[go: up one dir, main page]

US3820778A - Vacuum stripping roll with rotary pickup slots - Google Patents

Vacuum stripping roll with rotary pickup slots Download PDF

Info

Publication number
US3820778A
US3820778A US00312555A US31255572A US3820778A US 3820778 A US3820778 A US 3820778A US 00312555 A US00312555 A US 00312555A US 31255572 A US31255572 A US 31255572A US 3820778 A US3820778 A US 3820778A
Authority
US
United States
Prior art keywords
shaft means
transfer member
belt
support member
belts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00312555A
Inventor
G Veillard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Priority to US00312555A priority Critical patent/US3820778A/en
Priority to CA185,541A priority patent/CA1010081A/en
Priority to GB5622773A priority patent/GB1436393A/en
Priority to DE19732360380 priority patent/DE2360380C3/en
Priority to JP48136436A priority patent/JPS4990540A/ja
Priority to NL7316669A priority patent/NL7316669A/xx
Priority to FR7343436A priority patent/FR2209133B1/fr
Application granted granted Critical
Publication of US3820778A publication Critical patent/US3820778A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/65Apparatus which relate to the handling of copy material
    • G03G15/6532Removing a copy sheet form a xerographic drum, band or plate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S271/00Sheet feeding or delivering
    • Y10S271/90Stripper

Definitions

  • ABSTRACT A device for removing a copy sheet from a photoconductive surface and transporting the copy sheet therefrom.
  • a belt type transport system is provided with rotating vacuum ports in the transport belt roller assembly to lift the leading edge of a copy sheet being advanced on a photoconductive surface.
  • Vacuum ports in the belt transport platen communicate with perforations in the transport belts to provide a low pressure area adjacent the belts for retaining the copy sheet on the transport for movement away from the photoconductor.
  • a xerographic surface comprising a layer of photoconductive insulating material affixed to a conductive backing is used to support latent electrostatic images.
  • the xerographic surface is electrostatically charged and the charged surface is then exposed to a light pattern of the image being reproduced to thereby discharge the surface in the areas where light strikes the surface.
  • the undischarged areas of the surface thus form an electrostatic charge pattern in conformity with the configuration of the original pattern.
  • the latent electrostatic image can then be developed by contacting it with. a finely divided electrostatically attractable material such as powder.
  • a finely divided electrostatically attractable material such as powder.
  • the powder is held on the image areas by the electrostatic charge on the layer. Where the charge is greater, the greater amount of material is deposited.
  • the developed image is then generally transferred to a suitable transfer member and,the image affixed thereto to form a permanent record of the original document.
  • the electrostatically attractable developing material commonly used in xerography comprises a pigmented resinous powder referred to herein as toner and a larger granular material referred to as carrier.
  • the carrier is formed, or coated with, a material removed in the triboelectric series from the toner so that a charge is generated between the powder and the carrier material by the interaction therebetween.
  • the charge causes the powder to adhere to the carrier.
  • the carrier besides providing a charge on the toner, permits mechanical control so that the toner-carrier can be more easily handled for contacting the exposed xerographic surface for development thereof.
  • the toner particles are attracted to the electrostatic image from the carrier to produce a visible toner image on the xerographic surface.
  • the transfer member ordinarily copy paper
  • the transfer member is caused to move in synchronized contact with the photoconductive surface.
  • an electrical potential opposite from the polarity on the toner is applied to the side of the paper remote from the photoconductive surface to electrostatically attract the toner image from the xerographic surface to the copy paper.
  • the copy paper which is an insulator, retains the charge, while inducing a reverse charge in the nondischarged areas of the xerographic surface. This charge orientation creates an electrostatic bond between the paper and xerographic surface. Removal of the copy sheet and the toner image loosely adhering thereto has long been a problem in the xerographic art.
  • Another technique for separating copy sheet from a xerographic surface is to mechanically wedge the copy sheet from the xerographic surface by means of mechanical picker fingers.
  • the fingers since the fingers must of necessity be wedged between the photoconductive surface and the paper adhering thereto, the fingers have a tendancy to scratch and abrade the xerographic surface.
  • a further technique for separating a copy sheet from a xerographic surface is to neutralize the charge on the copy sheet with a corona discharge device while the sheet is on the xerographic surface. Assuming the copy sheet is completely neutralized, it will separate therefrom under the influence of gravity if the copy paper is on the underside of the xerographic surface.
  • Another method for removing copy sheets from the xerographic surface is to provide a vacuum stripping device for pulling the leading edge of the copy sheet from the xerographic surface for subsequent movement of the copy sheet away from the xerographic surface by a suitable paper transport.
  • Problems may be encoun tered with this type of device in that as the leading edge of the paper is pulled from the xerographic surface the paper must be pushed by the moving photoconductive surface to a point where the paper transport or suitable grippers can contact the paper for pulling the paper along the paper path.
  • the photoconductive surface to move the copy paper there may be a tendancy for the paper to slip on the photoconductive surfaceand thereby smear the toner image therebetween.
  • the required spacing between the xerographic surface, the vacuum pickoff device, and the subsequent transport all give rise to areas wherein the paper may be jammed or deflected out of the desired paper path.
  • the present invention relates to a reproduction machine wherein a transfer member is electrostatically tacked to a moving image support member, the machine including apparatus for removing the transfer member from the support member and transporting the transfer member toward the next station in the machine, the transport having vacuum means disposed within the confines thereof for lifting the leading edge of the transfer member from the support member into contact with the moving surface of the transport for subsequent removal of the transfer member from the support member by the transport.
  • FIG. 1 is a schematic sectional view of an electrostatic reproduction machine embodying the principles of the present invention
  • FIG. 2 is an enlarged elevational view in cross-section of the transport assembly positioned between the transfer station and the fuser assembly of the machine;
  • FIG. 3 is a partial isometric view of the transport roller assembly adjacent the transfer station of the reproduction machine.
  • FIG. I DESCRIPTION OF THE PREFERRED EMBODIMENT
  • a light image of an original to be reproduced is projected onto the sensitized surface of a xerographic plate to form an electrostatic latent image thereon.
  • the latent image is developed with an oppositely charged developing mate rial comprising carrier beads and smaller toner particles triboelectrically adhering thereto to form a xerographic powder image corresponding to the latent image on the plate surface.
  • the powder image is then electrostatically transferred to a support surface to which it may be fixed by a fusing device whereby the powder image is caused permanently to adhere to the support surface.
  • an original D to be copied is placed upon a transparent support platen P fixedly arranged in an illumination assembly generally indicated by the reference numeral 10. While upon the platen, as illumination system flashes light rays upon the original thereby producing image rays corresponding to the informational areas on the original.
  • the image rays are projected by means of an optical system 11 to an exposure station A for exposing the photosensitive surface ofa moving xerographic plate in the form of a flexible photoconductive belt 12.
  • a corona device 13 located at a belt run extending between belt supporting rollers 20 and 22.
  • the exposure station extends between the roller 20 and a third support roller 21.
  • the belt run between these rollers is encompassed entirely by the exposure station for minimizing the space needed for the belt and its supporting rollers.
  • the exposure of the belt surface to the light image discharges the photoconductive layer in the areas struck by light, whereby there remains on the belt a latent electrostatic image in image configuration corresponding to the light image projected from the original on the supporting platen.
  • the electrostatic image passes around the roller 21 and through a developing station B located at a third run of the belt and in which there is positioned a developing apparatus generally indicated by the reference numeral 15.
  • the developing apparatus 15 comprises a plurality of brushes 16 which carry devel oping material to the adjacent surface of the upwardly moving inclined photoconductive belt 12 in order to provide development of the electrostatic image.
  • toner particles in the development material are attracted electrostatically to the belt surface to form powder images.
  • additional toner particles are supplied to the developing material in proportion to the amount of toner deposited on the belt during xerographic processing.
  • a toner dispenser generally indicated by reference numeral 18 is used to accurately meter toner, upon demand, to the developer material in the developing apparatus 15.
  • the developed electrostatic image is transported by the belt 12 to a transfer station C located at a point of tangency on the belt as it moves around the roller 22 whereat a sheet of copy paper is moved at a speed in synchronism with the moving belt in order to accomplish transfer of the developed image.
  • a transfer roller 19 which is arranged on the frame of the machine for contacting the non-transfer side of each sheet of copy paper as the same is brought into transfer engagement with the belt 12.
  • the roller 19 is electrically biased with sufficient voltage so that a developed image on the belt 12 may be electrostatically transferred to the adjacent side of a sheet of paper S as the same is brought into contact therewith.
  • a suitable sheet transport mechanism adapted to transport sheets of paper seriatim from a paper handling mechanism generally indicated by the reference numeral 17 to the developed image on the belt as the same is carred around the roller 22.
  • a programming device operatively connected to the mechanism 17 and the illumination device for producing an electrostatic latent image on the belt 12 is effective to present a developed image at the transfer station C in timed sequence with the arrival of a sheet of paper.
  • the sheet After the sheet is stripped from the belt 12, it is conveyed by the stripper transport 23 into a fuser assembly generally indicated by the reference numeral 19 wherein the developed and transferred xerographic powder image on the sheet is permanently affixed thereto. After fusing, the finished copy is discharged from the apparatus at a suitable point for the collection externally of the apparatus.
  • the toner particles remaining as residue on the developed images, background particles, and those particles otherwise not transferred are carried by the belt 12 to a cleaning apparatus positioned on the run of the belt between the rollers 20, 22 adjacent the charging device 13.
  • the cleaning device comprises a rotating brush 26 and a corotron 25, for neutralizing charges remaining on the particles.
  • the stripper transport assembly 23 is comprised of a plenum assembly generally indicated at 30, a stripper roller assembly 32, a rear roller assembly 34, and a plurality of endless belts 36 having perforations 37 therein.
  • the plenum assembly 30 is comprised of a top section 38 suitably affixed to a bottom section 40 having orifices 42 provided therein.
  • the top section 38 is provided with a conduit 44 which is in fluid communication with the suction side of a suitable vacuum pump (not shown).
  • the perforations 42 in the plenum assembly which are in alignment with perforations 37 in the belts 36, provide a low pressure area adjacent the roller surface of the transport assembly for holding the copy paper on the underside thereof and transporting the paper from the transfer station of the machine to the fuser section.
  • the stripper roller assembly 32 is comprised of a stationary shaft 48 having a plurality of aligned ports 50 formed therein.
  • a conduit 52 in communication with the interior of shaft 48 is adapted for connection to a suitable vacuum source (not shown) to provide a flow of air through ports 50 and the interior of shaft 48.
  • Cylindrical members 54 are suitable mounted on shaft 48 for rotation relative thereto. lmperforate portions 56 are provided on member 54 for rotatably supporting belts 36. Perforate portions 58 are provided between imperforate portions 56, rotation of the members 54 providing selective communication of at least one perforation in each perforate section with a port 50 in shaft 48.
  • the perforation in each perforate portion nearest the copy sheet on the photoconductive belt is in communication with the vacuum source to lift the leading edge of the copy sheet from the photoconductor into contact with moving belts 36 to effect movement of the copy paper from the transfer station to the fusing station.
  • apparatus for removing the transfer member from the support member and transporting the transfer member away from the first image support member including:
  • first shaft means positioned adjacent said support member, the axis of said shaft means being disposed parallel to the leadingedge of said .transfer member, said first shaft means having a plurality of vacuum ports in axial alignment parallel to the leading edge of said transfer member, cylindrical means mounted on said shaft means for rotation relative thereto, said cylindrical means having a plurality of spaced imperforate portions thereon and a plurality of perforate portions disposed between said imperforate portions, rotation of said cylindrical means on said shaft means periodically aligning one perforation in each perforated portion with a vacuum port on said shaft means to cause air to flow through the perforation into said shaft means along an axial line parallel to the lead edge of said transfer member, the flow of air into said ports causing the leading edge of said transfer member to be lifted from said support member toward said shaft means; second shaft means spaced from said first shaft means, the axis of said second shaft means being disposed parallel to said first shaft means; and,
  • belt means operatively mounted on said first and second'shaft means, said belt means comprising a plurality of endless belts adapted for running engagement with the imperforate portions on said cylindrical means, said transfer member being engaged by said belt means for movement thereby away from said support member.
  • the appparatus for removing the transfer member from the image support member and transporting the transfer member away from the support member further includes a vacuum platen disposed between said first and second shaft means within the confines of said belt means, said vacuum platen having a plurality of perforations therein, each of said endless belts having perforations formed therein in alignment with the perforations in said vacuum platen, movement of said belts along said platen causing the perforations in said belts to uncover the perforations in said platen to allow flow of air into said platen, thereby creating a low pressure area adjacent said belts to hold said transfer member on said belts for movement therewith.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)
  • Separation, Sorting, Adjustment, Or Bending Of Sheets To Be Conveyed (AREA)

Abstract

A device for removing a copy sheet from a photoconductive surface and transporting the copy sheet therefrom. A belt type transport system is provided with rotating vacuum ports in the transport belt roller assembly to lift the leading edge of a copy sheet being advanced on a photoconductive surface. Vacuum ports in the belt transport platen communicate with perforations in the transport belts to provide a low pressure area adjacent the belts for retaining the copy sheet on the transport for movement away from the photoconductor.

Description

United States Patent [191 Veillard VACUUM STRIPPING ROLL WITH ROTARY PICKUP SLOTS [75] Inventor: George E. Veillard, Fairport, NY.
[73] Assignee: Xerox Corporation, Stamford,
Conn.
22 Filed: Dec. 6, 1972 21 Appl.No.:3l2,555
[52] US. Cl 271/174, 271/197, 27l/DIG. 2
[51] Int. Cl B65h 29/56 [58] Field of Search 271/172, 174, 74, DIG. 2, 2.71/80, 94-96, 12, 34, 51,99, 100, 197; 355/3 [56] References Cited v UNITED STATES PATENTS 3.162.436 12/1964 Halden 271/64 3,336,028 8/1967 Schonmeier 271/197 1 1 June 28, 1974 11/1967 Plumb 271/74 X 4/1970 Leinbach et a1 27l/DlG. 2
Primary Examiner-Evon C. Blunk Assistant Examiner-Bruce H. Stoner, J r.
[ 5 7 ABSTRACT A device for removing a copy sheet from a photoconductive surface and transporting the copy sheet therefrom. A belt type transport system is provided with rotating vacuum ports in the transport belt roller assembly to lift the leading edge of a copy sheet being advanced on a photoconductive surface. Vacuum ports in the belt transport platen communicate with perforations in the transport belts to provide a low pressure area adjacent the belts for retaining the copy sheet on the transport for movement away from the photoconductor.
2 Claims, 3 Drawing Figures PATENTEDmze 1914 3820.778
sum 30F a VACUUM STRIPPING ROLL WITH ROTARY PICKUP SLOTS BACKGROUND OF THE INVENTION In conventional xerography, a xerographic surface comprising a layer of photoconductive insulating material affixed to a conductive backing is used to support latent electrostatic images. In the process, the xerographic surface is electrostatically charged and the charged surface is then exposed to a light pattern of the image being reproduced to thereby discharge the surface in the areas where light strikes the surface. The undischarged areas of the surface thus form an electrostatic charge pattern in conformity with the configuration of the original pattern.
The latent electrostatic image can then be developed by contacting it with. a finely divided electrostatically attractable material such as powder. The powder is held on the image areas by the electrostatic charge on the layer. Where the charge is greater, the greater amount of material is deposited. Thus a powder image is produced in conformity with light image of the copy being reproduced. The developed image is then generally transferred to a suitable transfer member and,the image affixed thereto to form a permanent record of the original document.
The electrostatically attractable developing material commonly used in xerography comprises a pigmented resinous powder referred to herein as toner and a larger granular material referred to as carrier. The
carrier is formed, or coated with, a material removed in the triboelectric series from the toner so that a charge is generated between the powder and the carrier material by the interaction therebetween. The charge causes the powder to adhere to the carrier. The carrier, besides providing a charge on the toner, permits mechanical control so that the toner-carrier can be more easily handled for contacting the exposed xerographic surface for development thereof. The toner particles are attracted to the electrostatic image from the carrier to produce a visible toner image on the xerographic surface.
In the practice of xerography the transfer member, ordinarily copy paper, is caused to move in synchronized contact with the photoconductive surface. During this time, an electrical potential opposite from the polarity on the toner is applied to the side of the paper remote from the photoconductive surface to electrostatically attract the toner image from the xerographic surface to the copy paper.
The copy paper, which is an insulator, retains the charge, while inducing a reverse charge in the nondischarged areas of the xerographic surface. This charge orientation creates an electrostatic bond between the paper and xerographic surface. Removal of the copy sheet and the toner image loosely adhering thereto has long been a problem in the xerographic art.
Numerous devices have been employed with varying degrees of success to remove copy sheets from the pho- However, when high air pressures are employed, the air tends to agitate the unfused toner image on the paper and disrupt the image configuration of the toner on the copy sheet. This exhibits itself as smears on the final copy. This blowing of toner powder may also result in toner dust problems in that the air stream broadcasts loose toner particles throughout the copy reproduction apparatus. Further, because of the volume and velocity of the air stream required to perform the stripping operation, puffer devices are inherently noisy and therefore undesirable.
Another technique for separating copy sheet from a xerographic surface is to mechanically wedge the copy sheet from the xerographic surface by means of mechanical picker fingers. However, since the fingers must of necessity be wedged between the photoconductive surface and the paper adhering thereto, the fingers have a tendancy to scratch and abrade the xerographic surface.
A further technique for separating a copy sheet from a xerographic surface is to neutralize the charge on the copy sheet with a corona discharge device while the sheet is on the xerographic surface. Assuming the copy sheet is completely neutralized, it will separate therefrom under the influence of gravity if the copy paper is on the underside of the xerographic surface.
Another method for removing copy sheets from the xerographic surface is to provide a vacuum stripping device for pulling the leading edge of the copy sheet from the xerographic surface for subsequent movement of the copy sheet away from the xerographic surface by a suitable paper transport. Problems may be encoun tered with this type of device in that as the leading edge of the paper is pulled from the xerographic surface the paper must be pushed by the moving photoconductive surface to a point where the paper transport or suitable grippers can contact the paper for pulling the paper along the paper path. In utilizing the photoconductive surface to move the copy paper, there may be a tendancy for the paper to slip on the photoconductive surfaceand thereby smear the toner image therebetween. Further, the required spacing between the xerographic surface, the vacuum pickoff device, and the subsequent transport all give rise to areas wherein the paper may be jammed or deflected out of the desired paper path. I
SUMMARY OF THE INVENTION The present invention relates to a reproduction machine wherein a transfer member is electrostatically tacked to a moving image support member, the machine including apparatus for removing the transfer member from the support member and transporting the transfer member toward the next station in the machine, the transport having vacuum means disposed within the confines thereof for lifting the leading edge of the transfer member from the support member into contact with the moving surface of the transport for subsequent removal of the transfer member from the support member by the transport.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic sectional view of an electrostatic reproduction machine embodying the principles of the present invention;
FIG. 2 is an enlarged elevational view in cross-section of the transport assembly positioned between the transfer station and the fuser assembly of the machine;
FIG. 3 is a partial isometric view of the transport roller assembly adjacent the transfer station of the reproduction machine.
DESCRIPTION OF THE PREFERRED EMBODIMENT For a general understanding of an electrostatic processing system in which the invention may be incorporated, reference is had to FIG. I in which various components of the system are schematically illustrated. As in all electrostatic systems such as a xerographic machine of the type illustrated, a light image of an original to be reproduced is projected onto the sensitized surface of a xerographic plate to form an electrostatic latent image thereon. Thereafter, the latent image is developed with an oppositely charged developing mate rial comprising carrier beads and smaller toner particles triboelectrically adhering thereto to form a xerographic powder image corresponding to the latent image on the plate surface. The powder image is then electrostatically transferred to a support surface to which it may be fixed by a fusing device whereby the powder image is caused permanently to adhere to the support surface. In the illustrated machine, an original D to be copied is placed upon a transparent support platen P fixedly arranged in an illumination assembly generally indicated by the reference numeral 10. While upon the platen, as illumination system flashes light rays upon the original thereby producing image rays corresponding to the informational areas on the original. The image rays are projected by means of an optical system 11 to an exposure station A for exposing the photosensitive surface ofa moving xerographic plate in the form of a flexible photoconductive belt 12. In moving in the direction indicated by the arrow, prior to reaching the exposure station A, that portion of the belt being exposed would have been uniformly charged by a corona device 13 located at a belt run extending between belt supporting rollers 20 and 22. The exposure station extends between the roller 20 and a third support roller 21. The belt run between these rollers is encompassed entirely by the exposure station for minimizing the space needed for the belt and its supporting rollers.
The exposure of the belt surface to the light image discharges the photoconductive layer in the areas struck by light, whereby there remains on the belt a latent electrostatic image in image configuration corresponding to the light image projected from the original on the supporting platen. As the belt surface continues its movement, the electrostatic image passes around the roller 21 and through a developing station B located at a third run of the belt and in which there is positioned a developing apparatus generally indicated by the reference numeral 15. The developing apparatus 15 comprises a plurality of brushes 16 which carry devel oping material to the adjacent surface of the upwardly moving inclined photoconductive belt 12 in order to provide development of the electrostatic image.
As the developing material is applied to the xerographic belt, toner particles in the development material are attracted electrostatically to the belt surface to form powder images. As toner powder images are formed, additional toner particles are supplied to the developing material in proportion to the amount of toner deposited on the belt during xerographic processing. For this purpose, a toner dispenser generally indicated by reference numeral 18 is used to accurately meter toner, upon demand, to the developer material in the developing apparatus 15.
The developed electrostatic image is transported by the belt 12 to a transfer station C located at a point of tangency on the belt as it moves around the roller 22 whereat a sheet of copy paper is moved at a speed in synchronism with the moving belt in order to accomplish transfer of the developed image. There is provided at this station a transfer roller 19 which is arranged on the frame of the machine for contacting the non-transfer side of each sheet of copy paper as the same is brought into transfer engagement with the belt 12. The roller 19 is electrically biased with sufficient voltage so that a developed image on the belt 12 may be electrostatically transferred to the adjacent side of a sheet of paper S as the same is brought into contact therewith.
There is also provided a suitable sheet transport mechanism adapted to transport sheets of paper seriatim from a paper handling mechanism generally indicated by the reference numeral 17 to the developed image on the belt as the same is carred around the roller 22. A programming device operatively connected to the mechanism 17 and the illumination device for producing an electrostatic latent image on the belt 12 is effective to present a developed image at the transfer station C in timed sequence with the arrival of a sheet of paper.
After the sheet is stripped from the belt 12, it is conveyed by the stripper transport 23 into a fuser assembly generally indicated by the reference numeral 19 wherein the developed and transferred xerographic powder image on the sheet is permanently affixed thereto. After fusing, the finished copy is discharged from the apparatus at a suitable point for the collection externally of the apparatus. The toner particles remaining as residue on the developed images, background particles, and those particles otherwise not transferred are carried by the belt 12 to a cleaning apparatus positioned on the run of the belt between the rollers 20, 22 adjacent the charging device 13. The cleaning device comprises a rotating brush 26 and a corotron 25, for neutralizing charges remaining on the particles. It will be appreciated that the run of the belt adjacent the cleaning device is at an inclined angle relative to the horizontal as this run leaves the uppermost roller 22 where a developed image is transferred. Such an arrangement maintains the relatively straight line of copy sheet movement which operatively cooperates with the printing belt 12 at its highest point.
Referring now to FIGS. -2 and 3, the stripper transport assembly 23 is comprised of a plenum assembly generally indicated at 30, a stripper roller assembly 32, a rear roller assembly 34, and a plurality of endless belts 36 having perforations 37 therein. The plenum assembly 30 is comprised of a top section 38 suitably affixed to a bottom section 40 having orifices 42 provided therein. The top section 38 is provided with a conduit 44 which is in fluid communication with the suction side of a suitable vacuum pump (not shown). The perforations 42 in the plenum assembly, which are in alignment with perforations 37 in the belts 36, provide a low pressure area adjacent the roller surface of the transport assembly for holding the copy paper on the underside thereof and transporting the paper from the transfer station of the machine to the fuser section.
The stripper roller assembly 32 is comprised of a stationary shaft 48 having a plurality of aligned ports 50 formed therein. A conduit 52 in communication with the interior of shaft 48 is adapted for connection to a suitable vacuum source (not shown) to provide a flow of air through ports 50 and the interior of shaft 48.
Cylindrical members 54 are suitable mounted on shaft 48 for rotation relative thereto. lmperforate portions 56 are provided on member 54 for rotatably supporting belts 36. Perforate portions 58 are provided between imperforate portions 56, rotation of the members 54 providing selective communication of at least one perforation in each perforate section with a port 50 in shaft 48. Thus, as the members 54 are rotated about shaft 48, the perforation in each perforate portion nearest the copy sheet on the photoconductive belt is in communication with the vacuum source to lift the leading edge of the copy sheet from the photoconductor into contact with moving belts 36 to effect movement of the copy paper from the transfer station to the fusing station.
Since only a small number of the ports in the perforate portions are open at anyone time, the desired degree of vacuum can be easily maintained. Further, by providing for selective flow of air through the ports, less noise is generated than would be the case if air were flowing through all the perforations continuously.
By proper placement of the ports in shaft 48, vacuum may be provided at the optimum position relative to the copy sheet. I
Further, movement of the perforate portions in synchronism with the transport belts aids the movement of copy paper from the transfer station to the fuser.
While I have described a preferred embodiment of my invention, it is to be understood that the invention is not limited thereto but may be otherwise embodied within the scope of the following claims.
What is claimed is:
1. In a reproduction machine wherein a transfer member is electrostatically tacked to a moving image support member, apparatus for removing the transfer member from the support member and transporting the transfer member away from the first image support member including:
first shaft means positioned adjacent said support member, the axis of said shaft means being disposed parallel to the leadingedge of said .transfer member, said first shaft means having a plurality of vacuum ports in axial alignment parallel to the leading edge of said transfer member, cylindrical means mounted on said shaft means for rotation relative thereto, said cylindrical means having a plurality of spaced imperforate portions thereon and a plurality of perforate portions disposed between said imperforate portions, rotation of said cylindrical means on said shaft means periodically aligning one perforation in each perforated portion with a vacuum port on said shaft means to cause air to flow through the perforation into said shaft means along an axial line parallel to the lead edge of said transfer member, the flow of air into said ports causing the leading edge of said transfer member to be lifted from said support member toward said shaft means; second shaft means spaced from said first shaft means, the axis of said second shaft means being disposed parallel to said first shaft means; and,
belt means operatively mounted on said first and second'shaft means, said belt means comprising a plurality of endless belts adapted for running engagement with the imperforate portions on said cylindrical means, said transfer member being engaged by said belt means for movement thereby away from said support member.
2. In a reproduction machine according to claim 1 wherein the appparatus for removing the transfer member from the image support member and transporting the transfer member away from the support member further includes a vacuum platen disposed between said first and second shaft means within the confines of said belt means, said vacuum platen having a plurality of perforations therein, each of said endless belts having perforations formed therein in alignment with the perforations in said vacuum platen, movement of said belts along said platen causing the perforations in said belts to uncover the perforations in said platen to allow flow of air into said platen, thereby creating a low pressure area adjacent said belts to hold said transfer member on said belts for movement therewith.

Claims (2)

1. In a reproduction machine wherein a transfer member is electrostatically tacked to a moving image support member, apparatus for removing the transfer member from the support member and transporting the transfer member away from the first image support member including: first shaft means positioned adjacent said support member, the axis of said shaft means being disposed parallel to the leading edge of said transfer member, said first shaft means having a plurality of vacuum ports in axial alignment parallel to the leading edge of said transfer member, cylindrical means mounted on said shaft means for rotation relative thereto, said cylindrical means having a plurality of spaced imperforate portions thereon and a plurality of perforate portions disposed between said imperforate portions, rotation of said cylindrical means on said shaft means periodically aligning one perforation in each perforated portion with a vacuum port on said shaft means to cause air to flow through the perforation into said shaft means along an axial line parallel to the lead edge of said transfer member, the flow of air into said ports causing the leading edge of said transfer member to be lifted from said support member toward said shaft means; second shaft means spaced from said first shaft means, the axis of said second shaft means being disposed parallel to said first shaft means; and, belt means operatively mounted on said first and second shaft means, said belt means comprising a plurality of endless belts adapted for running engagement with the imperforate portions on said cylindrical means, said transfer member being engaged by said belt means for movement thereby away from said support member.
2. In a reproduction machine according to claim 1 wherein the appparatus for removing the transfer member from the image support member and transporting the transfer member away from the support member further includes a vacuum platen disposed between said first and second shaft means within the confines of said belt means, said vacuum platen having a plurality of perforations therein, each of said endless belts having perforations formed therein in alignment with the perforations in said vacuum platen, movement of said belts along said platen causing the perforations in said belts to uncover the perforations in said platen to allow flow of air into said platen, thereby creating a low pressure area adjacent said belts to hold said transfer member on said belts for movement therewith.
US00312555A 1972-12-05 1972-12-06 Vacuum stripping roll with rotary pickup slots Expired - Lifetime US3820778A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US00312555A US3820778A (en) 1972-12-06 1972-12-06 Vacuum stripping roll with rotary pickup slots
CA185,541A CA1010081A (en) 1972-12-06 1973-11-09 Vacuum stripping roll with rotary pickup slots
GB5622773A GB1436393A (en) 1972-12-05 1973-12-04 Electrostatographic reproduction machine
DE19732360380 DE2360380C3 (en) 1972-12-05 1973-12-04 Device in a copier for lifting a copy carrier sheet from the recording carrier
JP48136436A JPS4990540A (en) 1972-12-06 1973-12-05
NL7316669A NL7316669A (en) 1972-12-05 1973-12-05
FR7343436A FR2209133B1 (en) 1972-12-05 1973-12-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00312555A US3820778A (en) 1972-12-06 1972-12-06 Vacuum stripping roll with rotary pickup slots

Publications (1)

Publication Number Publication Date
US3820778A true US3820778A (en) 1974-06-28

Family

ID=23212000

Family Applications (1)

Application Number Title Priority Date Filing Date
US00312555A Expired - Lifetime US3820778A (en) 1972-12-05 1972-12-06 Vacuum stripping roll with rotary pickup slots

Country Status (3)

Country Link
US (1) US3820778A (en)
JP (1) JPS4990540A (en)
CA (1) CA1010081A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013359A (en) * 1974-08-23 1977-03-22 Pitney-Bowes, Inc. Electrostatic copier including means for detaching paper from a photoconductor
US4723773A (en) * 1986-10-17 1988-02-09 Bell & Howell Company Sheet feeding methods and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436367U (en) * 1987-08-26 1989-03-06

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013359A (en) * 1974-08-23 1977-03-22 Pitney-Bowes, Inc. Electrostatic copier including means for detaching paper from a photoconductor
US4723773A (en) * 1986-10-17 1988-02-09 Bell & Howell Company Sheet feeding methods and apparatus

Also Published As

Publication number Publication date
JPS4990540A (en) 1974-08-29
CA1010081A (en) 1977-05-10

Similar Documents

Publication Publication Date Title
US3578859A (en) Mechanical stripping apparatus
US3506259A (en) Electrostatic sheet detacking apparatus
US3620615A (en) Sheet stripping apparatus
US3633543A (en) Biased electrode transfer apparatus
US4062631A (en) Sheet handling of a copying machine
US3508824A (en) Means for handling electrophotographic transfer sheets
US3647292A (en) Transfer apparatus
US4420152A (en) Apparatus for peeling or separating a record paper from a photosensitive drum of an electrophotographic copying machine
US3851966A (en) Reproduction apparatus
JPS6181341A (en) Separating feeding device for upper sheet
US3970381A (en) Method and apparatus for xerographic reproduction
US4080053A (en) Transfer apparatus and method
US4533235A (en) Cleaning device for use in an image forming apparatus
US4077519A (en) Curl detector and separator
US4087169A (en) Transfer roller system
US4029047A (en) Toner handling system
US3837640A (en) Stripper finger with air cushion
US5009352A (en) Apparatus for conveying dielectric sheets
US3820778A (en) Vacuum stripping roll with rotary pickup slots
US3819175A (en) Vacuum stripping roll with stationary pickup slots
US4994864A (en) Copy sheet skew adjustment device
US4930766A (en) Pneumatic compiling apparatus
US3404418A (en) Sheet transport apparatus
US3885785A (en) Vacuum transport
US5043760A (en) Carrier particle loosening device