US3803864A - Air conditioning control system - Google Patents
Air conditioning control system Download PDFInfo
- Publication number
- US3803864A US3803864A US00269637A US26963772A US3803864A US 3803864 A US3803864 A US 3803864A US 00269637 A US00269637 A US 00269637A US 26963772 A US26963772 A US 26963772A US 3803864 A US3803864 A US 3803864A
- Authority
- US
- United States
- Prior art keywords
- evaporator
- temperature
- pressure
- compressor
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1405—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
- F25B41/31—Expansion valves
- F25B41/33—Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
- F25B41/335—Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2700/00—Sensing or detecting of parameters; Sensors therefor
- F25B2700/21—Temperatures
- F25B2700/2104—Temperatures of an indoor room or compartment
Definitions
- ABSTRACT A refrigerant control system, particularly useful for air Conditioning apparatus, including means for operating the system with a relatively high evaporator pressure during the time the temperature within the cooled space is being reduced to its desired level. While such temperature level is being reduced, a constant pressure expansion device is adjusted to maintain the control point at a lower temperature (and pressure) to effect dehumidification.
- the critical part of the system is in the compressor.
- the efficiency of the compressor is materially reduced in that the refrigerant taken in the suction side of the compressor is in a smaller quantity and less work can be performed on the refrigerant.
- Automotive applications also present a problem with respect to start-up conditions. For example, the temperature of the air in an enclosed vehicle space, if the'auto is parked in the sun with the air conditioning off, may reach as high as 160F.
- the system should be operated in such a manner as to bring this temperature down as fast as possible to avoid discomfort to the occupants.
- the evaporator pressure should be kept relatively high. This allows more refrigerant to be taken into the compressor suction and provides for efiicient use of the entire evaporator coil surface. In others words, during pull-down under normal conditions the refrigerant will completely evaporate in the first section of the evaporator coil. Beyondthis point, the temperature of the refrigerant vapor rises (is superheated) and then passes to the compressor suction port. With an adequately sized evaporator coil the pressure can be raised to effectively increase the capacity of the compressor and utilize most of the evaporator coil surface. To satisfy the requirement of dehumidification after pull-down has been completed, the evaporator pressure should then be lowered to a point slightly above the temperature at which coil freeze up can occur.
- This may be accomplished by means of a thermally responsive bulb which senses interior air temperature (or a related variable indicative thereof) and readjusts the control or balance point of the expansion device by producing an opposing force on the actuating diaphragm. With respect to the related variable sensed, this may be the temperature of refrigerant leaving the evaporator coil or the temperature of air on the evaporator coil.
- FIGURE is a schematic or diagrammatic view of an air conditioning system constructed in accordance with the principles of the present invention.
- the air conditioning system of the present invention includes a compressor 10, a condenser 12, an expansion device 14 and an evaporator 16 all connected to provide a closed circuit refrigeration system.
- Refrigerant compressed by the compressor 10 is delivered to the condenser through line 18.
- the liquified refrigerant is then passed through line 20 to expansion device 14, which will be discussed in more detail below.
- the refrigerant passes through the expansion device from high pressure side to low pressure side, itflows through line 22 to the evaporator 16 which cools the air circulated over it by fan 17.
- the refrigerant then flows through line 24, commonly referred to as the suction gas line, to the suction connection of compressor 10.
- a superheat regulating valve 25 is located between the evaporator and the compressor in line 24. Since the construction and operation is described in detail in the above-identified Newton application it is incorporated by reference.
- Expansion device 14 comprises a valve having a casing 30, a valve member 32 adapted to be seated on valve seat 34, inlet 36 and outlet 38.
- Valve member 32 is connected to a stem 38 which is secured at its opposite end to an actuating diaphragm 40.
- Spring 42 is seated upon a spring support member 43 and tends to urge the valve member toward a closed position against seat 34.
- Spring 44 located in the upper portion of the casing 30 engages the diaphragm 40 and biases the same in a downward position tending to open the valve by urging valve member 32 away from the seat.
- an important feature of the invention is the provision of means for establishing a control signal indicative of the interior air temperature and using such signal to vary the control point of the expansion device I4.
- a fluid connection by means of capillary tube 50, to thermal expansion bulb 52.
- the bulb 52 which as previously noted may be located in a position to sense interior air temperature, off-coil air temperature, or suction line refrigerant temperature, will be relatively warm. Accordingly, the fluid charge in the bulb and capillary will be at a high pressure, tending to establish a relatively high pressure not only within the bulb itself but also in chamber 56 which is part of the same closed system. This pressure acting against the upper surface of diaphragm 40 will tend to bias the valve member to its open position and establish a control point effecting a relatively high pressure on the downstream side of the valve, and in the evaporator itself.
- the pressure on the downstream side of the valve will be maintained constant by the pressure acting against the under side of the diaphragm 40. For example, if the load is changed so as to increase the downstream pressure, this pressure will be applied through passage 45 to the under side of the diaphragm 40, tending to close the valve. If the pressure is reduced for some reason, the opposite result occurs.
- the bulb temperature will be reduced tending to reduce the pressure in chamber 56 to relieve the pressure on the upper surface of the diaphragm. This will gradually shift control point at lower and lower pressures until such time as the pulldown phase has been completed. At this point, the evaporator pressure will be established at a point slightly above the temperature at which freeze up can occur, but at a low enough temperature to effect the desired dehumidification of air passing through the evaporator coil.
- a combination comprising: a compressor; a condenser; a constant pressure expansion device; and an evaporator all connected to provide a closed, vapor cycle system through which a refrigerant is circulated; means for circulating air to be conditioned through said evaporator to a space, the temperature of which is to be controlled; a superheat regulating valve interposed between said evaporator and said compressor to control the flow of refrigerant therebetween and maintain a predetermined superheat of refrigerant flowing to said compressor; means for establishing a control signal which is a function of the temperature of air within the controlled space and means for applying said signal to said constant pressure expansion device to vary the control point thereof, and the corresponding evaporator pressure, whereby the evaporator pressure is established at a lower value when the temperature of the controlled space is below some predetermined value.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fluid Mechanics (AREA)
- Thermal Sciences (AREA)
- Temperature-Responsive Valves (AREA)
- Air-Conditioning For Vehicles (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
A refrigerant control system, particularly useful for air conditioning apparatus, including means for operating the system with a relatively high evaporator pressure during the time the temperature within the cooled space is being reduced to its desired level. While such temperature level is being reduced, a constant pressure expansion device is adjusted to maintain the control point at a lower temperature (and pressure) to effect dehumidification.
Description
United States Patent [191 Cooper [451 Apr. 16, 1974 AIR CONDITIONING CONTROL SYSTEM [75] Inventor: Kenneth W. Cooper, York, Pa.
[73] Assignee: Borg-Warner Corporation, Chicago,
Ill.
22 Filed July7, 1972 21 App1.No.: 269,637
[52] US. Cl 62/217, 62/223, 62/209 [51] Int. Cl. F25b 41/04 [58] Field of Search 62/217, 222, 223, 224,
[56] References Cited UNITED STATES PATENTS 1,408,744 3/1922 Keen 62/224 1,618,815 2/1927 Cory 62/223 Primary Examiner-Meyer Perlin Attorney, Agent, or Firm-Donald W. Banner [5 7] ABSTRACT A refrigerant control system, particularly useful for air Conditioning apparatus, including means for operating the system with a relatively high evaporator pressure during the time the temperature within the cooled space is being reduced to its desired level. While such temperature level is being reduced, a constant pressure expansion device is adjusted to maintain the control point at a lower temperature (and pressure) to effect dehumidification.
1 Claim, 1 Drawing Figure PATENTEUAFR 16 m4,
Ilium!) 1 AIR CONDITIONING CONTROL SYSTEM BACKGROUND AND SUMMARY OF TI-IE INVENTION In U. S. Pat. No. 3,260,064 issued to A. B. Newton on July 12, 1966 there is described an air conditioning system including a compressor, a condenser, an expansion device, and an evaporator, all connected in a closed, vapor cycle refrigeration circuit. An important feature described and claimed in the aforementioned patent is the use of means for sensing the superheat of gas leaving the evaporator and means varying the capacity of the compressor operated in response to the amount of superheat to maintain the correct balance between the compressor capacity and the refrigeration load. This sytem also uses a constant pressure expansion device between the condenser and evaporator to maintain the evaporator pressure at a predetermined value.
In certain automotive air conditioning applications, especially in the larger size vehicles, which areconventionally furnished with adequately sized evaporator coils, the critical part of the system is in the compressor. At low suction pressures the efficiency of the compressor is materially reduced in that the refrigerant taken in the suction side of the compressor is in a smaller quantity and less work can be performed on the refrigerant. Automotive applications also present a problem with respect to start-up conditions. For example, the temperature of the air in an enclosed vehicle space, if the'auto is parked in the sun with the air conditioning off, may reach as high as 160F. During the time which is required to bring this temperature down to the desired level, commonly referred to as pull-down, the system should be operated in such a manner as to bring this temperature down as fast as possible to avoid discomfort to the occupants. On the other hand, it is desirable to provide dehumidification of the air being circulated within. the vehicle space.
In order to satisfy the first objective, i.e., rapid pulldown, the evaporator pressure should be kept relatively high. This allows more refrigerant to be taken into the compressor suction and provides for efiicient use of the entire evaporator coil surface. In others words, during pull-down under normal conditions the refrigerant will completely evaporate in the first section of the evaporator coil. Beyondthis point, the temperature of the refrigerant vapor rises (is superheated) and then passes to the compressor suction port. With an adequately sized evaporator coil the pressure can be raised to effectively increase the capacity of the compressor and utilize most of the evaporator coil surface. To satisfy the requirement of dehumidification after pull-down has been completed, the evaporator pressure should then be lowered to a point slightly above the temperature at which coil freeze up can occur.
It is a principal feature of this invention to provide a system in which the control point of the automatic expansion device is adjusted during pull-down to reduce the evaporator pressure, thereby achieving both objectives of fast pull-down and dehumidification. This may be accomplished by means of a thermally responsive bulb which senses interior air temperature (or a related variable indicative thereof) and readjusts the control or balance point of the expansion device by producing an opposing force on the actuating diaphragm. With respect to the related variable sensed, this may be the temperature of refrigerant leaving the evaporator coil or the temperature of air on the evaporator coil.
DESCRIPTION OF THE DRAWINGS The single FIGURE is a schematic or diagrammatic view of an air conditioning system constructed in accordance with the principles of the present invention.
DETAILED DESCRIPTION OF THE INVENTION As shown in the FIGURE, the air conditioning system of the present invention includes a compressor 10, a condenser 12, an expansion device 14 and an evaporator 16 all connected to provide a closed circuit refrigeration system. Refrigerant compressed by the compressor 10 is delivered to the condenser through line 18. The liquified refrigerant is then passed through line 20 to expansion device 14, which will be discussed in more detail below. After the refrigerant passes through the expansion device from high pressure side to low pressure side, itflows through line 22 to the evaporator 16 which cools the air circulated over it by fan 17. The refrigerant then flows through line 24, commonly referred to as the suction gas line, to the suction connection of compressor 10. I
As previously described in copending application Ser. No. 99,806, A. B. Newton, filed Dec. 21, 1970, now U.S. Pat. No. 3,688,517, issued Sept. 5, 1972, a superheat regulating valve 25 is located between the evaporator and the compressor in line 24. Since the construction and operation is described in detail in the above-identified Newton application it is incorporated by reference.
As noted above, an important feature of the invention is the provision of means for establishing a control signal indicative of the interior air temperature and using such signal to vary the control point of the expansion device I4. At the upper portion of the casing 30 there is provided a fluid connection, by means of capillary tube 50, to thermal expansion bulb 52. The chamber 56 formed between the casing 30 and diaphragm 40, together with the capillary and bulb, form a closed system.
Assuming that the vehicle is in a condition where the interior space is relatively warm, the bulb 52, which as previously noted may be located in a position to sense interior air temperature, off-coil air temperature, or suction line refrigerant temperature, will be relatively warm. Accordingly, the fluid charge in the bulb and capillary will be at a high pressure, tending to establish a relatively high pressure not only within the bulb itself but also in chamber 56 which is part of the same closed system. This pressure acting against the upper surface of diaphragm 40 will tend to bias the valve member to its open position and establish a control point effecting a relatively high pressure on the downstream side of the valve, and in the evaporator itself. After the system has been operating for a few minutes (and until the pressure in chamber 56 decreases), the pressure on the downstream side of the valve will be maintained constant by the pressure acting against the under side of the diaphragm 40. For example, if the load is changed so as to increase the downstream pressure, this pressure will be applied through passage 45 to the under side of the diaphragm 40, tending to close the valve. If the pressure is reduced for some reason, the opposite result occurs. After the system has been operating for a while at the higher evaporator pressure, the bulb temperature will be reduced tending to reduce the pressure in chamber 56 to relieve the pressure on the upper surface of the diaphragm. This will gradually shift control point at lower and lower pressures until such time as the pulldown phase has been completed. At this point, the evaporator pressure will be established at a point slightly above the temperature at which freeze up can occur, but at a low enough temperature to effect the desired dehumidification of air passing through the evaporator coil.
While this invention has been described in connection with a certain specific embodiment thereof, it is to be understood that this is by way of illustration and not by way of limitation; and the scope of the appended claim should be construed as broadly as the prior art will permit.
What is claimed is:
l. A combination comprising: a compressor; a condenser; a constant pressure expansion device; and an evaporator all connected to provide a closed, vapor cycle system through which a refrigerant is circulated; means for circulating air to be conditioned through said evaporator to a space, the temperature of which is to be controlled; a superheat regulating valve interposed between said evaporator and said compressor to control the flow of refrigerant therebetween and maintain a predetermined superheat of refrigerant flowing to said compressor; means for establishing a control signal which is a function of the temperature of air within the controlled space and means for applying said signal to said constant pressure expansion device to vary the control point thereof, and the corresponding evaporator pressure, whereby the evaporator pressure is established at a lower value when the temperature of the controlled space is below some predetermined value.
Claims (1)
1. A combination comprising: a compressor; a condenser; a constant pressure expansion device; and an evaporator all connected to provide a closed, vapor cycle system through which a refrigerant is circulated; means for circulating air to be conditioned through said evaporator to a space, the temperature of which is to be controlled; a superheat regulating valve interposed between said evaporator and said compressor to control the flow of refrigerant therebetween and maintain a predetermined superheat of refrigerant flowing to said compressor; means for establishing a control signal which is a function of the temperature of air within the controlled space and means for applying said signal to said constant pressure expansion device to vary the control point thereof, and the corresponding evaporator pressure, whereby the evaporator pressure is established at a lower value when the temperature of the controlled space is below some predetermined value.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00269637A US3803864A (en) | 1972-07-07 | 1972-07-07 | Air conditioning control system |
GB2539273A GB1429872A (en) | 1972-07-07 | 1973-05-29 | Refrigerating system |
IT26134/73A IT990886B (en) | 1972-07-07 | 1973-07-03 | REGULATION UNIT FOR AIR CONDITIONING |
JP48077005A JPS4951653A (en) | 1972-07-07 | 1973-07-07 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00269637A US3803864A (en) | 1972-07-07 | 1972-07-07 | Air conditioning control system |
Publications (1)
Publication Number | Publication Date |
---|---|
US3803864A true US3803864A (en) | 1974-04-16 |
Family
ID=23028068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00269637A Expired - Lifetime US3803864A (en) | 1972-07-07 | 1972-07-07 | Air conditioning control system |
Country Status (4)
Country | Link |
---|---|
US (1) | US3803864A (en) |
JP (1) | JPS4951653A (en) |
GB (1) | GB1429872A (en) |
IT (1) | IT990886B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4118209A (en) * | 1975-07-18 | 1978-10-03 | Pakhoed-Rotterdam B.V. | Climate-control unit particularly for incorporation in a container |
US4236669A (en) * | 1978-12-18 | 1980-12-02 | Borg-Warner Corporation | Thermostatic expansion valve with lead-lag compensation |
US4742689A (en) * | 1986-03-18 | 1988-05-10 | Mydax, Inc. | Constant temperature maintaining refrigeration system using proportional flow throttling valve and controlled bypass loop |
US4788834A (en) * | 1986-11-11 | 1988-12-06 | Kabushiki Kaisha Toshiba | Method and system for controlling magnetic field generating unit in magnetic resonance imaging apparatus |
US4967830A (en) * | 1988-05-02 | 1990-11-06 | Eubank Manufacturing Enterprises, Inc. | Arcuate tubular evaporator heat exchanger |
EP0777843A1 (en) * | 1994-08-25 | 1997-06-11 | Richard H. Alsenz | Self-adjusting superheat valve |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1408744A (en) * | 1920-01-09 | 1922-03-07 | Keen Harold Perot | Thermostatically-operated ammonia expansion valve |
US1618815A (en) * | 1922-08-11 | 1927-02-22 | Cash A W Co | Refrigerating system and appliance |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5219433B2 (en) * | 1971-08-16 | 1977-05-27 |
-
1972
- 1972-07-07 US US00269637A patent/US3803864A/en not_active Expired - Lifetime
-
1973
- 1973-05-29 GB GB2539273A patent/GB1429872A/en not_active Expired
- 1973-07-03 IT IT26134/73A patent/IT990886B/en active
- 1973-07-07 JP JP48077005A patent/JPS4951653A/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1408744A (en) * | 1920-01-09 | 1922-03-07 | Keen Harold Perot | Thermostatically-operated ammonia expansion valve |
US1618815A (en) * | 1922-08-11 | 1927-02-22 | Cash A W Co | Refrigerating system and appliance |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4118209A (en) * | 1975-07-18 | 1978-10-03 | Pakhoed-Rotterdam B.V. | Climate-control unit particularly for incorporation in a container |
US4236669A (en) * | 1978-12-18 | 1980-12-02 | Borg-Warner Corporation | Thermostatic expansion valve with lead-lag compensation |
US4742689A (en) * | 1986-03-18 | 1988-05-10 | Mydax, Inc. | Constant temperature maintaining refrigeration system using proportional flow throttling valve and controlled bypass loop |
US4788834A (en) * | 1986-11-11 | 1988-12-06 | Kabushiki Kaisha Toshiba | Method and system for controlling magnetic field generating unit in magnetic resonance imaging apparatus |
US4967830A (en) * | 1988-05-02 | 1990-11-06 | Eubank Manufacturing Enterprises, Inc. | Arcuate tubular evaporator heat exchanger |
EP0777843A1 (en) * | 1994-08-25 | 1997-06-11 | Richard H. Alsenz | Self-adjusting superheat valve |
EP0777843A4 (en) * | 1994-08-25 | 1999-03-31 | Richard H Alsenz | Self-adjusting superheat valve |
Also Published As
Publication number | Publication date |
---|---|
GB1429872A (en) | 1976-03-31 |
JPS4951653A (en) | 1974-05-20 |
IT990886B (en) | 1975-07-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6047556A (en) | Pulsed flow for capacity control | |
US3667247A (en) | Refrigeration system with evaporator outlet control valve | |
CA1333222C (en) | Quench expansion valve refrigeration circuit | |
US3389576A (en) | System for controlling refrigerant condensing pressures by dynamic hydraulic balance | |
US5634350A (en) | Refrigeration system | |
US3145543A (en) | Means for controlling the head pressure in refrigerating systems | |
US2774220A (en) | Control for a refrigeration system | |
US3803864A (en) | Air conditioning control system | |
US3803865A (en) | Refrigeration control system | |
US3388558A (en) | Refrigeration systems employing subcooling control means | |
US3797266A (en) | Air conditioning control system | |
US3786650A (en) | Air conditioning control system | |
JPH09133435A (en) | Expansion valve | |
US2748571A (en) | Defrosting system for refrigeration evaporators | |
US3688517A (en) | Air conditioning control system | |
US2752760A (en) | Expansion valve with bulb control | |
US3320763A (en) | Controls for refrigeration systems | |
JPH09133436A (en) | Temperature type expansion valve and air-conditioning device for vehicle using the valve | |
JPH0650614A (en) | Freezing device | |
JP2005201484A (en) | Refrigerating cycle | |
CN112303966B (en) | Temperature expansion valve and refrigeration cycle system | |
JPS5912941B2 (en) | Air conditioning equipment | |
JPH09210480A (en) | Two-stage compression type refrigerating apparatus | |
JP3807955B2 (en) | Expansion valve | |
JPH11344264A (en) | Freezing cycle device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: YORK INTERNATIONAL CORPORATION, 631 SOUTH RICHLAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. EFFECTIVE;ASSIGNOR:BORG-WARNER CORPORATION;REEL/FRAME:004676/0360 Effective date: 19860609 |