximity to the edge of the layup without having the spherical bodies escape under the lower edge of the cage.
  • the positioning of the carriage 16 and the blade 12' near the edge of the layup with the blade raised is typical of the configuration of 25 the cutting machine at the beginning of a cutting operation. It is in this position after'the layup Lhas been spread on the bed 34 that the spherical bodies 72 are initially installed in theii freely rotatable condition within the cage 70.
  • the sheath and the cage 70 form an annular region overlying the layup and in which the spherical bodies 72 are confined.
  • the cage 70 suspended from the Y carriage 16 and the bodies 72 track the motions of the blade in both the X and Y coordinate directions.
  • FIGS. 4 and 5 disclose the cutting machine 10 with another embodiment of the holding apparatus which also employs a cage and a plurality of spherical bodies for holding a layup of sheet material in position while it is worked on by the reciprocating blade 12.
  • the portions of the cutting machine in FIGS. 4 and 5 having corresponding portions in FIGS. I-3 bear the same reference numerals.
  • Apresser foot which'surrounds the blade 12 in conventional fashionv assists'jin the cutting operation by preventing the upper plies of the layup from being lifted during vthe upstroke of the blade.
  • a pair of endless belts 122 and 124 are'positioned at opposite longitudinal sides of the blade 12 and two cag'es126 and 128 are.
  • the belts and the cages are suspended from the X carriage 14 so that the cutting blade 12 may move relative to the belts in the Y coordinate direction in the slot between the belts, and the belts move with the cutting blade in the X coordinate direction. Rotasite sides of the X carriage 14 for movement in the X coordinate direction.
  • the side plates contain vertical slots in which the axles of the rollers 133 and 134 are captured to permit the height of the endless belt above the work surface of the bed 34 to be adjustable and, more importantly, to permit the entire weight of the endless belt 122, the spherical weights 130, the rollers 133 and 134 and associated equipment to rest on the layup. Since the cage 126 is suspended slightly above the portion of the belt in contact with the layup by means of bracket plates 142 and 144 secured to opposite lateral ends of the cage and the axles on the ends of the rollers 133 and 134, the downward force on the layup through the belts includes the weight of the cage 126. The total weight of the spherical bodies 130, the
  • the endless belt 124 is carried on a pair of rollers 152 and 154 each having axles captured in vertical slots 156 in the side plates 136 and 138.
  • Therollers 133, 134, l52,.and 154 may be driven in conjunction with the X drive motor 48 which moves the X carriage 14 longitudinally over the cutting table. Regardless of whether the rollers are powered or not,
  • the'endle'ss belts effectively hold the-spherical bodies within the cages 126 and 128 and, at the same time, allow the weight of the bodies to act downwardlythr'ough the belts on the layup.
  • endless belts shown in the embodiments of FIGS. 4 and 5 may be either powered or free to roll over the layup in the X direction with the cutting blade.
  • the endless belts 122 and 124 and enclosed cagesand weighted bodies can also be advantageously employed on cutting machines having movable tables formed by another set of endless belts underlying the layup and over which the layup is translated relative to the cutting blade.
  • the compressive forces produced by the spherical bodies can be supplemented by drawing a vacuum in the layup or by adding a source of positive fluid pressure to the upper surface of the layup.
  • the particular configurations of the cages disclosed in the preferred embodiments may, of course, be varied.
  • the size of the spherical bodies is not particularly critical; however, if the bodies are too small, they may more easily escape from the cage and if they are tool large, they may not fit within the cage so that they rotate freely and produce a generally uniform downward pressure on the layup throughout that portion of the layup directly below the cage. Accordingly, the present invention has been described in a preferred embodiment by way of illustration rather than limitation.
  • Apparatus for cutting sheet material comprising: support means defining a work surface on which sheet material is positioned during a cutting operation; a cutting tool suspended above the work surface and having a sharp cutting edge; movable carriage means connected to the tool and the support means for moving the cutting tool and the sheet material positioned on the work surface relative to one another back and forth in two coordinate directions parallel to the work surface and with the cutting edge engaging the material; control means connected to the movable carriage means for controlling the relative movement of the cutting tool and the support means to advance the cutting edge of the tool relative to the material along a desired line of cut; holding means positioned adjacent the cutting tool for applying pressure to the sheet material to cause the sheet material to be pressed against the work surface, the holding means including a cage suspended with the cutting tool above the work surface and circumscribing the tool and a plurality of spherical weights held in the cage in a closely packed planar array extending in both of the two coordinate directions and at each side of the cutting tool; and a sheath also suspended above the work surface within
  • the movable carriage means comprises a first carriage movable over the work surface of the support means in a first of the two coordinate directions and a second carriage mounted on the first carriage and movable along the first carriage and over the work surface in a second of the two coordinate directions perpendicular to thefirst coordinate direction; the cutting tool is suspended from the second carriage for movement in each coordinate direction over the work surface; and the cage of the holding means and the sheath are also suspended from the second carriage adjacent the cutting tool for movement with the tool in each coordinate direction.
  • the support means comprises a support table defining the work surface on which the sheet material is positioned;
  • the carriage means includes a carriage mounted on the support table and movable over the work surface in at least one coordiante direction; the cutting tool is suspended from the carriage; and the cage and the sheath are also suspended from the carriage for movement with the tool.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

The method and apparatus for holding sheet material while it is worked upon by a tool employ a support table having a surface on which the sheet material is spread and a cage which holds a plurality of spherical weights over a given portion of the sheet material. The weights rest either directly or indirectly on the material and press the material against the support surface. The spherical weights are held within the cage so that they rotate freely over the material when the cage is moved relative to the material. By connecting the cage to the carriage from which the working tool such as a cutting blade is suspended, the region of the sheet material which is subjected to the pressure of the spherical weights may be localized in that region which is immediately adjacent the tool and, accordingly, there is less opportunity for the sheet material to move or shift under the influence of the tool during the work operation.

Description

Unite States Patent [191.
Gerber et al.
[ 51 Oct. 15, 1974 METHOD AND APPARATUS FOR HOLDING SHEET MATERIAL [75] Inventors: Heinz Joseph Gerber; David Raymond Pearl, both of West Hartford, Conn.
[73] Assignee: Gerber Garment Technology, Inc.,
East Hartford, Conn.
[22] Filed: Aug. 21, 1972 [21] Appl. No.: 282,554
[52] US. Cl. 83/451, 83/465, 83/925 CC [51] Int. Cl D06h 7/00, 826d H10 [58] Field of Search 83/374,451, 465, 925 CC,
Gerber et al. 83/925 CC Primary Examiner-J. M. Meister Attorney, Agent, or Firm-McCormick, Paulding & Huber [5 7 ABSTRACT The method and apparatus for holding sheet material while it is worked upon by a tool employ a support table having a surface on which the sheet material is spread and a cage which holds a plurality of spherical weights over a given portion of the sheet material. The weights rest either directly or indirectly on the material and press the material against the support surface. The spherical weights are held within the cage so that they rotate freely over the material when the cage is moved relative to the material. By connecting the cage to the carriage from which the working tool such as a cutting blade is suspended, the region of the sheet material which is subjected to the pressure of the spherical weights may be localized in that region which is immediately adjacent the tool and, accordingly, there is less opportunity for the sheet material to move or shift under the influence of the tool during the work operation. l
5 Claims, -5 Drawing Figures PAIENI [1] 0m 1 52974 SHE-E! 2 OF 2 METHOD AND APPARATUS FOR HOLDING SHEET MATERIAL BACKGROUNDOF THE INVENTION The present invention relatesto method and apparatus for holding sheet material in a fixed and compressed condition against a surface on which the material is supported. More particularly, the invention is concerned with method and apparatus that employ a plurality of spherically shaped weights to hold limp sheet material, such as cloth or fabric material, while it is worked upon.
Materials such as cloth are spread in a multi-tiered layup on a work surface for cutting, notching, drilling or similar operations in which a tool generally plunges through each tier of the layup in perpendicular relationship to the sheet material forming the layup. If the material is particularly fluffy, it is desirable to compress the layup to a reduced height. With the material compressed, the distance through the layup which the too] must penetrate is reduced and a more uniform operation on the upper and lower tiers of the layup results. Compressed material also tends to be normalized, that is, materials having different degrees of fluffiness and different textures and shearing characteristics tend to react to a tool in a more uni-form manner. Consequently, more uniform resultscan be expected when different materials are subjected to the same work operation. Also, by compressing the sheet material during an operation, there is less tendency for the sheet material to squirm or shift relative to the work surface on which it is supported or adjacent tiers of the material in a layup. 1
One apparatus for'holding sheet material in a compressed condition during a cutting operation is shown in U.S. Pat. No. 3,495,492 having the same assignee as the present invention. The patent discloses a vacuum table on which the sheet material is compressed by generating a vacuum within the layup so that atmospheric pressure forces the material into a compressed condition against'the supporting surface of the table.
Method and apparatus for holding sheet material on a work table and employing pressurized air to force the material onto the supporting surface of the table are disclosed in U.S. Pat. No. 3,750,507 issued on Aug. 7, 1973 to Heinz Joseph Gerber and David R. Pearl. A positive pressureor a pressure slightly above atmospheric pressure is generated immediately above a region of the sheet material adjacent the tool and holds the material in a compressed condition in much the same manner as the vacuum apparatusdisclosed inthe referenced patent. v
Power driven rolls which translate over the top-of a layup of sheet material to hold the material in a com pressed condition while it is out are disclosed in U.S. Pat. No. 3,693,489 issued Sept.- 26, 1972 to David R. Pearl. The power driven rolls are carried adjacent a cutting blade'so that the'material in the vicinity of the cutting blade is held in a compressed condition while the cutting operation occurs.
The present invention may be used in conjunction with any of the above mentioned holding systems.
It is a general objectof the present invention to disclose method andapparatus for holding sheet material in a compressed condition during a cutting or other work operation.
SUMMARY OF THE INVENTION The present invention resides in method and apparatus for holding sheet material in a generally flat and compressed condition while it is worked on by a tool. The apparatus which operates in accordance with the method comprises support means, such as a fiat table, defining a support surface for supporting a sheet material in a spread condition with one side of at least one sheetexposed. A plurality of spherically shaped and weighted bodies are positioned for free, rolling movement above the exposed side of the one sheet with the weight of the bodies supported by the sheet material. Caging means for capturing the weighted bodies in a closely packed relationship above a portion of the exposed side of the sheet material assures that'the combined weight of the bodies is localized at a given region of the sheet materialand holds that region compressed against the supporting surface of the table. in cutting layups of sheet material, the spherical bodies tend to compress the layup into a normalized condition and the caging means is connected to a drive means to cause the locally compressed region of the layup to move with and remain adjacent to the cutting tool as the sheet material is cut.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of an automatic cloth cutting system employing the holding apparatus of the present invention. FIG. 2 is a fragmentary cross-sectional view of the cutting mechanism in the FIG. 1 system and shows the freely rolling spherical weights and associated cage of the holding apparatus.
FIG. 3 is a fragmentary cross-sectional view of the cutting mechanism positioned adjacent the edge of a layup with the cutting blade withdrawn from'operative engagement with the layup.
FIG. 4 is a perspective view of a cutting system employing an alternate embodiment of the holding apparatus. I
FIG. 5 is a fragmentary sectional view of thecutting mechanism and the holding apparatus as viewed along the sectioning line 5-'5 of FIGJ4.
DESCRIPTION OF THE PREFERRED EMBODIMENTS of cloth or other limp sheet material in position during a cutting or related work operation involving the sheet material. The particular material being cut may be a cloth, textile, plastic, foil or other pliable material and is held in a fxecl position so that a predetermined line of cut can be accurately traversed in each ply of the layup by the cutting tool during the cutting operation. Although the holding apparatus is disclosed in a cutting machine; the apparatus has suitable applications in other mechanisms where the sheet material must not operation.
The carriage l6, hereafter referred to as the Ycar-' a layup L of the sheet material spread on a support table 18. A control computer having a program tape 22 defining the paths or lines of cut to be followed by the blade 12 is connected to the carriages 14 and 16 by a control cable 24 to regulate the operation and the motions of the cutting blade 12 as it performs the cutting operation on the layup L. For example, where the layup L is composed of multiple sheets of cloth material stacked one upon the otheron the table 18, the program tape 22 may define cutting commands which are translated by the control computer 20 into signals recognized by the carriages 14 and 16 and other control components for the cutting blade 12 to cause the blade to cut out pattern pieces for wearing apparel, upholstery or other products.
The table 18 includes a frame 30 supported on a plurality of upright legs 32. Within the frame 30 is a bed 34 that can be penetrated by the reciprocating cutting blade 12 without damaging the blade. The bed 34 may be formed by replaceable, blocks of foamed plastic, bristle or other easily penetrated material and defines the support surfaceon which the layup L of sheet material is spread during the cutting operation.
The carraige l4, referred to hereafter as the X carriage, travels back and forth over the support surface of the table 34 in the X coordinate direction indicated on the layup L. The X carriage 14 is supported above the bed 34 on gear racks 40, 42 connected to the frame 30 of the table 18 by a plurality of brackets 44. An X drive motor 48 rotates a pair of pinions (not shown) engaged respectively with the racks 40 and 42 to cause the carriage to be driven back and forth in the longitudinal or X direction over the table 34. Commands transmitted through the control cable 24 from the con trol computer 20 regulate the energization of the X drive motor 48 to position the carriage 14 and the blade 12 in the longitudinal direction during the cutting riage, is mounted to the X carriage 14 for movement in the transverse or Y coordinate direction relative to the X carriage 14 and the table 18.Composite motions of the X and Y carriages permit the cutting blade 12 to move over the support surface of the bed 34 relative to the layup Lso that lines of cut can be'generated in any desired direction through the layup The Y carriage 16 is supported on the X carriage 14 by means of a transversely extending guide rail 50 and a lead screw 52'threadably engaged with thecarriage 16. A Y drive motor-54 connects withthe lead screw 52 to position the carriage 16 on the rail 50 and screw 52 and to correspondingly position the cutting blade 12 in the Y coordinate direction. The drive motor 54 is I also regulated by the control computer 20 in accordance with commands derived from the program tape To keep the cutting blade 12 tangent to or parallel with the line of cut during a cutting operation, it is rotated about the vertical or fl-axis'relative to the Y carriage 16 as shown in FIG. 2 by a fi-drive motor (not shown) also regulated by the control computer 20.
As shown more clearly in FIG. 2, the cutting blade 12 is supported on the Y carriage 16 by a Z carriage which is translatable relative to the Y carriage 16 along the vertical axis perpendicular to the support surface of the bed 34. The elevating motionsof the Z carriage 60 produced by a drive motor (not shown) also regulated by the control computer 20 cause the cutting blade 12 to be lowered into a cutting position relative to the layup as shown in FIG. 2 or raised away from the cutting position above the layup as shown in FIG. 3. The motions of the Z carriage 60 should not be confused with the reciprocating motions of the blade 12 when the Z carriage is in the lower or cutting position. The reciprocating drive motor (not shown) is mounted to the carriage 60 for vertical movement with the cutting blade. The stroke of the cutting blade 12 is fixed by the drive linkage connecting the blade with the motor; however, when it is desired to cut the layup, the carriage 60 is lowered to the point indicated in FIG. 2 so that the blade 12 at the lower extreme of its reciprocation penetrates into the bed 34 and assures that the lowest ply of sheet material in the layup is cut. The upper and lower limits of the blade stroke are indicated in FIG. 2 by the solid-line and phantom positions of the bottom of the blade. When the carriage 60 is raised to its uppermost position indicated in FIG. 3, the cutting blade is completely withdrawn from the layup and can be rapidly slewed to another cutting point over the layup.
With respect to the present invention, it will be noted in FIGS. 1, 2 and 3that a cage capturing a plurality of spherically shaped andweighted bodies 72 is suspended from the Y carriage 16 immediately adjacent the cutting blade 12. The cage 70 comprises a circular member to which a pair of brackets 74 and 76 are connected. A pair of support rods 78 and 80 extend down-, wardly to the brackets 74 and 76 respectively from adjustable clamp assemblies 82 and 84 connected to the Y carriage 16. A clamping bolt 86 locks the rod 78 in the clamp assembly 82 and clamping. bolt 88 locks the rod 80 in the assembly 84. The height of the cage'70 above the layup L is determined bythe adjustment of the rods 78 and 80 in the assemblies 82 and 84 and is preferably selected at the beginning of each cutting operation to permit translation of the cage over the layup without touching theuppermost ply and without allowing the spherical bodies 72 to escape under the lower edges of the circular member.
The spherical bodies 72 are held loosely in the cage 70 and rotate freely relative to one another and to the cage 70 so that as the carriages 14 and 16 cause the knife 12. to be translated over the layup, the bodies 72 roll freely on the exposed surface of the uppermost ply in the layup. The entire weight of the bodies 72 is supported by the layup and, by forming the bodies as balls from a dense material, preferablya heavy metal such as steel having good wear characteristics, a circular region of the layup underlying the cage 70 and surroundingthe cutting blade 12 is placed in compression. Ac cordingly, each plyof the layup L is exposed to a slight compressive-force in a region surrounding the blade as the blade travels along a'desired line of cut. Friction between each of the plies of sheet materialin the region under pressure tends to prevent'the plies from shifting relative to one another and relative to the bed 34. Pattern pieces cut from the uppermost and bottommost plies of the layup, therefore,'are more uniform in size and shape. Also, the weighted spherical bodies 72 prevent the upper plies of the layup from lifting during the upstroke of the reciprocating blade and thereby assist the cutting operation by holding the material fixedly adjacent the cutting edge of thereciprocating blade 12.
In the embodiment of FIGS. 1-2, the brackets 74 and 76 support a knife sheath 100 at the center of the cage 70and surrounding the blade 12. The sheath 100 is cylindrical and has an inside diameter which permits the blade to pass in closely spaced relationship with the inner surfaces of the sheath without touching the sheath and to be rotated about the O-axis relative to the sheath. If desired, the sheath 100 may envelope a blade guide suspended from the carriage in addition to the blade 12 itself and permit rotation of the. guide with the blade about the O-axis.
The sheath 100 permits the cutting blade 12 to be lowered from the raised position for slewing as shown in FIG. 3 to the cutting position shown in FIG. 2 without necessitating that the blade penetrate through the planar array of spherical bodies 72 captured within the cage and permits the blade to reciprocate through and rotate freely in the array of bodies.
As shown in FIG. 3, it is desirable to position edge blocksll0 along each edge of the layup L so that the blade 12 can cut in close proximity to the edge of the layup without having the spherical bodies escape under the lower edge of the cage. The positioning of the carriage 16 and the blade 12' near the edge of the layup with the blade raised is typical of the configuration of 25 the cutting machine at the beginning of a cutting operation. It is in this position after'the layup Lhas been spread on the bed 34 that the spherical bodies 72 are initially installed in theii freely rotatable condition within the cage 70. The sheath and the cage 70 form an annular region overlying the layup and in which the spherical bodies 72 are confined. As the cutting blade 12 is translated relative to the layup L, the cage 70 suspended from the Y carriage 16 and the bodies 72 track the motions of the blade in both the X and Y coordinate directions.
FIGS. 4 and 5 disclose the cutting machine 10 with another embodiment of the holding apparatus which also employs a cage and a plurality of spherical bodies for holding a layup of sheet material in position while it is worked on by the reciprocating blade 12. The portions of the cutting machine in FIGS. 4 and 5 having corresponding portions in FIGS. I-3 bear the same reference numerals. Apresser foot which'surrounds the blade 12 in conventional fashionv assists'jin the cutting operation by preventing the upper plies of the layup from being lifted during vthe upstroke of the blade.
In the embodiment of FIGS. 4 and 5, a pair of endless belts 122 and 124 are'positioned at opposite longitudinal sides of the blade 12 and two cag'es126 and 128 are.
mounted within'the endless belts 122 and 124 respectively so that the plurality of spherical weights 130 and 132 in the respective cages are captured in planar rays and rest directly on that portion of the belts 122' and 124 in direct contact with the exposed surface of the layup L. The belts and the cages are suspended from the X carriage 14 so that the cutting blade 12 may move relative to the belts in the Y coordinate direction in the slot between the belts, and the belts move with the cutting blade in the X coordinate direction. Rotasite sides of the X carriage 14 for movement in the X coordinate direction. The side plates contain vertical slots in which the axles of the rollers 133 and 134 are captured to permit the height of the endless belt above the work surface of the bed 34 to be adjustable and, more importantly, to permit the entire weight of the endless belt 122, the spherical weights 130, the rollers 133 and 134 and associated equipment to rest on the layup. Since the cage 126 is suspended slightly above the portion of the belt in contact with the layup by means of bracket plates 142 and 144 secured to opposite lateral ends of the cage and the axles on the ends of the rollers 133 and 134, the downward force on the layup through the belts includes the weight of the cage 126. The total weight of the spherical bodies 130, the
desired line of cut.
In a similar manner, the endless belt 124 is carried on a pair of rollers 152 and 154 each having axles captured in vertical slots 156 in the side plates 136 and 138. A pair of bracket plates 160 .(one not visibleisimilar to the bracket plates 142 and 144 suspend the cage '128-from the axles of the rollers 152 and 154. It will thus be seen that the combined weight of the spherical bodies 132, the cage 128, the rollersl52 and 154 and the endless belt 124 rest on the layup at the side of the cutting blade opposite the endless belt 122. The'combined downward forces transmitted through the belts to the layup at opposite sides of the cutting station produce substantially the same compression and holding effects as that obtained in the embodiment of FIG. I where the weighted bodies 72 captured within the cage 70 completely surrounded the cutting blade.
Therollers 133, 134, l52,.and 154 may be driven in conjunction with the X drive motor 48 which moves the X carriage 14 longitudinally over the cutting table. Regardless of whether the rollers are powered or not,
the motions ofthe cutting blade in the X coordinate dimounting the cages within travelling belts which roll along the layup, the portions of the belts which are in-,
terposed between the layup and weighted bodies 130. and 132 prevent the bodies from dropping out of the cages into-depressed areas or holes within or along the edges of a layup. In other words, the'endle'ss belts effectively hold the-spherical bodies within the cages 126 and 128 and, at the same time, allow the weight of the bodies to act downwardlythr'ough the belts on the layup.
While. the present invention has beendescribed in several preferred embodiments, it will be understood that still further substitutions and modifications can be made without departing from the spirit of theinvention. For example, it has already been mentioned above that the endless belts shown in the embodiments of FIGS. 4 and 5 may be either powered or free to roll over the layup in the X direction with the cutting blade. The endless belts 122 and 124 and enclosed cagesand weighted bodies can also be advantageously employed on cutting machines having movable tables formed by another set of endless belts underlying the layup and over which the layup is translated relative to the cutting blade. If desired, the compressive forces produced by the spherical bodies can be supplemented by drawing a vacuum in the layup or by adding a source of positive fluid pressure to the upper surface of the layup. The particular configurations of the cages disclosed in the preferred embodiments may, of course, be varied. The size of the spherical bodies is not particularly critical; however, if the bodies are too small, they may more easily escape from the cage and if they are tool large, they may not fit within the cage so that they rotate freely and produce a generally uniform downward pressure on the layup throughout that portion of the layup directly below the cage. Accordingly, the present invention has been described in a preferred embodiment by way of illustration rather than limitation.
We claim:
1. Apparatus for cutting sheet material comprising: support means defining a work surface on which sheet material is positioned during a cutting operation; a cutting tool suspended above the work surface and having a sharp cutting edge; movable carriage means connected to the tool and the support means for moving the cutting tool and the sheet material positioned on the work surface relative to one another back and forth in two coordinate directions parallel to the work surface and with the cutting edge engaging the material; control means connected to the movable carriage means for controlling the relative movement of the cutting tool and the support means to advance the cutting edge of the tool relative to the material along a desired line of cut; holding means positioned adjacent the cutting tool for applying pressure to the sheet material to cause the sheet material to be pressed against the work surface, the holding means including a cage suspended with the cutting tool above the work surface and circumscribing the tool and a plurality of spherical weights held in the cage in a closely packed planar array extending in both of the two coordinate directions and at each side of the cutting tool; and a sheath also suspended above the work surface within the periphery of the cage and interposed between the cutting blade and the array of spherical weights extending in the two coordinate directions to capture the weights in the region between the cage and the sheath and separate the cutting tool and weights during relative movement of the tool and sheet material in the two coordinate directions.
2. Apparatus for cutting sheet material as defined in claim 1 wherein the spherical weights of the holding means are metallic balls freely rotatable within the cage.-
3.. Apparatus for cutting sheet material as defined in claim 2 wherein the metallic balls are steel balls. 1 4. Apparatus for cutting sheet material as defined in claim 1 wherein: the movable carriage means comprises a first carriage movable over the work surface of the support means in a first of the two coordinate directions and a second carriage mounted on the first carriage and movable along the first carriage and over the work surface in a second of the two coordinate directions perpendicular to thefirst coordinate direction; the cutting tool is suspended from the second carriage for movement in each coordinate direction over the work surface; and the cage of the holding means and the sheath are also suspended from the second carriage adjacent the cutting tool for movement with the tool in each coordinate direction.
5. Apparatus for cutting sheet material as defined in claim 1 wherein: the support means comprises a support table defining the work surface on which the sheet material is positioned; the carriage means includes a carriage mounted on the support table and movable over the work surface in at least one coordiante direction; the cutting tool is suspended from the carriage; and the cage and the sheath are also suspended from the carriage for movement with the tool.

Claims (5)

1. Apparatus for cutting sheet material comprising: support means defining a work surface on which sheet material is positioned during a cutting operation; a cutting tool suspended above the work surface and having a sharp cutting edge; movable carriage means connected to the tool and the support means for moving the cutting tool and the sheet material positioned on the work surface relative to one another back and forth in two coordinate directions parallel to the work surface and with the cutting edge engaging the material; control means connected to the movable carriage means for controlling the relative movement of the cutting tool and the support means to advance the cutting edge of the tool rElative to the material along a desired line of cut; holding means positioned adjacent the cutting tool for applying pressure to the sheet material to cause the sheet material to be pressed against the work surface, the holding means including a cage suspended with the cutting tool above the work surface and circumscribing the tool and a plurality of spherical weights held in the cage in a closely packed planar array extending in both of the two coordinate directions and at each side of the cutting tool; and a sheath also suspended above the work surface within the periphery of the cage and interposed between the cutting blade and the array of spherical weights extending in the two coordinate directions to capture the weights in the region between the cage and the sheath and separate the cutting tool and weights during relative movement of the tool and sheet material in the two coordinate directions.
2. Apparatus for cutting sheet material as defined in claim 1 wherein the spherical weights of the holding means are metallic balls freely rotatable within the cage.
3. Apparatus for cutting sheet material as defined in claim 2 wherein the metallic balls are steel balls.
4. Apparatus for cutting sheet material as defined in claim 1 wherein: the movable carriage means comprises a first carriage movable over the work surface of the support means in a first of the two coordinate directions and a second carriage mounted on the first carriage and movable along the first carriage and over the work surface in a second of the two coordinate directions perpendicular to the first coordinate direction; the cutting tool is suspended from the second carriage for movement in each coordinate direction over the work surface; and the cage of the holding means and the sheath are also suspended from the second carriage adjacent the cutting tool for movement with the tool in each coordinate direction.
5. Apparatus for cutting sheet material as defined in claim 1 wherein: the support means comprises a support table defining the work surface on which the sheet material is positioned; the carriage means includes a carriage mounted on the support table and movable over the work surface in at least one coordiante direction; the cutting tool is suspended from the carriage; and the cage and the sheath are also suspended from the carriage for movement with the tool.
US00282554A 1972-08-21 1972-08-21 Method and apparatus for holding sheet material Expired - Lifetime US3841187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US00282554A US3841187A (en) 1972-08-21 1972-08-21 Method and apparatus for holding sheet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00282554A US3841187A (en) 1972-08-21 1972-08-21 Method and apparatus for holding sheet material

Publications (1)

Publication Number Publication Date
US3841187A true US3841187A (en) 1974-10-15

Family

ID=23082040

Family Applications (1)

Application Number Title Priority Date Filing Date
US00282554A Expired - Lifetime US3841187A (en) 1972-08-21 1972-08-21 Method and apparatus for holding sheet material

Country Status (1)

Country Link
US (1) US3841187A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091701A (en) * 1976-11-01 1978-05-30 Gerber Garment Technology, Inc. Cutting machine having roller blade guide
US4301999A (en) * 1979-09-10 1981-11-24 Camsco, Inc. Vacuum hold-down table for an automatically controlled system for working on sheet material
FR2679166A1 (en) * 1991-07-19 1993-01-22 Guichard Cie Ets Machine for cutting a thickness of flexible material exhibited particularly in the form of a stack of sheets, and cutting head equipping this machine
US5388488A (en) * 1992-09-14 1995-02-14 Arago Robotics Incorporated Mat cutting system
US5836224A (en) * 1995-12-27 1998-11-17 Gerber Garment Technology, Inc. Method and apparatus for working on sheet material
US6681669B1 (en) * 1999-06-07 2004-01-27 Gerber Technology, Inc. Method and apparatus for cutting a compressible material having an uncompressed thickness greater than a radius of a wheel cutter
EP1409168A1 (en) * 2001-04-11 2004-04-21 Solidimension Ltd. Method and apparatus to reduce deformation in sheets cut by a cutting tool
US7229342B1 (en) * 2006-12-22 2007-06-12 York Rodney L Stone cutting system and method
US20100132526A1 (en) * 2007-06-14 2010-06-03 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Apparatus for Holding a Plate-Like Material During a Separation Process
US20140374003A1 (en) * 2012-08-31 2014-12-25 General Electric Company Methods and systems for automated ply layup for composites
US20150150269A1 (en) * 2012-08-01 2015-06-04 Frito-Lay North America, Inc. Continuous process and apparatus for making a pita chip
US20180193964A1 (en) * 2015-07-07 2018-07-12 Securo B.V. Device and method for processing a flexible sheet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1147960A (en) * 1914-05-20 1915-07-27 Emerson Wesley Mathewson Presser-foot for sewing-machines.
US2979808A (en) * 1957-01-31 1961-04-18 Orenda Engines Ltd Method and apparatus for securing skin to a core
US3495492A (en) * 1969-05-05 1970-02-17 Gerber Garment Technology Inc Apparatus for working on sheet material
US3572202A (en) * 1970-03-26 1971-03-23 Gerber Garment Technology Inc Sheet material cutter with presser plate utilizing pressurized air

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1147960A (en) * 1914-05-20 1915-07-27 Emerson Wesley Mathewson Presser-foot for sewing-machines.
US2979808A (en) * 1957-01-31 1961-04-18 Orenda Engines Ltd Method and apparatus for securing skin to a core
US3495492A (en) * 1969-05-05 1970-02-17 Gerber Garment Technology Inc Apparatus for working on sheet material
US3572202A (en) * 1970-03-26 1971-03-23 Gerber Garment Technology Inc Sheet material cutter with presser plate utilizing pressurized air

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4091701A (en) * 1976-11-01 1978-05-30 Gerber Garment Technology, Inc. Cutting machine having roller blade guide
US4301999A (en) * 1979-09-10 1981-11-24 Camsco, Inc. Vacuum hold-down table for an automatically controlled system for working on sheet material
FR2679166A1 (en) * 1991-07-19 1993-01-22 Guichard Cie Ets Machine for cutting a thickness of flexible material exhibited particularly in the form of a stack of sheets, and cutting head equipping this machine
US5388488A (en) * 1992-09-14 1995-02-14 Arago Robotics Incorporated Mat cutting system
US5836224A (en) * 1995-12-27 1998-11-17 Gerber Garment Technology, Inc. Method and apparatus for working on sheet material
US6681669B1 (en) * 1999-06-07 2004-01-27 Gerber Technology, Inc. Method and apparatus for cutting a compressible material having an uncompressed thickness greater than a radius of a wheel cutter
EP1409168A1 (en) * 2001-04-11 2004-04-21 Solidimension Ltd. Method and apparatus to reduce deformation in sheets cut by a cutting tool
EP1409168A4 (en) * 2001-04-11 2009-01-28 Solidimension Ltd Method and apparatus to reduce deformation in sheets cut by a cutting tool
US20080153399A1 (en) * 2006-12-22 2008-06-26 York Rodney L Stone cutting system and method
US7229342B1 (en) * 2006-12-22 2007-06-12 York Rodney L Stone cutting system and method
US20100132526A1 (en) * 2007-06-14 2010-06-03 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Apparatus for Holding a Plate-Like Material During a Separation Process
US8714066B2 (en) * 2007-06-14 2014-05-06 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Apparatus for holding a plate-like material during a separation process
US20150150269A1 (en) * 2012-08-01 2015-06-04 Frito-Lay North America, Inc. Continuous process and apparatus for making a pita chip
US20140374003A1 (en) * 2012-08-31 2014-12-25 General Electric Company Methods and systems for automated ply layup for composites
US9421744B2 (en) * 2012-08-31 2016-08-23 General Electric Company Methods and systems for automated ply layup for composites
US20180193964A1 (en) * 2015-07-07 2018-07-12 Securo B.V. Device and method for processing a flexible sheet
US10843301B2 (en) * 2015-07-07 2020-11-24 Securo B.V. Device and method for processing a flexible sheet

Similar Documents

Publication Publication Date Title
US3841187A (en) Method and apparatus for holding sheet material
US3777604A (en) Apparatus for supporting a stack of sheet material being cut or otherwise worked on
US3598006A (en) Method for working on sheet material and other objects
US4060016A (en) Method and apparatus for blanking out pattern pieces from a layup
US3245295A (en) Process of cutting plural garment components from fabric
US3742802A (en) Sheet material cutting apparatus including a vacuum holddown system having a roller mechanism for handling air-impermeable sheets
US3776072A (en) Method and apparatus for cutting sheet material
US3848327A (en) Apparatus for working on sheet material
US3495492A (en) Apparatus for working on sheet material
US4732064A (en) Apparatus and method for sharpening edges of reciprocating blade
DE19654228C2 (en) Device and method for processing flat material
US4362077A (en) Apparatus for working on sheet material and having magnetic holddown means
US4207667A (en) Method and apparatus for automatic sheet cutting and stacking
US3750507A (en) Method and apparatus for holding sheet material
JP2756327B2 (en) Apparatus for manufacturing sections cut from material webs, such as sections for clothing
US3747454A (en) Apparatus for cutting sheet material
CN207840260U (en) Hydraulic gate type guillotine shear
US4294047A (en) Method of sharpening lateral edges and end edges of a blade during reciprocation thereof
US3693489A (en) Apparatus for cutting sheet material
GB1350957A (en) Methods for cutting sharp corners and notches in layups of fabric and other sheet material
GB2076331A (en) Rotary cutter
US5303515A (en) Method and device for automatically sharpening cutting blades
US3955458A (en) Cutting apparatus with sharpener and sharpening method
US4507995A (en) Arrangement for removing workpieces from a cutting press
US3572202A (en) Sheet material cutter with presser plate utilizing pressurized air