US3811878A - Production of powder metallurgical parts by preform and forge process utilizing sucrose as a binder - Google Patents
Production of powder metallurgical parts by preform and forge process utilizing sucrose as a binder Download PDFInfo
- Publication number
- US3811878A US3811878A US00312461A US31246172A US3811878A US 3811878 A US3811878 A US 3811878A US 00312461 A US00312461 A US 00312461A US 31246172 A US31246172 A US 31246172A US 3811878 A US3811878 A US 3811878A
- Authority
- US
- United States
- Prior art keywords
- preform
- sucrose
- powder
- mold
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000005720 sucrose Substances 0.000 title claims abstract description 33
- 229930006000 Sucrose Natural products 0.000 title claims abstract description 29
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 title claims abstract description 29
- 239000000843 powder Substances 0.000 title claims description 63
- 238000000034 method Methods 0.000 title claims description 52
- 230000008569 process Effects 0.000 title description 27
- 238000004519 manufacturing process Methods 0.000 title description 17
- 239000011230 binding agent Substances 0.000 title description 11
- 239000000203 mixture Substances 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 239000002923 metal particle Substances 0.000 claims abstract description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- 229910052799 carbon Inorganic materials 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 6
- 239000010953 base metal Substances 0.000 claims description 2
- 238000005245 sintering Methods 0.000 abstract description 10
- 238000005242 forging Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 4
- 239000002184 metal Substances 0.000 description 34
- 229910052751 metal Inorganic materials 0.000 description 34
- 238000012360 testing method Methods 0.000 description 16
- 238000005255 carburizing Methods 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000009692 water atomization Methods 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 1
- 101100264195 Caenorhabditis elegans app-1 gene Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009689 gas atomisation Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001592 potato starch Polymers 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/10—Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
Definitions
- ABSTRACT Metal particles are intimately mixed with a sufficient amount of sucrose to effect the desired degree of deoxidation and/or carburization.
- the mixture is poured into a mold and is then processed by (a) baking at low temperature to form a green compact with sufficient handling strength for further sintering and/or hot working or (b) heating to above sintering temperature to form a stronger compact similarly useful for hot forging.
- This invention is related to the production of powder metal preforms and is particularly related to a process in which such preforms may be made from economical, as-atomized metal powders.
- metal powders partate metals
- these methods include, for example, electrolytic processes, ore reduction processes and gas and water atomization processes.
- electrolytic processes ore reduction processes
- gas and water atomization processes The latter process has recently come to the forefront, especially in the production of ferrous metal powders, since the process is generally more economical and produces particles of a shape and density which provice a powder compact with enhanced physical properties.
- US. Pat. No. 3,325,277 is illustrative of a water atomization process which is being commercially employed.
- the asatomized powder In order to produce a powder useful for further compacting, the asatomized powder must first be annealed in a reducing atmosphere to soften the powders and reduce the oxide surface thereof.
- these powders are then compacted under pressure and then heated to elevated temperature to form the desired powder metal part or, in a more recent development, are similarly compacted under pressure and then heated to elevated temperature to produce a preform, which is then employed for production of the final part.
- Another object of this invention is to eliminate the limitations imposed by practically sized compacting presses, in the production of powder metal preforms.
- Still another object of this invention is to provide a process which enables the use of relatively inexpensive and expendable molds in the production of powder metal preforms.
- FIG. 2 which is a flow diagram of the basic embodiments of this invention for the production of powder metal preforms.
- sucrose which serves to (a) reduce the oxidized surface of the powder, (b) act as a carburizing agent to achieve the desired carbon content in the powder metal preform, and in a further embodiment, (c) act as a binder when heated to low temperatures, serving to provide a green preform which may be handled and transported for further processing.
- the preform is produced by admixing the annealed and ground powders with a lubricant, and then compacting under high pressures, generally in excess of 30 tons per square inch. Utilizing such a procedure, it is necessary that fully processed (annealed and ground) powder exhibiting a considerable degree of irregularity of particle shape be employed to insure adequate strength for handling after pressing.
- the resulting green preform is then sintered under a protecting atmosphere at temperatures of about 2,000 F. In some commercial procedures the pressing and sintering are accomplished simultaneously. This procedure has not received significant commercial utilization, because of the severe limitations imposed by the necessity of providing die materials which exhibit very high strength at rather elevated.
- the blended mixture of powder metal and sucrose is poured into a ceramic or metal mold, preferably vibrated to a bulk density substantially in excess of apparent density, and then heated at 1,2002,400 F in a protective atmosphere to effect annealing and sintering in one step.
- sintering is directed to the joining together of metal particles/by the application of heat in the absence of substantial ex- I ternal pressures, i.e. pressures in excess of l tsi.
- the carbon reducible oxides e.g.
- the' as-atomized metal powder-sucrose mixture is poured into a mold and baked at a temperature (generally 350500 F) sufficient to soften the sucrose and thereby form a cohesive green preform.
- a temperature generally 350500 F
- the relatively low-temperatures which may be employed in this baking procedure, allows the use of a variety of inexpensive, expendable mold materials such as various plastics or rubbers or even paper; the only requirement being that the mold material be capable of withstanding the rather low baking temperature. Therefore, while ceramic or metal molds may be utilized. the full economic benefits of this embodiment will be realized by utilizing such inexpensive, expendable molds. Ceramic molds present a further problem in that it is often difficult to remove the preform without the necessity of special precautions being taken.
- the cohesive baked preform After the cohesive baked preform is discharged from the mold, it may be processed by either of two alternative routes, dependent primarily on equipment availability and the size of the preform.
- the preform In the first of these routes, the preform is heated in a protective atmosphere and forged in a manner similar to the conventional preform and forge process.
- the baked preform In the second route, the baked preform is sintered (heating for at least minutes at temperature, preferably l,800-2,200 F) in a protective atmosphere and then forged directly, making use of the sensible heat of sintering; or cooled and then reheated for forging at a later time.
- the metal powder-binder combinations were blended and poured into the preform mold, which was mechanically vibrated to achieve a bulk density substantially in excess of apparent density.
- the metal powder-sucrose mixture be essentially dry, i.e. less than 0.5
- source powders may be divided into two categories: (a) relatively pure metal powders with carbon reducible oxygen contents below about 200 ppm (e.g., inert gas atomized powder, electrolytic powders, rotating electrode powders) and (b) metal powders or particles with carbon reducible oxygen contents sub stantially in excess of 200 ppm (e.g., as-atomized pow- TABLE 1 Weight Baking conditions of binder Binder type (percent) Temp. (F) Time (min.) Results Dextrose 2.5 400 Stuck to mold. no strength, could not be handled.
- relatively pure metal powders with carbon reducible oxygen contents below about 200 ppm e.g., inert gas atomized powder, electrolytic powders, rotating electrode powders
- metal powders or particles with carbon reducible oxygen contents sub stantially in excess of 200 ppm e.g., as-atomized pow- TABLE 1 Weight Baking conditions of binder Binder type (percent) Temp. (F) Time (min.) Results
- the carbon would then be removed as a result of heating in a controlled atmosphere during sintering and/or prior to forging.
- the amount of sucrose added in such a case will be insufficient to act as an effective binder in the production of a baked preform, i.e. route II, and only the sinter preform embodiment would be applicable.
- the required amount of sucrose will be sufficient to permit the utilization of both embodiments of this invention.
- the instant procedures are of particularly notable advantage when employing metal particles of category (b), i.e. those with carbon reducible oxygen contents substantially in excess of 200 ppm. If the latter type particles crose, when employed in a relatively pure state, preferably less than 2 peicent ash content, exhibits an exceedingly high and uniform reactivity, approaching that of the better natural graphites.
- the ferrous metal powder-sucrose combination is intimately mixed, i.e., by blending, to achieve a uniform distribution; poured into the mold; vibrated to increase density and then baked at temperatures in excess of about 350 F, to glue the particles together and achieve sufficient green strength for further processing.
- At least about 1.5 wt. percent sucrose is required to achieve a baked preform with sufficient handling strength.
- 'water atomized ferrous powders (with carbon reducible oxygen contents of 1,000 to 20,000 ppm) require the addition. of from about 2 to 10 percent sucrose.
- the baking is generally accomplished in air; in which case temperatures in excess of about 500 F are undesirable due to excessive carbon oxidation. Obviously, no such temperature limitation is imposed, if the baking is accomplished in a non-oxidizing atmosphere.
- the baked preform was removed from the mold and sintered in a hydrogen atmosphere at 2,050 F for 30 minutes.
- the baked and sintered preform was cooled and shipped to another facility for further processing, which comprised heating the preform inductively (in an atmosphere of 5 percent H percent N to various temperatures within the range of 1,200 to l,700 F.
- the heated preforrns were then immediately forged at about 60 tons/in and then air cooled.
- the resultant mechanical properties of the so forged test bars are shown in Table III. Noteworthy, is the relatively high ductility and good notch toughness achieved, especially in view of the significant costreductions realized using the instant process.
- the differential gears were then further evaluated in the drift-pin test.
- Test bars were stress-relieved for one hour at I000F before testing. 2 Test bars were austenitized for one hour at I600F, oil-quenched and then tempered for one hour at 800F.
- heating the filled mold to a temperature of at least about 350 F, but substantially below that at which said metal particles will sinter, said heating being conducted for a time at least sufficient to soften said sucrose to form a baked preform with sufficient strength for handling and further processing.
- metal particles are ferrous base metal powders with a carbon reducible oxygen content substantially in excess of 200 ppm and said sucrose is present in an amount sufficient to reduce said oxygen and increase the carbon content by a value greater than 0.2 percent, during the carburization of said ferrous particles.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Powder Metallurgy (AREA)
Abstract
Metal particles are intimately mixed with a sufficient amount of sucrose to effect the desired degree of deoxidation and/or carburization. The mixture is poured into a mold and is then processed by (a) baking at low temperature to form a green compact with sufficient handling strength for further sintering and/or hot working or (b) heating to above sintering temperature to form a stronger compact similarly useful for hot forging.
Description
United States Patent [191 Chao et al.
[ May 21, 1974 1 PRODUCTION OF POWDER METALLURGICAL PARTS BY PREFORM AND FORGE PROCESS UTILIZING SUCROSE AS A BINDER [75] Inventors: Hung-Chi Chao, Monroeville;
Robert R. Judd, Murrysville; Roger L. Rueckl, Murrysville; Charles K. Russell, Murrysville, all of Pa.
[73] Assignee: United States Steel Corporation, Pittsburgh, Pa.
221 Filed: Dec. 6, 1972 211 App1.No.:312,461
[52] U.S. Cl ..75/21l, 75/200, 75/20l,75/203, 75/204, 75/226, 264/111, 156/336 [51 1 Int. Cl. B22f 1/00, B22f 3/00 [58] Field of Search 264/111; 75/200, 201, 203, 75/204, 211, 226; 156/336 [56] References Cited UNITED STATES PATENTS 2.158.845 5/1939 Ayer 156/336 2,176,302 10/1939 Romp 75/204 2,509,838 5/1950 Oswald 2,279,003 4/1942 Matush 3,006,859 10/1961 Allemann et a1. 252/30l.l
FOREIGN PATENTS OR APPLICATIONS 951,681 3/1964 Great Britain 264/63 Primary ExaminerLe1and A. Sebastian Assistant Examiner-B. H. Hunt Attorney, Agent, or FirmArthur J. Greif [5 7] ABSTRACT Metal particles are intimately mixed with a sufficient amount of sucrose to effect the desired degree of deoxidation and/or carburization. The mixture is poured into a mold and is then processed by (a) baking at low temperature to form a green compact with sufficient handling strength for further sintering and/or hot working or (b) heating to above sintering temperature to form a stronger compact similarly useful for hot forging.
7 Claims, 2 Drawing Figures L OOSE- PACK PROCESS AS- ATOM/ZED POWDER INT/MATELY MIX WITH .SUCROSE POUR MIXTURE IN TO MOL D FORM PREFORM BY SINTER/NG IN PROTECT] VE ATMOSPHERE FORM PREFORM DY BAKING INA/R PATENTEUHAY 2 1 197-1 38 1 1.878
saw 1 0r 2 CONVENTIONAL PROCESS AS- A TOM/ZED POWDER ANNEAL IN REDUCING ATMOSPHERE WITH CONCURRENT PRODUCTION OF CAKE GRIND CAKE TO ACHIEVE METAL POWDER M/X WITH DIE LUBRICANT FORM PREFORM UNDER HGIH PRESSURE .SINTER IN PROTECTIVE ATMOSPHERE FORGE .SINTERED COOL T0 PRE'FORM //v ROOM TEMP. CLOSED 0/5 REHEAT FOR FORGING' FORGE l/V CLOSED 0/5 FIG. I.
ATENTEDMAY 2 1 m4 SHEET 2 UF 2 LOOSE- PACK PROCESS AS- ATOM/ZED POWDER //V T/MATELY M/X WITH SUOROSE POUR MIXTURE INTO MOLD FORM PREFORM BY S/NTERl/VO IN PROTECTIVE ATMOSPHERE FORM PREFORM BY BAKING INA/R AT 350-500F.
FORGE .Sl/VTEREO PREFORM IN CLOSED O/E COOL r0 HEAT FOR HEAT r0 .SINTER ROOM TEMP. FORE/N6 a 70 ROOM 7544p.
05/1541 FOR 50005 nv 55/1547 FOR FORG/NG 040550 p FORG/NG 50005 IN FORGE nv. CLOSED 0/5 01.0550 0/5 PRODUCTION OF POWDER METALLURGICAL PARTS BY PREFORM AND FORGE PROCESS UTILIZING SUCROSE AS A BINDER This invention is related to the production of powder metal preforms and is particularly related to a process in which such preforms may be made from economical, as-atomized metal powders.
There are a number of different methods by which metal powders (particulate metals) useful in the production of powder metal compacts, have been produced. These methods include, for example, electrolytic processes, ore reduction processes and gas and water atomization processes. The latter process has recently come to the forefront, especially in the production of ferrous metal powders, since the process is generally more economical and produces particles of a shape and density which provice a powder compact with enhanced physical properties. US. Pat. No. 3,325,277 is illustrative of a water atomization process which is being commercially employed. In order to produce a powder useful for further compacting, the asatomized powder must first be annealed in a reducing atmosphere to soften the powders and reduce the oxide surface thereof. As a result of this annealing procedure, the particles tend to agglomerate and form a cake-like structure, thereby necessitating an additional grinding stage to break-up the cake and finally achieve the desired particle shape and size distributions required for further compacting. In the conventional processes, these powders are then compacted under pressure and then heated to elevated temperature to form the desired powder metal part or, in a more recent development, are similarly compacted under pressure and then heated to elevated temperature to produce a preform, which is then employed for production of the final part.
It is therefore an object of this invention to provide a process by which high quality powder metal preforms can be produced from economical particulate metals such as as-atomized metal powders.
Another object of this invention is to eliminate the limitations imposed by practically sized compacting presses, in the production of powder metal preforms.
Still another object of this invention is to provide a process which enables the use of relatively inexpensive and expendable molds in the production of powder metal preforms.
These and other objects and advantages of the invention will be more apparent from the following description and appended claims when taken in conjunction with:
FlG. I which is a flow diagram of the conventional process for the production of powder metal preforms, and
FIG. 2 which is a flow diagram of the basic embodiments of this invention for the production of powder metal preforms.
It has now been found that as-atomized powder can be directly employed, if the powder is initially admixed with sucrose, which serves to (a) reduce the oxidized surface of the powder, (b) act as a carburizing agent to achieve the desired carbon content in the powder metal preform, and in a further embodiment, (c) act as a binder when heated to low temperatures, serving to provide a green preform which may be handled and transported for further processing. It may be seen in comparing FIGS. 1 and 2, that utilization of sucrose in combination with the outlined procedures permits the elimination of both the annealing and grinding steps of the conventional process. Additionally, a number of further benefits are achieved by following the procedures of this invention. Referring to FIG. 1, it may be seen that in the conventional process, the preform is produced by admixing the annealed and ground powders with a lubricant, and then compacting under high pressures, generally in excess of 30 tons per square inch. Utilizing such a procedure, it is necessary that fully processed (annealed and ground) powder exhibiting a considerable degree of irregularity of particle shape be employed to insure adequate strength for handling after pressing. The resulting green preform is then sintered under a protecting atmosphere at temperatures of about 2,000 F. In some commercial procedures the pressing and sintering are accomplished simultaneously. This procedure has not received significant commercial utilization, because of the severe limitations imposed by the necessity of providing die materials which exhibit very high strength at rather elevated.
temperatures.
In contrast with these conventional procedures (i.e., embodiment (I) of the instant invention) the blended mixture of powder metal and sucrose is poured into a ceramic or metal mold, preferably vibrated to a bulk density substantially in excess of apparent density, and then heated at 1,2002,400 F in a protective atmosphere to effect annealing and sintering in one step. For purposes of this invention, the term sintering is directed to the joining together of metal particles/by the application of heat in the absence of substantial ex- I ternal pressures, i.e. pressures in excess of l tsi. In view of this sinteringof the as-atomized powder in combination with sucrose, the carbon reducible oxides (e.g. various forms of iron oxide as well as the oxides of nickel, copper, molybdenum, etc.) of the powder are reduced and the metal powders softened in a manner analagous to that achieved in the annealing step of the conventional process. Since this sintering produces a preform with good green strength, the grinding and pressure compaction procedures of the conventional process are clearly unnecessary. Thus, additional economies are realized through the elimination of the rather expensive high-pressure press. Of equal importance, the attendant size limitations of the preforms made by conventional process are eliminated. In the conventional process, the pressed preforms are limited (at least in a practical sense), by the size of available presses, to the production of relatively small preforms, generally less than 10 pounds. In contrast, significantly larger preforms, ranging up to several hundred pounds, may be sintered by the instant process and then forged to the desired part. Finally, the lower density of the sintered only preform, permits better metal flow during forging, resulting in both significant reductions of the energy required for forging and in better die filling characteristics.
In the second embodiment (II) of this invention, the' as-atomized metal powder-sucrose mixture is poured into a mold and baked at a temperature (generally 350500 F) sufficient to soften the sucrose and thereby form a cohesive green preform. The relatively low-temperatures which may be employed in this baking procedure, allows the use of a variety of inexpensive, expendable mold materials such as various plastics or rubbers or even paper; the only requirement being that the mold material be capable of withstanding the rather low baking temperature. Therefore, while ceramic or metal molds may be utilized. the full economic benefits of this embodiment will be realized by utilizing such inexpensive, expendable molds. Ceramic molds present a further problem in that it is often difficult to remove the preform without the necessity of special precautions being taken. After the cohesive baked preform is discharged from the mold, it may be processed by either of two alternative routes, dependent primarily on equipment availability and the size of the preform. In the first of these routes, the preform is heated in a protective atmosphere and forged in a manner similar to the conventional preform and forge process. In the second route, the baked preform is sintered (heating for at least minutes at temperature, preferably l,800-2,200 F) in a protective atmosphere and then forged directly, making use of the sensible heat of sintering; or cooled and then reheated for forging at a later time.
In experiments leading to the instant invention, a variety of potential carburizing materials were evaluated for their effectiveness in providing a suitable binder. in the tests reported below, all the bonding agents were essentially of the same particle size, i.e., minus 200 mesh. The metal powder was all minus 6 mesh and had the following screen analysis:
Mesh Size Percent Retained 80 I8. l I00 2.0 I40 4.3 200 I 3.2 230 4.0 325 [06 pan 47.8
The metal powder-binder combinations were blended and poured into the preform mold, which was mechanically vibrated to achieve a bulk density substantially in excess of apparent density.
4 strength to be easily removed frornthe fiioldand handled.
Further tests were conducted to determine if more uniform coating of the metal particles could be achieved by use of solutions of sucrose in water. Surprisingly, no improvement in distribution was achieved. More importantly, it was determined that any substantial percentage of moisture was, in fact, detrimental. Thus, at low levels of about 1 to 5 percent moisture, the metal powder-sucrose mixture would not flow properly even when vibrated, thereby resulting in an incompletely filled mold. At higher water levels, the mixture did effectively fill the mold. However, this necessitated an extra step of preliminary drying with the attendant requirement for the taking of rather impractical precautions. Thus, drying had to be achieved at a temperature below 212 P, so that the packed powder was not disturbed by the water boiling-off. Drying therefore became a lengthy and time consuming process, primarily because of the small exposed surface area of the powders in the mold. Even with such preliminary drying, it was found that the baked preforms did not achieve the same high density as those made with essentially dry mixtures. It is therefore preferable that the metal powder-sucrose mixture be essentially dry, i.e. less than 0.5
percent moisture.
In general, the features of the instant invention are applicable to metal powders or particles from virtually any source. However, a few instances do exist in which one or the other of the two embodiments may be ruled out as inapplicable to the desired objective. For purposes of understanding the applicability of these embodiments, source powders may be divided into two categories: (a) relatively pure metal powders with carbon reducible oxygen contents below about 200 ppm (e.g., inert gas atomized powder, electrolytic powders, rotating electrode powders) and (b) metal powders or particles with carbon reducible oxygen contents sub stantially in excess of 200 ppm (e.g., as-atomized pow- TABLE 1 Weight Baking conditions of binder Binder type (percent) Temp. (F) Time (min.) Results Dextrose 2.5 400 Stuck to mold. no strength, could not be handled.
5.0 400 60 Do. 2.5 550 60 Do. 5.0 550 60 Do. 5.0 400 90 Do. 5.0 550 90 Do. Lactose 2.5 400 60 No bond. remained powder.
5.0 400 60 Slight bond, however, could not be handled. 2.5 400 90 No bond, remained powder. 5.0 400 90 Slight bond, however, could not be handled. 2.5 550 90 No bond. remained powder. 5.0 550 90 Slight bond. however. could not be handled. Maltose 2.5 400 60 No bond.
5.0 400 so Developed some bond, but softened after cooling. some sticking to mold. 2.5 400 90 Very slight bond. could not be handled. 5.0 400 90 Developed some bond, however. softened on cooling.
stuck badly to the mold. 5.0 550 90 Binder ran to bottom of mold. very severe sticking to mold. Potato starch 5.0 400 90 No bond 5.0 550 90 Do. Methyl cellulose..... 5.0 550 90 Do. 5.0 550 90 D0. Sucrose 2.5 400 60 Excellent bond. no sticking. adequate strength for all handling. 5.0 400 60 Do.
It may be seen from the above, that irrespective of der, mill scale). For purposes of this invention, carbon binder concentration and baking temperature, only sucrose provided a baked, green preform which did not stick to the mold and which exhibited sufficient reducible oxygen is meant to include those metal oxides which are capable of being reduced by carbon at temperatures below about 2,400 F. As stated hereinabove, the admixture of the metal powder with sucrose serves to reduce the oxidized surface of the powder, act as a carburizing agent and in embodiment (ll), act as a binder when baked at low temperatures. Thus, if pure metal powders of category (a) are employed, and there is no requirement for the carburization thereof, only the baked preform route, i.e., embodiment (II) would be applicable. In this instance, the carbon would then be removed as a result of heating in a controlled atmosphere during sintering and/or prior to forging. Similarly, there are instances when it is only desirable to increase the carbon content by as little as 0.04 percent. If relatively pure powders are employed (no attendant oxygen reduction), the amount of sucrose added in such a case, will be insufficient to act as an effective binder in the production of a baked preform, i.e. route II, and only the sinter preform embodiment would be applicable. However, for the production of most powder metallurgical parts, it is generally desirable to effect significantly greater increases in the carbon content of the starting powders (e.g. 0.2 percent). Thus, in many cases, even when pure iron powders are employed, the required amount of sucrose will be sufficient to permit the utilization of both embodiments of this invention.
Although applicable to pure metal particles, the instant procedures are of particularly notable advantage when employing metal particles of category (b), i.e. those with carbon reducible oxygen contents substantially in excess of 200 ppm. If the latter type particles crose, when employed in a relatively pure state, preferably less than 2 peicent ash content, exhibits an exceedingly high and uniform reactivity, approaching that of the better natural graphites.
The ferrous metal powder-sucrose combination is intimately mixed, i.e., by blending, to achieve a uniform distribution; poured into the mold; vibrated to increase density and then baked at temperatures in excess of about 350 F, to glue the particles together and achieve sufficient green strength for further processing. At least about 1.5 wt. percent sucrose is required to achieve a baked preform with sufficient handling strength. Typically, 'water atomized ferrous powders (with carbon reducible oxygen contents of 1,000 to 20,000 ppm) require the addition. of from about 2 to 10 percent sucrose. For economic reasons, the baking is generally accomplished in air; in which case temperatures in excess of about 500 F are undesirable due to excessive carbon oxidation. Obviously, no such temperature limitation is imposed, if the baking is accomplished in a non-oxidizing atmosphere.
The method above was employed for the production of a differential gear and test bars, from a modified TABLE II.COMPOSITIO N OF MODIFIED 4600 GRADE STEEL EVALUATED-PERCENT BY WEIGHT C Mn P S Si Cu Ni Cr Mo Al N Total 0 are employed it is desirable to know the oxide content (i.e. hydrogen loss) of the particles, since it is first necessary that the sucrose reduce the oxides before it can effectively combine with the iron powder. Thus, the amount of sucrose which is added is dependent on both the hydrogen loss of the particles and the desired carbon content of the final part. With a knowledge of the hydrogen loss of the particles, it would of course be possible to calculate the stoichiometric amount of sucrose required to achieve such a desired final carbon content. However, it is preferable that the required amount be determined empirically, since it has been found that the efficiency of carburization is, to a large extent, affected by the characteristics (e.g. grain size, shape) of the powders employed.
In the recarburizing of iron powders, it is already known in the art that even when sufficient amounts of carburizing agent are employed, that the mechanical properties of the final product are strongly dependent on the reactivity of the carburizing agent. Thus, lampblacks, carbon blacks and synthetic graphites exhibit poor reactivities and are generally considered unsuitable as carburizing agents for the production of powder metal parts with optimum mechanical properties. Even the natural graphites vary considerably in the reactivity they exhibit. Surprisingly, it hasbeen found that suempirically determined that 3.2 wt. percent sucrose was required for this particular powder. The blend of powder metal and sucrose were poured into a mold, vibrated to increase density and baked in air at 400 F for about 40 minutes. After cooling, the baked preform was removed from the mold and sintered in a hydrogen atmosphere at 2,050 F for 30 minutes. The baked and sintered preform was cooled and shipped to another facility for further processing, which comprised heating the preform inductively (in an atmosphere of 5 percent H percent N to various temperatures within the range of 1,200 to l,700 F. The heated preforrns were then immediately forged at about 60 tons/in and then air cooled. The resultant mechanical properties of the so forged test bars are shown in Table III. Noteworthy, is the relatively high ductility and good notch toughness achieved, especially in view of the significant costreductions realized using the instant process. The differential gears were then further evaluated in the drift-pin test. In this test, a tapered, hardened steel pin is pressed into the bore of the gear until failure occurs. If the gear sustains a load of 20,000 pounds without failure, it is considered satisfactory. Shown in Table IV are the results obtained under a variety of forging conditions. Even the gears forged at comparatively low temperature and pressure, passed the test.
TABLE lII.-ROOM-TEMPERATURE ME(HANICAL PROPERTIES OF PREFORMED AND FORGED TEST BARS MADE FROM MODIFIED 4600 GRADE STEEL Yield strength Fracture 10.2% Tensile Elongation Reduction Average Energy Lateral appearance offset) strength i l i nch of area hardness absorber? expansiom (percent C di i (ks tksi) (Percent) (percent) n) (ft-lb) (mils) shear) Test bars forged from 6-mesh powder As-forged' 86.1 94.2 21 4 89 30 39 I Heat-treated 90.4 I 09.0 I 2 26 97 32 35 I00 Test bars forged from -80-mesh powder As-forged' 79.3 91.9 27 52 92 30 32 I00 Heat-treated 89.4 I 09.0 I8 57 95 38 43 100 Cha V-notch test results with standard size specimens. A 'PX A.
' Test bars were stress-relieved for one hour at I000F before testing. 2 Test bars were austenitized for one hour at I600F, oil-quenched and then tempered for one hour at 800F.
TABLE IV.RESULTS OF DRIFFPIN TEST ON MODIFIED 4600 GRADE STEEL GEARS FORGED FROM PREFORMS MADE BY LOOSE-PACK PROCESS Increase Forging Maximum Pin Energy to in bore Gear temperature load (I000 displacement failure (I000 diameter designation (F) pounds) linches) inch-pounds) (percent) a I660 36.5 1.65 3i.2 22 b.. I660 39.8 3.00 76.2 43 0... I660 40.9 2.82 76.2 38 d... I545 45.3 2.65 72.6 36 e... 1575 2L0 l.80 23.8 24 f.... I510 33.5 I94 30.7 25 g... I565 25.6 I66 25.2 22 h... I555 22.9 1.90 28.5 25 I650 24.] 2.60 43.9 34 j I343 26.5 1.36 21.8 18
Note: All gears were forged with a 4 to I die-lubricant-water mixture except for gear j, for which an 8 to I mixture was used. The gears were stress-relieved for one hour at I000F before testing.
heating the filled mold to a temperature of at least about 350 F, but substantially below that at which said metal particles will sinter, said heating being conducted for a time at least sufficient to soften said sucrose to form a baked preform with sufficient strength for handling and further processing.
2. The method of claim 1, wherein said metal particles are ferrous base metal powders with a carbon reducible oxygen content substantially in excess of 200 ppm and said sucrose is present in an amount sufficient to reduce said oxygen and increase the carbon content by a value greater than 0.2 percent, during the carburization of said ferrous particles.
3. The method of claim 2, wherein said heating is accomplished in air at a temperature below about 500 F.
4. The method of claim 3, wherein said blended mixture is essentially dry and contains from about 2.0 to 10.0 percent sucrose.
5. The method of claim 4, wherein the particles in said mold are packed to a bulk density substantially in excess of apparent density.
6. The method of claim 5, wherein said mold is composed of an inexpensive, expendable material with sufficient refractoriness to withstand said heating temperature.
7. The method of claim 6, wherein said baked preform is cooled and removed from said expendable mold.
Claims (6)
- 2. The method of claim 1, wherein said metal particles are ferrous base metal powders with a carbon reducible oxygen content substantially in excess of 200 ppm and said sucrose is present in an amount sufficient to reduce said oxygen and increase the carbon content by a value greater than 0.2 percent, during the carburization of said ferrous particles.
- 3. The method of claim 2, wherein said heatIng is accomplished in air at a temperature below about 500* F.
- 4. The method of claim 3, wherein said blended mixture is essentially dry and contains from about 2.0 to 10.0 percent sucrose.
- 5. The method of claim 4, wherein the particles in said mold are packed to a bulk density substantially in excess of apparent density.
- 6. The method of claim 5, wherein said mold is composed of an inexpensive, expendable material with sufficient refractoriness to withstand said heating temperature.
- 7. The method of claim 6, wherein said baked preform is cooled and removed from said expendable mold.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00312461A US3811878A (en) | 1972-12-06 | 1972-12-06 | Production of powder metallurgical parts by preform and forge process utilizing sucrose as a binder |
GB5540073A GB1415015A (en) | 1972-12-06 | 1973-11-29 | Production of sintered powder metallurgical parts by preform and forge process |
AU63109/73A AU473844B2 (en) | 1972-12-06 | 1973-11-30 | Production of powder metallurgical parts by preform and forge process utilizing sucrose asa binder |
NL7316613A NL7316613A (en) | 1972-12-06 | 1973-12-04 | |
BR9488/73A BR7309488D0 (en) | 1972-12-06 | 1973-12-04 | PROCESS FOR THE PRODUCTION OF PRE-MOLDED METAL POS SINTERED OR COOKED |
CA187,435A CA996784A (en) | 1972-12-06 | 1973-12-05 | Production of powder metallurgical parts by preform and forge process |
ES421170A ES421170A1 (en) | 1972-12-06 | 1973-12-05 | Production of powder metallurgical parts by preform and forge process utilizing sucrose as a binder |
BE138613A BE808330A (en) | 1972-12-06 | 1973-12-06 | PRODUCTION OF METALLURGIC OBJECTS FROM POWDERS BY ROUGHING AND FORGING PROCESSES |
IT70593/73A IT999914B (en) | 1972-12-06 | 1973-12-06 | PROCEDURE FOR THE MANUFACTURE OF PREFORMED METALLIC POWDERS |
FR7343628A FR2209627B1 (en) | 1972-12-06 | 1973-12-06 | |
DE2360914A DE2360914C2 (en) | 1972-12-06 | 1973-12-06 | Binding, deoxidizing and carburizing agents for the manufacture of preforms from metal powders |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00312461A US3811878A (en) | 1972-12-06 | 1972-12-06 | Production of powder metallurgical parts by preform and forge process utilizing sucrose as a binder |
Publications (1)
Publication Number | Publication Date |
---|---|
US3811878A true US3811878A (en) | 1974-05-21 |
Family
ID=23211559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00312461A Expired - Lifetime US3811878A (en) | 1972-12-06 | 1972-12-06 | Production of powder metallurgical parts by preform and forge process utilizing sucrose as a binder |
Country Status (11)
Country | Link |
---|---|
US (1) | US3811878A (en) |
AU (1) | AU473844B2 (en) |
BE (1) | BE808330A (en) |
BR (1) | BR7309488D0 (en) |
CA (1) | CA996784A (en) |
DE (1) | DE2360914C2 (en) |
ES (1) | ES421170A1 (en) |
FR (1) | FR2209627B1 (en) |
GB (1) | GB1415015A (en) |
IT (1) | IT999914B (en) |
NL (1) | NL7316613A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5178713A (en) * | 1974-12-28 | 1976-07-08 | Kobe Steel Ltd | FUNMATSUYA KINKO SEIHINNO SEIZOHO |
US3989518A (en) * | 1975-05-08 | 1976-11-02 | United States Steel Corporation | Production of powder metallurgical parts by formation of sintered preforms in thermally degradable molds |
JPS5289506A (en) * | 1976-01-23 | 1977-07-27 | Komatsu Mfg Co Ltd | Method of producing sintered product from metallic powder |
JPS531611A (en) * | 1976-06-28 | 1978-01-09 | Kobe Steel Ltd | Production of forged product by powder metallurgy |
US4202689A (en) * | 1977-08-05 | 1980-05-13 | Kabushiki Kaisha Komatsu Seisakusho | Method for the production of sintered powder ferrous metal preform |
US4404166A (en) * | 1981-01-22 | 1983-09-13 | Witec Cayman Patents, Limited | Method for removing binder from a green body |
US4483820A (en) * | 1980-02-06 | 1984-11-20 | Sintermetallwerk Krebsoge Gmbh | Method of making sintered powder metallurgical bodies |
US4722826A (en) * | 1986-09-15 | 1988-02-02 | Inco Alloys International, Inc. | Production of water atomized powder metallurgy products |
US4769212A (en) * | 1985-03-29 | 1988-09-06 | Hitachi Metals, Ltd | Process for producing metallic sintered parts |
WO2001083139A1 (en) * | 2000-04-28 | 2001-11-08 | Metals Process Systems | A method for sintering a carbon steel part using a hydrocolloid binder as carbon source. |
EP1252952A2 (en) * | 2001-04-25 | 2002-10-30 | Extrude Hone Corporation | Binder Composition for powder metalliurgy |
US6537489B2 (en) * | 2000-11-09 | 2003-03-25 | Höganäs Ab | High density products and method for the preparation thereof |
US20040067152A1 (en) * | 2000-03-24 | 2004-04-08 | Wolfgang Kochanek | Method for manufacturing metal parts |
US20050066770A1 (en) * | 2003-09-27 | 2005-03-31 | Zschimmer & Schwarz Gmbh & Co. Kg Chemische Fabriken | Use of a sugar |
EP2484788A1 (en) * | 2009-09-29 | 2012-08-08 | NTN Corporation | Power-transmitting part |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8316541B2 (en) | 2007-06-29 | 2012-11-27 | Pratt & Whitney Canada Corp. | Combustor heat shield with integrated louver and method of manufacturing the same |
-
1972
- 1972-12-06 US US00312461A patent/US3811878A/en not_active Expired - Lifetime
-
1973
- 1973-11-29 GB GB5540073A patent/GB1415015A/en not_active Expired
- 1973-11-30 AU AU63109/73A patent/AU473844B2/en not_active Expired
- 1973-12-04 BR BR9488/73A patent/BR7309488D0/en unknown
- 1973-12-04 NL NL7316613A patent/NL7316613A/xx not_active Application Discontinuation
- 1973-12-05 ES ES421170A patent/ES421170A1/en not_active Expired
- 1973-12-05 CA CA187,435A patent/CA996784A/en not_active Expired
- 1973-12-06 IT IT70593/73A patent/IT999914B/en active
- 1973-12-06 DE DE2360914A patent/DE2360914C2/en not_active Expired
- 1973-12-06 FR FR7343628A patent/FR2209627B1/fr not_active Expired
- 1973-12-06 BE BE138613A patent/BE808330A/en not_active IP Right Cessation
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5178713A (en) * | 1974-12-28 | 1976-07-08 | Kobe Steel Ltd | FUNMATSUYA KINKO SEIHINNO SEIZOHO |
US3989518A (en) * | 1975-05-08 | 1976-11-02 | United States Steel Corporation | Production of powder metallurgical parts by formation of sintered preforms in thermally degradable molds |
JPS5289506A (en) * | 1976-01-23 | 1977-07-27 | Komatsu Mfg Co Ltd | Method of producing sintered product from metallic powder |
JPS531611A (en) * | 1976-06-28 | 1978-01-09 | Kobe Steel Ltd | Production of forged product by powder metallurgy |
JPS5620322B2 (en) * | 1976-06-28 | 1981-05-13 | ||
US4202689A (en) * | 1977-08-05 | 1980-05-13 | Kabushiki Kaisha Komatsu Seisakusho | Method for the production of sintered powder ferrous metal preform |
US4284431A (en) * | 1977-08-05 | 1981-08-18 | Kabushiki Kaisha Komatsu Seisakusho | Method for the production of sintered powder ferrous metal preform |
US4483820A (en) * | 1980-02-06 | 1984-11-20 | Sintermetallwerk Krebsoge Gmbh | Method of making sintered powder metallurgical bodies |
US4404166A (en) * | 1981-01-22 | 1983-09-13 | Witec Cayman Patents, Limited | Method for removing binder from a green body |
US4769212A (en) * | 1985-03-29 | 1988-09-06 | Hitachi Metals, Ltd | Process for producing metallic sintered parts |
US4722826A (en) * | 1986-09-15 | 1988-02-02 | Inco Alloys International, Inc. | Production of water atomized powder metallurgy products |
US20040067152A1 (en) * | 2000-03-24 | 2004-04-08 | Wolfgang Kochanek | Method for manufacturing metal parts |
US6939509B2 (en) * | 2000-03-24 | 2005-09-06 | Manfred Endrich | Method for manufacturing metal parts |
WO2001083139A1 (en) * | 2000-04-28 | 2001-11-08 | Metals Process Systems | A method for sintering a carbon steel part using a hydrocolloid binder as carbon source. |
US20020159910A1 (en) * | 2000-04-28 | 2002-10-31 | Christer Aslund | Method for sintering a carbon steel part using a hydrocolloid binder as carbon source |
US6967001B2 (en) | 2000-04-28 | 2005-11-22 | Metals Process Systems | Method for sintering a carbon steel part using a hydrocolloid binder as carbon source |
US6537489B2 (en) * | 2000-11-09 | 2003-03-25 | Höganäs Ab | High density products and method for the preparation thereof |
EP1252952A2 (en) * | 2001-04-25 | 2002-10-30 | Extrude Hone Corporation | Binder Composition for powder metalliurgy |
EP1252952A3 (en) * | 2001-04-25 | 2005-07-27 | Extrude Hone Corporation | Binder Composition for powder metalliurgy |
US20050066770A1 (en) * | 2003-09-27 | 2005-03-31 | Zschimmer & Schwarz Gmbh & Co. Kg Chemische Fabriken | Use of a sugar |
EP2484788A1 (en) * | 2009-09-29 | 2012-08-08 | NTN Corporation | Power-transmitting part |
EP2484788A4 (en) * | 2009-09-29 | 2014-03-19 | Ntn Toyo Bearing Co Ltd | Power-transmitting part |
Also Published As
Publication number | Publication date |
---|---|
FR2209627B1 (en) | 1978-02-24 |
DE2360914A1 (en) | 1974-06-12 |
BE808330A (en) | 1974-06-06 |
NL7316613A (en) | 1974-06-10 |
AU6310973A (en) | 1975-06-05 |
DE2360914C2 (en) | 1983-11-03 |
IT999914B (en) | 1976-03-10 |
ES421170A1 (en) | 1976-07-16 |
CA996784A (en) | 1976-09-14 |
FR2209627A1 (en) | 1974-07-05 |
BR7309488D0 (en) | 1974-09-24 |
AU473844B2 (en) | 1976-07-01 |
GB1415015A (en) | 1975-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3811878A (en) | Production of powder metallurgical parts by preform and forge process utilizing sucrose as a binder | |
US5540883A (en) | Method of producing bearings | |
US5516483A (en) | Hi-density sintered alloy | |
US4104062A (en) | Process for making aluminum modified boron carbide and products resulting therefrom | |
US5009842A (en) | Method of making high strength articles from forged powder steel alloys | |
US3864809A (en) | Process of producing by powder metallurgy techniques a ferritic hot forging of low flow stress | |
WO1994005822A1 (en) | Powder metal alloy process | |
JPH0347903A (en) | Density increase of powder aluminum and aluminum alloy | |
US20030033903A1 (en) | High density stainless steel product and method for the preparation thereof | |
US5552109A (en) | Hi-density sintered alloy and spheroidization method for pre-alloyed powders | |
EP0271238B1 (en) | Wear and corrosion resistant alloy articles | |
US3889350A (en) | Method of producing a forged article from prealloyed water-atomized ferrous alloy powder | |
US3744993A (en) | Powder metallurgy process | |
US4274875A (en) | Powder metallurgy process and product | |
US3899319A (en) | Powder mixture for the production of alloy steel with a low content of oxide inclusions | |
US4693864A (en) | Powder metallurgy process for producing steel articles | |
US4049429A (en) | Ferritic alloys of low flow stress for P/M forgings | |
EP0202886B1 (en) | Canless method for hot working gas atomized powders | |
US5561832A (en) | Method for manufacturing vanadium carbide powder added tool steel powder by milling process, and method for manufacturing parts therewith | |
US3419383A (en) | Producing pulverulent iron for powder metallurgy by multistage reduction | |
US6967001B2 (en) | Method for sintering a carbon steel part using a hydrocolloid binder as carbon source | |
GB1590953A (en) | Making articles from metallic powder | |
JPS6345306A (en) | Production of sintered member | |
CN111172417A (en) | A kind of powder metallurgy material of endogenous oxide strengthening alloy and preparation method thereof | |
US4603028A (en) | Method of manufacturing sintered components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: USX CORPORATION, A CORP. OF DE, STATELESS Free format text: MERGER;ASSIGNOR:UNITED STATES STEEL CORPORATION (MERGED INTO);REEL/FRAME:005060/0960 Effective date: 19880112 |