US3815865A - Thermoplastic shielded glass bottle with highly roughened surface - Google Patents
Thermoplastic shielded glass bottle with highly roughened surface Download PDFInfo
- Publication number
- US3815865A US3815865A US24506872A US3815865A US 3815865 A US3815865 A US 3815865A US 24506872 A US24506872 A US 24506872A US 3815865 A US3815865 A US 3815865A
- Authority
- US
- United States
- Prior art keywords
- envelope
- thickness
- outer envelope
- mean
- exterior surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 title claims abstract description 38
- 229920001169 thermoplastic Polymers 0.000 title description 4
- 239000004416 thermosoftening plastic Substances 0.000 title description 3
- 239000002131 composite material Substances 0.000 claims description 11
- 230000001747 exhibiting effect Effects 0.000 claims description 10
- 239000012815 thermoplastic material Substances 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 6
- 230000014759 maintenance of location Effects 0.000 claims description 6
- 239000012634 fragment Substances 0.000 abstract description 7
- 230000001681 protective effect Effects 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 4
- 238000002834 transmittance Methods 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 abstract description 3
- 229920005992 thermoplastic resin Polymers 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 12
- 239000011347 resin Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 238000000576 coating method Methods 0.000 description 10
- 239000011248 coating agent Substances 0.000 description 8
- 239000004033 plastic Substances 0.000 description 8
- 229920003023 plastic Polymers 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 4
- -1 polyethylene Polymers 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000000452 restraining effect Effects 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920001727 cellulose butyrate Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000007590 electrostatic spraying Methods 0.000 description 1
- 239000005308 flint glass Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- RYPKRALMXUUNKS-UHFFFAOYSA-N hex-2-ene Chemical class CCCC=CC RYPKRALMXUUNKS-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 238000001429 visible spectrum Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D23/00—Details of bottles or jars not otherwise provided for
- B65D23/08—Coverings or external coatings
- B65D23/0807—Coatings
- B65D23/0814—Coatings characterised by the composition of the material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/28—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
- C03C17/32—Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S215/00—Bottles and jars
- Y10S215/06—Resin-coated bottles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/131—Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
- Y10T428/1317—Multilayer [continuous layer]
- Y10T428/1321—Polymer or resin containing [i.e., natural or synthetic]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31507—Of polycarbonate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31645—Next to addition polymer from unsaturated monomers
Definitions
- ABSTRACT A container comprising an inner glass receptacle and a closely adhering exterior protective sheath substantially covering said receptacle.
- the exterior protective sheath is comprised of a shape-retaining, preferably thermoplastic resin adapted to restrain and retain glass fragments should the glass receptacle be broken.
- the sheath is further provided with a substantially roughened surface which exhibits a surface elevation variance from the mean thickness of the sheath by between about 50 and 120 percent.
- a substantially roughened surface which exhibits a surface elevation variance from the mean thickness of the sheath by between about 50 and 120 percent.
- glassware is readily susceptible to breakage during handling and use. Further, the consequences of such breakage may be significantly aggravated if the contained product is carbonated or the container thereof is otherwise internally pressurized. Therefore, it has long been an objective of glassware manufacturers and users to minimize the haza rds of breakage by treating the exterior surface in numerous ways and by even adding protective overcoatings of various sorts thereto.
- These prior art approaches have, in fact, improved glassware standards and quality quite significantly since such have tended to effectively reduce the quantity of surface scratches and flaws in the ware and, of course, this reduction in the points of stress concentration enable the ware to retain its characteristic strength.
- Such prior art treatments have included metal oxide, and combinations of thin film polyethylene coatings which provide good scratch and abrasion resistance to glassware thereby decreasing the surface flaws spoken of and likewise reducing the likelihood of breakage.
- protective coatings having substantial thicknesses have been known for use on glass products. These, however, have been applicable only to specialized containers, for example, those employed in aerosol spray-type applications. Increased costs, production inefficiencies in capably coating ware in the quantities required, providing a coating of the quality capable of restraining and retaining glass upon fragmentation under pressure, and employment of such ware in conventional filling and handling equipment have theretofore been thought to make impossible the fruitful addition to the market of composite glass, plastic-protected ware.
- shape-retaining, flexible resin which is not only able to restrain and retain fragments of the glass receptacle if the receptacle breaks out but also substantially alters the optical properties of the bottle.
- the noted surface deviation creates voidlike areas that provide for increased shock protection while employing a minimum of resin material. Such re sult is obtained due to an increase in thickness adjacent the void-like areas which will bear the brunt of any physical abuse to which the container is subjected. Similarly, substantial portions of the coating are of a reduced thickness thus providing a material saving and creating the noted voids into which portions of the protruding material may flow upon impact.
- the effective thickness of the resin sheath is that of the protruding areas and the necessity of providing a uniform overall coating thickness which would employ substantially more resin is avoided.
- the protrusions and void-like areas of the outer envelope or sheath deviate from the mean sheath thickness by about between 50 and 120 percent. This, in effect, further defines the respective dimensions of the protrusions and void therebetween.
- the novel plastic or resin covering or sheath also restrains and retains fragments of the glass receptacle should such receptacle be broken even when the container is pressurized to conditions approximating pounds per square inch. This effect is produced in accordance withthe invention, by providing the plastic covering or sheath of a flexible,'resilient resin which will stretch and expand rather than itself fragment in the event of receptacle failure.
- FIG. 1 is a front elevational view of a container of the preferred embodiment
- FIG. 2 is a partial cross-sectional view of the container shown in FIG. 1 along line 22 thereof illustrating the invention.
- FIG. 3 is a series of curves showing the percentage of light transmission at various wave lengths for uncoated glass and glass coated with plastic in accordance with the invention.
- container 10 as shown in FIGS. 1 and 2 comprises an inner glass receptacle or envelope l2 and an exterior outer sheath or envelope l4 comprised of a flexible shaperetaining resin contiguously covering a majority of the exterior surface 16 of receptacle l2.
- Sheath 14 is provided on its outer exposed surface 18 with a plurality of randomly positioned outwardly extending shock and light absorbing and reflecting protrusions 20. These are separated by depressions or void-like areas 22 which are believed to permit maximum deflection and expansion of protrusions 20 in a direction parallel to surface 16 upon receipt of excessive impacts. Accordingly, this maximized deflection is believed to increase the shock absorbing characteristics of sheath l4 and in addition,
- ASA B46.l 1962 Another indication of the quality of surface may be established by standard roughness tests (ASA B46.l 1962), for example. Using the techniques described in such standard and with a Type Q.C. Profilometer and Mototrace, it is preferred that a surface roughness value of between about 125 and 750 be measurable on bottles of this invention. Such being the case, one can also expect that the deviations from mean values as are established herein will be maintained, i.e., different measurement techniques of equivalent surface textures.
- the protrusion/void distribution is random but it is expected that there will be about between 100 and 2,000 points of maximum and minimum outer envelope thickness per square inch of surface. It is, however, preferred that the distribution of same be retained in the range of between about 250 and 750 such points.
- inner glass receptacle or envelope 12 has a wall thickness (Gx) of from about 0.03 to about 0.12 inches and the outer envelope 14 has a thickness of from about 0.004 to about 0.18 inches.
- This outer envelope preferably also is formed so that specific dimensional qualities are maintained. For example, it is considered appropriate to provide a mean envelope thickness value (Px) of about between 0.008 and 0.015 inches, the preferred range being between about 0.010 and 0.015 inches.
- Px mean envelope thickness value
- the protrusions and voids have maximum and minimum values above and below this base value on the order of 80 to 120 percent and approximately 50 to 95 percent respectively. In other terms, it is found that the preferred mean deviation above and below the mean thickness value .varies by at least per cent.
- sheath 14 may be any flexible and resilient resin which will stretch and expand rather than crack or fragment if inner receptacle 12 should break whether or not it is under internal pressure.
- Thermosetting resins such as flexible crosslinked urethane rubbers or others may be used; however, thermoplastic resins are preferred since they can be formed into coatings and films more easily and react in the manner above described and as is important in carrying out the invention.
- Thermoplastic polymers of butadicne, acrylates, ethylene, propylene, styrene, vinyl, chloride, vinyl acetate, cellulose acetate, cellulose butyrate and cellulose propionate may be used.
- fluoroplastics, methyl pentenes, polyamides, phenoxy resin, polycarbonates, polyamides, polyphenylene oxides and polysulfone may be used.
- the preferred plastics are inexpensive, have a relatively high tear strength, have high impact resistance, easilyform a contiguous film or coating and are flexible.
- the preferred plastics are polyethylene, acrylonitrile-butadiene-styrene copolymers and impact polystyrene.
- thermoplastic material as a powder, optionally by an electrostatic spraying method, onto the hot external surface of the inner receptacle;
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Details Of Rigid Or Semi-Rigid Containers (AREA)
- Surface Treatment Of Glass (AREA)
- Laminated Bodies (AREA)
Abstract
A container comprising an inner glass receptacle and a closely adhering exterior protective sheath substantially covering said receptacle. The exterior protective sheath is comprised of a shape-retaining, preferably thermoplastic resin adapted to restrain and retain glass fragments should the glass receptacle be broken. The sheath is further provided with a substantially roughened surface which exhibits a surface elevation variance from the mean thickness of the sheath by between about 50 and 120 percent. Such surface characteristics in addition to their functional effects also produce interesting and attractive optical characteristics and substantially reduce the light transmittance thereof.
Description
United States Patent 1 Campagna 1 June 11, 1974 1 1 THERMOPLASTIC SHIELDED GLASS BOTTLE WITH HIGHLY ROUGHENED [58] Field of Search..... 215/1 R, l C, 12 R, DIG. 6; 1l7/17.5, 18, 33.3, 37 R, 41; 161/2, 116, 119, 124, 164, 117; 65/60; 313/110, 116, 117; 356/108, 109; 350/164, 165; 431/94 [56] References Cited UNITED STATES PATENTS 596,304 12/1897 Paquette 215/12 R 2,946,911 7/1960 Malinowski et a1 313/116 3,006,780 10/1961 Shaffer 2l5/D1G. 6 3,067,352 12/1962 Vodicka et a1. 313/116 3,178,049 4/1965 Cottet 215/1 C 3,200,280 8/1965 Thau et a1 [17/41 Primary Examiner-Wi1liam 1. Price Assistant Examiner-Stephen Marcus [5 7 ABSTRACT A container comprising an inner glass receptacle and a closely adhering exterior protective sheath substantially covering said receptacle. The exterior protective sheath is comprised of a shape-retaining, preferably thermoplastic resin adapted to restrain and retain glass fragments should the glass receptacle be broken. The sheath is further provided with a substantially roughened surface which exhibits a surface elevation variance from the mean thickness of the sheath by between about 50 and 120 percent. Such surface characteristics in addition to their functional effects also produce interesting and attractive optical characteristics and substantially reduce the light transmittance thereof.
6 Claims, 3 Drawing Figures THERMOPLASTIC SHIELDED GLASS BOTTLE WITH HIGHLY ROUGHENED SURFACE This invention concerns protectively sheathed glassware containers and, more particularly, concerns glass receptacles which are so protected by an outer plastic envelope that substantially covers the exterior surface thereof.
As is well known in the trade, glassware is readily susceptible to breakage during handling and use. Further, the consequences of such breakage may be significantly aggravated if the contained product is carbonated or the container thereof is otherwise internally pressurized. Therefore, it has long been an objective of glassware manufacturers and users to minimize the haza rds of breakage by treating the exterior surface in numerous ways and by even adding protective overcoatings of various sorts thereto. These prior art approaches have, in fact, improved glassware standards and quality quite significantly since such have tended to effectively reduce the quantity of surface scratches and flaws in the ware and, of course, this reduction in the points of stress concentration enable the ware to retain its characteristic strength.
Such prior art treatments, for example, have included metal oxide, and combinations of thin film polyethylene coatings which provide good scratch and abrasion resistance to glassware thereby decreasing the surface flaws spoken of and likewise reducing the likelihood of breakage. Similarly, protective coatings having substantial thicknesses have been known for use on glass products. These, however, have been applicable only to specialized containers, for example, those employed in aerosol spray-type applications. Increased costs, production inefficiencies in capably coating ware in the quantities required, providing a coating of the quality capable of restraining and retaining glass upon fragmentation under pressure, and employment of such ware in conventional filling and handling equipment have theretofore been thought to make impossible the fruitful addition to the market of composite glass, plastic-protected ware.
Specific problems presented and overcome by this invention have been to provide the ware with a protective sheath or outer envelope'of a sufficient thickness and resilience to adequately restrain and retain the glass receptacle portion of a pressurized container against fragmentation. To economically accomplish this end, the volume of coating material must be minimized, yet the effective thickness thereof must be maximized to render the needed protection. Similarly, a consistently uniform, proper and good adhesion should be maintained between the glass receptacle portion and sheath portion of the container to provide the proper restraining effects. This diametrically opposed proposition, i.e., minimum material yet maximum protection, is satisfied by the novel construction of this invention.
shape-retaining, flexible resin which is not only able to restrain and retain fragments of the glass receptacle if the receptacle breaks out but also substantially alters the optical properties of the bottle.
extremely roughened sheath surface wherein there is at least a 20 percent deviation in thickness from its mean thickness. Such roughening, in particular, substantially reduces the light transmittance through the bottle. Thus, instead of exhibiting typical high transmittance, (values above 40 percent) bottles coated in accordance herewith restrict the transmitted light to below 20 percent.
Of course, the noted surface deviation creates voidlike areas that provide for increased shock protection while employing a minimum of resin material. Such re sult is obtained due to an increase in thickness adjacent the void-like areas which will bear the brunt of any physical abuse to which the container is subjected. Similarly, substantial portions of the coating are of a reduced thickness thus providing a material saving and creating the noted voids into which portions of the protruding material may flow upon impact. Thus, the effective thickness of the resin sheath is that of the protruding areas and the necessity of providing a uniform overall coating thickness which would employ substantially more resin is avoided.
To produce these desirable end results, it is preferred that the protrusions and void-like areas of the outer envelope or sheath deviate from the mean sheath thickness by about between 50 and 120 percent. This, in effect, further defines the respective dimensions of the protrusions and void therebetween. The novel plastic or resin covering or sheath also restrains and retains fragments of the glass receptacle should such receptacle be broken even when the container is pressurized to conditions approximating pounds per square inch. This effect is produced in accordance withthe invention, by providing the plastic covering or sheath of a flexible,'resilient resin which will stretch and expand rather than itself fragment in the event of receptacle failure. Such expansion of the covering before its own failure enables glass fragments to be restrained until the pressure within the receptacle escapes through initially formed, relatively small openings or fissures which may appear in the covering or sheath as it fails or until the pressure is otherwise relieved.
" FIG. 1 is a front elevational view of a container of the preferred embodiment;
FIG. 2 is a partial cross-sectional view of the container shown in FIG. 1 along line 22 thereof illustrating the invention; and
FIG. 3 is a series of curves showing the percentage of light transmission at various wave lengths for uncoated glass and glass coated with plastic in accordance with the invention.
In the preferred embodiment of the invention, container 10 as shown in FIGS. 1 and 2 comprises an inner glass receptacle or envelope l2 and an exterior outer sheath or envelope l4 comprised of a flexible shaperetaining resin contiguously covering a majority of the exterior surface 16 of receptacle l2. Sheath 14 is provided on its outer exposed surface 18 with a plurality of randomly positioned outwardly extending shock and light absorbing and reflecting protrusions 20. These are separated by depressions or void-like areas 22 which are believed to permit maximum deflection and expansion of protrusions 20 in a direction parallel to surface 16 upon receipt of excessive impacts. Accordingly, this maximized deflection is believed to increase the shock absorbing characteristics of sheath l4 and in addition,
reduces the amount of material needed for an effective Similarly, the roughening of surface 18 reduces the percentage of light transmitted through the bottle in accordance with the showing of FIG. 3. Thus, it can be seen that when an unpigmented resin is employed for the outer sheath I4 and a flint glass inner envelope is coated therewith a maximum of about percent light transmission will be expected at an 800 millimicron wave length. The transmission values are also substantially lower in the lower wave lengths of the visible spectrum and are, of course, even more suppressed when colored glass or resins are used. Likewise, it should be appreciated that light transmission will also vary with varying glass thicknesses and that the standard curves illustrated are based upon about an 0.080 ins. thickness.
Another indication of the quality of surface may be established by standard roughness tests (ASA B46.l 1962), for example. Using the techniques described in such standard and with a Type Q.C. Profilometer and Mototrace, it is preferred that a surface roughness value of between about 125 and 750 be measurable on bottles of this invention. Such being the case, one can also expect that the deviations from mean values as are established herein will be maintained, i.e., different measurement techniques of equivalent surface textures.
As was also set forth above, the protrusion/void distribution is random but it is expected that there will be about between 100 and 2,000 points of maximum and minimum outer envelope thickness per square inch of surface. It is, however, preferred that the distribution of same be retained in the range of between about 250 and 750 such points.
In the preferred embodiment, inner glass receptacle or envelope 12 has a wall thickness (Gx) of from about 0.03 to about 0.12 inches and the outer envelope 14 has a thickness of from about 0.004 to about 0.18 inches. This outer envelope preferably also is formed so that specific dimensional qualities are maintained. For example, it is considered appropriate to provide a mean envelope thickness value (Px) of about between 0.008 and 0.015 inches, the preferred range being between about 0.010 and 0.015 inches. Similarly, it is preferred that the protrusions and voids have maximum and minimum values above and below this base value on the order of 80 to 120 percent and approximately 50 to 95 percent respectively. In other terms, it is found that the preferred mean deviation above and below the mean thickness value .varies by at least per cent.
PREFERRED SHEATH OUTER SURFACE CHARACTERISTICS Px Sheath Pxl Mean Devia- Max. Max. Mean Thicktion above and Elevation Deflection ncss (in.) below Px above Px below Px 0.008 to The material of construction of sheath 14 may be any flexible and resilient resin which will stretch and expand rather than crack or fragment if inner receptacle 12 should break whether or not it is under internal pressure. Thermosetting resins such as flexible crosslinked urethane rubbers or others may be used; however, thermoplastic resins are preferred since they can be formed into coatings and films more easily and react in the manner above described and as is important in carrying out the invention.
Thermoplastic polymers of butadicne, acrylates, ethylene, propylene, styrene, vinyl, chloride, vinyl acetate, cellulose acetate, cellulose butyrate and cellulose propionate may be used. In addition, fluoroplastics, methyl pentenes, polyamides, phenoxy resin, polycarbonates, polyamides, polyphenylene oxides and polysulfone may be used.
The preferred plastics are inexpensive, have a relatively high tear strength, have high impact resistance, easilyform a contiguous film or coating and are flexible. Of those above mentioned, the preferred plastics are polyethylene, acrylonitrile-butadiene-styrene copolymers and impact polystyrene.
It is, of course, appreciated that a suitable means of application of the coating material or sheath 14 to inner glass receptacle 12 is a necessity and as examples it is suggested that any of the following may be employed depending upon the manufactures desired.
a. By spraying the thermoplastic material as a powder, optionally by an electrostatic spraying method, onto the hot external surface of the inner receptacle;
b. By dipping the inner receptacle, maintained at an appropriate-temperature, into a fluidized bed of the plastic material in powder form;
c. By dipping the inner receptacle, if desired while hot, into a molten bath of the plastic material or into a solution or a dispersion of such material, or
d. By any other material or providing a sleeve type coating to an inner glass receptacle known inthe art.
I claim:
l. A composite bottle adapted for the retention of fluid media and exhibiting a highly roughened exterior surface and comprising an inner glass envelope and an outer envelope comprising a single thermoplastic material surrounding the glass envelope and extending over substantially the entirety thereof, said outer envelope being further characterized in exhibiting an pproximate mean thickness of between about 0.010 inches and 0.015 inches, the maximum thickness being between about 0.008 inches and 0.015 inches in excess of the mean value and the minimum thickness being between about 0.005 inches and 0.009 inches less than the'mean value.
2. A composite bottle according to claim 1 wherein points of maximum and minimum outer envelope thicknesses are randomly scattered across said exterior surface, such scattering, however, occurring about between 250 and 750 points per square inch of surface, each of maximum and minimum thickness.
3. A composite bottle adapted for use in the retention of pressurized fluid media and exhibiting a highly roughened exterior surface and comprising a pressurizable inner glass envelope and an outer envelope comprising a single thermoplastic material surrounding said glass envelope and extending over substantially the entirety thereof, said outer envelope having a mean sidewall thickness of about between 0.010 and 0.015 inches, the exterior surface of said outer envelope being further characterized in that it exhibits a mean deviation both above and below the mean envelope thickness of at least about 20 per cent.
4. A composite bottle according to claim 3 wherein points of maximum and minimum outer envelope thickness are randomly scattered across said exterior surface, such scattering, however, occurring about between 250 and 750 points per square inch of surface, each of maximum and minimum thickness.
5. A composite bottle adapted for the retention of fluid media and exhibiting a highly roughened exterior surface and comprising an inner glass envelope and an outer envelope comprising a single thermoplastic material surrounding the glass envelope and extending over substantially the entirety thereof, said outer envelope being further characterized in exhibiting an approximate mean thickness of between about 0.0l0 inches and 0.015 inches, the maximum thickness being beabout 5 and 20 percent respectively.
Claims (5)
- 2. A composite bottle according to claim 1 wherein points of maximum and minimum outer envelope thicknesses are randomly scattered across said exterior surface, such scattering, however, occurring about between 250 and 750 points per square inch of surface, each of maximum and minimum thickness.
- 3. A composite bottle adapted for use in the retention of pressurized fluid media and exhibiting a highly roughened exterior surface and comprising a pressurizable inner glass envelope and an outer envelope comprising a single thermoplastic material surrounding said glass envelope and extending over substantially the entirety thereof, said outer envelope having a mean sidewall thickness of about between 0.010 and 0.015 inches, the exterior surface of said outer envelope being further characterized in that it exhibits a mean deviation both above and below the mean envelope thickness of at least about 20 per cent.
- 4. A composite bottle according to claim 3 wherein points of maximum and minimum outer envelope thickness are randomly scattered across said exterior surface, such scattering, however, occurring about between 250 and 750 points per square inch of surface, each of maximum and minimum thickness.
- 5. A composite bottle adapted for the retention of fluid media and exhibiting a highly roughened exterior surface and comprising an inner glass envelope and an outer envelope comprising a single thermoplastic material surrounding the glass envelope and extending over substantially the entirety thereof, said outer envelope being further characterized in exhibiting an approximate mean thickness of between about 0.010 inches and 0.015 inches, tHe maximum thickness being between about 80 and 120 percent in excess of the mean value and the minimum thickness being between about 50 and 95 percent less than the mean value.
- 6. A composite bottle adapted for the retention of fluid media and exhibiting a highly roughened exterior surface and comprising an inner glass envelope and an outer envelope of thermoplastic material surrounding the glass envelope and extending over substantially the entirety thereof, said bottle being further characterized in that the percentage of transmitted visible light in the range of 500 and 800 millimimicrons, varies between about 5 and 20 percent respectively.
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16210371 US3825141A (en) | 1971-07-13 | 1971-07-13 | Covered glass bottle or the like |
US23241272 US3825142A (en) | 1971-07-13 | 1972-03-07 | Thermoplastic shielded glass bottle |
US24506872 US3815865A (en) | 1971-07-13 | 1972-04-18 | Thermoplastic shielded glass bottle with highly roughened surface |
AU44003/72A AU475003B2 (en) | 1971-07-13 | 1972-06-28 | Thermoplastic shielding glass bottle |
IT2676672A IT962638B (en) | 1971-07-13 | 1972-07-07 | GLASS BOTTLE SHIELDED WITH THERMOPLASTIC MATERIAL |
NL7209568A NL7209568A (en) | 1971-07-13 | 1972-07-10 | |
JP6950472A JPS5248876B2 (en) | 1971-07-13 | 1972-07-11 | |
SE915672A SE378238B (en) | 1971-07-13 | 1972-07-12 | |
CA146,976A CA983416A (en) | 1971-07-13 | 1972-07-12 | Thermoplastic shielded glass bottle |
FR7225240A FR2145630B1 (en) | 1971-07-13 | 1972-07-12 | |
GB3264272A GB1396012A (en) | 1971-07-13 | 1972-07-12 | Thermoplastic shielded glass container |
BE786196A BE786196A (en) | 1971-07-13 | 1972-07-12 | BOTTLES PROTECTED BY A THERMOPLASTIC MATERIAL COATING |
DE2234212A DE2234212A1 (en) | 1971-07-13 | 1972-07-12 | BOTTLE PROTECTED AGAINST BREAKAGE |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16210371 US3825141A (en) | 1971-07-13 | 1971-07-13 | Covered glass bottle or the like |
US23241272 US3825142A (en) | 1971-07-13 | 1972-03-07 | Thermoplastic shielded glass bottle |
US24506872 US3815865A (en) | 1971-07-13 | 1972-04-18 | Thermoplastic shielded glass bottle with highly roughened surface |
Publications (1)
Publication Number | Publication Date |
---|---|
US3815865A true US3815865A (en) | 1974-06-11 |
Family
ID=27388723
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16210371 Expired - Lifetime US3825141A (en) | 1971-07-13 | 1971-07-13 | Covered glass bottle or the like |
US23241272 Expired - Lifetime US3825142A (en) | 1971-07-13 | 1972-03-07 | Thermoplastic shielded glass bottle |
US24506872 Expired - Lifetime US3815865A (en) | 1971-07-13 | 1972-04-18 | Thermoplastic shielded glass bottle with highly roughened surface |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16210371 Expired - Lifetime US3825141A (en) | 1971-07-13 | 1971-07-13 | Covered glass bottle or the like |
US23241272 Expired - Lifetime US3825142A (en) | 1971-07-13 | 1972-03-07 | Thermoplastic shielded glass bottle |
Country Status (11)
Country | Link |
---|---|
US (3) | US3825141A (en) |
JP (1) | JPS5248876B2 (en) |
AU (1) | AU475003B2 (en) |
BE (1) | BE786196A (en) |
CA (1) | CA983416A (en) |
DE (1) | DE2234212A1 (en) |
FR (1) | FR2145630B1 (en) |
GB (1) | GB1396012A (en) |
IT (1) | IT962638B (en) |
NL (1) | NL7209568A (en) |
SE (1) | SE378238B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4860906A (en) * | 1987-09-14 | 1989-08-29 | Bloomfield Industries, Inc. | Glass container with safety coating |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5327276Y2 (en) * | 1973-03-23 | 1978-07-11 | ||
US3912100A (en) * | 1973-06-21 | 1975-10-14 | Owens Illinois Inc | Coated glass container and method of making same |
US4238041A (en) * | 1973-12-07 | 1980-12-09 | Bodelind Bo T | Glass container with a fixed plastic protective layer |
US4086373A (en) * | 1975-04-02 | 1978-04-25 | Owens-Illinois, Inc. | Protective polymeric coating for glass substrate |
US4065589A (en) * | 1975-06-09 | 1977-12-27 | Owens-Illinois, Inc. | Polymeric coating for protection of glass substrate |
US4053076A (en) * | 1976-06-03 | 1977-10-11 | The Dexter Corporation | Coatings for shatterproofing glass bottles |
CA1103103A (en) * | 1976-08-04 | 1981-06-16 | Harry W. Blunt | Coated bottles |
US4140252A (en) * | 1976-09-27 | 1979-02-20 | Cory Food Services, Inc. | Decanter having set-in-place sealing means |
US4256231A (en) * | 1976-10-21 | 1981-03-17 | Henkel Kommanditgesellschaft Auf Aktien (Henkel Kgaa) | Container with a synthetic lining impermeable to liquids and method of making |
JPS5383361U (en) * | 1976-12-09 | 1978-07-10 | ||
US4207356A (en) * | 1976-12-09 | 1980-06-10 | The D. L. Auld Company | Method for coating glass containers |
JPS5852184A (en) * | 1981-09-21 | 1983-03-28 | 株式会社日立製作所 | Protection device for power supply cables of mobile objects |
US4620985A (en) * | 1985-03-22 | 1986-11-04 | The D. L. Auld Company | Circumferential groove coating method for protecting a glass bottle |
US4785950A (en) * | 1986-03-12 | 1988-11-22 | Continental Pet Technologies, Inc. | Plastic bottle base reinforcement |
DE8712608U1 (en) * | 1987-09-18 | 1987-10-29 | Weinbrennerei Pabst & Richarz GmbH & Co, 2887 Elsfleth | Glass liqueur bottle |
USD322315S (en) | 1988-06-08 | 1991-12-10 | Olympus Optical Company Ltd. | Reagent container or the like |
US6095787A (en) * | 1998-10-19 | 2000-08-01 | The Colonel's, Inc. | Method of making a skid-resistant bed liner |
GB2357809B (en) * | 1999-12-30 | 2003-09-03 | P & M Products Ltd | Improvements in and relating to liquid dispensing apparatus |
US20030116527A1 (en) * | 2001-12-21 | 2003-06-26 | Beaver Ted L. | Device and method for preventing skidding of a container |
FR2841224B1 (en) * | 2002-06-19 | 2004-08-06 | Sleever Int | PACKAGING OF OBJECT (S) IN HEAT SHRINKABLE MATERIAL WITH RELIEF PATTERN |
US6848733B2 (en) * | 2002-11-08 | 2005-02-01 | Durakon Industries, Inc. | Co-formed bed liner having enhanced frictional characteristics |
US6851391B1 (en) * | 2003-07-18 | 2005-02-08 | Paw Wash Llc | Apparatus for cleaning an animal's paw |
US7116183B2 (en) * | 2004-02-05 | 2006-10-03 | Qualcomm Incorporated | Temperature compensated voltage controlled oscillator |
US7820452B2 (en) * | 2004-06-24 | 2010-10-26 | Martin Parkinson | Transparent elastomer safety shield |
USD557610S1 (en) | 2006-09-29 | 2007-12-18 | S.C. Johnson & Son, Inc. | Bottle |
USD589349S1 (en) | 2006-09-29 | 2009-03-31 | S. C. Johnson & Son, Inc. | Bottle |
USD572138S1 (en) | 2006-09-29 | 2008-07-01 | S.C. Johnson & Son, Inc. | Neck portion of a bottle |
USD590260S1 (en) | 2006-09-29 | 2009-04-14 | S. C. Johnson & Son, Inc. | Bottle |
USD568748S1 (en) | 2007-02-16 | 2008-05-13 | S.C. Johnson & Son, Inc. | Portion of a bottle |
USD594338S1 (en) | 2007-02-16 | 2009-06-16 | S.C. Johnson & Son, Inc. | Starter bottle |
USD633807S1 (en) | 2007-02-16 | 2011-03-08 | S.C. Johnson & Son, Inc. | Bottle |
USD583677S1 (en) | 2007-02-16 | 2008-12-30 | S.C. Johnson & Son, Inc. | Combination bottle and sprayer head |
USD593863S1 (en) | 2007-02-16 | 2009-06-09 | S.C. Johnson & Son, Inc. | Portion of a bottle |
USD568153S1 (en) | 2007-02-16 | 2008-05-06 | S.C. Johnson & Son, Inc. | Sprayer head for attachment to a bottle |
USD584617S1 (en) | 2007-02-16 | 2009-01-13 | S.C. Johnson & Son, Inc. | Sprayer head for attachment to a bottle |
USD656410S1 (en) * | 2007-08-24 | 2012-03-27 | From The Source, Llc | Bottle wrapper |
USD587570S1 (en) * | 2008-05-30 | 2009-03-03 | Bradford Trayser | Bottle band |
USD600115S1 (en) * | 2008-05-30 | 2009-09-15 | Bradford Trayser | Bottle band |
USD601018S1 (en) * | 2008-05-30 | 2009-09-29 | Bradford Trayser | Bottle band |
USD607335S1 (en) | 2009-03-13 | 2010-01-05 | S.C. Johnson & Son, Inc. | Bottle |
US8132683B2 (en) * | 2009-05-13 | 2012-03-13 | Evenflo Company, Inc. | Protective bottle sling |
USD642925S1 (en) | 2009-06-17 | 2011-08-09 | S.C. Johnson & Son, Inc. | Bottle |
USD649467S1 (en) * | 2010-05-12 | 2011-11-29 | S. C. Johnson & Son, Inc. | Bottle |
US20120074091A1 (en) * | 2010-09-24 | 2012-03-29 | Himelstein Walter D | Safety-coated glass bottle |
USD660714S1 (en) | 2010-12-06 | 2012-05-29 | S.C. Johnson & Son, Inc. | Bottle |
USD704557S1 (en) * | 2011-08-31 | 2014-05-13 | Uinta Brewing Company | Bottle |
USD695614S1 (en) * | 2011-12-07 | 2013-12-17 | Saint-Gobain Containers, Inc. | Bottle |
USD722879S1 (en) | 2012-06-14 | 2015-02-24 | S.C. Johnson & Son, Inc. | Bottle |
USD736089S1 (en) | 2012-06-14 | 2015-08-11 | S.C. Johnson & Son, Inc. | Bottle |
USD736637S1 (en) | 2012-06-14 | 2015-08-18 | S.C. Johnson & Son, Inc. | Bottle |
USD698160S1 (en) * | 2012-08-28 | 2014-01-28 | Larry Spall | Picture bottle frame |
US9883759B2 (en) | 2014-01-09 | 2018-02-06 | Goverre, Inc. | Closeable beverage lid |
USD812478S1 (en) * | 2014-09-15 | 2018-03-13 | Ball Corporation | Metal bottle |
USD809390S1 (en) | 2015-01-05 | 2018-02-06 | Ball Corporation | Metal bottle |
FR3080368B1 (en) * | 2018-04-20 | 2021-04-23 | Virbac | SHOCK PROTECTION DEVICE SUITABLE TO EQUIP A BOTTLE |
WO2020014503A1 (en) * | 2018-07-11 | 2020-01-16 | Kao Usa Inc. | Container assembly and system and method thereof |
USD1008027S1 (en) | 2019-05-01 | 2023-12-19 | S. C. Johnson & Son, Inc. | Bottle |
USD873140S1 (en) * | 2019-05-06 | 2020-01-21 | Natura Cosméticos S.A. | Flask |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US596304A (en) * | 1897-12-28 | Bottle-protector | ||
US2946911A (en) * | 1957-11-01 | 1960-07-26 | Gen Electric | Coated electric lamp |
US3006780A (en) * | 1959-11-04 | 1961-10-31 | Harry S Shaffer | Cellular coating and method of producing the same |
US3067352A (en) * | 1959-02-05 | 1962-12-04 | Gen Electric | Coated electric lamp and method of manufacture |
US3178049A (en) * | 1963-01-25 | 1965-04-13 | Rhone Poulenc Sa | Composite receptacles |
US3200280A (en) * | 1960-12-13 | 1965-08-10 | Universal Coatings Inc | Decorative light source |
US3513970A (en) * | 1967-11-17 | 1970-05-26 | Robert J Eckholm Jr | Container carrier |
DE2026909A1 (en) * | 1969-06-03 | 1970-12-10 | Aktiebolage_t Platmanufaktur, Malmö (Schweden) | Packaging with a hollow body made of glass and process for the manufacture thereof |
US3560240A (en) * | 1969-09-10 | 1971-02-02 | Enameled Steel & Sign Co Inc | Crackling coat process and apparatus |
US3589973A (en) * | 1966-10-31 | 1971-06-29 | Grace W R & Co | Suede type product |
US3599362A (en) * | 1968-11-13 | 1971-08-17 | Kloeber Fa Hans | Drinking glass |
-
1971
- 1971-07-13 US US16210371 patent/US3825141A/en not_active Expired - Lifetime
-
1972
- 1972-03-07 US US23241272 patent/US3825142A/en not_active Expired - Lifetime
- 1972-04-18 US US24506872 patent/US3815865A/en not_active Expired - Lifetime
- 1972-06-28 AU AU44003/72A patent/AU475003B2/en not_active Expired
- 1972-07-07 IT IT2676672A patent/IT962638B/en active
- 1972-07-10 NL NL7209568A patent/NL7209568A/xx unknown
- 1972-07-11 JP JP6950472A patent/JPS5248876B2/ja not_active Expired
- 1972-07-12 FR FR7225240A patent/FR2145630B1/fr not_active Expired
- 1972-07-12 CA CA146,976A patent/CA983416A/en not_active Expired
- 1972-07-12 BE BE786196A patent/BE786196A/en unknown
- 1972-07-12 DE DE2234212A patent/DE2234212A1/en active Pending
- 1972-07-12 SE SE915672A patent/SE378238B/xx unknown
- 1972-07-12 GB GB3264272A patent/GB1396012A/en not_active Expired
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US596304A (en) * | 1897-12-28 | Bottle-protector | ||
US2946911A (en) * | 1957-11-01 | 1960-07-26 | Gen Electric | Coated electric lamp |
US3067352A (en) * | 1959-02-05 | 1962-12-04 | Gen Electric | Coated electric lamp and method of manufacture |
US3006780A (en) * | 1959-11-04 | 1961-10-31 | Harry S Shaffer | Cellular coating and method of producing the same |
US3200280A (en) * | 1960-12-13 | 1965-08-10 | Universal Coatings Inc | Decorative light source |
US3178049A (en) * | 1963-01-25 | 1965-04-13 | Rhone Poulenc Sa | Composite receptacles |
US3589973A (en) * | 1966-10-31 | 1971-06-29 | Grace W R & Co | Suede type product |
US3513970A (en) * | 1967-11-17 | 1970-05-26 | Robert J Eckholm Jr | Container carrier |
US3599362A (en) * | 1968-11-13 | 1971-08-17 | Kloeber Fa Hans | Drinking glass |
DE2026909A1 (en) * | 1969-06-03 | 1970-12-10 | Aktiebolage_t Platmanufaktur, Malmö (Schweden) | Packaging with a hollow body made of glass and process for the manufacture thereof |
US3560240A (en) * | 1969-09-10 | 1971-02-02 | Enameled Steel & Sign Co Inc | Crackling coat process and apparatus |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4860906A (en) * | 1987-09-14 | 1989-08-29 | Bloomfield Industries, Inc. | Glass container with safety coating |
Also Published As
Publication number | Publication date |
---|---|
SE378238B (en) | 1975-08-25 |
US3825141A (en) | 1974-07-23 |
AU475003B2 (en) | 1976-08-12 |
JPS4840581A (en) | 1973-06-14 |
JPS5248876B2 (en) | 1977-12-13 |
CA983416A (en) | 1976-02-10 |
FR2145630A1 (en) | 1973-02-23 |
US3825142A (en) | 1974-07-23 |
NL7209568A (en) | 1973-01-16 |
IT962638B (en) | 1973-12-31 |
AU4400372A (en) | 1974-01-03 |
GB1396012A (en) | 1975-05-29 |
FR2145630B1 (en) | 1974-07-26 |
DE2234212A1 (en) | 1973-02-08 |
BE786196A (en) | 1973-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3815865A (en) | Thermoplastic shielded glass bottle with highly roughened surface | |
US3823032A (en) | Glass bottles coated with multiprotective film layers | |
US3604584A (en) | Method for protecting glassware and the article produced thereby | |
US4552791A (en) | Plastic container with decreased gas permeability | |
WO1995010487A1 (en) | Method of producing an article with a body of glass having protective coatings of polymeric material | |
US5725956A (en) | Method and material for protecting glass surfaces | |
EP0095909B1 (en) | Process for preparation of a plastic vessel having an oriented coating | |
KR940701550A (en) | Optical fiber and its manufacturing method | |
US3859117A (en) | Coated glass container | |
GB2151262A (en) | Methods for improving the gas barrier properties of polymeric containers | |
US3554787A (en) | Glass article having dual scratch and abrasion resistant coating and method for producing same | |
US3772061A (en) | Containers and methods of preparing | |
KR102048993B1 (en) | Curved glass and method for producing the same | |
US3903339A (en) | Glass container coated with plastic containment film and method of making | |
US3864152A (en) | Coated glass bottle | |
US3314450A (en) | Transparent reinforced glass pipe | |
CA1103103A (en) | Coated bottles | |
US4098934A (en) | Shatter resistant glass container | |
US3889030A (en) | Method of coating glass article and improved coated glassware product | |
US3944100A (en) | Containment coating composition | |
US2714570A (en) | Cushioned wrapping material | |
US3457095A (en) | Method of fabricating transparent reinforced glass pipe | |
US3875763A (en) | Method of strengthening glass containers | |
CA1052640A (en) | Coated bottle | |
JPS5929130A (en) | How to make saturated polyester bottles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THATCHER GLASS CORPORATION, 7 RIVERSVILLE RD., GRE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:DART INDUSTRIES INC.;REEL/FRAME:003960/0808 Effective date: 19820104 |
|
AS | Assignment |
Owner name: DIAMOND THATCHER INC., FIRST AVE., ROYERSFORD, PA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. SUBJECT TO CONDITIONS RECITED;ASSIGNOR:THATCHER GLASS CORPORATION A DE CORP;REEL/FRAME:004424/0109 Effective date: 19850701 |