US3827997A - Flame-resistant compositions of ethylene/vinyl chloride interpolymers and hydrated alumina - Google Patents
Flame-resistant compositions of ethylene/vinyl chloride interpolymers and hydrated alumina Download PDFInfo
- Publication number
- US3827997A US3827997A US00337784A US33778473A US3827997A US 3827997 A US3827997 A US 3827997A US 00337784 A US00337784 A US 00337784A US 33778473 A US33778473 A US 33778473A US 3827997 A US3827997 A US 3827997A
- Authority
- US
- United States
- Prior art keywords
- ethylene
- vinyl chloride
- percent
- acrylamide
- flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 title abstract description 62
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 title abstract description 51
- 239000005977 Ethylene Substances 0.000 title abstract description 51
- 239000000203 mixture Substances 0.000 title abstract description 37
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title description 29
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 abstract 1
- 229910052782 aluminium Inorganic materials 0.000 abstract 1
- 229940093470 ethylene Drugs 0.000 description 49
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 43
- 229940117913 acrylamide Drugs 0.000 description 42
- 239000002253 acid Substances 0.000 description 23
- -1 acrylyl Chemical group 0.000 description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 16
- 229910052760 oxygen Inorganic materials 0.000 description 16
- 239000001301 oxygen Substances 0.000 description 16
- 150000007513 acids Chemical class 0.000 description 14
- 125000004432 carbon atom Chemical group C* 0.000 description 14
- 239000000178 monomer Substances 0.000 description 14
- 239000006185 dispersion Substances 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 229920001897 terpolymer Polymers 0.000 description 10
- 125000000217 alkyl group Chemical group 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 150000003863 ammonium salts Chemical class 0.000 description 6
- 239000012736 aqueous medium Substances 0.000 description 6
- 239000004816 latex Substances 0.000 description 6
- 229920000126 latex Polymers 0.000 description 6
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 150000001340 alkali metals Chemical class 0.000 description 5
- 235000011087 fumaric acid Nutrition 0.000 description 5
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Chemical class OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 5
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical class OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 125000005395 methacrylic acid group Chemical group 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 3
- 125000005907 alkyl ester group Chemical group 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical class OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 150000002238 fumaric acids Chemical class 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical class OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 150000002689 maleic acids Chemical class 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229920001567 vinyl ester resin Polymers 0.000 description 3
- CCJAYIGMMRQRAO-UHFFFAOYSA-N 2-[4-[(2-hydroxyphenyl)methylideneamino]butyliminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NCCCCN=CC1=CC=CC=C1O CCJAYIGMMRQRAO-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Chemical class OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 150000008107 benzenesulfonic acids Chemical class 0.000 description 2
- 239000007767 bonding agent Substances 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 239000001530 fumaric acid Chemical class 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 2
- 239000011976 maleic acid Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Chemical class 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- QDLYDXLYPXBEKO-UHFFFAOYSA-N 2-ethylhexyl bis(4-methylphenyl) phosphate Chemical compound C=1C=C(C)C=CC=1OP(=O)(OCC(CC)CCCC)OC1=CC=C(C)C=C1 QDLYDXLYPXBEKO-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 1
- HSXUNHYXJWDLDK-UHFFFAOYSA-N 2-hydroxypropane-1-sulfonic acid Chemical compound CC(O)CS(O)(=O)=O HSXUNHYXJWDLDK-UHFFFAOYSA-N 0.000 description 1
- GQVHDJDEKIOIGV-UHFFFAOYSA-N 4-methyl-2-methylidene-3-oxopent-4-enoic acid Chemical class CC(=C)C(=O)C(=C)C(O)=O GQVHDJDEKIOIGV-UHFFFAOYSA-N 0.000 description 1
- YSEMOLRIMHHJLG-UHFFFAOYSA-N 6-methylheptyl bis(4-methylphenyl) phosphate Chemical compound C=1C=C(C)C=CC=1OP(=O)(OCCCCCC(C)C)OC1=CC=C(C)C=C1 YSEMOLRIMHHJLG-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 239000004114 Ammonium polyphosphate Substances 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- XLYMOEINVGRTEX-ARJAWSKDSA-N Ethyl hydrogen fumarate Chemical compound CCOC(=O)\C=C/C(O)=O XLYMOEINVGRTEX-ARJAWSKDSA-N 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- CGYMKZAVGJFARA-UHFFFAOYSA-N P(=O)(OCCCCCCCCCCCCC)(OC1=CC=C(C=C1)C)OC1=CC=C(C=C1)C Chemical compound P(=O)(OCCCCCCCCCCCCC)(OC1=CC=C(C=C1)C)OC1=CC=C(C=C1)C CGYMKZAVGJFARA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- YYQRGCZGSFRBAM-UHFFFAOYSA-N Triclofos Chemical compound OP(O)(=O)OCC(Cl)(Cl)Cl YYQRGCZGSFRBAM-UHFFFAOYSA-N 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 235000019826 ammonium polyphosphate Nutrition 0.000 description 1
- 229920001276 ammonium polyphosphate Polymers 0.000 description 1
- 239000012874 anionic emulsifier Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- SIAHDZBUUGWUSG-UHFFFAOYSA-N bis(4-methylphenyl) nonyl phosphate Chemical compound C=1C=C(C)C=CC=1OP(=O)(OCCCCCCCCC)OC1=CC=C(C)C=C1 SIAHDZBUUGWUSG-UHFFFAOYSA-N 0.000 description 1
- IINBBFMEBFBFQO-UHFFFAOYSA-N bis(4-methylphenyl) octyl phosphate Chemical compound C=1C=C(C)C=CC=1OP(=O)(OCCCCCCCC)OC1=CC=C(C)C=C1 IINBBFMEBFBFQO-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- OPKRFTKWYVPEHU-UHFFFAOYSA-N butyl bis(4-methylphenyl) phosphate Chemical compound C=1C=C(C)C=CC=1OP(=O)(OCCCC)OC1=CC=C(C)C=C1 OPKRFTKWYVPEHU-UHFFFAOYSA-N 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KRGNPJFAKZHQPS-UHFFFAOYSA-N chloroethene;ethene Chemical compound C=C.ClC=C KRGNPJFAKZHQPS-UHFFFAOYSA-N 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical class OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- SWRKCNVPTRZSQQ-UHFFFAOYSA-N decyl bis(4-methylphenyl) phosphate Chemical compound C=1C=C(C)C=CC=1OP(=O)(OCCCCCCCCCC)OC1=CC=C(C)C=C1 SWRKCNVPTRZSQQ-UHFFFAOYSA-N 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- DSTWFRCNXMNXTR-AATRIKPKSA-N dipropyl (e)-but-2-enedioate Chemical compound CCCOC(=O)\C=C\C(=O)OCCC DSTWFRCNXMNXTR-AATRIKPKSA-N 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- ZFRKEVMBGBIBGT-UHFFFAOYSA-N ethenyl benzenesulfonate Chemical compound C=COS(=O)(=O)C1=CC=CC=C1 ZFRKEVMBGBIBGT-UHFFFAOYSA-N 0.000 description 1
- LZWYWAIOTBEZFN-UHFFFAOYSA-N ethenyl hexanoate Chemical compound CCCCCC(=O)OC=C LZWYWAIOTBEZFN-UHFFFAOYSA-N 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- ISXSFOPKZQZDAO-UHFFFAOYSA-N formaldehyde;sodium Chemical compound [Na].O=C ISXSFOPKZQZDAO-UHFFFAOYSA-N 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- REOJLIXKJWXUGB-UHFFFAOYSA-N mofebutazone Chemical group O=C1C(CCCC)C(=O)NN1C1=CC=CC=C1 REOJLIXKJWXUGB-UHFFFAOYSA-N 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- JWHMNITWPQGHPL-UHFFFAOYSA-N n-(2-hydroxypropanoyl)-2-methylprop-2-enamide Chemical class CC(O)C(=O)NC(=O)C(C)=C JWHMNITWPQGHPL-UHFFFAOYSA-N 0.000 description 1
- ZIWDVJPPVMGJGR-UHFFFAOYSA-N n-ethyl-2-methylprop-2-enamide Chemical compound CCNC(=O)C(C)=C ZIWDVJPPVMGJGR-UHFFFAOYSA-N 0.000 description 1
- SWPMNMYLORDLJE-UHFFFAOYSA-N n-ethylprop-2-enamide Chemical compound CCNC(=O)C=C SWPMNMYLORDLJE-UHFFFAOYSA-N 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- WDFKEEALECCKTJ-UHFFFAOYSA-N n-propylprop-2-enamide Chemical compound CCCNC(=O)C=C WDFKEEALECCKTJ-UHFFFAOYSA-N 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000012875 nonionic emulsifier Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- JICVCSXXNQPZEZ-UHFFFAOYSA-N prop-2-enoyl 3-hydroxypropanoate Chemical compound OCCC(=O)OC(=O)C=C JICVCSXXNQPZEZ-UHFFFAOYSA-N 0.000 description 1
- KCXFHTAICRTXLI-UHFFFAOYSA-N propane-1-sulfonic acid Chemical compound CCCS(O)(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- SONHXMAHPHADTF-UHFFFAOYSA-M sodium;2-methylprop-2-enoate Chemical compound [Na+].CC(=C)C([O-])=O SONHXMAHPHADTF-UHFFFAOYSA-M 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Chemical class OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- 229960001147 triclofos Drugs 0.000 description 1
- CAPOZRICGSDRLP-UHFFFAOYSA-N tris(2,3-dimethylphenyl) phosphate Chemical compound CC1=CC=CC(OP(=O)(OC=2C(=C(C)C=CC=2)C)OC=2C(=C(C)C=CC=2)C)=C1C CAPOZRICGSDRLP-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/32—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
- D06M11/36—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
- D06M11/45—Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic Table; Aluminates
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/02—Natural fibres, other than mineral fibres
- D06M2101/04—Vegetal fibres
- D06M2101/06—Vegetal fibres cellulosic
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/30—Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/34—Polyamides
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/30—Flame or heat resistance, fire retardancy properties
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2200/00—Functionality of the treatment composition and/or properties imparted to the textile material
- D06M2200/50—Modified hand or grip properties; Softening compositions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/92—Fire or heat protection feature
- Y10S428/921—Fire or flameproofing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- This invention relates toflame resistant compositions comprising ethylene/ vinyl chloride interpolymer and finely-divided hydrated alumina.
- nonwoven fibrous materia means a consolidated mass of fibers laid down by mechanical, chemical, pneumatic, electrical or vacuum means, or otherwise deposited, into the desired shape, either fiat (webs, mats or sheets) or three-dimensional.
- E/VCl/A as used herein means ethylene/vinyl chloride/acrylamide.
- oxygen index means the concentration of oxygen in an oxygen/nitrogen atmosphere below which combustion is not supported and above which combustion is supported for a given substance.
- the flame resistant compositions of this invention exhibit an improved flame resistance which is totally unexpected from the teachings of the prior art.
- the use of finely-divided hydrated alumina as a flame resistant agent for various polymers such as styrene/butadiene/itaconic acid is well known to the art.
- the improvement in flame resistance of the S/BR as measured by oxygen index is generally limited to about 100%.
- the compositions of this invention exhibit an improved flame resistance of 300% or more as compared to the basic E/VCl/A terpolymer.
- the ethylene/ vinyl chloride interpolymers useful in the preparation of the flame resistant compositions of this in-' vention generally contain about to about 70 weight percent ethylene, about 30 to about 95 weight percent vinyl chloride, and about 0.1 to about Weight percent of an additional polar monomer component.
- the additional polar monomer component can be entirely acrylamide or a portion of the acrylamide can be replaced by one or more polar monomers selected from the group consisting of acrylonitrile, methacrylamide, N-(lower alkyl) acrylamide, N-(lower alkyl) methacrylamide and N-(hydroxy substituted lower alkyl) acrylamide containing from 1 to 3 carbon atoms in the lower alkyl groups, N-[Z-(Z-methyl- 4-oxopentyl)]-acrylamide, acrylic acid, methacrylic acid, and alkali metal and ammonium salts of acrylic and methacrylacrylic acids, maleic acid, fumaric acid, half and complete alkali metal and ammonium salts of maleic and fumaric acid, aconitic acid, itaconic acid, citraconic acid, and alkali metal and ammonium salts thereof, acrylyl and methacrylyl esters of hydroxyalkanoic acids having from 2 to about 6 carbon atom
- the interpolymers are at least terpolymers containing ethylene, vinyl chloride and acrylamide and may be a quaternary or higher polymer containing one or more of the above exemplified additional polar monomers in small quantities. Generally such additional polar monomers will not be present in the interpolymer in quantities greater than about 3 percent by weight.
- the interpolymer contain from about 5 percent to about 70 percent ethylene, 30 percent to about percent vinyl chloride, and from about 1 percent to about 5 percent acrylamide.
- a specific example of choice is a terpolymer containing from about 19 to about 23 percent ethylene, about 74 to about 78 percent vinyl chloride, and from about 2 to about 4 percent acrylamide.
- the interpolymers used in accordance with this invention are generally unmodified, but modified interpolymers are also included for use in this invention.
- the interpolymers are particularly amenable to hydrolytic modification by the use of small quantities of a strongly alkaline material such as an alkali metal hydroxide, or a quaternary ammonium hydroxide such as tetramethyl ammonium hydroxide, or by a strong acid such as the mineral acids, e.g., hydrochloric, sulfuric, phosphoric, nitric.
- the base or acid used preferably has an ionization constant higher than 10* at 25 C.
- the hydrolytic modification is carried out by treating an aqueous dispersion or polymer latex or the ethylene, vinyl chloride, and acrylamide with aqueous base or acid in an amount chemically equivalent to from about 0.1% to about percent of the amide equivalent in the interpolymer.
- the finely-divided hydrated alumina can be used in any size which permits admixture with the ethylene/vinyl chloride interpolymers.
- finelydivided hydrated alumina having a particle size from about 8 to about 10 microns is preferred.
- the flame-resistant compositions of this invention are prepared by any means known to the art as, for example, mixing or milling.
- the ethylene/vinyl chloride interpolymers and finely-divided hydrated alumina can be admixed by hand or with conventional mixing or milling equipment.
- admixing can be carried out with mixing rolls, dough mixers, Banbury mixers, extruders and other mixing equipment.
- Admixture can be carried out by adding the finely-divided hydrated alumina to a solution of the interpolymer followed by solvent removal to obtain a homogeneous flame-resistant composition.
- Suitable solvents include dimethylformamide, dimethylacetamide, pyridine and the like.
- Admixture can also be carried out by adding the ammonium polyphosphate to an aqueous emulsion or dispersion of the interpolymer.
- the flame-resistant interpolymer in aqueous emulsion or dispersion will be used in latex form without further treatment.
- the flame-resistant compositions of this invention generally contain from about 10 parts to about 1000 parts of weight of finely-divided hydrated alumina for every 100 parts by weight of ethylene/vinyl chloride interpolymer and preferably from about 50 to about 500 parts per each 100 parts of interpolymer.
- the dispersion When the flame-resistant compositions are used in the form of an aqueous dispersion, the dispersion generally contains from about 5 parts to about 2000 parts of aqueous media by weight and from about 50 parts to about 500 parts of finely-divided hydrated alumina by weight for each 100 parts by weight of ethylene/vinyl chloride interpolymer.
- Such dispersions preferably contain from about SOparts to about 1000 parts by weight of aqueous media and from about 100 parts to about 300 parts of finely-divided hydrated alumina for each 100 parts by weight of interpolymer for ease of application by means of dipping, soaking, spraying and the like.
- the preferred flame-resistant compositions of this invention comprise ethylene/vinyl chloride/acrylamide terpolymers containing to 70 weight percent ethylene, to 85% vinyl chloride and 1 to 5% acrylamide, and from about 50 to about 500 parts of finely-divided hydrated alumina.
- the ethylene/vinyl chloride interpolymers useful in this invention are readily prepared by various means well known to the art.
- the interpolymers can be prepared by first mixing ethylene and vinyl chloride in an aqueous medium in the presence of any suitable anionic or nonionic emulsifier and any initiator capable of generating free radicals in the chemical mixture at the chosen reaction temperature and pressure.
- the acrylamide preferably in aqueous solution either alone or mixed with the appropriate amounts of other polar monomers, is added to the polymerizing ethylene and vinyl chloride mixture gradually'throughout the reaction.
- the addition of the acrylamide is preferably begun after about 40 to percent of the desired conversion of the ethylene and vinyl chloride has been reached.
- a shell-core latex in which the polar monomer is concentrated in the outer layers is produced.
- the ethylene/vinyl chloride interpolymers used in this invention are preferably prepared by a process which comprises mixing ethylene and vinyl chloride monomers in the presence of an alkaline buffered reduction-oxidation (redox) initiator-catalyst system, water, and from about 1 percent to about 8 percent by weight based upon the monomer feed, or from about 4 percent to about 7 percent based upon the polymer product of an anionic or nonionic emulsifying agent having a hydrophilic-lipophilic balance (HLB) value of from about 10 to about 40, and reacting the mixture at a temperature and pressure and for a time sufficient to cause polymerization between the ethylene and vinyl chloride, and then to introduce acrylam'ide, either alone, or mixed with other monomers in minor amounts in an appropriate diluent such as water into the pressurized polymerizing reaction mixture of the ethylene and vinyl chloride.
- redox alkaline buffered reduction-oxidation
- EXAMPLE 1 This example illustrates the preparatioin of a 21/ 76/ 3 ethylene/vinyl chloride/acrylamide interpolymer latex.
- a 50 percent solution of acrylamide in water solution is added at 40 ml./hr.
- the reaction stops after 5.5 hours and the feed streams are turned ofi.
- a total of 1330 g. of VCl, ml. of the 50 percent acrylamide, 27 ml. of the 1 M SFS/ 1.5 M NILOH solution, and 92 ml. of the 25 percent SLS solution are added.
- the resulting polymer latex is vented out the bottom of the autoclave.
- a total of about 3500 g. of the ethylene/vinyl chloride/acrylamide polymer latex is obtained containing 47 percent total solids, and 1.5 percent sodium lauryl sulfate (based on the weight of the polymer). It has a pH of 7.7.
- the composition of the terpolymer is about 21/76/3 ethylene/ vinyl chloride/acrylamide.
- EXAMPLE 2 An aqueous dispersion of ethylene/ vinyl chloride/ acrylam-ide 21 /7-6/ 3 terpolymer prepared substantially in accordance with Example 1 and containing about 45 weight percent polymer solids is coagulated by means of tetrahydrofuran. The terpolymer is washed with water and dried. About parts of finely-divided hydrated alumina having a particle size range of about 8 to 10 microns are admixed with about 100 parts of the dry terpolymer to form a flame-resistant composition.
- EXAMPLE 3 About 30 parts of the E/VCl/A terpolymer prepared in Example 2 are dissolved in 100 parts of dimethylformamide at 25 C. with moderate agitation. To this solution is added about 10 parts of finely-divided hydrated alumina having a particle size range of 8 to 10 microns with stirring. The solvent is removed by evaporation at reduced pressure with constant stirring to produce a flameresistant composition.
- EXAMPLE 4 An aqueous flame resistant composition comprising 100 parts of E/VCl/A (21/7 6/3) and 300 parts of finelydivided hydrated alumina having a particle size range of 8 to 10 microns is prepared by admixing the hydrated alumina with a 60 weight percent aqueous dispersion of E/VCl/A. A film is cast in a glass plate to a dry thickness of about 4.5 mils. The film is placed in a chamber having a variable oxygen/nitrogen atmosphere and is brought in contact with a small flame. The percent Oxygen in the oxygen/nitrogen atmosphere is increased until it is sufiicient to support combustion. The percent oxygen in the oxygen/nitrogen atmosphere at the point of combustion is termed the oxygen index.
- the 'E/VCl/A-hydrated alumina flame resistant film of this Example has an oxygen index of 0.866.
- a control sample of the same E/VCl/A without hydrated alumina has an oxygen index of 0.222 or just slightly above the oxygen concentration in atmospheric air.
- EXAMPLE 5 Preweighed samples of Hollingsworth and Vose nonwoven fabric composite comprising 75 weight percent cellulosic fiber and 25 weight percent nylon fiber are immersed in an aqueous dispersion of flame-resistant compositions comprising an ethylene/vinyl chloride interpolymer and finely-divided hydrated alumina.
- the impregnated fabrics are passed through a size press, Weighed, dried for about three minutes at a temperature of about 1'1-8 C.
- the wet pickup of flame-resistant composition in each sample is about 270% based on the weight of the fabric.
- the bonded nonwoven fabrics are subjected to calendering through a single nip for smoothness and tested for flame resistance in accordance with TAPPI-T461 vertical flammability test.
- the ethylene/vinyl chloride/acrylamide interpolymer contains 76 weight percent ethylene, 2J1 weight percent vinyl chloride and 3 weight percent acrylamide and is prepared substantially in accordance with Example 1.
- the nonwoven fabric samples are 2.75 in. by 8.25 in.
- One dispersion of ethylene/ vinyl chloride interpolymer which does not contain finely-divided hydrated alumina is used as control. Results and further details are given in the Table below.
- the flame-resistant compositions of this invention are also characterized by high tensile strength, good elongation, softness, good hand and flexibility, good drape and resistance to many common solvents and detergents. With these properties the flame-resistant compositions are useful as bonding agents for bonded nonwoven fibrous products suitable for use in a wide variety of end applications including, for example, paperboard, toweling, wrappings, wallpaper, mats napkins, tablecloths, heat or sound insulating materials, electrolytic condensers, luggage skin and interiors, glue coated tape stocks, pressure sensitive tape stocks, projection screens, waterproof wrapping paper, drapery headers, draperies, binders, hospital items such as caps, masks, gowns, jackets, scrub pants, capes, shoe covers, wash cloths, pillow cases, wipes, cubicle curtains, filters for food processing, motors, machines, air systems or liquid systems, electrical insulators, tapes ribbons, automobile head and arm rests, upholstery, stuifed pillows, fiberfills, sleeping bags, slip covers, bed spreads, blankets,
- Composition comprising a flame resisting amount of finely-divided hydrated alumina and an interpolymer selected from the group consisting of .(I) an ethylene/vinyl chloride interpolymer containing from about 5 to about 70 weight percent ethylene, about 30 to about Weight percent vinyl chloride, and about 0.1 to about 10 weight percent of an additional polar component selected from the group consisting of "(A) acrylamide, and
- composition of Claim 1 wherein the particle size of finely-divided hydrated alumina is from about 8 to about 10 microns.
- composition of Claim 1 wherein the ethylene/vinyl chloride inter-polymer contains from about 15 to about 70 percent ethylene, from about 30 to about 85 percent vinyl chloride and fromabout 0.1 to about 1 percent acrylamide.
- composition of Claim 1 wherein theethylene/vinyl chloride interpolymer contains from about 19 to about 23 percent ethylene, from about 747m about 78 percent vinyl chloride and from about 2 to about 4 percent acrylamide.
- composition of Claim 1 wherein the interpolymer is n 8.
- Composition of Claim 1 wherein the polar component of the interpolymer is a combination of acrylamide and 'N-hydroxymethylacrylamide.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Paper (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
FLAME-RESISTANT COMPOSITIONS COMPRISING ETHYLENE/VINYL CHLORIDE INTERPOLYMER AND FINELY-DIVIDED HYDRATED ALUMINUM.
Description
United States Patent 3,827,997 FLAME-RESISTANT COMPOSITIONS OF ETHYL- ENE/VINYL CHLORIDE INTERPOLYMERS AND HYDRATED ALUMINA Joseph G. Bergomi, In, St. Louis, Mo., assignor to Monsanto Company, St. Louis, M0.
N0 Drawing. Continuation of application Ser. No. 146,806, May 25, 1971. This application Mar. 5, 1973, Ser. No. 337,784
Int. Cl. C081 45/04 US. Cl. 26029.6 TA 10 Claims ABSTRACT OF THE DISCLOSURE Flame-resistant compositions comprising ethylene/ vinyl chloride interpolymer and finely-divided hydrated alumina.
This is a continuation of the now abandoned application Ser. No. 146,806, filed May 25, 1971.
This invention relates toflame resistant compositions comprising ethylene/ vinyl chloride interpolymer and finely-divided hydrated alumina.
The term nonwoven fibrous materia as used herein means a consolidated mass of fibers laid down by mechanical, chemical, pneumatic, electrical or vacuum means, or otherwise deposited, into the desired shape, either fiat (webs, mats or sheets) or three-dimensional. The term E/VCl/A as used herein means ethylene/vinyl chloride/acrylamide.
The term oxygen index as used herein means the concentration of oxygen in an oxygen/nitrogen atmosphere below which combustion is not supported and above which combustion is supported for a given substance.
The flame resistant compositions of this invention exhibit an improved flame resistance which is totally unexpected from the teachings of the prior art. The use of finely-divided hydrated alumina as a flame resistant agent for various polymers such as styrene/butadiene/itaconic acid is well known to the art. However, the improvement in flame resistance of the S/BR as measured by oxygen index is generally limited to about 100%. The compositions of this invention exhibit an improved flame resistance of 300% or more as compared to the basic E/VCl/A terpolymer.
The ethylene/ vinyl chloride interpolymers useful in the preparation of the flame resistant compositions of this in-' vention generally contain about to about 70 weight percent ethylene, about 30 to about 95 weight percent vinyl chloride, and about 0.1 to about Weight percent of an additional polar monomer component. The additional polar monomer component can be entirely acrylamide or a portion of the acrylamide can be replaced by one or more polar monomers selected from the group consisting of acrylonitrile, methacrylamide, N-(lower alkyl) acrylamide, N-(lower alkyl) methacrylamide and N-(hydroxy substituted lower alkyl) acrylamide containing from 1 to 3 carbon atoms in the lower alkyl groups, N-[Z-(Z-methyl- 4-oxopentyl)]-acrylamide, acrylic acid, methacrylic acid, and alkali metal and ammonium salts of acrylic and methacrylacrylic acids, maleic acid, fumaric acid, half and complete alkali metal and ammonium salts of maleic and fumaric acid, aconitic acid, itaconic acid, citraconic acid, and alkali metal and ammonium salts thereof, acrylyl and methacrylyl esters of hydroxyalkanoic acids having from 2 to about 6 carbon atoms in the alkanoic acid moieties, acrylylamides and methacrylylamides of aminoalkanoic acids having from 2 to about 6 carbons in the amino: alkanoic acid, hydroxyethyl and hydroxypropyl esters of acrylic, methacrylic, maleic, and fumaric acids, vinyl esters of alkanoic acids having from 1 to 6 carbon atoms such as vinyl acetate, vinyl propionate, and lower alkyl (1 "Ice to 6 carbon atoms) sulfonic acid, vinyl esters of phenylsulfonic acids, and alkylphenylsulfonic acids and acrylyl and methacrylyl esters of hydroxyalkylsulfonic acids having from 1 to 6 carbon atoms in said alkyl moieties, and hydroxyalkylsulfonamides having from 1 to 6 carbon atoms in said hydroxyalkyl moieties. The polar monomer component generally contains at least 50 weight percent acrylamide and preferably at least percent acrylamide.
Thus the interpolymers are at least terpolymers containing ethylene, vinyl chloride and acrylamide and may be a quaternary or higher polymer containing one or more of the above exemplified additional polar monomers in small quantities. Generally such additional polar monomers will not be present in the interpolymer in quantities greater than about 3 percent by weight.
It is preferred that the interpolymer contain from about 5 percent to about 70 percent ethylene, 30 percent to about percent vinyl chloride, and from about 1 percent to about 5 percent acrylamide. A specific example of choice is a terpolymer containing from about 19 to about 23 percent ethylene, about 74 to about 78 percent vinyl chloride, and from about 2 to about 4 percent acrylamide.
The interpolymers used in accordance with this invention are generally unmodified, but modified interpolymers are also included for use in this invention. The interpolymers are particularly amenable to hydrolytic modification by the use of small quantities of a strongly alkaline material such as an alkali metal hydroxide, or a quaternary ammonium hydroxide such as tetramethyl ammonium hydroxide, or by a strong acid such as the mineral acids, e.g., hydrochloric, sulfuric, phosphoric, nitric. The base or acid used preferably has an ionization constant higher than 10* at 25 C.
The hydrolytic modification is carried out by treating an aqueous dispersion or polymer latex or the ethylene, vinyl chloride, and acrylamide with aqueous base or acid in an amount chemically equivalent to from about 0.1% to about percent of the amide equivalent in the interpolymer.
Specific examples of polar monomers which can be used, as described above, to replace part of the acrylamide in the polar monomer component of the interpolymer useful in this invention include acrylonitrile, N-methacrylamide, N- ethylacrylamide, N-propylacrylamide, N-hydroxymethyl acrylamide, methacrylamide, acrylic, methacrylic, maleic, fumaric, itaconic, aconitic, and citraonic acids and alkali metal and ammonium salts of such acids, preferably the sodium, potassium or ammonium salts, alkyl esters of such acids, e.g., methyl acrylate, ethylacrylate, butyl acrylate, methyl methacrylate, butyl methacrylate, ethyl methacrylate, monoethyl maleate, dipropyl fumarate, acrylyl 3- hydroxypropionate, methacrylyl hexamide, 2-hydroxyethyl and 2-hydroxypropyl esters of acrylic, methacrylic, maleic, fumaric, itaconic, aconitic and citraconic acids, finyl formate, vinyl acetate, vinyl hexanoate, vinyl and alkyl esters of propanesulfonic acid, vinyl phenylsulfonate, acrylyl and methacrylyl esters of 2-hydroxypropylsulfonic acid; and N-acrylyl and N-methacrylyl 2-hydroxypropanamides. I
Illustrative of interpolymers which can be used in the bonding agent compositions for the flame retardant, bonded non-woven fibrous products of this invention are:
ethylene/ vinyl chloride/acrylamide,
ethylene/ vinyl chloride/hydroxyethylacrylate,
ethylene vinyl chloride/acrylamide/N-isopropylacrylamide,
ethylene/ vinyl chloride/acrylamide/N-ethylmethacrylamide,
ethylene/vinyl chloride/ acrylamide/diammouium itaconate,
ethylene/vinylchride/acrylamide/monobutyl acid maleate,
ethylene/ vinyl chloride/acrylamide/N-methacrylylpropionamide,
ethylene/ vinyl chloride/acrylamide/N-methylolacrylamide, and
ethylene/ vinyl chloride/ acrylamide/ sodium methacrylate.
In general, the finely-divided hydrated alumina can be used in any size which permits admixture with the ethylene/vinyl chloride interpolymers. In particular, finelydivided hydrated alumina having a particle size from about 8 to about 10 microns is preferred.
The flame-resistant compositions of this invention are prepared by any means known to the art as, for example, mixing or milling. The ethylene/vinyl chloride interpolymers and finely-divided hydrated alumina can be admixed by hand or with conventional mixing or milling equipment. For example, admixing can be carried out with mixing rolls, dough mixers, Banbury mixers, extruders and other mixing equipment. Admixture can be carried out by adding the finely-divided hydrated alumina to a solution of the interpolymer followed by solvent removal to obtain a homogeneous flame-resistant composition. Suitable solvents include dimethylformamide, dimethylacetamide, pyridine and the like. Admixture can also be carried out by adding the ammonium polyphosphate to an aqueous emulsion or dispersion of the interpolymer. In many applications the flame-resistant interpolymer in aqueous emulsion or dispersion will be used in latex form without further treatment.
The flame-resistant compositions of this invention generally contain from about 10 parts to about 1000 parts of weight of finely-divided hydrated alumina for every 100 parts by weight of ethylene/vinyl chloride interpolymer and preferably from about 50 to about 500 parts per each 100 parts of interpolymer.
When the flame-resistant compositions are used in the form of an aqueous dispersion, the dispersion generally contains from about 5 parts to about 2000 parts of aqueous media by weight and from about 50 parts to about 500 parts of finely-divided hydrated alumina by weight for each 100 parts by weight of ethylene/vinyl chloride interpolymer. Such dispersions preferably contain from about SOparts to about 1000 parts by weight of aqueous media and from about 100 parts to about 300 parts of finely-divided hydrated alumina for each 100 parts by weight of interpolymer for ease of application by means of dipping, soaking, spraying and the like. The preferred flame-resistant compositions of this invention comprise ethylene/vinyl chloride/acrylamide terpolymers containing to 70 weight percent ethylene, to 85% vinyl chloride and 1 to 5% acrylamide, and from about 50 to about 500 parts of finely-divided hydrated alumina.
The ethylene/vinyl chloride interpolymers useful in this invention are readily prepared by various means well known to the art. The interpolymers can be prepared by first mixing ethylene and vinyl chloride in an aqueous medium in the presence of any suitable anionic or nonionic emulsifier and any initiator capable of generating free radicals in the chemical mixture at the chosen reaction temperature and pressure. The acrylamide, preferably in aqueous solution either alone or mixed with the appropriate amounts of other polar monomers, is added to the polymerizing ethylene and vinyl chloride mixture gradually'throughout the reaction. The addition of the acrylamide is preferably begun after about 40 to percent of the desired conversion of the ethylene and vinyl chloride has been reached. A shell-core latex in which the polar monomer is concentrated in the outer layers is produced.
The ethylene/vinyl chloride interpolymers used in this invention are preferably prepared by a process which comprises mixing ethylene and vinyl chloride monomers in the presence of an alkaline buffered reduction-oxidation (redox) initiator-catalyst system, water, and from about 1 percent to about 8 percent by weight based upon the monomer feed, or from about 4 percent to about 7 percent based upon the polymer product of an anionic or nonionic emulsifying agent having a hydrophilic-lipophilic balance (HLB) value of from about 10 to about 40, and reacting the mixture at a temperature and pressure and for a time sufficient to cause polymerization between the ethylene and vinyl chloride, and then to introduce acrylam'ide, either alone, or mixed with other monomers in minor amounts in an appropriate diluent such as water into the pressurized polymerizing reaction mixture of the ethylene and vinyl chloride. This process is described in detail in US. Pat. 3,428,582 and the subject matter thereof is expressly incorporated hereinby reference.
The following examples will illustrate this invention. Parts and percent are by weight unless otherwise indicated.
EXAMPLE 1 This example illustrates the preparatioin of a 21/ 76/ 3 ethylene/vinyl chloride/acrylamide interpolymer latex.
Reaction Vessel Initial Charge H 0 to make 1700 ml. Vinyl chloride (VCl) 450 Ethylene (E) 150 The above ingredients are charged to a suitable reaction vessel and heated to 30 C. with stirring to give a reaction pressure of 850 p.s.i.g. Polymerization is started by adding a 1 M sodium formaldehyde sulfoxylate- NaHSO -CH O-2H (SFS)/ 1.5 M ammonium hydroxide (NH OH) solution to the mixture at a rate of 5.2 ml./hr. at the same time 18 ml./hr. of a 25 percent SLS solution is added and the pressure is kept constant by the addition of pure vinyl chloride as required. After three hours, a 50 percent solution of acrylamide in water solution is added at 40 ml./hr. The reaction stops after 5.5 hours and the feed streams are turned ofi. A total of 1330 g. of VCl, ml. of the 50 percent acrylamide, 27 ml. of the 1 M SFS/ 1.5 M NILOH solution, and 92 ml. of the 25 percent SLS solution are added. The resulting polymer latex is vented out the bottom of the autoclave. A total of about 3500 g. of the ethylene/vinyl chloride/acrylamide polymer latex is obtained containing 47 percent total solids, and 1.5 percent sodium lauryl sulfate (based on the weight of the polymer). It has a pH of 7.7. The composition of the terpolymer is about 21/76/3 ethylene/ vinyl chloride/acrylamide.
EXAMPLE 2 An aqueous dispersion of ethylene/ vinyl chloride/ acrylam-ide 21 /7-6/ 3 terpolymer prepared substantially in accordance with Example 1 and containing about 45 weight percent polymer solids is coagulated by means of tetrahydrofuran. The terpolymer is washed with water and dried. About parts of finely-divided hydrated alumina having a particle size range of about 8 to 10 microns are admixed with about 100 parts of the dry terpolymer to form a flame-resistant composition.
EXAMPLE 3 About 30 parts of the E/VCl/A terpolymer prepared in Example 2 are dissolved in 100 parts of dimethylformamide at 25 C. with moderate agitation. To this solution is added about 10 parts of finely-divided hydrated alumina having a particle size range of 8 to 10 microns with stirring. The solvent is removed by evaporation at reduced pressure with constant stirring to produce a flameresistant composition.
EXAMPLE 4 An aqueous flame resistant composition comprising 100 parts of E/VCl/A (21/7 6/3) and 300 parts of finelydivided hydrated alumina having a particle size range of 8 to 10 microns is prepared by admixing the hydrated alumina with a 60 weight percent aqueous dispersion of E/VCl/A. A film is cast in a glass plate to a dry thickness of about 4.5 mils. The film is placed in a chamber having a variable oxygen/nitrogen atmosphere and is brought in contact with a small flame. The percent Oxygen in the oxygen/nitrogen atmosphere is increased until it is sufiicient to support combustion. The percent oxygen in the oxygen/nitrogen atmosphere at the point of combustion is termed the oxygen index. The 'E/VCl/A-hydrated alumina flame resistant film of this Example has an oxygen index of 0.866. A control sample of the same E/VCl/A without hydrated alumina has an oxygen index of 0.222 or just slightly above the oxygen concentration in atmospheric air.
This improvement of almost 300% in oxygen index is totally unexpected since hydrated alumina does not result in comparable improvements with other polymers such as styrene/butadiene/itaconic acid (57/38/5). The oxygen index of styrene/butadiene/itaconic acid (57/ 38/ 5) is 0.173. The oxygen index of a composition comprising 1100 parts by weight of styrene/butadiene/itaconic acid terpolymer (57/38/5) and 300 parts of hydrated alumina having a particle size range of 8 to 10 microns is 0.330. Thus the improvement is only about 90 percent.
EXAMPLE 5 Preweighed samples of Hollingsworth and Vose nonwoven fabric composite comprising 75 weight percent cellulosic fiber and 25 weight percent nylon fiber are immersed in an aqueous dispersion of flame-resistant compositions comprising an ethylene/vinyl chloride interpolymer and finely-divided hydrated alumina. The impregnated fabrics are passed through a size press, Weighed, dried for about three minutes at a temperature of about 1'1-8 C. The wet pickup of flame-resistant composition in each sample is about 270% based on the weight of the fabric. The bonded nonwoven fabrics are subjected to calendering through a single nip for smoothness and tested for flame resistance in accordance with TAPPI-T461 vertical flammability test. The ethylene/vinyl chloride/acrylamide interpolymer contains 76 weight percent ethylene, 2J1 weight percent vinyl chloride and 3 weight percent acrylamide and is prepared substantially in accordance with Example 1. The nonwoven fabric samples are 2.75 in. by 8.25 in. One dispersion of ethylene/ vinyl chloride interpolymer which does not contain finely-divided hydrated alumina is used as control. Results and further details are given in the Table below.
TAB LE Finelydivided hydrated Alumina in test fabric, percent by analysis After glow, sec. Char length, in.
0 (control) Entire sheet Entire sheet consumed. consumed. 10.4 N 2.
e Based on the weight of the fiber.
butyl dicresyl phosphate, n-octyl dicresyl phosphate, isooctyl dicresyl phosphate, 2-ethylhexyl dicresyl phosphate, nonyl dicresyl phosphate, decyl dicresyl phosphate, 2-npropyl-heptyl dicresyl phosphate, 2-butyloctyl dicresyl phosphate, tridecyl dicresyl phosphate, tetradecyl dicresyl phoshate, octadecyl dicresyl phosphate, trichloroethyl phosphate and tri-(dimethylphenyl) phosphate.
The flame-resistant compositions of this invention are also characterized by high tensile strength, good elongation, softness, good hand and flexibility, good drape and resistance to many common solvents and detergents. With these properties the flame-resistant compositions are useful as bonding agents for bonded nonwoven fibrous products suitable for use in a wide variety of end applications including, for example, paperboard, toweling, wrappings, wallpaper, mats napkins, tablecloths, heat or sound insulating materials, electrolytic condensers, luggage skin and interiors, glue coated tape stocks, pressure sensitive tape stocks, projection screens, waterproof wrapping paper, drapery headers, draperies, binders, hospital items such as caps, masks, gowns, jackets, scrub pants, capes, shoe covers, wash cloths, pillow cases, wipes, cubicle curtains, filters for food processing, motors, machines, air systems or liquid systems, electrical insulators, tapes ribbons, automobile head and arm rests, upholstery, stuifed pillows, fiberfills, sleeping bags, slip covers, bed spreads, blankets, curtains, window shades, carpeting (nonwoven), carpet backing, wearing apparel, clothing insulation, underwear, diapers, interfacing and interliners (collars and cuffs), automotive door panels, film backings and automotive padding.
The embodiments of this invention in which a particular property or privilege is claimed are defined as follows:
1. Composition comprising a flame resisting amount of finely-divided hydrated alumina and an interpolymer selected from the group consisting of .(I) an ethylene/vinyl chloride interpolymer containing from about 5 to about 70 weight percent ethylene, about 30 to about Weight percent vinyl chloride, and about 0.1 to about 10 weight percent of an additional polar component selected from the group consisting of "(A) acrylamide, and
(B) acrylamide in combination with at least one additional polar monomer selected from the group consisting of acrylonitrile, methacrylamide, N-(alkyl) acrylamide, N-(hydroxy substituted alkyl) acrylamide, and N-(alkyl) methacrylamide having from i to 3 carbon atoms in each said alkyl group, acrylic acid, methacrylic acid and alkali metal and ammonium salts of acrylic and methacrylic acid, maleic and fumaric acids, itaconic and ci-traconic acids, half alkyl esters of maleic, fumaric, itaconic, and citraconic acids having from 1 to 6 carbon atoms in said alkyl groups, acrylyl and methacrylyl esters of hydroxyalkanoic acids having from 2 to 6 carbon atoms in said alkanoic acids, acrylylamide and methacrylylamides of aminoalkanoic acids having from 2 to 6 'carbon atoms in said aminoalkanoic acid, hydroxyethyl and hydroxypropyl esters of acrylic, methacrylic, maleic, and fumaric acids, vinyl esters of al'kanoic acids having from 1 to 6 carbon atoms and alkyl sulfonic acid having from 1 to 6 carbon atoms, phenylsulfonic acids, and acrylyl and methacrylyl esters of hydroxyalkylsulfonic acid having from 1 to 6 carbon atoms in said alkyl moieties and hydroxyalkylsulfonamides having from 1 to 6 carbon atoms in said hydroxyalkyl moieties; and (H) interpolymers of the type described in (I) treated with an acid or a base having an ionization constant higher than about 10- in amounts equivalent to up to about percent of the amide content of said interpolymer.
2. Composition of Claim 1 wherein the particle size of finely-divided hydrated alumina is from about 8 to about 10 microns.
3. Composition of Claim 1 wherein said finely-divided hydra-ted alumina is present in amounts of from about 10 parts to about 1000 parts by weight for each 100 parts by weight of inter-polymer.
4. Composition of Claim 1 dispersed in aqueous media. I
5. Composition of Claim 1 wherein the ethylene/vinyl chloride inter-polymer contains from about 15 to about 70 percent ethylene, from about 30 to about 85 percent vinyl chloride and fromabout 0.1 to about 1 percent acrylamide.
6. Composition of Claim 1 wherein theethylene/vinyl chloride interpolymer contains from about 19 to about 23 percent ethylene, from about 747m about 78 percent vinyl chloride and from about 2 to about 4 percent acrylamide.
7. Composition of Claim 1 wherein the interpolymer is n 8. Composition of Claim 1 wherein the polar component of the interpolymer is a combination of acrylamide and 'N-hydroxymethylacrylamide.
9. Composition of Claim 1 together with from about 2 to about 2000 parts by Weight of aqueous media for each 100 parts by weight of interpolymer wherein the ethylene/ vinyl chloride interpoly-mer contains from about 15 to about 70 percent ethylene, from about 30 to about 85 percent vinyl chloride and from about 0.1 to about percent acrylamide, and the finely-divided hydrated alumina is present in an amount from about 50 parts to about 500 parts by weight'for each 100 parts by weight of interpolymer.
10; Composition of Claim 1 together with from about 2 to about 2000 par-ts by weight of aqueous media for each 100 parts by weight of interpolymer wherein the ethylene/vinyl chloride interpoly-mer contains from about to about 85.weight percent vinyl chloride and from about 0:1 to about 10 weight percent of a combination of acrylamide and N-hydroxyrnethyl acrylamide, and the finely-divided hydrated alumina is present in an amount from about parts to about 500 parts by Weight for each parts by weight of interpolymer.
References Cited UNITED STATES PATENTS 3,567,491 3/197r- Graham et al.
=26029.6 TA X 3,647,6'1-5 3/1972! Fallwell 260-8073 X 3,658,579 4/i9 72 O'ttinger et al.
260- 296 TA X LUCIL-LE M. PHY'NES, Primary Examiner US. Cl. X.R.
1 17-437, 139.5 A 161; 1*6l170; 260--'29.6 M & MP, 30.6 R, 41 B, 45.7 R, 78.5 B'B & T, 80.73; Digest24
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00337784A US3827997A (en) | 1971-05-25 | 1973-03-05 | Flame-resistant compositions of ethylene/vinyl chloride interpolymers and hydrated alumina |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14680671A | 1971-05-25 | 1971-05-25 | |
US00337784A US3827997A (en) | 1971-05-25 | 1973-03-05 | Flame-resistant compositions of ethylene/vinyl chloride interpolymers and hydrated alumina |
Publications (1)
Publication Number | Publication Date |
---|---|
US3827997A true US3827997A (en) | 1974-08-06 |
Family
ID=26844312
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00337784A Expired - Lifetime US3827997A (en) | 1971-05-25 | 1973-03-05 | Flame-resistant compositions of ethylene/vinyl chloride interpolymers and hydrated alumina |
Country Status (1)
Country | Link |
---|---|
US (1) | US3827997A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3957723A (en) * | 1975-06-27 | 1976-05-18 | The Firestone Tire & Rubber Company | Flame and smoke retardants for polyvinyl chloride |
US4032393A (en) * | 1976-04-05 | 1977-06-28 | The Upson Company | Fire retardant webs and internal treatment therefor |
JPS5534997A (en) * | 1978-08-31 | 1980-03-11 | Alusuisse | Composite panel material |
US4311635A (en) * | 1980-08-25 | 1982-01-19 | Pantasote Inc. | Flame resistant thermoplastic elastomer |
US4357001A (en) * | 1976-03-23 | 1982-11-02 | Schmanski Donald W | Method and apparatus for making fences |
US4363199A (en) * | 1980-05-05 | 1982-12-14 | Kennecott Corporation | Fire resistant sealing system for holes in fire resistant building partitions |
EP0082407A2 (en) * | 1981-12-22 | 1983-06-29 | Bartholomeus Dipl.-Ing. Ivanfy | Thermoplastic, flexible mix of polymers |
US4421876A (en) * | 1978-12-02 | 1983-12-20 | Vereinigte Aluminium-Werke Aktiengesellschaft | Resinous compositions containing modified alumina hydrate crystals |
EP0175059A2 (en) * | 1984-09-14 | 1986-03-26 | Vereinigte Aluminium-Werke Aktiengesellschaft | Fire-proof dispersion paints |
-
1973
- 1973-03-05 US US00337784A patent/US3827997A/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3957723A (en) * | 1975-06-27 | 1976-05-18 | The Firestone Tire & Rubber Company | Flame and smoke retardants for polyvinyl chloride |
US4357001A (en) * | 1976-03-23 | 1982-11-02 | Schmanski Donald W | Method and apparatus for making fences |
US4032393A (en) * | 1976-04-05 | 1977-06-28 | The Upson Company | Fire retardant webs and internal treatment therefor |
JPS5534997A (en) * | 1978-08-31 | 1980-03-11 | Alusuisse | Composite panel material |
US4250220A (en) * | 1978-08-31 | 1981-02-10 | Swiss Aluminium Ltd. | Composite panel with two outer layers and a central core |
US4421876A (en) * | 1978-12-02 | 1983-12-20 | Vereinigte Aluminium-Werke Aktiengesellschaft | Resinous compositions containing modified alumina hydrate crystals |
US4363199A (en) * | 1980-05-05 | 1982-12-14 | Kennecott Corporation | Fire resistant sealing system for holes in fire resistant building partitions |
US4311635A (en) * | 1980-08-25 | 1982-01-19 | Pantasote Inc. | Flame resistant thermoplastic elastomer |
EP0082407A2 (en) * | 1981-12-22 | 1983-06-29 | Bartholomeus Dipl.-Ing. Ivanfy | Thermoplastic, flexible mix of polymers |
EP0082407A3 (en) * | 1981-12-22 | 1984-11-28 | Aeg - Telefunken Kabelwerke Ag, Rheydt | Thermoplastic, flexible mix of polymers |
EP0175059A2 (en) * | 1984-09-14 | 1986-03-26 | Vereinigte Aluminium-Werke Aktiengesellschaft | Fire-proof dispersion paints |
EP0175059A3 (en) * | 1984-09-14 | 1987-05-06 | Vereinigte Aluminium-Werke Aktiengesellschaft | Fire-proof dispersion paints |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3658579A (en) | Flame-retardant, bonded nonwoven fibrous product employing a binder comprising an ethylene/vinyl chloride interpolymer and an ammonium polyphosphate | |
US4289676A (en) | Binders, impregnating agents and coating agents based on an aqueous dispersion of an amide-containing copolymer | |
JP2851269B2 (en) | latex | |
EP0021693B1 (en) | Process for making non-woven fabrics | |
US5520997A (en) | Formaldehyde-free latex for use as a binder or coating | |
US4406660A (en) | Non woven fabrics suitable for diaper and diaper coverstock | |
US5021529A (en) | Formaldehyde-free, self-curing interpolymers and articles prepared therefrom | |
US3827997A (en) | Flame-resistant compositions of ethylene/vinyl chloride interpolymers and hydrated alumina | |
US3752733A (en) | Bonded nonwoven fibrous product | |
JPH02113001A (en) | Article having radiation-crosslinking polymer, manufacture thereof, and method for curing said polymer | |
US20040209539A1 (en) | High opacity nonwoven binder composition | |
EP0206588B1 (en) | Copolymer binder composition and fabrics and papers treated therewith | |
CA1167709A (en) | Polyolefin nonwovens with high wet strength retention | |
CA1279744C (en) | Formaldehyde-free latex and fabrics made therewith | |
GB2145097A (en) | Addition of resins to latex bonded non-woven fabrics for improved strength | |
JPH07216164A (en) | Aqueous synthetic resin dispersion free from formaldehyde | |
US4657957A (en) | Binding agent aqueous dispersions having improved coagulation properties | |
US3925287A (en) | Ethylene/vinyl chloride interpolymers | |
EP1069232B1 (en) | Composition and method for fireproofing textile materials | |
US3843580A (en) | Ethylene/vinyl chloride/n-methylolacrylamide/n-(alkoxymethyl)acrylamide latices | |
US3647615A (en) | Ethylene/vinyl chloride/n-methylol acrylamide | |
DE2124036A1 (en) | Non-flammable preparation | |
DE2742208A1 (en) | FIBER FLEECE AND METHOD FOR THE PRODUCTION THEREOF | |
US3657031A (en) | Production of bonded nonwovens by the wet method | |
JP2868922B2 (en) | Resin cotton and polymer emulsion used for it |