US3815674A - Well structure and method for protecting permafrost - Google Patents
Well structure and method for protecting permafrost Download PDFInfo
- Publication number
- US3815674A US3815674A US00332924A US33292473A US3815674A US 3815674 A US3815674 A US 3815674A US 00332924 A US00332924 A US 00332924A US 33292473 A US33292473 A US 33292473A US 3815674 A US3815674 A US 3815674A
- Authority
- US
- United States
- Prior art keywords
- liquid
- well structure
- permafrost
- housing
- disposed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title description 8
- 239000007788 liquid Substances 0.000 claims abstract description 53
- 239000012080 ambient air Substances 0.000 claims description 6
- 238000005057 refrigeration Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims 1
- 238000009835 boiling Methods 0.000 abstract description 11
- 238000007710 freezing Methods 0.000 abstract description 4
- 230000008014 freezing Effects 0.000 abstract description 3
- 239000003129 oil well Substances 0.000 abstract 1
- 230000008901 benefit Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 239000003570 air Substances 0.000 description 2
- GZUXJHMPEANEGY-UHFFFAOYSA-N bromomethane Chemical compound BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N chloromethane Chemical compound ClC NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 208000020401 Depressive disease Diseases 0.000 description 1
- 239000004338 Dichlorodifluoromethane Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- HRYZWHHZPQKTII-UHFFFAOYSA-N chloroethane Chemical compound CCCl HRYZWHHZPQKTII-UHFFFAOYSA-N 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229940042935 dichlorodifluoromethane Drugs 0.000 description 1
- 229960003750 ethyl chloride Drugs 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229940102396 methyl bromide Drugs 0.000 description 1
- 229940050176 methyl chloride Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 229940044609 sulfur dioxide Drugs 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 229940029284 trichlorofluoromethane Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/003—Insulating arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S166/00—Wells
- Y10S166/901—Wells in frozen terrain
Definitions
- a cementitious layer 46 surrounds the casing 45 and beneficially is of similar composition to layer 43.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
Abstract
Permafrost about a bore, such as an oil well is protected by surrounding the casing of the well with an insulating layer, surrounding the insulating layer with a hollow jacket, the jacket containing liquid boiling below the freezing point of the permafrost. The boiling liquid being condensed adjacent the upper portion of the jacket and the liquid returned downwardly in the jacket.
Description
1 June 11, 1974 References Cited UNITED STATES PATENTS Keeler et a1.
6 Claims, 4 Drawing Figures a Q wand m 2 4 I, s z Z e v H1 VJ, lwiiil lll ll, llll 1 7 .w Z26 Q 1 2 United States Patent [191 Best et al.
WELL STRUCTURE AND METHOD FOR PROTECTING PERMAFROST [76] Inventors: John S. Best, '4121 Oak Court,
[22] Filed:
WELL STRUCTURE AND METHOD FOR PROTECTING PERMAFROST This application is a divisional application of our copending application Ser. No. 210,037, filed Dec. 20, 1971, now U.S. Pat. No. 3,771,590, which in turn is a continuation-in-part of our copending application Ser.
No. 112,634, filed Feb. 4, 1971, now abandoned.
Substantial difficulty is encountered when removing subterranean fluids such as oil from a well penetrating a permafrost layer. Generally the fluid such as oil is at a temperature substantially above the melting point of water and can quickly cause melting of the permafrost adjacent the well. Such melting is very undesirable from a mechanical standpoint. Generally in sinking such a well, conventional mechanical refrigeration has been employed to maintain the permafrost immediately adjacent the uppermost portion of the well. However, such conventional refrigeration techniques usually are not satisfactory for maintaining permafrost conditions about a well for an extended distance such as distances in excess of 100 feet and several hundreds of feet.
It would be desirable if there were available an improved device for maintaining permafrost about a well bore.
It would also be desirable if such a method and device would operate with relatively simple equipment.
It would also be desirable if such a method anddevice were operable with minimal maintenance.
These benefits and other advantages in accordance with the present invention are achieved in a method for maintaining permafrost about a well bore or conduit, the steps of the method comprising, providing a well conduit extending downwardly in the earth through a permafrost layer, surrounding the conduit at least in the upper region of the permafrost layer with a thermally insulating layer, disposing generally about the insulating layer a hollow elongate housing defining therein a chamber, disposing within the chamber a low boiling liquid, the liquid boiling at least 0. l F. below the freezing point of the permafrost, removing a heated vapor of the liquid upwardly through the conduit thereby heating the low boilingliquid within the elongate chamber to its boiling point, condensing the liquid at a location generally adjacent the upper surface of the permafrost and returning the liquid downwardly within the chamber.
Also contemplated within the present invention is a well structure, the well structure comprising a well conduit extending downwardly into the earth through a layer of permafrost and a thermally insulating layer-disposed about the conduit at least adjacent to the uppermost portion of the permafrost, a housing defining an inner chamber disposed generally about the thermally insulating layer and vapor condensing means in opera tive association with the housing, and disposed generally adjacent the uppermost portion thereof.
Further features and advantages of the present invention will become more apparent from the following specification taken in connection with the drawing herein.
FIG. 1 is a partly in section schematic representation of a well in accordance with the present invention.
FIG. 2 depicts an alternate condensing means suitable for use with the present invention.
FIG. 3 depicts an alternate embodiment of a chamber suited for use in the present'invention.
FIG. 4 depicts an alternate liquid distributing means.
In FIG. 1 there is schematically shown a partly in section view of a well in accordance with the present invention generally designated by the reference numeral 10. The well 10 comprises a casing or conduit 11. Conduit 11 has an upper end 12 and a lower end 13a. Conduit 11 comprising a first or outer conduit 13, the second or inner conduit 14.
A generally annular insulating layer 16 surrounds the casing 11. Beneficially, the insulating layer 16 is a low thermal conductivity cement such as an air entrained cement. Advantageously adjacent the surface where installation pressures are low, synthetic resinous foams may be employed as the insulating layer. The insulating layer 16 extends generally from a location adjacent the first end 12 of the casing 11 downwardly toward the second end 13 of conduit 11 to a desired depth into or beyond permafrost'18a. The insulation 16 is generally coaxial with conduit 11. A housing 18 having a generally annular configuration is disposed about the insulating layer 16. The housing 18 comprises a first or inner wall 19 and a second or outer wall 20. The walls 19 and 20 are spaced apart to form an elongated generally annular chamber 22 which is generally coextensive with the housing 18. Affixed to the inner wall 19 of the housing 20 and extending outwardly therefrom into the chamber 22 are a plurality of liquid retaining means or troughs 24. Each of the troughs 24 defines a generally upwardly facing annular recess 26 adapted to receive and maintain a liquid. The walls 19 and 20 are joined in sealing relationship to an upper end 27 of the housing 1.8 and at a lower end 28 of the housing 18. i
A low boiling liquid 31 is disposed at the lower end 28 of the housing 18 within the chamber 22. Portions of the liquid 31 are also disposed within the annular recess 26 of the trays or retaining means 24. A liquid vapor condensing means 35 is in operative communication with the upper end 27 of the housing 18 and adapted to receive vapors of the liquid therefrom by means of a conduit 37. A seal and pressure regulating means 38 is in operative communication with the chamber 22 via the conduit 37. Also in communication with the chamber 22 is a liquid return line or conduit 41 adapted to return liquid from the condensing means 35 and discharge it against the inner wall 19 of the housing 18. The housing 18 is surrounded and sealed at the lower end 28 by a cementitious or insulating layer 43. Adjacent the upper end 12 of conduit 11 and external to the insulating layer 43 is a refrigerated casing 45 which beneficially is employed to initially stabilize the permafrost for the initial installation of the well. A cementitious layer 46 surrounds the casing 45 and beneficially is of similar composition to layer 43.
In operation of the well in accordance with the present invention a suitable volatile liquid such as the liquid 31 is added to the chamber 22 and the pressure regulating means 38 which is depicted as ahydraulic leg is adjusted to provide a pressure such that the boiling point of the liquid is from about 14 to 30 F.
Suitable liquids for use in the present invention are materials such as dichlorodifluoromethane, sulfur dioxide, ethylchloride, trichlorofluoromethane, a 1:1 mixture of methyl bromide and methylchloride. Beneficially by employing such liquids the pressure within the chamber 22 can be maintained from about 5-25 pounds per square inch absolute and conventional sulation l6.does not transmit a large amount of heat relative to the heat available from the conduit 11. The temperature of the inner wall 19 of the housing 18 is raised to the boiling point of the liquid 31. As the liquid 31 boils in the bottom 28 of the housing and in the annular retaining means 24, heat is absorbed from the wall 19 and insulation 16, and the vapor passed upwardly through the conduit 37 to the condensing means 35 where heat is removed and the resulting liquid passed through conduit 41 and to the inner wall 19 of the housing 18. Liquid flowing downwardly over the wall 19 enters and fills the liquid retaining means 24 whereupon the liquid overflows and fills the next lower' retaining means and eventually replenishes the liquid in the bottom 28 of the housing 18. As the boiling point of the liquid is maintained below the freezing point of the permafrost, heat is drawn from the permafrost through the insulating layer 43, and the permafrost maintained or even increased depending upon the desired operating conditions. The condensing means 35, conveniently for winter season operations, is an air cooled condenser wherein the ambient air at sub-freezing temperatures beneficially serves to remove heat from the vaporized liquid. When ambient air temperatures such as in the summer season are above the condensing temperature of the liquid beneficially mechanical refrigeration is employed to remove heat from the condenser. Thus throughout the annual ambient temperature cycle adequate condensation of the low boiling liquid is maintained.
In FIG. 2 there is depicted an alternate embodiment of the invention generally designated by the reference numeral 50. The embodiment 50 has a conduit 51 surrounded by an annular jacket 52 of generally similar construction to the housing 18 of FIG. 1. A conduit 53 is in operative communication with the chamber 18 and provides a liquid condensing means. The conduit 53 is enclosed within a liquid retaining chamber 54.
The chamber 54 is in turn enclosed within a thermally In FIG. 3 there is depicted an alternate embodimentof the invention generally designatedby the reference numeral 60'. The embodiment 60 shows a sectional view of an outer wall 61 of a housing such as the housing 18 of FIG. 1. The wall 61 has an inner curved surface 62. A trough 63 is helically disposed on the wall 62. The wall 62 and the trough 63 define a liquid flow channel 64, which helically descends from the upper portion of the housing 60 to the lower portion thereof. The trough 63 has a plurality of liquid retaining means 65. The liquid retaining means 65 are cup-like depres sions' formed in the lowermost portion of the trough 63.
Conveniently, such retaining means may have almost any desired configuration, for example, transverse serrations in the floor of the trough 63 or they may be formed by periodically reducing the downward pitch of the spiral of the trough to provide the small regions of reversed pitch.
In FIG. 4 there is depicted. an alternate liquid return means generally designated bythe reference numeral 70. The return means 70 is disposed within a chamber such as the chamber 22. The liquid distributing means 70 comprises a conduit 71 having upper, and vent end 72 and a lower or discharge end 73. A pump or liquid forwarding means 74 is disposed within the line 71 adjacent the vent end 72. A plurality of regulated discharge means 75 is disposed at the discharge locations between the pump 74 and the discharge end 73. Beneficially the discharge means 75 are each individually controlled with a valve or flow restricting means 76. The embodiment of FIG. 4 is employed with particular advantage in relatively deep wells where substantial quantities of heat must be removed, and it is desired to maintain the temperature of the chamber such as the chamber 22 of FIG. 1 at a minimum, and substantial danger of liquid entrainment by the upwardly'moving vapor exists. The liquid distributing means of FIG. 4 permits the low boiling liquid to be discharged at desired locations within the chamber without the danger permafrost conditions, many hundreds of feet and are satisfactory for establishing permafrost in areas wherein the soil is poorly consolidated.
As is apparent from the foregoing specification, the present invention is susceptible of being embodied with various alterations and modifications which may differ particularly from those that have been described in the preceding specification and description. For this reason, it is to be fully understood that all of the foregoing is intended to be merely illustrative and is not to be construed or interpreted as being restrictive or otherwise limiting of the present invention.
What is claimed is:
1..A well structure, the well structure comprising a bore having a conduit extending downwardly into the earth through a layer of permafrost,
a thermally insulated layer disposed about the tubing at least adjacent to the uppermost portion of the I permafrost,
a housing defining an inner chamber disposed generwith the housing and disposed generally adjacent.
the uppermost portion thereof.
2. The well structure of claim 1 wherein the inner chamber has an elongate annular configuration.
3. The well structure of claim 1 wherein the liquid retaining means comprises a plurality of generally annular upwardly facing troughs.
4. The well structure of claim 1 wherein the vapor condensing means is an ambient air cooled condenser.
5. The well structure of claim 1 wherein the vapor 6. The well structure of claim 1 including a liquid distributing means disposed within the inner chamber, the liquid distributing means having a plurality of outlets of spaced apart relationship which are capable of discondensing means is an ambient air cooled condenser 5 charging liquid at varied heights within the chamber.
in conjunction with mechanical refrigeration.
Claims (6)
1. A well structure, the well structure comprising a bore having a conduit extending downwardly into the earth through a layer of permafrost, a thermally insulated layer disposed about the tubing at least adjacent to the uppermost portion of the permafrost, a housing defining an inner chamber disposed generally about the thermally insulated layer, the housing having liquid retaining means disposed in spaced apart relationship within the inner chamber, a vapor condensing means in operative association with the housing and disposed generally adjacent the uppermost portion thereof.
2. The well structure of claim 1 wherein the inner chamber has an elongate annular configuration.
3. The well structure of claim 1 wherein the liquid retaining means comprises a plurality of generally annular upwardly facing troughs.
4. The well structure of claim 1 wherein the vapor condensing means is an ambient air cooled condenser.
5. The well structure of claim 1 wherein the vapor condensing means is an ambient air cooled condenser in conjunction with mechanical refrigeration.
6. The well structure of claim 1 including a liquid distributing means disposed within the inner chamber, the liquid distributing means having a plurality of outlets of spaced apart relationship which are capable of discharging liquid at varied heights within the chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00332924A US3815674A (en) | 1971-12-20 | 1973-02-16 | Well structure and method for protecting permafrost |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US21003771A | 1971-12-20 | 1971-12-20 | |
US00332924A US3815674A (en) | 1971-12-20 | 1973-02-16 | Well structure and method for protecting permafrost |
Publications (1)
Publication Number | Publication Date |
---|---|
US3815674A true US3815674A (en) | 1974-06-11 |
Family
ID=26904747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00332924A Expired - Lifetime US3815674A (en) | 1971-12-20 | 1973-02-16 | Well structure and method for protecting permafrost |
Country Status (1)
Country | Link |
---|---|
US (1) | US3815674A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4215551A (en) * | 1978-10-12 | 1980-08-05 | Johnes John W | Environmentally assisted heating and cooling system |
WO2005097878A1 (en) | 2004-03-26 | 2005-10-20 | Natureworks Llc | Extruded polylactide foams blown with carbon dioxide |
US20050239975A1 (en) * | 2002-05-30 | 2005-10-27 | Joseph Gan | Halogen free ignition resistant thermoplastic resin compositions |
US20060106135A1 (en) * | 2003-02-06 | 2006-05-18 | Joseph Gan | Halogen free ignition resistant thermoplastic resin compositions |
US20070221890A1 (en) * | 2004-05-28 | 2007-09-27 | Joseph Gan | Phosphorus Containing Compounds Useful for Making Halogen-Free, Ignition-Resistant Polymer |
US20110146967A1 (en) * | 2009-12-23 | 2011-06-23 | Halliburton Energy Services, Inc. | Downhole well tool and cooler therefor |
WO2012044483A1 (en) | 2010-09-30 | 2012-04-05 | Dow Global Technologies Llc | Process for recovering brominated styrene-butadiene copolymers from a bromination reaction solution |
WO2012082332A1 (en) | 2010-12-17 | 2012-06-21 | Dow Global Technologies Llc | Polystyrene melt extrusion process |
WO2013000861A2 (en) | 2011-06-29 | 2013-01-03 | Dow Global Technologies Llc | Method for making organic foam composites containing aerogel particles |
EP2724843A1 (en) | 2012-10-24 | 2014-04-30 | Jackon Insulation GmbH | Manufacture of thick XPS foam panels by means of welding |
EP3330060A1 (en) | 2016-11-30 | 2018-06-06 | Jackon Insulation GmbH | Preparation of xps foam panels with large width and/or length by welding |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3662832A (en) * | 1970-04-30 | 1972-05-16 | Atlantic Richfield Co | Insulating a wellbore in permafrost |
-
1973
- 1973-02-16 US US00332924A patent/US3815674A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3662832A (en) * | 1970-04-30 | 1972-05-16 | Atlantic Richfield Co | Insulating a wellbore in permafrost |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4215551A (en) * | 1978-10-12 | 1980-08-05 | Johnes John W | Environmentally assisted heating and cooling system |
US20050239975A1 (en) * | 2002-05-30 | 2005-10-27 | Joseph Gan | Halogen free ignition resistant thermoplastic resin compositions |
US20060106135A1 (en) * | 2003-02-06 | 2006-05-18 | Joseph Gan | Halogen free ignition resistant thermoplastic resin compositions |
WO2005097878A1 (en) | 2004-03-26 | 2005-10-20 | Natureworks Llc | Extruded polylactide foams blown with carbon dioxide |
US8202948B2 (en) | 2004-05-28 | 2012-06-19 | Dow Global Technologies Llc | Phosphorus-containing compounds useful for making halogen-free ignition-resistant polymers |
US8440771B2 (en) | 2004-05-28 | 2013-05-14 | Dow Global Technologies Llc | Phosphorus-containing compounds useful for making halogen-free, ignition-resistant polymers |
US20110054078A1 (en) * | 2004-05-28 | 2011-03-03 | Dow Global Technologies Inc. | Phosphorus-containing compounds useful for making halogen-free, ignition-resistant polymers |
US20110054079A1 (en) * | 2004-05-28 | 2011-03-03 | Dow Global Technologies Inc. | Phosphorus-containing compounds useful for making halogen-free, ignition-resistant polymers |
US8586699B2 (en) | 2004-05-28 | 2013-11-19 | Dow Global Technologies Llc | Phosphorus-containing compounds useful for making halogen-free, ignition-resistant polymers |
US8124716B2 (en) | 2004-05-28 | 2012-02-28 | Dow Global Technologies Llc | Reacting compound having H-P=O, P-H or P-OH group with functional group-containing organic compound |
US8143357B2 (en) | 2004-05-28 | 2012-03-27 | Dow Global Technologies Llc | Phosphorus-containing compounds useful for making halogen-free, ignition-resistant polymers |
US8541516B2 (en) | 2004-05-28 | 2013-09-24 | Dow Global Technologies Llc | Phosphorus-containing compounds useful for making halogen-free, ignition-resistant polymers |
US20070221890A1 (en) * | 2004-05-28 | 2007-09-27 | Joseph Gan | Phosphorus Containing Compounds Useful for Making Halogen-Free, Ignition-Resistant Polymer |
US20110054077A1 (en) * | 2004-05-28 | 2011-03-03 | Dow Global Technologies Inc. | Phosphorus-containing compounds useful for making halogen-free, ignition-resistant polymers |
US8436108B2 (en) | 2004-05-28 | 2013-05-07 | Dow Global Technologies Llc | Phosphorus-containing compounds useful for making halogen-free, ignition-resistant polymers |
US8372916B2 (en) | 2004-05-28 | 2013-02-12 | Dow Global Technologies Llc | Phosphorus-containing compounds useful for making halogen-free, ignition-resistant polymers |
US20110146967A1 (en) * | 2009-12-23 | 2011-06-23 | Halliburton Energy Services, Inc. | Downhole well tool and cooler therefor |
US9732605B2 (en) * | 2009-12-23 | 2017-08-15 | Halliburton Energy Services, Inc. | Downhole well tool and cooler therefor |
WO2012044483A1 (en) | 2010-09-30 | 2012-04-05 | Dow Global Technologies Llc | Process for recovering brominated styrene-butadiene copolymers from a bromination reaction solution |
WO2012082332A1 (en) | 2010-12-17 | 2012-06-21 | Dow Global Technologies Llc | Polystyrene melt extrusion process |
WO2013000861A2 (en) | 2011-06-29 | 2013-01-03 | Dow Global Technologies Llc | Method for making organic foam composites containing aerogel particles |
EP2724843A1 (en) | 2012-10-24 | 2014-04-30 | Jackon Insulation GmbH | Manufacture of thick XPS foam panels by means of welding |
EP2724843B1 (en) | 2012-10-24 | 2017-05-03 | Jackon Insulation GmbH | Manufacture of thick XPS foam panels by means of welding |
EP3330060A1 (en) | 2016-11-30 | 2018-06-06 | Jackon Insulation GmbH | Preparation of xps foam panels with large width and/or length by welding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3815674A (en) | Well structure and method for protecting permafrost | |
US3613792A (en) | Oil well and method for production of oil through permafrost zone | |
US2461449A (en) | Heat pump using deep well for a heat source | |
US3788389A (en) | Permafrost structural support with heat pipe stabilization | |
US3472314A (en) | Temperature control tube | |
US3648767A (en) | Temperature control tube | |
AU2019417822B2 (en) | Ladder-structural gravity-assisted-heat-pipe geothermal energy recovery system without liquid-accumulation effect | |
US4798239A (en) | Device for the protection against freezing of installations for the storage or the supply of a freezing liquid, in particular water | |
US3766985A (en) | Production of oil from well cased in permafrost | |
US20150013370A1 (en) | Ground Loops and Insulation for Direct Exchange Geothermal Systems | |
US2554661A (en) | Apparatus for exchanging heat with subterranean regions | |
US3840068A (en) | Permafrost structural support with heat pipe stabilization | |
CA1150623A (en) | Method and apparatus for thermally insulating well | |
CA2087675C (en) | Thermosyphon with evaporator having rising and falling sections | |
US2181953A (en) | Cooling system | |
US3935900A (en) | Permafrost structural support with integral heat pipe means | |
US3880236A (en) | Method and apparatus for transporting hot fluids through a well traversing a permafrost zone | |
US3771590A (en) | Well structure and method for protecting permafrost | |
US3248307A (en) | Distillation of sea water | |
US4397612A (en) | Gas lift utilizing a liquefiable gas introduced into a well | |
US3062289A (en) | Oil well heater | |
US5238053A (en) | Method of and system for warming road surface | |
US3438442A (en) | Low-temperature packer | |
US3685583A (en) | Permafrost insulation | |
US4715439A (en) | Well cap |