US3794040A - Ultrasonic surgical procedures - Google Patents
Ultrasonic surgical procedures Download PDFInfo
- Publication number
- US3794040A US3794040A US00179459A US17945971A US3794040A US 3794040 A US3794040 A US 3794040A US 00179459 A US00179459 A US 00179459A US 17945971 A US17945971 A US 17945971A US 3794040 A US3794040 A US 3794040A
- Authority
- US
- United States
- Prior art keywords
- tissue
- tool member
- blood
- ultrasonic
- tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001356 surgical procedure Methods 0.000 title abstract description 29
- 210000004204 blood vessel Anatomy 0.000 abstract description 99
- 238000000034 method Methods 0.000 abstract description 52
- 210000001367 artery Anatomy 0.000 abstract description 16
- 210000003462 vein Anatomy 0.000 abstract description 16
- 230000015572 biosynthetic process Effects 0.000 abstract description 13
- 238000004140 cleaning Methods 0.000 abstract description 2
- 210000001519 tissue Anatomy 0.000 description 82
- 210000004369 blood Anatomy 0.000 description 35
- 239000008280 blood Substances 0.000 description 35
- 238000010438 heat treatment Methods 0.000 description 35
- 238000005520 cutting process Methods 0.000 description 32
- 230000035602 clotting Effects 0.000 description 17
- 238000005304 joining Methods 0.000 description 17
- 206010053567 Coagulopathies Diseases 0.000 description 15
- 230000033001 locomotion Effects 0.000 description 14
- 230000000740 bleeding effect Effects 0.000 description 10
- 230000035876 healing Effects 0.000 description 8
- 241000282412 Homo Species 0.000 description 7
- 208000007536 Thrombosis Diseases 0.000 description 7
- 206010052428 Wound Diseases 0.000 description 7
- 230000009471 action Effects 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 208000027418 Wounds and injury Diseases 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000006378 damage Effects 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000018109 developmental process Effects 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 4
- 210000002751 lymph Anatomy 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 102000009123 Fibrin Human genes 0.000 description 3
- 108010073385 Fibrin Proteins 0.000 description 3
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229950003499 fibrin Drugs 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 210000003850 cellular structure Anatomy 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 230000001808 coupling effect Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 210000003811 finger Anatomy 0.000 description 2
- 210000002832 shoulder Anatomy 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 208000023329 Gun shot wound Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 210000002381 plasma Anatomy 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 210000002978 thoracic duct Anatomy 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/11—Surgical instruments, devices or methods for performing anastomosis; Buttons for anastomosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/08—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/74—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area
- B29C65/743—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area using the same tool for both joining and severing, said tool being monobloc or formed by several parts mounted together and forming a monobloc
- B29C65/7443—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by welding and severing, or by joining and severing, the severing being performed in the area to be joined, next to the area to be joined, in the joint area or next to the joint area using the same tool for both joining and severing, said tool being monobloc or formed by several parts mounted together and forming a monobloc by means of ultrasonic vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/81—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
- B29C66/814—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
- B29C66/8141—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
- B29C66/81411—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
- B29C66/81415—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled
- B29C66/81417—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being bevelled being V-shaped
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/82—Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
- B29C66/822—Transmission mechanisms
- B29C66/8227—Transmission mechanisms using springs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/83—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
- B29C66/832—Reciprocating joining or pressing tools
- B29C66/8322—Joining or pressing tools reciprocating along one axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/84—Specific machine types or machines suitable for specific applications
- B29C66/861—Hand-held tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/95—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
- B29C66/951—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
- B29C66/9512—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools by controlling their vibration frequency
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/95—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
- B29C66/951—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
- B29C66/9516—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools by controlling their vibration amplitude
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/00491—Surgical glue applicators
- A61B2017/00504—Tissue welding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B2017/320069—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for ablating tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
- A61B2017/320093—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing cutting operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
- A61B2017/320094—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw additional movable means performing clamping operation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
- A61B17/320092—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw
- A61B2017/320095—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with additional movable means for clamping or cutting tissue, e.g. with a pivoting jaw with sealing or cauterizing means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/95—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
- B29C66/951—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
- B29C66/9513—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/95—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
- B29C66/951—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
- B29C66/9517—Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration amplitude values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2023/00—Tubular articles
- B29L2023/005—Hoses, i.e. flexible
Definitions
- ABSTRACT The method and apparatus of the invention use ultrasonic energy in the form of mechanical vibrations transmitted by a tool member to close of small severed blood vessels, such as in humans, by the formation of closures at the terminal portions thereof, and stop what is called oozes, that requires constant mopping or cleaning techniques during an operation.
- This tool member may be in the form of a, knife ultrasonically vibrated to simulateously sever and close off respective terminal portions of the severed blood vessels while performing surgical procedures.
- the tool member of a proper configuration, may also join together layers of tissue, including the walls of unsevered blood vessels, and with respect to the latter is foreseen as replacing the tying off of arteries and veins currently necessary in surgery.
- the present invention relates generally to improvements in surgical procedures whereby ultrasonic energy is utilized and more particularly to methods and apparatus for closing off the terminal portions of severed blood vessels to stop or prevent the flow of blood therefrom during the surgical procedure and the joining of layers of tissue in biological organisms such as humans.
- warm blooded animals and humans is comprised of two great and complex systems of arteries and veins.
- the arteries carry blood from the heart and these arteries divide in a complex network of smaller arteries or arterials, which in their turn connect to an extraordinarily complex network of very fine blood carrying tubes called capillaries.
- These capillaries are in communication with all the cells of the body and they provide the nutrients needed to feed these cells and they also supply the white blood cells needed to dispose of wastes and, in general, to police the cells and their environment in respect to unwanted substances and agents.
- the blood cells find their way back to the heart by means of a similar network of capillaries which join up to veinules or small veins, which in turn connect to veins which ultimately bring the blood back to the heart.
- lymph nodes There is also a lymph system which participates in this process, wherein again small tubes containing lymph (a kind of blood plasma with white corpuscles and waste products) convey this lymph through various strainers called lymph nodes and then, ultimately by means of the thoracic duct the purified lymph flow back into a large vein in the neck.
- lymph nodes a kind of blood plasma with white corpuscles and waste products
- Electric and hot-wire cautery as well as cryogenic techniques are not effective for the care of bleeding from veins and arteries and it is here that special tyingoff methods or hemistatic clamping techniques are used. It is a further aim of this invention to teach how tying-off and clamping techniques may be replaced by utilizing ultrasonic energy in the proper way.
- the tool member supplying the energy executes vibrations of high frequency and small amplitude.
- new alloys have become generally available which permit the maximum amplitude of vibration at a given frequency to be increased substantially.
- a scalpel could be vibrated at 20 Kc/sec with a stroke of two to at most four thousandths of an inch. A larger stroke would cause a rapid fatigue failure of the ultrasonic motor driving the scalpel.
- a new alloy of titanium titanium with 6 Al 4V is one such
- the peak rubbing speed which equals 1r fx the peak to and fro stroke (f frequency of tool) is relatively constant with respect to frequency. This is because the peak strain set up in the ultrasonic motor driving the cutting tool depends directly on the peak speed of the cutting tool and not on the peak frequency. Of course, this merely means that if one wishes to operate at a higher frequency, then one has to be content with a proportionately dimin-.
- An object of the present invention is to provide an improved method and apparatus for performing surgical procedures with ultrasonic energy.
- Another object of the present invention is to provide an improved method and apparatus for securingv together layers of tissue in biological organisms, such as humans.
- Yet another object of the present invention is to provide an improved method and apparatus for forming closures at the severed terminal portions of blood vessels in vivo, which blood vessels are in the general neighborhood of what are called capillaries, so as to prevent ooze, which requires contact mopping or cleansing during surgical operations.
- a further object of the present invention is to provide improved method and apparatus for permanently or temporarily closing off blood vessels so as to replace the tying off of arteries and veins currently necessary in surgery.
- Still another object of the present invention is to provide a method and apparatus of bloodless surgery which combines the surgical cutting of tissue and a closing off of the severed blood vessels to prevent the ooze associated with operations.
- Yet still another object of the present invention is to provide a method and apparatus for simultaneously joining and trimming, as by cutting, a large blood vessel.
- Yet still a further object of the present invention is to provide an improved method and apparatus for ultrasonically joining together layers of tissue.
- Still a further object of the present invention is to provide an improved method and apparatus for increasing the flow of oxygen to the terminal portion of the severed blood vessel to expedite the clotting of the blood thereat.
- Still yet a further object of the present invention is to provide an improved sealing apparatus for joining together layers of human tissue.
- Still yet a further object of the present invention is to provide specially designed tools adapted to be ultrasonically vibrated and employed in surgical procedures.
- FIG. I is a chart indicating the relationship of the principal factors affecting the practicing of the present invention for surgical procedures
- FIG. 2 is an assembled somewhat schematic view of an ultrasonic motor generator system of the type in which the motor is capable of being hand held and manipulated, for driving a tool member adapted to engage the biological organism for performing a surgical procedure, and which in the present instance the tool member is illustrated as a knife for severing blood vessels, the latter shown on a greatly enlarged scale for discussion purposes;
- FIG. 3 is a side view of an ultrasonic tool member having a textured working surface in accordance with the present invention
- FIGS. 3A and 3B are end views of the tool member in FIG. 3 and illustrates two preferred ways of obtaining the textured working surface
- FIG. 4 is a greatly enlarged schematic representation of a portion of a tool member with its working surface in engagement with the terminal portion of a blood vessel for forming a closure thereat to prevent the flow of blood from said terminal portion;
- FIG. 4A is an enlarged section view taken along line 4A4A of FIG. 4 to illustrate the interfacial contact between the tool'working surface andblood vessel for the transmission of frictional energy and shear waves for localized heating of the terminal portion;
- FIG. 4B is a greatly enlarged schematic representation illustrating an ultrasonically vibrating tool member engaging a severed portion of tissue for simultaneously forming a plurality of closures at the terminal portions thereof;
- FIG. 4C' is a greatly enlarged schematic representation illustrating the angular relationship between the tool member and blood vessel which defines a terminal plane that may define an extreme angle with the axis of the blood vessel and still obtain the desired results of the present invention
- FIG. 4D is an end view of the tool member and blood vessel of FIG. 4C;
- FIGS. 5, 5A, 5B and 5C are enlarged schematic representations in cross-section of the method of forming a closure at the terminal portion of a blood vessel in which the side walls thereof are joined together;
- FIG. 5D is an extremely enlarged view of a blood specimen to illustrate some of the important components thereof;
- FIGS. 6 and 6A are enlarged schematic representations in cross-section of the method of forming a closure at the terminal portion of a blood vessel in which the closure is formed by partially converging the side walls thereof and forming a blood clot in the reduced opening;
- FIGS. 7 and 7A are enlarged schematic representations in cross-section of the method of forming a closure at the terminal portion of a blood vessel in which the closure is formed by primarily forming a blood clot at the terminal portion thereof;
- FIGS. 8 and 8A are side and end elevational views respectively, of a spatula tool member having a textured working surface for ultrasonic cautery;
- FIG. 9 is an enlarged sectional view illustrating the forming of a plurality of closures on respective terminal portions in an open wound by the use of a spatula shaped tool
- FIG. 10 is a top longitudinal view, of one preferred form of ultrasonic system, of the type capable of being hand held and manipulated, for joining together layers of tissue, such as in humans;
- FIG. Ill is a side longitudinal view, partly in crosssection, of the ultrasonic system of FIG. 10;
- FIG. 12 is an enlarged schematic view, in crosssection, illustrating the application of the ultrasonic instrument illustrated in FIGS. 10 and 11 for securing together the walls of a blood vessel;
- FIG. 12A is an enlarged schematic view, in crosssection, similar to FIG. 12 illustrating the actual joining of the overlapping wall portions
- FIG. 12B is a further enlarged schematic view, in cross-section, showing the actual bond obtained between the wall portions of the blood vessel;
- FIG. 12C illustrates the ultrasonic system as used for simultaneously joining and cutting layers of tissue
- FIG. 112D illustrates the ultrasonic system clamping means for intermittently joining overlapped layers of tissue.
- the high frequency transducer means may be either in the sonic or ultrasonic frequency range but for purposes of the present invention the word ultrasonic will be used to denote vibrations in the range of approximately 5,000 to 1,000,000 cycles per second.
- blood vessel as used herein is intended to include any tubular member of the human body, but particularly capillaries, arterials, veinules, arteries and veins.
- total value may be defined as the proper combination of these factors to obtain the desired end result.
- FIG. I is a chart illustrating the relationship of the seven principal factors which are involved in the whole or in part for determining the total value associated with forming closures at the terminal portions of severed blood vessels, or joining together overlapping segments of layers of human tissue.
- the related factors are peak tool velocity, frequency of vibration, pressure applied with tool, tool working surface, cutting edge, tool temperature and oxygen for clotting. These factors vary with respect to the procedure being performed.
- the working surface of the tool member is placed in engagement with at least one of the layers of tissue at a surface thereof such that a small compressive force is applied in a plane substantially normal to the engaged surface. While this compressive force is maintained the working surface of the tool member is vibrated at an ultrasonic rate to apply an additional energy producing force at the engaged surface. The compressive and energy producing forces are continued until the layers of tissue are secured together by the combined action of these forces.
- the energy producing force may be divided into mechanical vibration energy absorption in tissue and frictional rubbing heat development in tissue both of which result in a localized heating of the walls of the blood vessel to obtain the tissue closure.
- an apparatus 10 for ultrasonically performing surgical procedures on a biological organism may include an ultrasonic transducer or motor 11 for effecting the necessary high frequency vibrations of the tool member 13, such as a knife, having a sharp output edge or surface 15 with a working surface 16.
- the ultrasonic motor 11, as illustrated may be in the form of a driving member adapted for being hand held as by an operator 12, and generally comprising a tubular housing or casing 14 into which an insert unit 17 supporting the tool member 13 may be partially telescoped.
- the ultrasonic motor 11 is energized by an oscillation generator 18, with a power cable 19, connecting the two together.
- the generator is an oscillator adapted to produce electrical energy having an ultrasonic frequency.
- the ultrasonic motor 11 may be one of a variety of electromechanical types, such as electrodynamic, piesoelectric and magnetostrictive.
- the ultrasonic motor for effecting surgical procedures through hand directed tools of suitable configuration, which are readily replaceable or inter-changeable with other work performing tools in acoustically vibrated material treating devices, may be of the type disclosed in U. S. Pat. Nos.
- each work too] member is rigidly joined, in end-to-end relationship to a connecting body or acoustic impedance transformer and to a transducer which may form an insert unit or assembly which is removably supported in a housing containing a coil in surrounding relationship to the transducer and receiving alternating current for producing an alternating electromagnetic field.
- the transducer in the ultrasonic motor 11 is longitudinally dimensioned so as to have lengths which are whole multiples of half-wavelengths of the compressional waves established therein at the frequency of the biased alternating current supplied so that longitudinal loops of motion as indicated by arrow 23, occur both at the end of the insert unit 17 to which the tool member 13 is rigidly connected and the knife edge.
- the optimum amplitude of longitudinal vibration and hyper-accelerations of tool member 13 is achieved, and such amplitude is determined by the relationship of the masses of the tool member 13 and insert unit 17 which may be made effective to either magnify or reduce the amplitude of the vibrations received from the transducer.
- the tool member 13 may be in the form of relatively flat metal spatula member, as shown in FIGS. 8 and 8A, hereinafter discussed in detail, to provide relatively wide surface areas for contact with the tissue to which the vibrations are to be applied for effecting the closure of severed blood vessels.
- the tool member 13 may be permanently attached to the end of insert unit 17, for example, by brazing, solder or the like, or the tool may be provided with a threaded stud 20 adapted to be screwed into a tapped hole in the end of insert unit 17 for effecting the rigid connection of the tool to the stem.
- a base portion 21 is provided from which the stud 20 extends, from one end thereof, and from the other end a body 28 which is firmly secured thereto for the transmission of the ultrasonic vibrations.
- the body 28 may be brazed or welded to the base 21 of the tool member 13.
- a tapered surface 22 may be provided which connects the cutting edge 15 with the working surface 16.
- the biological organism 25 such as a human, contains a layer of outer tissue or skin 26, an internal cellular structure 27 with a plurality of blood vessels 30 extending therethrough shown in an enlarged scale, as well as in the skin (not shown).
- FIGS. 3, 3A and 3B illustrate various types of replaceable surgical implements, such as knives, that may be employed in accordance with the present invention.
- the knife 13a of FIG. 3 is similar to that illustrated in FIG. 2 and includes a base portion 21a, capable of supporting ultrasonic vibrations and adapted to be set into vibration in a given direction by the driving member.
- a threaded stud 20a extends from one end of the base 21a for engagement with the insert unit.
- the body portion 28a in the form of a cutting blade, extends from the opposite end of the base 21a and includes a textured working surface 16a for enhancing the coupling action between the tool member 13a and the terminal portion of the severed blood vessels to be engaged.
- the cutting edge 15a may be serrated and have an outwardly tapered portion 22a between the cutting edge 15a and the substantially flat working surface 16a.
- the textured surface 16a may begin in close proximity to or start at the working edge 15a so that when cutting and sealing'small capillaries the rubbing action and transmission of shear waves begins immediately.
- the textured surface finish of 16a may vary from a micro finish in the range of 10 micro-inch to 10,000 micro-inch, but preferably in the range of 40 micro-inch to 200 microinch.
- the tool member 13a includes a body portion 28a having a coated textured layer of friction inducing material 29a which forms the working surface 16a and which may be of diamond or steel powder particles bonded to the body portion in any conventional manner well known in the art, to obtain the desired micro finish.
- the layer of coated material may be applied to both surfaces of the tool member and each surface may be of the same or different micro finish to obtain a debriding and superficial cauterizing.
- FIG. 3B illustrates the obtainment of the working surface 16a byfinishing the metallic body 28a in any conventional manner to obtain the desired surface roughness.
- the surface roughness is generally selected in accordance with the ultrasonic rate of vibration and the compressive force to be applied. This will in many instances relate to the particular surgeon performing the operation.
- FIGS. 4 and 4A For purposes of illustration, we have in FIGS. 4 and 4A a single blood vessel 3012 having a wall 311; with a terminal portion 33b terminating in an end surface 3212, the latter in engagement with the working surface 16b of the tool member 13b which is being ultrasonically vibrated in the direction 23b.
- FIG. 4A illustrates the contour of the surfaces in engagement with each other and the transmission of the shear waves over the distance D.
- the pressure applied with the tool member partially determines the degree of shear waves and rubbing vibrations transmitted to the terminal portion 33b of the blood vessel for a given textured tool.
- P shear vibration is developed in the tissue 31a, then at P the shear vibration has dropped almost to zero whereby the shear vibration energy is converted into heat in the tissue of the blood vessel.
- the smallness or minimal depth of penetration of P P is what makes for quick healing and cauterizing action of the tool member.
- the shear wave pattern 35b extends the distance D, which is the distance from If to P along the blood vessel 30b to obtain the localized heating of the terminal portion.
- the coupling action at the working' surface 161) and'blood vessel 30b is enhanced by the application of the small compressive force, as indicated by arrow 36b, in a plane substantially normal to the plane defined by said terminal end surface 32b.
- the small compressive force as indicated by arrow 36b.
- P to the extent that shear vibration is not induced in the tissue, there will be a slippage and a frictional rubbing action which will also produce heat practically instantaneously at P It is a combination of these effects which create the closure at the terminal portion of the blood vessel.
- Vpeak 2rrfA
- V peak velocity So that if f is raised, A is lowered and we can retain the same peak speed at all frequencies. This is why the more rubs per second the higher the frequency for the same output peak speed.
- the working surface ll6b of the tool member 13b may be surface finished for sufficient roughness to allow increased friction against the tissue. This is quite different from a standard knife or scalpel which has polished sides.
- the thickness of the tool member should also be held to a minimum so as to permit a .more rapid local temperature rise which is attributable to the shear production and absorption in the adjacent tissue and the temperature rise due to rubbing of tissue surface, which involves slippage between tool member and tissue surfaces.
- V max. for a frequency of 20 lKc/sec and a stroke of 0.010 inch is approximately 50 FPS. Therefore P is approximately 15 watts, when F is between one half and one pound. Since this power is dissipated in a superficial region of the cutting, the heat capacity of the tissue and the tool are quite small. For example for a steel tool of dimension 1 inch X 0.125 inch X 0.010 inch the total heat capacity is only a few hundreths of a gram. In such a case it is possible to obtain local temperature rises of the order of hundreds of degrees centigrade under the condition outlined above. This is ample to stop ooze.
- the frequency and amplitude of vibration of said tool member is selected at a level wherein the transmitted shear waves are substantially maintained at the terminal portion 33b with only superficial penetration and heating of the remainder of the blood vessel 30b.
- the frequency and amplitude of vibration is preferably selected at a level to provide a peak velocity of at least 10 feet per second along the working surface 16b of the tool member 13b and more generally the general range of approximately 40 feet per second to feet per second.
- FIG. 4B shows a portion of the biological organism 25b with an outer layer of skin 26b and a plurality of blood vessels 30b extending through the cellular structure 27b and terminating against the working surface 16b of the tool member 13b.
- the tool member 13b is being vibrated at an ultrasonic rate in the direction of arrow 23b, which is in a plane substantially parallel to the plane defined by the terminal end portions 33b, to induce shear waves 35b, which penetrate the blood vessels 30b and surrounding tissue structure 27b.
- the high frequency vibration and amplitude of the tool member is selectedto obtain only a superficial penetration and resulting heating of the terminal portion 33b so that there is a minimum of damage to the underlying tissue area 31b and all of the blood vessels are simultaneously closed off.
- the terminal portion 33b has an end surface 32b that defines a plane 37b that may vary in angular relationship to the axis of the blood vessel 30b.
- the angular engagement between the working surface 16b of the tool member 13b and the end surface 32b may not always be controlled during a surgical procedure since the blood vessels such as capillaries, veinules, veins, arterials and arteries extend in various directions throughout the body.
- the important consideration is that the ultrasonic longitudinal mechanical vibrations, as indicated by arrow 23b, are applied having a major component of vibration parallel to the terminal plane 37b and a component of compressive force, as indicated by arrow 36b, in a plane substantially perpendicular to the terminal plane 37b.
- FIGS. 5, A, 5B, 5C, 6, 6A, 7 and 7A illustrate the actual surgical procedure in vivo of obtaining a closure at the terminal portion of a blood vessel using the ultrasonic instrument illustrated in FIG. 2, or a tool member illustrated in FIGS. 4, 4A and 4B.
- the degree of shear waves and frictional rubbing may be controlled so that a predominant reliance on one or the other is produced.
- the terminal closure 40c is formed primarily by producing a plastic flow of the wall of the blood vessel and continuing the flow for a period of time sufficient to obtain a joining of the severed ends together.
- the cutting edge c of the tool member 13c is placed in engagement with the skin 260 of the body 250 and the tool member 130 is ultrasonically vibrated and a small compressive force in the direction of arrow 360 is applied to obtain a cutting of the skin 26c and progressively sever the tissue by a continued movement of the cutting edge 15c through the cellular material 270 until the wall 310 of the blood vessel 300 is engaged.
- the wall 310 for purposes of discussion is considered as layers of tissue 42c and 430, respectively.
- the relative movement is continued so that the application of the mechanical vibrations are transmitted for a period of time sufficient for the localized heating to form the closure 400 at the terminal portion 33c.
- the terminal portion 33c is closed off by the formation of the closure 45c and the blood contained therein is prevented from escaping through the closure.
- the closure 45c is produced at least in part by the production of said shear waves and their conversion into heat coupled with the localized heating obtained by inducing frictional rubbing at the terminal portion 330.
- the extent of each factor will vary with the texture of the working surface and the degree of the compressive force applied by the working surface against the terminal portion.
- FIG. 5D is an enlaged microscopic examination of the blood 44c and as illustrated the blood contains red corpuscles 46c, white corpuscles 47c and platelets 48c, the latter play an important role in the natural clotting of blood by producing fibrin when exposed to air. This natural clotting ability of blood is relied upon at least in part with respect to the formation of the closures illustrated in FIGS. 6, 6A, 7 and 7A.
- FIGS. 6 and 6A illustrate the formation of the closure which is substantially formed by clotting of the blood at the terminal position.
- the working surface 16d is placed in engagement with the layers of wall 42d and 43d of the blood vessel 3011, which is of a size in the capillary range, with the blood 44d contained therein.
- the tool member 13d preferably has a textured surface to permit air and most importantly oxygen to be delivered past the layer of skin 26d to the terminal portion 33d of the blood vessel to obtain a clotting action.
- the tool member 16d acts as an ultrasonic pump and stimulates the flow of air to the work site.
- the tool member is then removed leaving the opening of wound 45d and closures 40d formed on each respective end of the severed blood vessels.
- FIGS. 7 and 7A illustrate the formation of a closure 40:: by partially closing the layers 42c and 43e of the wall 31c of the blood vessel 30:: at the terminal portions 33c by the localized heating and the remainder by forming a blood clot 502 of the blood 44c contained in the reduced area of the blood vessel.
- the ultrasonic tool member 136 transmits the mechanical vibration which produces a plastic flow of the wall 3le of said blood vessel which flow is continued for a period of time to obtain a reduced cross sectional area and during which same period of time the localized heating assists in the formation of the blood clot 50e which together with the reduced area forms the closure 40:: to prevent the blood from escaping therefrom.
- the tool member is then removed past the skin 262 leaving the opening 45c.
- the process although illustrated for a single blood vessel can be occurring simultaneously on a plurality of blood vessels.
- the working surface of the tool member may be heated to a temperature level which is above room temperature, but below a temperature that would normally sear the terminal portion of the blood vessel.
- the temperature of the tool may be heated in any conventional manner, as for example, in accordance with US. Pat. No. 3,321,558.
- FIGS. 8 and 8A illustrate one form of readily replaceable implement, in the form of a spatula like tool member 13f, having a body portion 28f with substantially flat parallel working surfaces 16f, that have been textured to a preselected micro finish to provide means for coupling the ultrasonic vibration to the terminal portions of the blood vessels.
- the surface finish is selected for the transmission of rubbing vibrations and shear waves to obtain the localized heating.
- One end of the spatula body portion 28f is fixedly secured to the base portion 21f, and the latter has a threaded stud 20f for securement to the ultrasonic driving member.
- the base portion 21f is preferably of a metallic material capable of supporting ultrasonic vibrations and adapted to be set into vibration in a given direction at ultrasonic frequencies.
- the body portion 28f may be in the order of 0.010 to 0.160 inches thick and be concave in configuration for strength reasons. It may also be designed to vibrate elliptically to permit intermittent separation of the tool member and terminal portions to promote the flow of air to theterminal portions for clotting.
- the spatula like tool member is illustrated for surgical procedures in which it is desired to form closures at terminal ends of blood vessels 30g separately from when the actual cutting is performed.
- the spatula like tool 13g is inserted within the opening 45g of the body 25g such that the working surface 16g of the tool member 13g applies a compressive force against the terminal portions 33g of the severed blood vessels.
- the compressive force is applied in the direction of arrow 36g.
- the tool Hg is simultaneously vibrated, in a direction as indicated by arrow 23g, and' at an ultrasonic rate to transmit mechanical vibrations to the terminal portion 33g of the blood vessels to obtain a localized heating of at least some of the terminal portion.
- the application of said compressive force and mechanical vibrations are continued until a closure at the terminal portion is formed and the blood contained therein is prevented from escaping through the form closure.
- the thickness of the spatula tool member 133 may be narrower, as illustrated in FIG. 9, than the opening 45g in the body, such that only one surface 163 engages the severed blood vessels. If desired the width of the spatula body 28g may be substantially equal to that of the body opening 45g so that both terminal ends 33g of a respective blood vessel 303 is closed during one insertion of the tool member within the wound.
- the localized heating to obtain the closures may be induced by frictional rubbing at the terminal portion 33g of the blood vessel 30g so that the closure is produced at least in part by frictional heating.
- the rate of frictional heating may be controlled when combined with the other factors to produce the terminal closure.
- FIGS. 10 and 11 illustrate one form 10h of the ultrasonic system for joining together in vivo, overlapping layers of organic tissue.
- the system includes a hand held instrument including an ultrasonic motor 11h, which may be the type as discussed with reference to FIG. 2, and include a tool member 13h having an enlarged portion 53h terminating in a working surface 16h that extends in a plane substantially normal to the direction of mechanical vibrations illustrated by the arrow 23h.
- the base 21h of the tool member 13h is secured to the insert portion 17h.
- Support means 55h is provided to act as an anvil or clamp so that the overlapped layers of tissue 42h and 43h of the wall 31h of the blood vessel 30h may be compressed between the vibratory working surface and a support surface.
- the support means 55h includes a pair of legs 56h and 57h respectively, secured together at their lower end by bands 58h and provided with gripping means in the form of individual lugs 59h that extend outwardly from the upper end of the legs for engagement by the fingers of the surgeon or operator 12h in a manner hereinafter described.
- the leg 57h has a lower extension 60/: that terminates in a support arm 61h at substantially right angle to the extension 60h, and is provided with a support surface 62/1 in spaced relation to the working surface 16h of the tool member 13/1.
- the legs 56h and 57h are in spaced relation to each other and may be contoured to conform to the cylindrical configuration of the ultrasonic transducer housing Mb.
- the generator 18h is connected to the transducer 11h by means of cable 19h in a conventional manner. As seen in FIG. 10 the cable 19h may enter the ultrasonic motor llh from the side so as to leave the rear end 63h free for engagement by the thumb or any other finger of the surgeon to permit manual control of the relative displacement between the overlapping working and support surfaces.
- the support means 55h is mounted for relative movement, with respect to the ultrasonic motor 11h by providing a pair of slots 65h on each of the legs 56h and 57h, and which slots accept headed fasteners 66h which extend from the casing 14h through the slots 65h to permit free relative movement between the ultrasonic motor 11h and support means 55h.
- the lower end of the casing 14h is provided with an annular shoul der 67h which is adapted to receive spring means in the form of a spring 68h which is contained within the shoulder 67h at one end thereof and in engagement with the bands 5% at the opposite end thereof.
- the spring 63h applies a force in the direction of arrow 68h, so that the working surfaces of the support means and ultrasonic motor means are biassed away from each other whereby the force applied by the surgeon is required to bring the overlapping working and support surfaces together.
- the spring may be coupled to the support and ultrasonic motor means so as to force them together with a predetermined static force which might be varied in a conventional manner not shown. In this manner once the static force is determined for the particular thickness of tissue the resultant permanent or temporary seal may be obtained.
- the spring means may yieldably urge the support means 55h and transducer means 11h relative to each other to a position wherein the working and support surfaces 16h and 62h, respectively, are normally in engagement with each other under a predetermined static force, so that the support and transducer means are first separated for the placement of the layers of tissue 42h and 43h therebetween.
- the spring means may be adjusted such that the working and support surfaces are normally maintained in spacially fixed relation to each other, so that the layers 42h and 4311 are positioned between the surfaces which are brought together by the operation of the hand held instrument.
- the joining of the walls may be of a permanent or semi-permanent nature, and this is accomplished by properly selecting the frequency and amplitude of ultrasonic mechanical vibrations to produce an optimum flow of the collagenous elements contained in the overlapping portions of tissue.
- This collagenous material is similar to that normally found in the formation of scar tissue.
- the ultrasonic instrument h may be employed to join together, at a select area the wall of a blood vessel and as seen in FIG. 10 the wall 31h may be considered to include the overlapping layers of tissue 42h and 43h.
- FIGS. 12, 12A and 12B we have the blood vessel 30h exposed within an opening 45h within the organic body 25h.
- the arm 61h of the support means 55h is placed beneath the blood vessel 30h and the working surface 16h of the tool member 13h is brought into contact with the layer of tissue 42h.
- the working and support surfaces 16h and 62h are moved relative toward each other until the blood vessel 30h has the overlapping layers of tissue 42h and 43h in contact with each other as seen in FIG. 12A.
- a small compressive force in the direction of arrow 36h, is applied to the layers of tissue traversing the area of overlap.
- the working surface of the tool member 13h is vibrated at an ultrasonic rage, as for example, in the frequency range of from Kc/sec to 100 Kc/sec and preferably in the range of 20 Kc/sec to 40 Kc/sec, so as to apply an additional recurring force to the overlapped layers of tissue, and produce a superficial heating at the interface of the overlapped layers.
- the vibrational force has a substantial component of vibration normal to the overlapped surfaces, as indicated by the arrow 23h.
- the frequency of the ultrasonic rate of vibration is selected in the above frequency range so as to preferably also produce an optimum flow of the collagenous elements in the overlapped layers of tissue.
- the energy is then continually applied until a closure or bond 40h is formed between the collagenous elements in the overlapping layers of tissue, as seen in FIG. 12B, and the blood is prevented from flowing past the closure.
- the closure 40h may be of a temporary nature or permanent one depending upon the proper control of the vibratory energy and static force to fuse together the superficially heated interface.
- the support ann 61 j is provided with a cutting edge j and as the overlapped layers of tissue 42j and 43j are compressed between the working surface 16j and support surface 26j and joined together by the energy transmitted through the tool member l3j and the excess tissue layers 71j and 72j are cut off.
- the cutting edge may be placed on the working surface l6j of the tool member l3j.
- the overlapping layers of tissue 42k and 43k are first clamped together by clamping means 75k which includes clamping members 76k and 77k which may form part of the ultrasonic instrument or may be the forward portion of a pair specially designed clamping instrument.
- the clamping means 75k is applied in close proximity to the area of overlap of the layers of tissue 42k and 43k to the joined together.
- the ultrasonic instrument 10k includes the support means 55k for engaging one side of the overlapped layers of tissue and which opposite side is engaged by the tool member 13k which is illustrated is provided with a circular working surface. By intermittently moving the ultrasonic instrument along the area of overlap a number of closures or bonds 30k, such as stitches may be formed.
- a method of preventing the flow of blood from a severed blood vessel in vivo, with the aid of a tool member having a working surface comprising the steps of A. applying the working surface of said tool member against the terminal portion of said blood vessle to apply a compressive force thereto,
- a method of superfically cauterizing severed blood vessles of a wound in vivo, with the aid of a noncutting spatula like tool member having a working surface comprising the steps of A. applying the working surface of said tool member against the terminal portion of said blood vessels, said tool member being at a temperature level which is above room temperature, but below a temperature that would normally sear the terminal portion of the blood vessel, whereby the healing time is substantially reduced,
- a method as claimed in claim 14, wherein said mechanical vibrations are produced by vibrating the tool member to obtain longitudinal vibrations along said working surface, which working surface is maintained along a plane substantially parallel to the plane defined by the terminal portion of said blood vessel.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Otolaryngology (AREA)
- Physics & Mathematics (AREA)
- Reproductive Health (AREA)
- Vascular Medicine (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Surgical Instruments (AREA)
Abstract
THE METHOD AND APPARATUS OF THE INVENTION USE ULTRASONIC ENERGY IN THE FORM OF MECHANICAL VIBRATORS TRANSMITTED BY A TOOL MEMBER TO CLOSE OF SMALL SEVERED BLOOD VESSELS, SUCH AS IN HUMANS, BY THE FORMATION OF CLOSURES AT THE TERMINAL PORTIONS THEREOF, AND STOP WHAT IS CALLED "OOZES," THAT REQUIRED CONSTANT MOPPING OR CLEANING TECHNIQUES DURING AN OPERATION THIS TOOL MEMBER MAY BE IN THE FORM OF A KNIFE ULTRASONICAL VIBRATED TO SIMULATEOUSLY SEVER AND CLOSE OFF RESPECTIVE TERMINAL PORTIONS OF THE SEVERED BLOOD VESSEL WHILE PERFORMING SURGICAL PROCEDURES. THE TOOL MEMBER, OF A PROPER CONFIGURATION, MAY ALSO JOIN TOGETHER LAYERS OF TISSUE, INCLUDING THE WALL OF UNSEVERED BLOOD VESSELS, AND WITH RESPECT TO THE LATTER IS FORESEEN AS REPLACING THE "TYING OFF" OF ARTERIES AND VEINS CURRENTLY NECESSARY IN SURGERY.
D R A W I N G
D R A W I N G
Description
United States Patent 1191 Balamuth 1451 Feb. 26, 1974 [73] Assignee: Ultrasonic Systems, lnc.,
Farmingdale, N.Y.
22 Filed: Sept. 10, 1971 211 Appl.No.: 179,459
Related US. Application Data [62] Division of Ser. No. 678,649, Oct. 27, 1967, Pat. No.
Banko 128/24 A 3,636,943 l/l972 Balamuth 128/24 A Primary Examiner-Channing L. Pace [5 7] ABSTRACT The method and apparatus of the invention use ultrasonic energy in the form of mechanical vibrations transmitted by a tool member to close of small severed blood vessels, such as in humans, by the formation of closures at the terminal portions thereof, and stop what is called oozes, that requires constant mopping or cleaning techniques during an operation. This tool member may be in the form of a, knife ultrasonically vibrated to simulateously sever and close off respective terminal portions of the severed blood vessels while performing surgical procedures. The tool member, of a proper configuration, may also join together layers of tissue, including the walls of unsevered blood vessels, and with respect to the latter is foreseen as replacing the tying off of arteries and veins currently necessary in surgery.
21 Claims, 29 Drawing Figures PATENIEnftazs I974 EAK TOOL VELOCITY FREQUENCY OF VIBRATION sum 1 0r 5 PRESSURE APPLIED WITH TOOL MECHANICAL VIBRATION ENERGY ABSORPTION IN TISSUE TOOL WORKING SURFACE CUTTING EDGE TOO-L TEMPERATURE OXYGEN FOR CLOTTING FRICTIONAL RUBBING HEAT DEVELOPMENT IN TISSUE TISSUE CLOSURE OR JOINING INVENTOR. LEWIS BA LAMUT H ATTORNE PATENTEDFEBZBIW 3.794040 sum 2 m5 GENERATOR MEANS INVENTOR. LEWIS BALAMUTH ATTORN PATENTEUFEBZBIQM 3.794.040
' sum 3 or 5 F/G.3B F/6.3A
INVENTOR. LEWIS BALAMUTH PATENTED 3. 794. 040
SHET 5 BF 5 58h F/G l0 /2A INVENTOR. LEWIS BALAMUTH ULTRASONIC SURGICAL PROCEDURES CROSS-REFERENCE TO RELATED APPLICATION This is a division of U.S. Pat. application Ser. No.
678,649, filed Oct 27, 1967 now U.S. Pat. No. 5
BACKGROUND AND SUMMARY OF THE INVENTION The present invention relates generally to improvements in surgical procedures whereby ultrasonic energy is utilized and more particularly to methods and apparatus for closing off the terminal portions of severed blood vessels to stop or prevent the flow of blood therefrom during the surgical procedure and the joining of layers of tissue in biological organisms such as humans.
The outstanding and unexpected results obtained by the practice of the method and appartus of the present invention, are attained by a series of features, steps and elements, working together in inter-related combination, and may be applied to biological organisms in general and particularly humans, and hence will be so illustrated and described with respect to humans.
Applicant has already participated in earlier developments which led to U. S. Pat No. 3,086,288 covering the use of an ultrasonically vibrating scalpel or knife. The aim of that invention was to increase the ease with which a surgical knife could be used to cut organic tissues.
We are concerned in the present invention with new discoveries by applicant which allow dramatic improvements in the operation of high frequency vibrated knives, and also extend the use of the side area or worklaries comprise an area which is as much as 100,000 times the area of the arteries and veins, and thus it is seen that many more capillaries are involved per incision than any other vessels. The severing of capillaries produces an ooze of blood which must be mopped up or swabbed during an operation, while the larger blood vessels involved must be clamped or tied off to prevent bleeding during the surgery. The attending of these bleeding problems takes up about 67 percent of the time of most operations. It is a major aim of this invention to reduce this lost time considerably and at the same time to reduce the total loss of blood and to promote the healing of the wounds created. This is accomplished by the design of ultrasonic instruments so as to enhance those uses of ultrasonic energy needed to accelerate the desired objective, namely to stop bleeding.
Ordinarily, bleeding stops by virtue of the interaction between small bodies in the blood stream called platelets and the oxygen in the air, whereby the platelets disintegrate and form a network of fibers called fibrin which slow up and finally stop the blood flow by the formation of suitable clots. Heat may be used to accelerate this process, and in fact both electric cautery and hot wire cautery are used in controlling bleeding in some procedures. But these types of cautery produce, in addition to rapid clotting, an extensive destruction to all tissue, thereby requiring a long time in the healing. By means of ultrasonic energy it is possible to promote the clotting with far less damage, as will be disclosed 0 herein, so that bleeding may be very quickly halted and ing surface of a knife to perform a useful function, es-
warm blooded animals and humans) is comprised of two great and complex systems of arteries and veins. The arteries carry blood from the heart and these arteries divide in a complex network of smaller arteries or arterials, which in their turn connect to an extraordinarily complex network of very fine blood carrying tubes called capillaries. These capillaries are in communication with all the cells of the body and they provide the nutrients needed to feed these cells and they also supply the white blood cells needed to dispose of wastes and, in general, to police the cells and their environment in respect to unwanted substances and agents. After doing their job, the blood cells find their way back to the heart by means of a similar network of capillaries which join up to veinules or small veins, which in turn connect to veins which ultimately bring the blood back to the heart. There is also a lymph system which participates in this process, wherein again small tubes containing lymph (a kind of blood plasma with white corpuscles and waste products) convey this lymph through various strainers called lymph nodes and then, ultimately by means of the thoracic duct the purified lymph flow back into a large vein in the neck.
Now when the body is cut into at any location, in general a number of the tubes or vessels carrying blood are severed in this region. This severance will include many capillaries, some small veins and arteries and in some cases even a regular artery or a vein or both. The capilat the same time, much quicker healing will take place.
Electric and hot-wire cautery as well as cryogenic techniques are not effective for the care of bleeding from veins and arteries and it is here that special tyingoff methods or hemistatic clamping techniques are used. It is a further aim of this invention to teach how tying-off and clamping techniques may be replaced by utilizing ultrasonic energy in the proper way.
In all the ways whereby ultrasonic energy is used in this invention, the tool member supplying the energy executes vibrations of high frequency and small amplitude. Since the development of the ultrasonic knife, in part by present applicant, new alloys have become generally available which permit the maximum amplitude of vibration at a given frequency to be increased substantially. For example, in regular use a scalpel could be vibrated at 20 Kc/sec with a stroke of two to at most four thousandths of an inch. A larger stroke would cause a rapid fatigue failure of the ultrasonic motor driving the scalpel. With a new alloy of titanium (titanium with 6 Al 4V is one such) it is possible to go to strokes as high as 8 or 10 thousandths of an inch. This means that the rubbing action of a single stroke may be greatly enhanced, because the peak velocity achieved during the stroke is more than double the peak velocities previously attainable on a practical basis.
This improvement led applicant into the development of procedures and tools whereby such large ultrasonic motions could be put to work to stop capillary bleeding while cutting the surrounding tissue. In order to understand this, let us consider the transfer of energy which occurs during cutting. Wherever the tissue comes into contact with the cutting tool or scalpel, the tool member is moving to and fro at high frequency parallel to the surface of the tissue being severed. To the extent that there is good acoustic coupling between tissue and tool, there will be a transfer of shear waves into the tissue. But, tissue is of an acoustic nature as to be practically incapable of supporting high frequency shear waves. Therefore, the shear waves damp out very rapidly and dissipate their energy in the superficial tissue as heat. This promotes fibrin formation and clotting at the capillaries, while the damage to underlying tissue is minimal due to lack of penetration of this clotting energy. To the extent that the tool slips past the tissue during its to and fro motion, a rubbing action is set up, due to relative motion of tool and tissue and a frictional heat is generated at the tool tissue interface, again producing a heating and clotting action on the adjacent terminal portion of the opened capillaries and other blood vessels. Thus, entirely due to the ultrasonic to and fro motion of the tool, a coopeative dual effect is engendered whereby the ooze during an operation is effectively stopped while cutting.
Applicant has further found that the peak rubbing speed, which equals 1r fx the peak to and fro stroke (f frequency of tool) is relatively constant with respect to frequency. This is because the peak strain set up in the ultrasonic motor driving the cutting tool depends directly on the peak speed of the cutting tool and not on the peak frequency. Of course, this merely means that if one wishes to operate at a higher frequency, then one has to be content with a proportionately dimin-.
ished to and fro stroke of the tool. In any case, due to the cooperative effect, above outlined, essentially all of the energy of the tool is used in local, superficial heating, except for that used to actually sever the tissue itself. This latter component of energy is only a small fraction of the total energy used.
In actual practice, applicant has discovered that, by texturing or roughening the side walls of the cutting tool, the transfer of superficial cauterizing energy is increased so as such for certain surgical procedures it is preferable to use scalpels whose working surfaces or side faces are roughened rather than very smooth. The same principle applies to spatulate tools wherein no cutting is contemplated, but the tool is designed primarily to cauterize an already opened bed of blood vessels such as capillaries in a wound. In the case of the spatulate tool the amount of energy transfer may be increased by pressing the spatula tool working surface, while vibrating, with increased pressure against the wound to apply a compressive force for the transmission of the shear waves or increasing the frictional rubbing. Applicant has also discovered, that although it is not essential, it is nevertheless desirable to supply the cutting edge of a knife or scalpel with a set of small serrations. This further aids in clotting, and permits faster cutting, while at the same time halting capillary bleedmg.
Now, in addition to all of the above there are still additional aids arising from the use of ultrasonic energy during the cutting operation. This arises because the collagenous substances in the walls of the capillaries and also in those of veins are arteries, are capable of being joined or sealed together by the application of said high frequency energy. In fact, it is just this property which makes it possible to close off a vein or an artery by clamping it in a specially designed ultrasonic instrument, so that the walls of said blood vessel are briefly clamped while vibrating one or both of the tool jaws. Since this same principle applies to other soft body tissue such as the skin, this same type of tool may be used in place of the conventional suturing which is used in closing incisions in surgical procedures.
Thus, it may be seen that we are dealing with a highly complicated set of phenomena in practicing applicant's method of bloodless surgery. At this time, it is not known quantitatively just how large a role is played by each factor, such as shear wave absorption, frictional heat production and tissue sealing'The point is that by employing ultrasonic motors capable of producing generally higher strokes than previously available, the combination of effects permits for the first time, true bloodless surgical procedure by ultrasonic means. Where extremely fast procedures are essential, one may also resort to auxiliary heating of the vibrating tool member, but only to sub-cautery temperatures. This temperature is preferably above room temperature but below a temperature that would normally burn the tissue. This may be accomplished conventionally, or in accordance with the method disclosed in U. S. Pat. No. 3, 321,558 in which applicant is a co-inventor.
OBJECTIVES OF THE INVENTION An object of the present invention is to provide an improved method and apparatus for performing surgical procedures with ultrasonic energy.
Another object of the present invention is to provide an improved method and apparatus for securingv together layers of tissue in biological organisms, such as humans.
Yet another object of the present invention is to provide an improved method and apparatus for forming closures at the severed terminal portions of blood vessels in vivo, which blood vessels are in the general neighborhood of what are called capillaries, so as to prevent ooze, which requires contact mopping or cleansing during surgical operations.
A further object of the present invention is to provide improved method and apparatus for permanently or temporarily closing off blood vessels so as to replace the tying off of arteries and veins currently necessary in surgery.
Still another object of the present invention is to provide a method and apparatus of bloodless surgery which combines the surgical cutting of tissue and a closing off of the severed blood vessels to prevent the ooze associated with operations.
Yet still another object of the present invention is to provide a method and apparatus for simultaneously joining and trimming, as by cutting, a large blood vessel.
Yet still a further object of the present invention is to provide an improved method and apparatus for ultrasonically joining together layers of tissue.
Still a further object of the present invention is to provide an improved method and apparatus for increasing the flow of oxygen to the terminal portion of the severed blood vessel to expedite the clotting of the blood thereat.
Still yet a further object of the present invention is to provide an improved sealing apparatus for joining together layers of human tissue.
Still yet a further object of the present invention is to provide specially designed tools adapted to be ultrasonically vibrated and employed in surgical procedures.
Other objects and advantages of this invention will become apparent as the disclosure proceeds.
BRIEF DESCRIPTION OF THE DRAWINGS Although the characteristic features of this invention will be particularly pointed out in the claims, the invention itself, and the manner in which it may be made and used, may be better understood by referring to the following description taken in connection with the accompanying drawings forming a part hereof,-wherein like reference numerals refer to like parts throughout the several views and in which: g
FIG. I is a chart indicating the relationship of the principal factors affecting the practicing of the present invention for surgical procedures;
FIG. 2 is an assembled somewhat schematic view of an ultrasonic motor generator system of the type in which the motor is capable of being hand held and manipulated, for driving a tool member adapted to engage the biological organism for performing a surgical procedure, and which in the present instance the tool member is illustrated as a knife for severing blood vessels, the latter shown on a greatly enlarged scale for discussion purposes;
FIG. 3 is a side view of an ultrasonic tool member having a textured working surface in accordance with the present invention;
FIGS. 3A and 3B are end views of the tool member in FIG. 3 and illustrates two preferred ways of obtaining the textured working surface;
FIG. 4 is a greatly enlarged schematic representation of a portion of a tool member with its working surface in engagement with the terminal portion of a blood vessel for forming a closure thereat to prevent the flow of blood from said terminal portion;
FIG. 4A is an enlarged section view taken along line 4A4A of FIG. 4 to illustrate the interfacial contact between the tool'working surface andblood vessel for the transmission of frictional energy and shear waves for localized heating of the terminal portion;
FIG. 4B is a greatly enlarged schematic representation illustrating an ultrasonically vibrating tool member engaging a severed portion of tissue for simultaneously forming a plurality of closures at the terminal portions thereof;
FIG. 4C'is a greatly enlarged schematic representation illustrating the angular relationship between the tool member and blood vessel which defines a terminal plane that may define an extreme angle with the axis of the blood vessel and still obtain the desired results of the present invention;
FIG. 4D is an end view of the tool member and blood vessel of FIG. 4C;
FIGS. 5, 5A, 5B and 5C are enlarged schematic representations in cross-section of the method of forming a closure at the terminal portion of a blood vessel in which the side walls thereof are joined together;
FIG. 5D is an extremely enlarged view of a blood specimen to illustrate some of the important components thereof;
FIGS. 6 and 6A are enlarged schematic representations in cross-section of the method of forming a closure at the terminal portion of a blood vessel in which the closure is formed by partially converging the side walls thereof and forming a blood clot in the reduced opening;
FIGS. 7 and 7A are enlarged schematic representations in cross-section of the method of forming a closure at the terminal portion of a blood vessel in which the closure is formed by primarily forming a blood clot at the terminal portion thereof;
FIGS. 8 and 8A are side and end elevational views respectively, of a spatula tool member having a textured working surface for ultrasonic cautery;
FIG. 9 is an enlarged sectional view illustrating the forming of a plurality of closures on respective terminal portions in an open wound by the use of a spatula shaped tool;
FIG. 10 is a top longitudinal view, of one preferred form of ultrasonic system, of the type capable of being hand held and manipulated, for joining together layers of tissue, such as in humans;
FIG. Ill is a side longitudinal view, partly in crosssection, of the ultrasonic system of FIG. 10;
FIG. 12 is an enlarged schematic view, in crosssection, illustrating the application of the ultrasonic instrument illustrated in FIGS. 10 and 11 for securing together the walls of a blood vessel;
FIG. 12A is an enlarged schematic view, in crosssection, similar to FIG. 12 illustrating the actual joining of the overlapping wall portions;
FIG. 12B is a further enlarged schematic view, in cross-section, showing the actual bond obtained between the wall portions of the blood vessel;
FIG. 12C illustrates the ultrasonic system as used for simultaneously joining and cutting layers of tissue; and
FIG. 112D illustrates the ultrasonic system clamping means for intermittently joining overlapped layers of tissue.
DETAILED DISCUSSION OF THE DRAWINGS The high frequency transducer means may be either in the sonic or ultrasonic frequency range but for purposes of the present invention the word ultrasonic will be used to denote vibrations in the range of approximately 5,000 to 1,000,000 cycles per second. In addition the term blood vessel as used herein is intended to include any tubular member of the human body, but particularly capillaries, arterials, veinules, arteries and veins.
In performing the surgical procedures of the present invention there are several factors that have to be taken into consideration and analyzed in terms of a total or effective value to obtain the desired end results. The term total value" may be defined as the proper combination of these factors to obtain the desired end result.
Referring now to the drawings, FIG. I is a chart illustrating the relationship of the seven principal factors which are involved in the whole or in part for determining the total value associated with forming closures at the terminal portions of severed blood vessels, or joining together overlapping segments of layers of human tissue. The related factors are peak tool velocity, frequency of vibration, pressure applied with tool, tool working surface, cutting edge, tool temperature and oxygen for clotting. These factors vary with respect to the procedure being performed.
In the embodiments of the invention discussed below the working surface of the tool member is placed in engagement with at least one of the layers of tissue at a surface thereof such that a small compressive force is applied in a plane substantially normal to the engaged surface. While this compressive force is maintained the working surface of the tool member is vibrated at an ultrasonic rate to apply an additional energy producing force at the engaged surface. The compressive and energy producing forces are continued until the layers of tissue are secured together by the combined action of these forces.
When these layers of tissue form the walls of a blood vessel the forces are applied to the terminal surface thereof for producing localized heating in forming a closure to prevent the blood from escaping therefrom. The energy producing force may be divided into mechanical vibration energy absorption in tissue and frictional rubbing heat development in tissue both of which result in a localized heating of the walls of the blood vessel to obtain the tissue closure. The performing of surgical procedures as related to this aspect of the invention is discussed with reference to FIGS. 2 through 9, inclusive.
In contrast to this we have the joining of layers of tissue in overlapping relation to each other and in which case the compressive and vibrational forces are applied to one of the overlapped surfaces in a plane substantially normal thereto and in which case we primarily rely on mechanical vibration energy absorption in tissue to obtain the tissue joining. The performing of surgical procedures as related to this aspect of the invention is discussed with reference to FIGS. 10 through 12D, inclusive.
Referring again to the drawings, and with respect to FIG. 2, it will be seen that an apparatus 10 for ultrasonically performing surgical procedures on a biological organism, such as a human, may include an ultrasonic transducer or motor 11 for effecting the necessary high frequency vibrations of the tool member 13, such as a knife, having a sharp output edge or surface 15 with a working surface 16. The ultrasonic motor 11, as illustrated may be in the form of a driving member adapted for being hand held as by an operator 12, and generally comprising a tubular housing or casing 14 into which an insert unit 17 supporting the tool member 13 may be partially telescoped. The ultrasonic motor 11 is energized by an oscillation generator 18, with a power cable 19, connecting the two together. The generator is an oscillator adapted to produce electrical energy having an ultrasonic frequency.
The ultrasonic motor 11 may be one of a variety of electromechanical types, such as electrodynamic, piesoelectric and magnetostrictive. The ultrasonic motor for effecting surgical procedures through hand directed tools of suitable configuration, which are readily replaceable or inter-changeable with other work performing tools in acoustically vibrated material treating devices, may be of the type disclosed in U. S. Pat. Nos. Re 25,033, 3,075,288, 3,076,904 and 3,213,537, and wherein each work too] member is rigidly joined, in end-to-end relationship to a connecting body or acoustic impedance transformer and to a transducer which may form an insert unit or assembly which is removably supported in a housing containing a coil in surrounding relationship to the transducer and receiving alternating current for producing an alternating electromagnetic field.
The transducer in the ultrasonic motor 11 is longitudinally dimensioned so as to have lengths which are whole multiples of half-wavelengths of the compressional waves established therein at the frequency of the biased alternating current supplied so that longitudinal loops of motion as indicated by arrow 23, occur both at the end of the insert unit 17 to which the tool member 13 is rigidly connected and the knife edge. Thus,
the optimum amplitude of longitudinal vibration and hyper-accelerations of tool member 13 is achieved, and such amplitude is determined by the relationship of the masses of the tool member 13 and insert unit 17 which may be made effective to either magnify or reduce the amplitude of the vibrations received from the transducer.
The tool member 13 may be in the form of relatively flat metal spatula member, as shown in FIGS. 8 and 8A, hereinafter discussed in detail, to provide relatively wide surface areas for contact with the tissue to which the vibrations are to be applied for effecting the closure of severed blood vessels.
The tool member 13 may be permanently attached to the end of insert unit 17, for example, by brazing, solder or the like, or the tool may be provided with a threaded stud 20 adapted to be screwed into a tapped hole in the end of insert unit 17 for effecting the rigid connection of the tool to the stem. A base portion 21 is provided from which the stud 20 extends, from one end thereof, and from the other end a body 28 which is firmly secured thereto for the transmission of the ultrasonic vibrations. The body 28 may be brazed or welded to the base 21 of the tool member 13. A tapered surface 22 may be provided which connects the cutting edge 15 with the working surface 16.
As seen somewhat schematically in FIG. 2 the biological organism 25, such as a human, contains a layer of outer tissue or skin 26, an internal cellular structure 27 with a plurality of blood vessels 30 extending therethrough shown in an enlarged scale, as well as in the skin (not shown).
FIGS. 3, 3A and 3B illustrate various types of replaceable surgical implements, such as knives, that may be employed in accordance with the present invention. The knife 13a of FIG. 3 is similar to that illustrated in FIG. 2 and includes a base portion 21a, capable of supporting ultrasonic vibrations and adapted to be set into vibration in a given direction by the driving member. A threaded stud 20a extends from one end of the base 21a for engagement with the insert unit. The body portion 28a, in the form of a cutting blade, extends from the opposite end of the base 21a and includes a textured working surface 16a for enhancing the coupling action between the tool member 13a and the terminal portion of the severed blood vessels to be engaged. The cutting edge 15a may be serrated and have an outwardly tapered portion 22a between the cutting edge 15a and the substantially flat working surface 16a. The textured surface 16a may begin in close proximity to or start at the working edge 15a so that when cutting and sealing'small capillaries the rubbing action and transmission of shear waves begins immediately. The textured surface finish of 16a may vary from a micro finish in the range of 10 micro-inch to 10,000 micro-inch, but preferably in the range of 40 micro-inch to 200 microinch.
As illustrated in FIG. 3A the tool member 13a includes a body portion 28a having a coated textured layer of friction inducing material 29a which forms the working surface 16a and which may be of diamond or steel powder particles bonded to the body portion in any conventional manner well known in the art, to obtain the desired micro finish. The layer of coated material may be applied to both surfaces of the tool member and each surface may be of the same or different micro finish to obtain a debriding and superficial cauterizing.
The advantages are quicker healing as well as less damage to the tissue being treated.
FIG. 3B illustrates the obtainment of the working surface 16a byfinishing the metallic body 28a in any conventional manner to obtain the desired surface roughness. By providing the textured surface it is possible to control the rate of frictional heating of the blood vessels. The surface roughness is generally selected in accordance with the ultrasonic rate of vibration and the compressive force to be applied. This will in many instances relate to the particular surgeon performing the operation.
THEORY OF PRESENT INVENTION Whereasa scientific explanation of the theory based on the phenomena involved is disclosed below, it is to be clearly understood that the invention is by no means limited by any such scientific explanation.
Applicant has now discovered that mechanical vibrations properly applied may produce closures at the terminal ends of blood vessels to prevent the flow of blood therefrom and also join together layers of human tissue. With respect to forming the terminal closure it is possible to simultaneously cut through layers of tissue and seal off the terminal ends.
For purposes of illustration, we have in FIGS. 4 and 4A a single blood vessel 3012 having a wall 311; with a terminal portion 33b terminating in an end surface 3212, the latter in engagement with the working surface 16b of the tool member 13b which is being ultrasonically vibrated in the direction 23b.
At the interface of the working surface 16b and terminal surface 32b we have a transmission of both rubbing forces and mechanical vibrational energy to the blood vessel 30b which results in a localized heating of the terminal portion 33b. FIG. 4A illustrates the contour of the surfaces in engagement with each other and the transmission of the shear waves over the distance D. The pressure applied with the tool member, partially determines the degree of shear waves and rubbing vibrations transmitted to the terminal portion 33b of the blood vessel for a given textured tool. At point P shear vibration is developed in the tissue 31a, then at P the shear vibration has dropped almost to zero whereby the shear vibration energy is converted into heat in the tissue of the blood vessel. The smallness or minimal depth of penetration of P P is what makes for quick healing and cauterizing action of the tool member.
The shear wave pattern 35b extends the distance D, which is the distance from If to P along the blood vessel 30b to obtain the localized heating of the terminal portion. The coupling action at the working' surface 161) and'blood vessel 30b is enhanced by the application of the small compressive force, as indicated by arrow 36b, in a plane substantially normal to the plane defined by said terminal end surface 32b. At P in addition, to the extent that shear vibration is not induced in the tissue, there will be a slippage and a frictional rubbing action which will also produce heat practically instantaneously at P It is a combination of these effects which create the closure at the terminal portion of the blood vessel.
It will be appreciated that the relative amounts of shear vibration and frictional rubbing action will be determined or selected by the magnitude of the tool vibration and the tool surface in relation to the tissue surface. Many combinations are possible whereby either the frictional or the shear components may be emphasized.
' The extent that the rise in temperature occurs at the terminal portion 33b of the blood vessel 30b is related to the rubbing vibrations applied and this is related to the peak speed which is:
Vpeak=2rrfA A peak amplitude f frequency V peak velocity So that if f is raised, A is lowered and we can retain the same peak speed at all frequencies. This is why the more rubs per second the higher the frequency for the same output peak speed. Accordingly the working surface ll6b of the tool member 13b may be surface finished for sufficient roughness to allow increased friction against the tissue. This is quite different from a standard knife or scalpel which has polished sides.
The thickness of the tool member should also be held to a minimum so as to permit a .more rapid local temperature rise which is attributable to the shear production and absorption in the adjacent tissue and the temperature rise due to rubbing of tissue surface, which involves slippage between tool member and tissue surfaces. We can say that during the to and fro motion, neglecting the energy of cutting itself, when a knife is used we have:
Ultrasonic energy per stroke Ultrasonic shear energy produced per stroke Frictional rubbing energy per stroke.
Since, in both cases the energy absorbed goes into superficial heating of tissue and cutting tool, we can estimate the effects by considering all the energy to be fric' tional for ease of making approximate calculations.
Assuming an average force of friction, P, we have the power dissipated superficially at a tool tissue interface equal to:
S Stroke F average friction force P power Now V max. for a frequency of 20 lKc/sec and a stroke of 0.010 inch is approximately 50 FPS. Therefore P is approximately 15 watts, when F is between one half and one pound. Since this power is dissipated in a superficial region of the cutting, the heat capacity of the tissue and the tool are quite small. For example for a steel tool of dimension 1 inch X 0.125 inch X 0.010 inch the total heat capacity is only a few hundreths of a gram. In such a case it is possible to obtain local temperature rises of the order of hundreds of degrees centigrade under the condition outlined above. This is ample to stop ooze.
Accordingly the frequency and amplitude of vibration of said tool member is selected at a level wherein the transmitted shear waves are substantially maintained at the terminal portion 33b with only superficial penetration and heating of the remainder of the blood vessel 30b.
Accordingly, the frequency and amplitude of vibration is preferably selected at a level to provide a peak velocity of at least 10 feet per second along the working surface 16b of the tool member 13b and more generally the general range of approximately 40 feet per second to feet per second.
FIG. 4B shows a portion of the biological organism 25b with an outer layer of skin 26b and a plurality of blood vessels 30b extending through the cellular structure 27b and terminating against the working surface 16b of the tool member 13b. The tool member 13b is being vibrated at an ultrasonic rate in the direction of arrow 23b, which is in a plane substantially parallel to the plane defined by the terminal end portions 33b, to induce shear waves 35b, which penetrate the blood vessels 30b and surrounding tissue structure 27b. The high frequency vibration and amplitude of the tool member is selectedto obtain only a superficial penetration and resulting heating of the terminal portion 33b so that there is a minimum of damage to the underlying tissue area 31b and all of the blood vessels are simultaneously closed off. I
As illustrated in FIGS. 4C and 4D the terminal portion 33b has an end surface 32b that defines a plane 37b that may vary in angular relationship to the axis of the blood vessel 30b. In practice the angular engagement between the working surface 16b of the tool member 13b and the end surface 32b may not always be controlled during a surgical procedure since the blood vessels such as capillaries, veinules, veins, arterials and arteries extend in various directions throughout the body. The important consideration is that the ultrasonic longitudinal mechanical vibrations, as indicated by arrow 23b, are applied having a major component of vibration parallel to the terminal plane 37b and a component of compressive force, as indicated by arrow 36b, in a plane substantially perpendicular to the terminal plane 37b.
FIGS. 5, A, 5B, 5C, 6, 6A, 7 and 7A illustrate the actual surgical procedure in vivo of obtaining a closure at the terminal portion of a blood vessel using the ultrasonic instrument illustrated in FIG. 2, or a tool member illustrated in FIGS. 4, 4A and 4B. As explained with respect to the theory of the present invention in FIGS. 3, 3A, 3B, 3C and 3D the degree of shear waves and frictional rubbing may be controlled so that a predominant reliance on one or the other is produced.
In FIGS. 5, 5A, 5B and 5C the terminal closure 40c is formed primarily by producing a plastic flow of the wall of the blood vessel and continuing the flow for a period of time sufficient to obtain a joining of the severed ends together. Initially the cutting edge c of the tool member 13c is placed in engagement with the skin 260 of the body 250 and the tool member 130 is ultrasonically vibrated and a small compressive force in the direction of arrow 360 is applied to obtain a cutting of the skin 26c and progressively sever the tissue by a continued movement of the cutting edge 15c through the cellular material 270 until the wall 310 of the blood vessel 300 is engaged. The wall 310 for purposes of discussion is considered as layers of tissue 42c and 430, respectively.
As seen in FIG. 5A after the cutting edge 15c severs the tissue layer 42c a certain amount of blood 44c flows from within the blood vessel 30c into the opening 450 that has been formed. As the movement of the ultrasonic instrument is continued downwardly we have the engagement of the working surface 16c with the terminal end portion 330 of the blood vessel to apply a compressive force to the end surface to obtain a localized heating of the terminal portion by the application of the ultrasonic mechanical vibration.
The relative movement is continued so that the application of the mechanical vibrations are transmitted for a period of time sufficient for the localized heating to form the closure 400 at the terminal portion 33c. In this manner the terminal portion 33c is closed off by the formation of the closure 45c and the blood contained therein is prevented from escaping through the closure. The closure 45c is produced at least in part by the production of said shear waves and their conversion into heat coupled with the localized heating obtained by inducing frictional rubbing at the terminal portion 330. The extent of each factor will vary with the texture of the working surface and the degree of the compressive force applied by the working surface against the terminal portion.
FIG. 5D is an enlaged microscopic examination of the blood 44c and as illustrated the blood contains red corpuscles 46c, white corpuscles 47c and platelets 48c, the latter play an important role in the natural clotting of blood by producing fibrin when exposed to air. This natural clotting ability of blood is relied upon at least in part with respect to the formation of the closures illustrated in FIGS. 6, 6A, 7 and 7A.
FIGS. 6 and 6A illustrate the formation of the closure which is substantially formed by clotting of the blood at the terminal position. The working surface 16d is placed in engagement with the layers of wall 42d and 43d of the blood vessel 3011, which is of a size in the capillary range, with the blood 44d contained therein. The tool member 13d preferably has a textured surface to permit air and most importantly oxygen to be delivered past the layer of skin 26d to the terminal portion 33d of the blood vessel to obtain a clotting action. The tool member 16d acts as an ultrasonic pump and stimulates the flow of air to the work site. As the air reaches the work site we have the additional action of the conversion of the ultrasonic mechanical vibrations to obtain a localized heating by the conversion of the frictional motion into heat and the localized heating expediates the formation of the blood clot 50d which forms the closure 40d. Since the blood vessel is relatively small in diameter we have the formation of the closure 40d that is substantially formed by a clotting of the blood 44d therein. As seen in FIG. 6A the tool member is then removed leaving the opening of wound 45d and closures 40d formed on each respective end of the severed blood vessels.
FIGS. 7 and 7A illustrate the formation of a closure 40:: by partially closing the layers 42c and 43e of the wall 31c of the blood vessel 30:: at the terminal portions 33c by the localized heating and the remainder by forming a blood clot 502 of the blood 44c contained in the reduced area of the blood vessel. The ultrasonic tool member 136 transmits the mechanical vibration which produces a plastic flow of the wall 3le of said blood vessel which flow is continued for a period of time to obtain a reduced cross sectional area and during which same period of time the localized heating assists in the formation of the blood clot 50e which together with the reduced area forms the closure 40:: to prevent the blood from escaping therefrom. The tool member is then removed past the skin 262 leaving the opening 45c.
It is appreciated that the process although illustrated for a single blood vessel can be occurring simultaneously on a plurality of blood vessels. To increase the rate at which the closure is formed and reduce healing time the working surface of the tool member may be heated to a temperature level which is above room temperature, but below a temperature that would normally sear the terminal portion of the blood vessel. The temperature of the tool may be heated in any conventional manner, as for example, in accordance with US. Pat. No. 3,321,558.
There are instances in surgical procedures where it is desirable to be able to stop bleeding independently of having previously cut the tissue of the body. As for example, in gunshot wounds and other accidents it is often desirable to stop bleeding and accordingly spatula like tools in accordance with the present invention may be utilized.
FIGS. 8 and 8A illustrate one form of readily replaceable implement, in the form of a spatula like tool member 13f, having a body portion 28f with substantially flat parallel working surfaces 16f, that have been textured to a preselected micro finish to provide means for coupling the ultrasonic vibration to the terminal portions of the blood vessels. The surface finish is selected for the transmission of rubbing vibrations and shear waves to obtain the localized heating. One end of the spatula body portion 28f is fixedly secured to the base portion 21f, and the latter has a threaded stud 20f for securement to the ultrasonic driving member. The base portion 21f is preferably of a metallic material capable of supporting ultrasonic vibrations and adapted to be set into vibration in a given direction at ultrasonic frequencies. The body portion 28f may be in the order of 0.010 to 0.160 inches thick and be concave in configuration for strength reasons. It may also be designed to vibrate elliptically to permit intermittent separation of the tool member and terminal portions to promote the flow of air to theterminal portions for clotting.
As illustrated in FIG. 9 the spatula like tool member is illustrated for surgical procedures in which it is desired to form closures at terminal ends of blood vessels 30g separately from when the actual cutting is performed. Accordingly the spatula like tool 13g is inserted within the opening 45g of the body 25g such that the working surface 16g of the tool member 13g applies a compressive force against the terminal portions 33g of the severed blood vessels. The compressive force is applied in the direction of arrow 36g. The tool Hg is simultaneously vibrated, in a direction as indicated by arrow 23g, and' at an ultrasonic rate to transmit mechanical vibrations to the terminal portion 33g of the blood vessels to obtain a localized heating of at least some of the terminal portion. The application of said compressive force and mechanical vibrations are continued until a closure at the terminal portion is formed and the blood contained therein is prevented from escaping through the form closure. The thickness of the spatula tool member 133 may be narrower, as illustrated in FIG. 9, than the opening 45g in the body, such that only one surface 163 engages the severed blood vessels. If desired the width of the spatula body 28g may be substantially equal to that of the body opening 45g so that both terminal ends 33g of a respective blood vessel 303 is closed during one insertion of the tool member within the wound.
The localized heating to obtain the closures may be induced by frictional rubbing at the terminal portion 33g of the blood vessel 30g so that the closure is produced at least in part by frictional heating. By providing a textured surface to the tool member 13g the rate of frictional heating may be controlled when combined with the other factors to produce the terminal closure.
Depending upon the thickness of the spatula tool member either pure longitudinal vibration will be obtained or a flexural component of motion, as indicated by the arrow 51g, so as to obtain elliptical vibrational motion along the working surface 16g. This permits intermittent disengagement between the wall surface or terminal end of the blood vessel 33g and the working surface 16g so that air and in turn oxygen may be continuously supplied to the work site to assist in the clotting of the blood. I
FIGS. 10 and 11 illustrate one form 10h of the ultrasonic system for joining together in vivo, overlapping layers of organic tissue. The system includes a hand held instrument including an ultrasonic motor 11h, which may be the type as discussed with reference to FIG. 2, and include a tool member 13h having an enlarged portion 53h terminating in a working surface 16h that extends in a plane substantially normal to the direction of mechanical vibrations illustrated by the arrow 23h. The base 21h of the tool member 13h is secured to the insert portion 17h. Support means 55h is provided to act as an anvil or clamp so that the overlapped layers of tissue 42h and 43h of the wall 31h of the blood vessel 30h may be compressed between the vibratory working surface and a support surface.
The support means 55h includes a pair of legs 56h and 57h respectively, secured together at their lower end by bands 58h and provided with gripping means in the form of individual lugs 59h that extend outwardly from the upper end of the legs for engagement by the fingers of the surgeon or operator 12h in a manner hereinafter described. The leg 57h has a lower extension 60/: that terminates in a support arm 61h at substantially right angle to the extension 60h, and is provided with a support surface 62/1 in spaced relation to the working surface 16h of the tool member 13/1.
The legs 56h and 57h are in spaced relation to each other and may be contoured to conform to the cylindrical configuration of the ultrasonic transducer housing Mb. The generator 18h is connected to the transducer 11h by means of cable 19h in a conventional manner. As seen in FIG. 10 the cable 19h may enter the ultrasonic motor llh from the side so as to leave the rear end 63h free for engagement by the thumb or any other finger of the surgeon to permit manual control of the relative displacement between the overlapping working and support surfaces.
The support means 55h is mounted for relative movement, with respect to the ultrasonic motor 11h by providing a pair of slots 65h on each of the legs 56h and 57h, and which slots accept headed fasteners 66h which extend from the casing 14h through the slots 65h to permit free relative movement between the ultrasonic motor 11h and support means 55h. The lower end of the casing 14h is provided with an annular shoul der 67h which is adapted to receive spring means in the form of a spring 68h which is contained within the shoulder 67h at one end thereof and in engagement with the bands 5% at the opposite end thereof. The spring 63h applies a force in the direction of arrow 68h, so that the working surfaces of the support means and ultrasonic motor means are biassed away from each other whereby the force applied by the surgeon is required to bring the overlapping working and support surfaces together. If desired the spring may be coupled to the support and ultrasonic motor means so as to force them together with a predetermined static force which might be varied in a conventional manner not shown. In this manner once the static force is determined for the particular thickness of tissue the resultant permanent or temporary seal may be obtained. Accordingly the spring means may yieldably urge the support means 55h and transducer means 11h relative to each other to a position wherein the working and support surfaces 16h and 62h, respectively, are normally in engagement with each other under a predetermined static force, so that the support and transducer means are first separated for the placement of the layers of tissue 42h and 43h therebetween. In contrast to this the spring means may be adjusted such that the working and support surfaces are normally maintained in spacially fixed relation to each other, so that the layers 42h and 4311 are positioned between the surfaces which are brought together by the operation of the hand held instrument.
As previously explained during surgical procedures it becomes necessary to tie-off veins and arteries so as to prevent the flow of blood therethrough. In accordance with the invention the joining of the walls may be of a permanent or semi-permanent nature, and this is accomplished by properly selecting the frequency and amplitude of ultrasonic mechanical vibrations to produce an optimum flow of the collagenous elements contained in the overlapping portions of tissue. This collagenous material is similar to that normally found in the formation of scar tissue. In practice the ultrasonic instrument h may be employed to join together, at a select area the wall of a blood vessel and as seen in FIG. 10 the wall 31h may be considered to include the overlapping layers of tissue 42h and 43h.
As seen in FIGS. 12, 12A and 12B we have the blood vessel 30h exposed within an opening 45h within the organic body 25h. To produce a joining of the overlapping layers of wall tissue 4211 and 43h respectively, the arm 61h of the support means 55h is placed beneath the blood vessel 30h and the working surface 16h of the tool member 13h is brought into contact with the layer of tissue 42h. The working and support surfaces 16h and 62h are moved relative toward each other until the blood vessel 30h has the overlapping layers of tissue 42h and 43h in contact with each other as seen in FIG. 12A. Simultaneously therewith a small compressive force, in the direction of arrow 36h, is applied to the layers of tissue traversing the area of overlap.
The working surface of the tool member 13h is vibrated at an ultrasonic rage, as for example, in the frequency range of from Kc/sec to 100 Kc/sec and preferably in the range of 20 Kc/sec to 40 Kc/sec, so as to apply an additional recurring force to the overlapped layers of tissue, and produce a superficial heating at the interface of the overlapped layers. The vibrational force has a substantial component of vibration normal to the overlapped surfaces, as indicated by the arrow 23h. The frequency of the ultrasonic rate of vibration is selected in the above frequency range so as to preferably also produce an optimum flow of the collagenous elements in the overlapped layers of tissue. The energy is then continually applied until a closure or bond 40h is formed between the collagenous elements in the overlapping layers of tissue, as seen in FIG. 12B, and the blood is prevented from flowing past the closure. The closure 40h may be of a temporary nature or permanent one depending upon the proper control of the vibratory energy and static force to fuse together the superficially heated interface.
For certain applications it is desirable to join together the overlapping layers of tissue and at the same time cut off the excess material. As illustrated in FIG. 12C the support ann 61 j is provided with a cutting edge j and as the overlapped layers of tissue 42j and 43j are compressed between the working surface 16j and support surface 26j and joined together by the energy transmitted through the tool member l3j and the excess tissue layers 71j and 72j are cut off. If desired the cutting edge may be placed on the working surface l6j of the tool member l3j.
For those applications in which it is desired to intermittently join together overlapping layers of tissue we have the apparatus illustrated in FIG. 12D. The overlapping layers of tissue 42k and 43k are first clamped together by clamping means 75k which includes clamping members 76k and 77k which may form part of the ultrasonic instrument or may be the forward portion of a pair specially designed clamping instrument. The clamping means 75k is applied in close proximity to the area of overlap of the layers of tissue 42k and 43k to the joined together. The ultrasonic instrument 10k includes the support means 55k for engaging one side of the overlapped layers of tissue and which opposite side is engaged by the tool member 13k which is illustrated is provided with a circular working surface. By intermittently moving the ultrasonic instrument along the area of overlap a number of closures or bonds 30k, such as stitches may be formed.
While the invention has been described in connection with particular ultrasonic motor and tool member constructions, various other devices and methods of practicing the invention will occur to those skilled in the art. Therefore, it is not desired that the invention be limited to the specific details illustrated and described and it is intended by the appended claims to cover all modifications which fall within the spirit and scope of the invention.
I claim:
1. A method of preventing the flow of blood from a severed blood vessel in vivo, with the aid of a tool member having a working surface, comprising the steps of A. applying the working surface of said tool member against the terminal portion of said blood vessle to apply a compressive force thereto,
B. simultaneously vibrating the working surface of said tool member in a direction and at an ultrasonic rate to transmit mechanical vibrations to the terminal portion to obtain localized heating of at least some of said terminal portion,
C. continuing the application of said compressive force and mechanical vibrations until a closure at said terminal portion is formed, whereby the blood contained therein is prevented from escaping through said closure, and
D. providing said working surface of the tool member at a temperature level which is above room temperature, but below a temperature that would normally sear the terminal portion of the blood vessel, whereby the healing time is substantially reduced.
2. A method as claimed in claim 1, wherein said localized heating is obtained by inducing frictional rubbing at the terminal portion of said blood vessel by the application of said mechanical vibrations, whereby said closure is produced at least in part by said frictional heating.
3. A method as claimed in claim 1, further including the step of controlling the rate of frictional heating of the terminal portion of said blood vessel.
4. A method as claimed in claim 3, wherein said rate of frictional heating is controlled by texturing said tool working surface to a surface roughness selected in accordance with the ultrasonic rate of vibration and compressive force to be applied. V
5. A method as claimed in claim 1, wherein the application of said mechanical vibrations produce at least in part shear waves at the terminal portion, and the frequency and amplitude of vibration of said tool member is selected at a level wherein said transmitted shear waves are substantially maintained at the terminal portion with only superficial penetration and heating of the remainder of said blood vessel.
6. A method as claimed in claim 1, wherein said frequency and amplitude of vibration is selected at a level to provide a peak velocity of at least feet per second along the working surface of said tool member.
7. A method as claimed in claim 6, wherein said peak velocity is in the range of approximately 40 feet per second to 100 feet per second.
8. A method as claimed in claim 1, wherein said working surface is vibrated in an elliptical pattern.
9. A method as claimed in claim 1, wherein said mechanical vibrations are produced by vibrating the tool member to obtain longitudinal vibrations along said working surface, which working surface is maintained along a plane substantially parallel to the plane defined by the terminal portion of said blood vessel.
10. A method as claimed in claim 1, wherein said compressive force is applied along a line substantially perpendicular to the plane defined by the terminal portion of said blood vessel.
11. A method as claimed in claim 1, including the step of applying the working surface of a tool in the form of a knife wherein the working surface is a side wall of the tool member is in the form of a knife and said working surface comprising a side wall thereof.
12. A method as claimed in claim 11, wherein said knife is employed to sever the blood vessles and said working surface engages the terminal portions and simultaneously forms said closures.
13. A method as claimed in claim 1, including the step of applying said tool working surface simultaneously to a plurality of terminal portions of blood vessels.
14. A method of superfically cauterizing severed blood vessles of a wound in vivo, with the aid of a noncutting spatula like tool member having a working surface, comprising the steps of A. applying the working surface of said tool member against the terminal portion of said blood vessels, said tool member being at a temperature level which is above room temperature, but below a temperature that would normally sear the terminal portion of the blood vessel, whereby the healing time is substantially reduced,
B. retaining said tool member in a position relative to said severed blood vessels,
C. maintaining a compressive force applied along a line substantially perpendicular to the plane defined by the terminal portion of said blood vessels with said non-cutting spatula like tool member,
D. simultaneously vibrating the working surface of said tool member, at a peak velocity of at least 10 feet per second and, while maintaining said compressive force, in a direction and at an ultrasonic rate to transmit mechanical vibrations to the terminal portion, said localized heating is obtained by inducing friction rubbing at the terminal portion of said blood vessels by the application of said mechanical vibrations, and
E. continuing the retaining of said tool member in a position relative to said severed blood vessels and the application of said compressive force and mechanical vibrations until a superfic'al cauterization at said terminal portion is formed, whereby the blood contained therein is prevented from escap- 15. A method as claimed in claim 14, wherein the application of said mechanical vibrations produces at least in part shear waves at the terminal portion, and the frequency and amplitude of vibration of said tool member is selected at a level wherein said transmitted shear waves are substantially maintained at the terminal portion with only superficial penetration and heating of the remainder of said blood vessel.
16. A method as claimed in claim 14, wherein said peak velocity is in the range of approximately 40 feet per second to feet per second.
17. A method as claimed in claim 14, wherein said mechanical vibrations are produced by vibrating the tool member to obtain longitudinal vibrations along said working surface, which working surface is maintained along a plane substantially parallel to the plane defined by the terminal portion of said blood vessel.
18. A method as claimed in claim 14, wherein said closure is at least in part formed by a blood clot, and said localized heating expedites the formation of said blood clot.
19. A method as claimed in claim 14, wherein said closure is formed by partially closing the blood vessel by said localized heating and the remainder by clotting the blood contained in said reduced area of the blood vessel. I
20. A method as claimed in claim 14, wherein said ultrasonic mechanical vibrations are applied over an area to simultaneously close off a plurality of blood vessels.
21. A method as claimed in claim 14, wherein said mechanical vibration produces a plastic flow of the wall of said blood vessel and said flow is continued for a period of time sufficient to obtain a joining of the wall of said blood vessel to form said closure.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00179459A US3794040A (en) | 1967-10-27 | 1971-09-10 | Ultrasonic surgical procedures |
US423061A US3862630A (en) | 1967-10-27 | 1973-12-10 | Ultrasonic surgical methods |
US486401A US3898992A (en) | 1967-10-27 | 1974-07-08 | Ultrasonic surgical methods |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US678649A US3636943A (en) | 1967-10-27 | 1967-10-27 | Ultrasonic cauterization |
US00179459A US3794040A (en) | 1967-10-27 | 1971-09-10 | Ultrasonic surgical procedures |
Publications (1)
Publication Number | Publication Date |
---|---|
US3794040A true US3794040A (en) | 1974-02-26 |
Family
ID=24723702
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US678649A Expired - Lifetime US3636943A (en) | 1967-10-27 | 1967-10-27 | Ultrasonic cauterization |
US00179459A Expired - Lifetime US3794040A (en) | 1967-10-27 | 1971-09-10 | Ultrasonic surgical procedures |
US423061A Expired - Lifetime US3862630A (en) | 1967-10-27 | 1973-12-10 | Ultrasonic surgical methods |
US486401A Expired - Lifetime US3898992A (en) | 1967-10-27 | 1974-07-08 | Ultrasonic surgical methods |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US678649A Expired - Lifetime US3636943A (en) | 1967-10-27 | 1967-10-27 | Ultrasonic cauterization |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US423061A Expired - Lifetime US3862630A (en) | 1967-10-27 | 1973-12-10 | Ultrasonic surgical methods |
US486401A Expired - Lifetime US3898992A (en) | 1967-10-27 | 1974-07-08 | Ultrasonic surgical methods |
Country Status (1)
Country | Link |
---|---|
US (4) | US3636943A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3862630A (en) * | 1967-10-27 | 1975-01-28 | Ultrasonic Systems | Ultrasonic surgical methods |
US4854320A (en) * | 1983-10-06 | 1989-08-08 | Laser Surgery Software, Inc. | Laser healing method and apparatus |
US4911161A (en) * | 1987-04-29 | 1990-03-27 | Noetix, Inc. | Capsulectomy cutting apparatus |
US5002051A (en) * | 1983-10-06 | 1991-03-26 | Lasery Surgery Software, Inc. | Method for closing tissue wounds using radiative energy beams |
US5041108A (en) * | 1981-12-11 | 1991-08-20 | Pillco Limited Partnership | Method for laser treatment of body lumens |
US5140984A (en) * | 1983-10-06 | 1992-08-25 | Proclosure, Inc. | Laser healing method and apparatus |
US5151099A (en) * | 1989-03-28 | 1992-09-29 | Young Michael J R | Tool for removal of plastics material |
US5154694A (en) * | 1989-06-06 | 1992-10-13 | Kelman Charles D | Tissue scraper device for medical use |
US5417654A (en) * | 1994-02-02 | 1995-05-23 | Alcon Laboratories, Inc. | Elongated curved cavitation-generating tip for disintegrating tissue |
US5507744A (en) * | 1992-04-23 | 1996-04-16 | Scimed Life Systems, Inc. | Apparatus and method for sealing vascular punctures |
US5536266A (en) * | 1991-08-24 | 1996-07-16 | Orthosonics, Ltd. | Tool for removal of plastics material |
US5810810A (en) * | 1992-04-23 | 1998-09-22 | Scimed Life Systems, Inc. | Apparatus and method for sealing vascular punctures |
US6063085A (en) * | 1992-04-23 | 2000-05-16 | Scimed Life Systems, Inc. | Apparatus and method for sealing vascular punctures |
US6283935B1 (en) * | 1998-09-30 | 2001-09-04 | Hearten Medical | Ultrasonic device for providing reversible tissue damage to heart muscle |
US20060235376A1 (en) * | 2003-02-04 | 2006-10-19 | Cardiodex Ltd. | Methods and apparatus for hemostasis following arterial catheterization |
US20070055223A1 (en) * | 2003-02-04 | 2007-03-08 | Cardiodex, Ltd. | Methods and apparatus for hemostasis following arterial catheterization |
US20080167643A1 (en) * | 2004-11-22 | 2008-07-10 | Cardiodex Ltd. | Techniques for Heating-Treating Varicose Veins |
USRE40863E1 (en) * | 1992-04-23 | 2009-07-21 | Boston Scientific Scimed, Inc. | Apparatus and method for sealing vascular punctures |
US8366706B2 (en) | 2007-08-15 | 2013-02-05 | Cardiodex, Ltd. | Systems and methods for puncture closure |
USD843596S1 (en) | 2014-01-09 | 2019-03-19 | Axiosonic, Llc | Ultrasound applicator |
Families Citing this family (443)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3918442A (en) * | 1973-10-10 | 1975-11-11 | Georgy Alexandrovich Nikolaev | Surgical instrument for ultrasonic joining of biological tissue |
US4188952A (en) * | 1973-12-28 | 1980-02-19 | Loschilov Vladimir I | Surgical instrument for ultrasonic separation of biological tissue |
WO1985000280A1 (en) * | 1983-07-06 | 1985-01-31 | Peter Stasz | Electro cautery surgical blade |
DE3533423A1 (en) * | 1985-09-19 | 1987-03-26 | Wolf Gmbh Richard | APPLICATOR PLIERS FOR SURGICAL HANDLING FOR USE IN ENDOSCOPY |
JPS6266848A (en) * | 1985-09-20 | 1987-03-26 | 住友ベークライト株式会社 | Surgical operation appliance |
SE461010B (en) * | 1985-11-08 | 1989-12-18 | Swedemed Ab | DEVICE FOR ULTRA SOUND KNIFE |
SU1417868A1 (en) * | 1985-11-20 | 1988-08-23 | Томский государственный медицинский институт | Cryoultrasonic scalpel |
SU1563684A1 (en) * | 1986-05-26 | 1990-05-15 | Томский государственный медицинский институт | Cryosurgical scalpel |
SE459711B (en) * | 1987-03-20 | 1989-07-31 | Swedemed Ab | EQUIPMENT FOR USE IN SURGICAL INTERVENTIONS TO DISPOSE TISSUE |
US5015227A (en) * | 1987-09-30 | 1991-05-14 | Valleylab Inc. | Apparatus for providing enhanced tissue fragmentation and/or hemostasis |
US4931047A (en) * | 1987-09-30 | 1990-06-05 | Cavitron, Inc. | Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis |
US4887593A (en) * | 1989-01-26 | 1989-12-19 | Wiley Michael J | Method and apparatus for electrosurgically resectioning an equine soft palate to alleviate occlusion of the breathing passageway |
US5324297A (en) * | 1989-01-31 | 1994-06-28 | Advanced Osseous Technologies, Inc. | Ultrasonic tool connector |
US5382251A (en) * | 1989-01-31 | 1995-01-17 | Biomet, Inc. | Plug pulling method |
US5318570A (en) * | 1989-01-31 | 1994-06-07 | Advanced Osseous Technologies, Inc. | Ultrasonic tool |
US5019083A (en) * | 1989-01-31 | 1991-05-28 | Advanced Osseous Technologies, Inc. | Implanting and removal of orthopedic prostheses |
US5045054A (en) * | 1990-02-06 | 1991-09-03 | Advanced Osseous Technologies Inc. | Apparatus for implantation and extraction of osteal prostheses |
US5263957A (en) * | 1990-03-12 | 1993-11-23 | Ultracision Inc. | Ultrasonic scalpel blade and methods of application |
US5695510A (en) * | 1992-02-20 | 1997-12-09 | Hood; Larry L. | Ultrasonic knife |
US5261922A (en) * | 1992-02-20 | 1993-11-16 | Hood Larry L | Improved ultrasonic knife |
US5383883A (en) * | 1992-06-07 | 1995-01-24 | Wilk; Peter J. | Method for ultrasonically applying a surgical device |
US5322055B1 (en) * | 1993-01-27 | 1997-10-14 | Ultracision Inc | Clamp coagulator/cutting system for ultrasonic surgical instruments |
US5484434A (en) * | 1993-12-06 | 1996-01-16 | New Dimensions In Medicine, Inc. | Electrosurgical scalpel |
WO1995032669A1 (en) * | 1994-06-01 | 1995-12-07 | Perclose, Inc. | Apparatus and method for advancing surgical knots |
AU694225B2 (en) * | 1994-08-02 | 1998-07-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic hemostatic and cutting instrument |
US6669690B1 (en) * | 1995-04-06 | 2003-12-30 | Olympus Optical Co., Ltd. | Ultrasound treatment system |
US6129735A (en) * | 1996-06-21 | 2000-10-10 | Olympus Optical Co., Ltd. | Ultrasonic treatment appliance |
US6887252B1 (en) | 1996-06-21 | 2005-05-03 | Olympus Corporation | Ultrasonic treatment appliance |
US5906628A (en) * | 1996-06-26 | 1999-05-25 | Olympus Optical Co., Ltd. | Ultrasonic treatment instrument |
US5718717A (en) | 1996-08-19 | 1998-02-17 | Bonutti; Peter M. | Suture anchor |
CA2213948C (en) | 1996-09-19 | 2006-06-06 | United States Surgical Corporation | Ultrasonic dissector |
US20050143769A1 (en) * | 2002-08-19 | 2005-06-30 | White Jeffrey S. | Ultrasonic dissector |
EP1364618A1 (en) | 1996-09-19 | 2003-11-26 | United States Surgical Corporation | Ultrasonic dissector |
US6036667A (en) * | 1996-10-04 | 2000-03-14 | United States Surgical Corporation | Ultrasonic dissection and coagulation system |
EP1698289B1 (en) * | 1996-10-04 | 2008-04-30 | United States Surgical Corporation | Instrument for cutting tissue |
ES2409267T3 (en) | 1996-10-04 | 2013-06-26 | Covidien Lp | Tissue cutting instrument |
US5931847A (en) * | 1997-01-09 | 1999-08-03 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument with improved cutting edge |
US5968060A (en) * | 1997-02-28 | 1999-10-19 | Ethicon Endo-Surgery, Inc. | Ultrasonic interlock and method of using the same |
US5989275A (en) * | 1997-02-28 | 1999-11-23 | Ethicon Endo-Surgery, Inc. | Damping ultrasonic transmission components |
US5810859A (en) * | 1997-02-28 | 1998-09-22 | Ethicon Endo-Surgery, Inc. | Apparatus for applying torque to an ultrasonic transmission component |
AU6357298A (en) | 1997-04-28 | 1998-10-29 | Ethicon Endo-Surgery, Inc. | Methods and devices for controlling the vibration of ultrasonic transmission components |
USH1904H (en) * | 1997-05-14 | 2000-10-03 | Ethicon Endo-Surgery, Inc. | Electrosurgical hemostatic method and device |
USH2037H1 (en) | 1997-05-14 | 2002-07-02 | David C. Yates | Electrosurgical hemostatic device including an anvil |
US6024750A (en) * | 1997-08-14 | 2000-02-15 | United States Surgical | Ultrasonic curved blade |
US6267761B1 (en) * | 1997-09-09 | 2001-07-31 | Sherwood Services Ag | Apparatus and method for sealing and cutting tissue |
US6113558A (en) * | 1997-09-29 | 2000-09-05 | Angiosonics Inc. | Pulsed mode lysis method |
JP3766520B2 (en) * | 1997-10-06 | 2006-04-12 | オリンパス株式会社 | Vascular anastomosis device |
US6726686B2 (en) * | 1997-11-12 | 2004-04-27 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US6050996A (en) * | 1997-11-12 | 2000-04-18 | Sherwood Services Ag | Bipolar electrosurgical instrument with replaceable electrodes |
US6352536B1 (en) * | 2000-02-11 | 2002-03-05 | Sherwood Services Ag | Bipolar electrosurgical instrument for sealing vessels |
US7135020B2 (en) | 1997-11-12 | 2006-11-14 | Sherwood Services Ag | Electrosurgical instrument reducing flashover |
US7435249B2 (en) * | 1997-11-12 | 2008-10-14 | Covidien Ag | Electrosurgical instruments which reduces collateral damage to adjacent tissue |
US20030014052A1 (en) * | 1997-11-14 | 2003-01-16 | Buysse Steven P. | Laparoscopic bipolar electrosurgical instrument |
US6228083B1 (en) * | 1997-11-14 | 2001-05-08 | Sherwood Services Ag | Laparoscopic bipolar electrosurgical instrument |
AU2174399A (en) | 1998-01-19 | 1999-08-02 | Michael John Radley Young | Ultrasonic cutting tool |
US6045551A (en) | 1998-02-06 | 2000-04-04 | Bonutti; Peter M. | Bone suture |
US6231578B1 (en) | 1998-08-05 | 2001-05-15 | United States Surgical Corporation | Ultrasonic snare for excising tissue |
WO2002080797A1 (en) | 1998-10-23 | 2002-10-17 | Sherwood Services Ag | Vessel sealing instrument |
US7267677B2 (en) | 1998-10-23 | 2007-09-11 | Sherwood Services Ag | Vessel sealing instrument |
US7364577B2 (en) | 2002-02-11 | 2008-04-29 | Sherwood Services Ag | Vessel sealing system |
US7118570B2 (en) | 2001-04-06 | 2006-10-10 | Sherwood Services Ag | Vessel sealing forceps with disposable electrodes |
US20040249374A1 (en) * | 1998-10-23 | 2004-12-09 | Tetzlaff Philip M. | Vessel sealing instrument |
ES2324479T3 (en) * | 1998-10-23 | 2009-08-07 | Covidien Ag | BIPOLAR ENDOSCOPIC ELECTROCHIRURGICAL FORCEPS. |
US7582087B2 (en) * | 1998-10-23 | 2009-09-01 | Covidien Ag | Vessel sealing instrument |
US6585735B1 (en) * | 1998-10-23 | 2003-07-01 | Sherwood Services Ag | Endoscopic bipolar electrosurgical forceps |
WO2000062678A1 (en) | 1999-04-15 | 2000-10-26 | Ethicon Endo-Surgery, Inc. | Ultrasonic transducer with improved compressive loading |
US6117152A (en) * | 1999-06-18 | 2000-09-12 | Ethicon Endo-Surgery, Inc. | Multi-function ultrasonic surgical instrument |
US6254623B1 (en) | 1999-06-30 | 2001-07-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator surgical instrument with improved blade geometry |
US6447516B1 (en) | 1999-08-09 | 2002-09-10 | Peter M. Bonutti | Method of securing tissue |
US6368343B1 (en) | 2000-03-13 | 2002-04-09 | Peter M. Bonutti | Method of using ultrasonic vibration to secure body tissue |
US6432118B1 (en) | 1999-10-05 | 2002-08-13 | Ethicon Endo-Surgery, Inc. | Multifunctional curved blade for use with an ultrasonic surgical instrument |
US6325811B1 (en) * | 1999-10-05 | 2001-12-04 | Ethicon Endo-Surgery, Inc. | Blades with functional balance asymmetries for use with ultrasonic surgical instruments |
US6458142B1 (en) | 1999-10-05 | 2002-10-01 | Ethicon Endo-Surgery, Inc. | Force limiting mechanism for an ultrasonic surgical instrument |
JP4233742B2 (en) * | 1999-10-05 | 2009-03-04 | エシコン・エンド−サージェリィ・インコーポレイテッド | Connecting curved clamp arms and tissue pads used with ultrasonic surgical instruments |
US7887535B2 (en) * | 1999-10-18 | 2011-02-15 | Covidien Ag | Vessel sealing wave jaw |
US20030109875A1 (en) | 1999-10-22 | 2003-06-12 | Tetzlaff Philip M. | Open vessel sealing forceps with disposable electrodes |
US6443969B1 (en) | 2000-08-15 | 2002-09-03 | Misonix, Inc. | Ultrasonic cutting blade with cooling |
US6379371B1 (en) | 1999-11-15 | 2002-04-30 | Misonix, Incorporated | Ultrasonic cutting blade with cooling |
US6635073B2 (en) | 2000-05-03 | 2003-10-21 | Peter M. Bonutti | Method of securing body tissue |
KR100818730B1 (en) | 2000-02-03 | 2008-04-02 | 사운드 써지칼 테크놀로지 엘엘씨 | Surgical handpiece with surgical blade |
US9138222B2 (en) | 2000-03-13 | 2015-09-22 | P Tech, Llc | Method and device for securing body tissue |
US7094251B2 (en) | 2002-08-27 | 2006-08-22 | Marctec, Llc. | Apparatus and method for securing a suture |
US8932330B2 (en) | 2000-03-13 | 2015-01-13 | P Tech, Llc | Method and device for securing body tissue |
US7329263B2 (en) * | 2000-03-13 | 2008-02-12 | Marctec, Llc | Method and device for securing body tissue |
US6514267B2 (en) * | 2001-03-26 | 2003-02-04 | Iep Pharmaceutical Devices Inc. | Ultrasonic scalpel |
US7118587B2 (en) * | 2001-04-06 | 2006-10-10 | Sherwood Services Ag | Vessel sealer and divider |
US7083618B2 (en) * | 2001-04-06 | 2006-08-01 | Sherwood Services Ag | Vessel sealer and divider |
DE60204759T2 (en) * | 2001-04-06 | 2006-04-27 | Sherwood Services Ag | CAST AND ISOLATING HINGE FOR BIPOLAR INSTRUMENTS |
US7090673B2 (en) * | 2001-04-06 | 2006-08-15 | Sherwood Services Ag | Vessel sealer and divider |
US7101373B2 (en) * | 2001-04-06 | 2006-09-05 | Sherwood Services Ag | Vessel sealer and divider |
US7101372B2 (en) | 2001-04-06 | 2006-09-05 | Sherwood Sevices Ag | Vessel sealer and divider |
AU2001249932B8 (en) * | 2001-04-06 | 2006-05-04 | Covidien Ag | Electrosurgical instrument which reduces collateral damage to adjacent tissue |
ES2364666T3 (en) | 2001-04-06 | 2011-09-12 | Covidien Ag | SHUTTER AND DIVIDER OF GLASSES WITH NON-CONDUCTIVE BUMPER MEMBERS. |
US7101371B2 (en) | 2001-04-06 | 2006-09-05 | Dycus Sean T | Vessel sealer and divider |
US10835307B2 (en) | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
US6719765B2 (en) | 2001-12-03 | 2004-04-13 | Bonutti 2003 Trust-A | Magnetic suturing system and method |
US20040199194A1 (en) * | 2001-12-18 | 2004-10-07 | Witt David A. | Curved clamp arm tissue pad attachment for use with ultrasonic surgical instruments |
US9155544B2 (en) | 2002-03-20 | 2015-10-13 | P Tech, Llc | Robotic systems and methods |
US20040115296A1 (en) * | 2002-04-05 | 2004-06-17 | Duffin Terry M. | Retractable overmolded insert retention apparatus |
US20030204199A1 (en) * | 2002-04-30 | 2003-10-30 | Novak Theodore A. D. | Device and method for ultrasonic tissue excision with tissue selectivity |
US7361172B2 (en) | 2002-06-04 | 2008-04-22 | Sound Surgical Technologies Llc | Ultrasonic device and method for tissue coagulation |
US7291161B2 (en) * | 2002-10-02 | 2007-11-06 | Atricure, Inc. | Articulated clamping member |
US7931649B2 (en) * | 2002-10-04 | 2011-04-26 | Tyco Healthcare Group Lp | Vessel sealing instrument with electrical cutting mechanism |
US7270664B2 (en) | 2002-10-04 | 2007-09-18 | Sherwood Services Ag | Vessel sealing instrument with electrical cutting mechanism |
US7276068B2 (en) | 2002-10-04 | 2007-10-02 | Sherwood Services Ag | Vessel sealing instrument with electrical cutting mechanism |
FR2846910B1 (en) | 2002-11-08 | 2005-07-01 | Jean Yves Stollmeyer | COMBINED BUSINESS CARD HOLDER AND CARD LETTER |
US7799026B2 (en) * | 2002-11-14 | 2010-09-21 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US20040102783A1 (en) * | 2002-11-27 | 2004-05-27 | Sutterlin Chester E. | Powered Kerrison-like Rongeur system |
US7033354B2 (en) * | 2002-12-10 | 2006-04-25 | Sherwood Services Ag | Electrosurgical electrode having a non-conductive porous ceramic coating |
WO2004082495A1 (en) * | 2003-03-13 | 2004-09-30 | Sherwood Services Ag | Bipolar concentric electrode assembly for soft tissue fusion |
US20060064086A1 (en) * | 2003-03-13 | 2006-03-23 | Darren Odom | Bipolar forceps with multiple electrode array end effector assembly |
US20060052779A1 (en) * | 2003-03-13 | 2006-03-09 | Hammill Curt D | Electrode assembly for tissue fusion |
US7497864B2 (en) | 2003-04-30 | 2009-03-03 | Marctec, Llc. | Tissue fastener and methods for using same |
US7160299B2 (en) * | 2003-05-01 | 2007-01-09 | Sherwood Services Ag | Method of fusing biomaterials with radiofrequency energy |
US7147638B2 (en) * | 2003-05-01 | 2006-12-12 | Sherwood Services Ag | Electrosurgical instrument which reduces thermal damage to adjacent tissue |
US8128624B2 (en) * | 2003-05-01 | 2012-03-06 | Covidien Ag | Electrosurgical instrument that directs energy delivery and protects adjacent tissue |
EP1628586B1 (en) * | 2003-05-15 | 2011-07-06 | Covidien AG | Tissue sealer with non-conductive variable stop members |
USD499181S1 (en) | 2003-05-15 | 2004-11-30 | Sherwood Services Ag | Handle for a vessel sealer and divider |
US7150097B2 (en) | 2003-06-13 | 2006-12-19 | Sherwood Services Ag | Method of manufacturing jaw assembly for vessel sealer and divider |
US7150749B2 (en) * | 2003-06-13 | 2006-12-19 | Sherwood Services Ag | Vessel sealer and divider having elongated knife stroke and safety cutting mechanism |
US7597693B2 (en) | 2003-06-13 | 2009-10-06 | Covidien Ag | Vessel sealer and divider for use with small trocars and cannulas |
US7857812B2 (en) * | 2003-06-13 | 2010-12-28 | Covidien Ag | Vessel sealer and divider having elongated knife stroke and safety for cutting mechanism |
US7156846B2 (en) | 2003-06-13 | 2007-01-02 | Sherwood Services Ag | Vessel sealer and divider for use with small trocars and cannulas |
USD956973S1 (en) | 2003-06-13 | 2022-07-05 | Covidien Ag | Movable handle for endoscopic vessel sealer and divider |
US9848938B2 (en) | 2003-11-13 | 2017-12-26 | Covidien Ag | Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion |
US7367976B2 (en) | 2003-11-17 | 2008-05-06 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7232440B2 (en) * | 2003-11-17 | 2007-06-19 | Sherwood Services Ag | Bipolar forceps having monopolar extension |
US7500975B2 (en) * | 2003-11-19 | 2009-03-10 | Covidien Ag | Spring loaded reciprocating tissue cutting mechanism in a forceps-style electrosurgical instrument |
US7131970B2 (en) * | 2003-11-19 | 2006-11-07 | Sherwood Services Ag | Open vessel sealing instrument with cutting mechanism |
US7252667B2 (en) * | 2003-11-19 | 2007-08-07 | Sherwood Services Ag | Open vessel sealing instrument with cutting mechanism and distal lockout |
US7811283B2 (en) | 2003-11-19 | 2010-10-12 | Covidien Ag | Open vessel sealing instrument with hourglass cutting mechanism and over-ratchet safety |
US7442193B2 (en) * | 2003-11-20 | 2008-10-28 | Covidien Ag | Electrically conductive/insulative over-shoe for tissue fusion |
US7074494B2 (en) * | 2004-02-19 | 2006-07-11 | E. I. Du Pont De Nemours And Company | Flame retardant surface coverings |
US8182501B2 (en) * | 2004-02-27 | 2012-05-22 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical shears and method for sealing a blood vessel using same |
US7780662B2 (en) | 2004-03-02 | 2010-08-24 | Covidien Ag | Vessel sealing system using capacitive RF dielectric heating |
US20080039873A1 (en) | 2004-03-09 | 2008-02-14 | Marctec, Llc. | Method and device for securing body tissue |
US7195631B2 (en) * | 2004-09-09 | 2007-03-27 | Sherwood Services Ag | Forceps with spring loaded end effector assembly |
CN100584285C (en) * | 2004-09-14 | 2010-01-27 | 奥林巴斯株式会社 | Ultrasonic treatment device and probe for ultrasonic treatment device |
US7540872B2 (en) | 2004-09-21 | 2009-06-02 | Covidien Ag | Articulating bipolar electrosurgical instrument |
US7384421B2 (en) | 2004-10-06 | 2008-06-10 | Sherwood Services Ag | Slide-activated cutting assembly |
PL1802245T3 (en) | 2004-10-08 | 2017-01-31 | Ethicon Endosurgery Llc | Ultrasonic surgical instrument |
US7955332B2 (en) | 2004-10-08 | 2011-06-07 | Covidien Ag | Mechanism for dividing tissue in a hemostat-style instrument |
US7628792B2 (en) | 2004-10-08 | 2009-12-08 | Covidien Ag | Bilateral foot jaws |
US20060084973A1 (en) * | 2004-10-14 | 2006-04-20 | Dylan Hushka | Momentary rocker switch for use with vessel sealing instruments |
US7686827B2 (en) | 2004-10-21 | 2010-03-30 | Covidien Ag | Magnetic closure mechanism for hemostat |
US20060089646A1 (en) | 2004-10-26 | 2006-04-27 | Bonutti Peter M | Devices and methods for stabilizing tissue and implants |
US9271766B2 (en) | 2004-10-26 | 2016-03-01 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9463012B2 (en) | 2004-10-26 | 2016-10-11 | P Tech, Llc | Apparatus for guiding and positioning an implant |
US9173647B2 (en) | 2004-10-26 | 2015-11-03 | P Tech, Llc | Tissue fixation system |
US7479148B2 (en) * | 2004-11-08 | 2009-01-20 | Crescendo Technologies, Llc | Ultrasonic shear with asymmetrical motion |
US7909823B2 (en) * | 2005-01-14 | 2011-03-22 | Covidien Ag | Open vessel sealing instrument |
US7686804B2 (en) | 2005-01-14 | 2010-03-30 | Covidien Ag | Vessel sealer and divider with rotating sealer and cutter |
US9089323B2 (en) | 2005-02-22 | 2015-07-28 | P Tech, Llc | Device and method for securing body tissue |
US7285895B2 (en) * | 2005-03-15 | 2007-10-23 | Crescendo Technologies, Llc | Ultrasonic medical device and method |
US20090204114A1 (en) * | 2005-03-31 | 2009-08-13 | Covidien Ag | Electrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue |
US7491202B2 (en) * | 2005-03-31 | 2009-02-17 | Covidien Ag | Electrosurgical forceps with slow closure sealing plates and method of sealing tissue |
US20080209650A1 (en) * | 2005-05-03 | 2008-09-04 | Ultreo, Inc. | Oral hygiene devices |
CA2605308C (en) * | 2005-05-03 | 2015-01-20 | Ultreo, Inc. | Oral hygiene devices employing an acoustic waveguide |
US7837685B2 (en) * | 2005-07-13 | 2010-11-23 | Covidien Ag | Switch mechanisms for safe activation of energy on an electrosurgical instrument |
US7628791B2 (en) | 2005-08-19 | 2009-12-08 | Covidien Ag | Single action tissue sealer |
US7922953B2 (en) | 2005-09-30 | 2011-04-12 | Covidien Ag | Method for manufacturing an end effector assembly |
CA2561034C (en) | 2005-09-30 | 2014-12-09 | Sherwood Services Ag | Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue |
JP2007098137A (en) | 2005-09-30 | 2007-04-19 | Sherwood Services Ag | Insulating boots for electrosurgical forceps |
US7722607B2 (en) | 2005-09-30 | 2010-05-25 | Covidien Ag | In-line vessel sealer and divider |
US7879035B2 (en) * | 2005-09-30 | 2011-02-01 | Covidien Ag | Insulating boot for electrosurgical forceps |
US7789878B2 (en) * | 2005-09-30 | 2010-09-07 | Covidien Ag | In-line vessel sealer and divider |
US20070191713A1 (en) | 2005-10-14 | 2007-08-16 | Eichmann Stephen E | Ultrasonic device for cutting and coagulating |
US8152825B2 (en) * | 2005-10-14 | 2012-04-10 | Ethicon Endo-Surgery, Inc. | Medical ultrasound system and handpiece and methods for making and tuning |
US7594916B2 (en) | 2005-11-22 | 2009-09-29 | Covidien Ag | Electrosurgical forceps with energy based tissue division |
US7621930B2 (en) | 2006-01-20 | 2009-11-24 | Ethicon Endo-Surgery, Inc. | Ultrasound medical instrument having a medical ultrasonic blade |
US7766910B2 (en) * | 2006-01-24 | 2010-08-03 | Tyco Healthcare Group Lp | Vessel sealer and divider for large tissue structures |
US8241282B2 (en) | 2006-01-24 | 2012-08-14 | Tyco Healthcare Group Lp | Vessel sealing cutting assemblies |
US8882766B2 (en) | 2006-01-24 | 2014-11-11 | Covidien Ag | Method and system for controlling delivery of energy to divide tissue |
US8734443B2 (en) * | 2006-01-24 | 2014-05-27 | Covidien Lp | Vessel sealer and divider for large tissue structures |
US8298232B2 (en) | 2006-01-24 | 2012-10-30 | Tyco Healthcare Group Lp | Endoscopic vessel sealer and divider for large tissue structures |
US11253296B2 (en) | 2006-02-07 | 2022-02-22 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US11278331B2 (en) | 2006-02-07 | 2022-03-22 | P Tech Llc | Method and devices for intracorporeal bonding of implants with thermal energy |
US8496657B2 (en) | 2006-02-07 | 2013-07-30 | P Tech, Llc. | Methods for utilizing vibratory energy to weld, stake and/or remove implants |
US7967820B2 (en) | 2006-02-07 | 2011-06-28 | P Tech, Llc. | Methods and devices for trauma welding |
US11246638B2 (en) | 2006-05-03 | 2022-02-15 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US7641653B2 (en) * | 2006-05-04 | 2010-01-05 | Covidien Ag | Open vessel sealing forceps disposable handswitch |
US7846158B2 (en) * | 2006-05-05 | 2010-12-07 | Covidien Ag | Apparatus and method for electrode thermosurgery |
US20070260238A1 (en) * | 2006-05-05 | 2007-11-08 | Sherwood Services Ag | Combined energy level button |
US20080097501A1 (en) * | 2006-06-22 | 2008-04-24 | Tyco Healthcare Group Lp | Ultrasonic probe deflection sensor |
US7776037B2 (en) * | 2006-07-07 | 2010-08-17 | Covidien Ag | System and method for controlling electrode gap during tissue sealing |
US20080015575A1 (en) * | 2006-07-14 | 2008-01-17 | Sherwood Services Ag | Vessel sealing instrument with pre-heated electrodes |
US7744615B2 (en) * | 2006-07-18 | 2010-06-29 | Covidien Ag | Apparatus and method for transecting tissue on a bipolar vessel sealing instrument |
US8597297B2 (en) * | 2006-08-29 | 2013-12-03 | Covidien Ag | Vessel sealing instrument with multiple electrode configurations |
WO2008029408A1 (en) * | 2006-09-08 | 2008-03-13 | Arbel Medical Ltd. | Method and device for combined treatment |
US8070746B2 (en) | 2006-10-03 | 2011-12-06 | Tyco Healthcare Group Lp | Radiofrequency fusion of cardiac tissue |
US7951149B2 (en) * | 2006-10-17 | 2011-05-31 | Tyco Healthcare Group Lp | Ablative material for use with tissue treatment device |
WO2008087649A1 (en) * | 2007-01-19 | 2008-07-24 | Arbel Medical Ltd. | Thermally insulated needles for dermatological applications |
US8617185B2 (en) | 2007-02-13 | 2013-12-31 | P Tech, Llc. | Fixation device |
USD649249S1 (en) | 2007-02-15 | 2011-11-22 | Tyco Healthcare Group Lp | End effectors of an elongated dissecting and dividing instrument |
US20080234709A1 (en) * | 2007-03-22 | 2008-09-25 | Houser Kevin L | Ultrasonic surgical instrument and cartilage and bone shaping blades therefor |
US8142461B2 (en) * | 2007-03-22 | 2012-03-27 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8057498B2 (en) | 2007-11-30 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument blades |
US8226675B2 (en) * | 2007-03-22 | 2012-07-24 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8911460B2 (en) | 2007-03-22 | 2014-12-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8267935B2 (en) | 2007-04-04 | 2012-09-18 | Tyco Healthcare Group Lp | Electrosurgical instrument reducing current densities at an insulator conductor junction |
US20100162730A1 (en) * | 2007-06-14 | 2010-07-01 | Arbel Medical Ltd. | Siphon for delivery of liquid cryogen from dewar flask |
US20100324546A1 (en) * | 2007-07-09 | 2010-12-23 | Alexander Levin | Cryosheath |
US8257377B2 (en) * | 2007-07-27 | 2012-09-04 | Ethicon Endo-Surgery, Inc. | Multiple end effectors ultrasonic surgical instruments |
US8523889B2 (en) | 2007-07-27 | 2013-09-03 | Ethicon Endo-Surgery, Inc. | Ultrasonic end effectors with increased active length |
US8882791B2 (en) * | 2007-07-27 | 2014-11-11 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US8808319B2 (en) * | 2007-07-27 | 2014-08-19 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8348967B2 (en) | 2007-07-27 | 2013-01-08 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US9044261B2 (en) * | 2007-07-31 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Temperature controlled ultrasonic surgical instruments |
US8252012B2 (en) | 2007-07-31 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with modulator |
US8512365B2 (en) * | 2007-07-31 | 2013-08-20 | Ethicon Endo-Surgery, Inc. | Surgical instruments |
US8430898B2 (en) * | 2007-07-31 | 2013-04-30 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
US7877852B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing an end effector assembly for sealing tissue |
US7877853B2 (en) | 2007-09-20 | 2011-02-01 | Tyco Healthcare Group Lp | Method of manufacturing end effector assembly for sealing tissue |
US8267936B2 (en) | 2007-09-28 | 2012-09-18 | Tyco Healthcare Group Lp | Insulating mechanically-interfaced adhesive for electrosurgical forceps |
US8221416B2 (en) * | 2007-09-28 | 2012-07-17 | Tyco Healthcare Group Lp | Insulating boot for electrosurgical forceps with thermoplastic clevis |
US8241283B2 (en) | 2007-09-28 | 2012-08-14 | Tyco Healthcare Group Lp | Dual durometer insulating boot for electrosurgical forceps |
US8235993B2 (en) * | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Insulating boot for electrosurgical forceps with exohinged structure |
US8236025B2 (en) * | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Silicone insulated electrosurgical forceps |
US8235992B2 (en) * | 2007-09-28 | 2012-08-07 | Tyco Healthcare Group Lp | Insulating boot with mechanical reinforcement for electrosurgical forceps |
US20090088748A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Mesh-like Boot for Electrosurgical Forceps |
US20090088745A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Tapered Insulating Boot for Electrosurgical Forceps |
US20090088750A1 (en) * | 2007-09-28 | 2009-04-02 | Tyco Healthcare Group Lp | Insulating Boot with Silicone Overmold for Electrosurgical Forceps |
US8251996B2 (en) * | 2007-09-28 | 2012-08-28 | Tyco Healthcare Group Lp | Insulating sheath for electrosurgical forceps |
US9023043B2 (en) * | 2007-09-28 | 2015-05-05 | Covidien Lp | Insulating mechanically-interfaced boot and jaws for electrosurgical forceps |
USD594983S1 (en) | 2007-10-05 | 2009-06-23 | Ethicon Endo-Surgery, Inc. | Handle assembly for surgical instrument |
CN101883531B (en) | 2007-10-05 | 2014-07-02 | 伊西康内外科公司 | Ergonomic surgical instruments |
WO2009066292A1 (en) * | 2007-11-21 | 2009-05-28 | Arbel Medical Ltd. | Pumping unit for delivery of liquid medium from a vessel |
US10010339B2 (en) | 2007-11-30 | 2018-07-03 | Ethicon Llc | Ultrasonic surgical blades |
US7901423B2 (en) | 2007-11-30 | 2011-03-08 | Ethicon Endo-Surgery, Inc. | Folded ultrasonic end effectors with increased active length |
US20110015624A1 (en) * | 2008-01-15 | 2011-01-20 | Icecure Medical Ltd. | Cryosurgical instrument insulating system |
US8764748B2 (en) * | 2008-02-06 | 2014-07-01 | Covidien Lp | End effector assembly for electrosurgical device and method for making the same |
US8623276B2 (en) * | 2008-02-15 | 2014-01-07 | Covidien Lp | Method and system for sterilizing an electrosurgical instrument |
WO2009128014A1 (en) | 2008-04-16 | 2009-10-22 | Arbel Medical Ltd | Cryosurgical instrument with enhanced heat exchange |
US8469956B2 (en) | 2008-07-21 | 2013-06-25 | Covidien Lp | Variable resistor jaw |
US8058771B2 (en) | 2008-08-06 | 2011-11-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic device for cutting and coagulating with stepped output |
US9089360B2 (en) | 2008-08-06 | 2015-07-28 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US8257387B2 (en) * | 2008-08-15 | 2012-09-04 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
US20100042143A1 (en) * | 2008-08-15 | 2010-02-18 | Cunningham James S | Method of Transferring Pressure in an Articulating Surgical Instrument |
US8162973B2 (en) * | 2008-08-15 | 2012-04-24 | Tyco Healthcare Group Lp | Method of transferring pressure in an articulating surgical instrument |
US9603652B2 (en) * | 2008-08-21 | 2017-03-28 | Covidien Lp | Electrosurgical instrument including a sensor |
US8784417B2 (en) * | 2008-08-28 | 2014-07-22 | Covidien Lp | Tissue fusion jaw angle improvement |
US20100057081A1 (en) * | 2008-08-28 | 2010-03-04 | Tyco Healthcare Group Lp | Tissue Fusion Jaw Angle Improvement |
US8795274B2 (en) * | 2008-08-28 | 2014-08-05 | Covidien Lp | Tissue fusion jaw angle improvement |
US8317787B2 (en) * | 2008-08-28 | 2012-11-27 | Covidien Lp | Tissue fusion jaw angle improvement |
US20100057118A1 (en) * | 2008-09-03 | 2010-03-04 | Dietz Timothy G | Ultrasonic surgical blade |
US20100063500A1 (en) * | 2008-09-05 | 2010-03-11 | Tyco Healthcare Group Lp | Apparatus, System and Method for Performing an Electrosurgical Procedure |
US8303582B2 (en) | 2008-09-15 | 2012-11-06 | Tyco Healthcare Group Lp | Electrosurgical instrument having a coated electrode utilizing an atomic layer deposition technique |
US20100069953A1 (en) * | 2008-09-16 | 2010-03-18 | Tyco Healthcare Group Lp | Method of Transferring Force Using Flexible Fluid-Filled Tubing in an Articulating Surgical Instrument |
US20100064524A1 (en) * | 2008-09-17 | 2010-03-18 | Mah Pat Y | Vibrating peeler |
US20100076430A1 (en) * | 2008-09-24 | 2010-03-25 | Tyco Healthcare Group Lp | Electrosurgical Instrument Having a Thumb Lever and Related System and Method of Use |
US9375254B2 (en) * | 2008-09-25 | 2016-06-28 | Covidien Lp | Seal and separate algorithm |
US8535312B2 (en) * | 2008-09-25 | 2013-09-17 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US8968314B2 (en) * | 2008-09-25 | 2015-03-03 | Covidien Lp | Apparatus, system and method for performing an electrosurgical procedure |
US8142473B2 (en) | 2008-10-03 | 2012-03-27 | Tyco Healthcare Group Lp | Method of transferring rotational motion in an articulating surgical instrument |
US8469957B2 (en) * | 2008-10-07 | 2013-06-25 | Covidien Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8016827B2 (en) | 2008-10-09 | 2011-09-13 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US8636761B2 (en) * | 2008-10-09 | 2014-01-28 | Covidien Lp | Apparatus, system, and method for performing an endoscopic electrosurgical procedure |
US8486107B2 (en) * | 2008-10-20 | 2013-07-16 | Covidien Lp | Method of sealing tissue using radiofrequency energy |
US20100281917A1 (en) * | 2008-11-05 | 2010-11-11 | Alexander Levin | Apparatus and Method for Condensing Contaminants for a Cryogenic System |
US8197479B2 (en) * | 2008-12-10 | 2012-06-12 | Tyco Healthcare Group Lp | Vessel sealer and divider |
US20100168741A1 (en) * | 2008-12-29 | 2010-07-01 | Hideo Sanai | Surgical operation apparatus |
US8114122B2 (en) | 2009-01-13 | 2012-02-14 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US7967814B2 (en) | 2009-02-05 | 2011-06-28 | Icecure Medical Ltd. | Cryoprobe with vibrating mechanism |
CA2753592A1 (en) | 2009-02-24 | 2010-09-02 | P Tech, Llc | Methods and devices for utilizing bondable materials |
WO2010105158A1 (en) * | 2009-03-12 | 2010-09-16 | Icecure Medical Ltd. | Combined cryotherapy and brachytherapy device and method |
GB0906930D0 (en) * | 2009-04-23 | 2009-06-03 | Orthosonics Ltd | Improved bone resector |
US8187273B2 (en) | 2009-05-07 | 2012-05-29 | Tyco Healthcare Group Lp | Apparatus, system, and method for performing an electrosurgical procedure |
US9700339B2 (en) * | 2009-05-20 | 2017-07-11 | Ethicon Endo-Surgery, Inc. | Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US20100298743A1 (en) * | 2009-05-20 | 2010-11-25 | Ethicon Endo-Surgery, Inc. | Thermally-activated coupling arrangements and methods for attaching tools to ultrasonic surgical instruments |
US20100305439A1 (en) * | 2009-05-27 | 2010-12-02 | Eyal Shai | Device and Method for Three-Dimensional Guidance and Three-Dimensional Monitoring of Cryoablation |
US8650728B2 (en) | 2009-06-24 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Method of assembling a transducer for a surgical instrument |
US8246618B2 (en) | 2009-07-08 | 2012-08-21 | Tyco Healthcare Group Lp | Electrosurgical jaws with offset knife |
US8461744B2 (en) * | 2009-07-15 | 2013-06-11 | Ethicon Endo-Surgery, Inc. | Rotating transducer mount for ultrasonic surgical instruments |
US9017326B2 (en) * | 2009-07-15 | 2015-04-28 | Ethicon Endo-Surgery, Inc. | Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments |
US8663220B2 (en) | 2009-07-15 | 2014-03-04 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments |
USD630324S1 (en) | 2009-08-05 | 2011-01-04 | Tyco Healthcare Group Lp | Dissecting surgical jaw |
US8968358B2 (en) * | 2009-08-05 | 2015-03-03 | Covidien Lp | Blunt tissue dissection surgical instrument jaw designs |
US8133254B2 (en) | 2009-09-18 | 2012-03-13 | Tyco Healthcare Group Lp | In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor |
US8112871B2 (en) | 2009-09-28 | 2012-02-14 | Tyco Healthcare Group Lp | Method for manufacturing electrosurgical seal plates |
USRE47996E1 (en) | 2009-10-09 | 2020-05-19 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US9050093B2 (en) | 2009-10-09 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US10172669B2 (en) | 2009-10-09 | 2019-01-08 | Ethicon Llc | Surgical instrument comprising an energy trigger lockout |
US9168054B2 (en) | 2009-10-09 | 2015-10-27 | Ethicon Endo-Surgery, Inc. | Surgical generator for ultrasonic and electrosurgical devices |
US10441345B2 (en) | 2009-10-09 | 2019-10-15 | Ethicon Llc | Surgical generator for ultrasonic and electrosurgical devices |
US11090104B2 (en) | 2009-10-09 | 2021-08-17 | Cilag Gmbh International | Surgical generator for ultrasonic and electrosurgical devices |
US8388647B2 (en) * | 2009-10-28 | 2013-03-05 | Covidien Lp | Apparatus for tissue sealing |
US8323302B2 (en) * | 2010-02-11 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Methods of using ultrasonically powered surgical instruments with rotatable cutting implements |
US8419759B2 (en) * | 2010-02-11 | 2013-04-16 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instrument with comb-like tissue trimming device |
US8531064B2 (en) * | 2010-02-11 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Ultrasonically powered surgical instruments with rotating cutting implement |
US8961547B2 (en) * | 2010-02-11 | 2015-02-24 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with moving cutting implement |
US8469981B2 (en) | 2010-02-11 | 2013-06-25 | Ethicon Endo-Surgery, Inc. | Rotatable cutting implement arrangements for ultrasonic surgical instruments |
US8486096B2 (en) | 2010-02-11 | 2013-07-16 | Ethicon Endo-Surgery, Inc. | Dual purpose surgical instrument for cutting and coagulating tissue |
US8951272B2 (en) | 2010-02-11 | 2015-02-10 | Ethicon Endo-Surgery, Inc. | Seal arrangements for ultrasonically powered surgical instruments |
US9259234B2 (en) | 2010-02-11 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements |
US8579928B2 (en) | 2010-02-11 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Outer sheath and blade arrangements for ultrasonic surgical instruments |
US8382782B2 (en) * | 2010-02-11 | 2013-02-26 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement |
US7967815B1 (en) | 2010-03-25 | 2011-06-28 | Icecure Medical Ltd. | Cryosurgical instrument with enhanced heat transfer |
US7938822B1 (en) | 2010-05-12 | 2011-05-10 | Icecure Medical Ltd. | Heating and cooling of cryosurgical instrument using a single cryogen |
GB2480498A (en) | 2010-05-21 | 2011-11-23 | Ethicon Endo Surgery Inc | Medical device comprising RF circuitry |
US8080005B1 (en) | 2010-06-10 | 2011-12-20 | Icecure Medical Ltd. | Closed loop cryosurgical pressure and flow regulated system |
EP2409664B1 (en) * | 2010-07-22 | 2013-10-30 | W & H Dentalwerk Bürmoos GmbH | Medicinal treatment device and method for regulating same |
US8795327B2 (en) | 2010-07-22 | 2014-08-05 | Ethicon Endo-Surgery, Inc. | Electrosurgical instrument with separate closure and cutting members |
US9192431B2 (en) | 2010-07-23 | 2015-11-24 | Ethicon Endo-Surgery, Inc. | Electrosurgical cutting and sealing instrument |
US8888809B2 (en) | 2010-10-01 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
US8979890B2 (en) | 2010-10-01 | 2015-03-17 | Ethicon Endo-Surgery, Inc. | Surgical instrument with jaw member |
GB201017968D0 (en) | 2010-10-23 | 2010-12-08 | Sra Dev Ltd | Ergonomic handpiece for laparoscopic and open surgery |
US9113940B2 (en) | 2011-01-14 | 2015-08-25 | Covidien Lp | Trigger lockout and kickback mechanism for surgical instruments |
US8968293B2 (en) | 2011-04-12 | 2015-03-03 | Covidien Lp | Systems and methods for calibrating power measurements in an electrosurgical generator |
US9259265B2 (en) | 2011-07-22 | 2016-02-16 | Ethicon Endo-Surgery, Llc | Surgical instruments for tensioning tissue |
USD700967S1 (en) | 2011-08-23 | 2014-03-11 | Covidien Ag | Handle for portable surgical device |
USD687549S1 (en) | 2011-10-24 | 2013-08-06 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US9333025B2 (en) | 2011-10-24 | 2016-05-10 | Ethicon Endo-Surgery, Llc | Battery initialization clip |
USD680220S1 (en) | 2012-01-12 | 2013-04-16 | Coviden IP | Slider handle for laparoscopic device |
EP2811932B1 (en) | 2012-02-10 | 2019-06-26 | Ethicon LLC | Robotically controlled surgical instrument |
US9226766B2 (en) | 2012-04-09 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Serial communication protocol for medical device |
US9439668B2 (en) | 2012-04-09 | 2016-09-13 | Ethicon Endo-Surgery, Llc | Switch arrangements for ultrasonic surgical instruments |
US9241731B2 (en) | 2012-04-09 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Rotatable electrical connection for ultrasonic surgical instruments |
US9237921B2 (en) | 2012-04-09 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Devices and techniques for cutting and coagulating tissue |
US9724118B2 (en) | 2012-04-09 | 2017-08-08 | Ethicon Endo-Surgery, Llc | Techniques for cutting and coagulating tissue for ultrasonic surgical instruments |
US20140005705A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Surgical instruments with articulating shafts |
US9351754B2 (en) | 2012-06-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Ultrasonic surgical instruments with distally positioned jaw assemblies |
US9326788B2 (en) | 2012-06-29 | 2016-05-03 | Ethicon Endo-Surgery, Llc | Lockout mechanism for use with robotic electrosurgical device |
US9408622B2 (en) | 2012-06-29 | 2016-08-09 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US20140005702A1 (en) | 2012-06-29 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Ultrasonic surgical instruments with distally positioned transducers |
US9198714B2 (en) | 2012-06-29 | 2015-12-01 | Ethicon Endo-Surgery, Inc. | Haptic feedback devices for surgical robot |
US9820768B2 (en) | 2012-06-29 | 2017-11-21 | Ethicon Llc | Ultrasonic surgical instruments with control mechanisms |
US9393037B2 (en) | 2012-06-29 | 2016-07-19 | Ethicon Endo-Surgery, Llc | Surgical instruments with articulating shafts |
US9283045B2 (en) | 2012-06-29 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Surgical instruments with fluid management system |
US9226767B2 (en) | 2012-06-29 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Closed feedback control for electrosurgical device |
US9907699B2 (en) | 2012-07-05 | 2018-03-06 | Domestic Legacy Limited Partnership | One step tympanostomy tube and method of inserting same |
US10687982B2 (en) | 2012-07-05 | 2020-06-23 | Domestic Legacy Limited Partnership | One-step tympanostomy tube and method for inserting same |
IN2015DN02432A (en) | 2012-09-28 | 2015-09-04 | Ethicon Endo Surgery Inc | |
US10201365B2 (en) | 2012-10-22 | 2019-02-12 | Ethicon Llc | Surgeon feedback sensing and display methods |
US9095367B2 (en) | 2012-10-22 | 2015-08-04 | Ethicon Endo-Surgery, Inc. | Flexible harmonic waveguides/blades for surgical instruments |
US20140135804A1 (en) | 2012-11-15 | 2014-05-15 | Ethicon Endo-Surgery, Inc. | Ultrasonic and electrosurgical devices |
US10076377B2 (en) | 2013-01-05 | 2018-09-18 | P Tech, Llc | Fixation systems and methods |
US10226273B2 (en) | 2013-03-14 | 2019-03-12 | Ethicon Llc | Mechanical fasteners for use with surgical energy devices |
US9241728B2 (en) | 2013-03-15 | 2016-01-26 | Ethicon Endo-Surgery, Inc. | Surgical instrument with multiple clamping mechanisms |
WO2015017992A1 (en) | 2013-08-07 | 2015-02-12 | Covidien Lp | Surgical forceps |
US9814514B2 (en) | 2013-09-13 | 2017-11-14 | Ethicon Llc | Electrosurgical (RF) medical instruments for cutting and coagulating tissue |
US9265926B2 (en) | 2013-11-08 | 2016-02-23 | Ethicon Endo-Surgery, Llc | Electrosurgical devices |
GB2521229A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
GB2521228A (en) | 2013-12-16 | 2015-06-17 | Ethicon Endo Surgery Inc | Medical device |
US9795436B2 (en) | 2014-01-07 | 2017-10-24 | Ethicon Llc | Harvesting energy from a surgical generator |
US9554854B2 (en) | 2014-03-18 | 2017-01-31 | Ethicon Endo-Surgery, Llc | Detecting short circuits in electrosurgical medical devices |
US9675374B2 (en) * | 2014-03-24 | 2017-06-13 | Ethicon Llc | Ultrasonic forceps |
US10463421B2 (en) | 2014-03-27 | 2019-11-05 | Ethicon Llc | Two stage trigger, clamp and cut bipolar vessel sealer |
US10092310B2 (en) | 2014-03-27 | 2018-10-09 | Ethicon Llc | Electrosurgical devices |
US9737355B2 (en) | 2014-03-31 | 2017-08-22 | Ethicon Llc | Controlling impedance rise in electrosurgical medical devices |
US9913680B2 (en) | 2014-04-15 | 2018-03-13 | Ethicon Llc | Software algorithms for electrosurgical instruments |
US9700333B2 (en) | 2014-06-30 | 2017-07-11 | Ethicon Llc | Surgical instrument with variable tissue compression |
US10285724B2 (en) | 2014-07-31 | 2019-05-14 | Ethicon Llc | Actuation mechanisms and load adjustment assemblies for surgical instruments |
US10231777B2 (en) | 2014-08-26 | 2019-03-19 | Covidien Lp | Methods of manufacturing jaw members of an end-effector assembly for a surgical instrument |
US10639092B2 (en) | 2014-12-08 | 2020-05-05 | Ethicon Llc | Electrode configurations for surgical instruments |
US10159524B2 (en) | 2014-12-22 | 2018-12-25 | Ethicon Llc | High power battery powered RF amplifier topology |
US10245095B2 (en) | 2015-02-06 | 2019-04-02 | Ethicon Llc | Electrosurgical instrument with rotation and articulation mechanisms |
US10321950B2 (en) | 2015-03-17 | 2019-06-18 | Ethicon Llc | Managing tissue treatment |
US10342602B2 (en) | 2015-03-17 | 2019-07-09 | Ethicon Llc | Managing tissue treatment |
US10595929B2 (en) | 2015-03-24 | 2020-03-24 | Ethicon Llc | Surgical instruments with firing system overload protection mechanisms |
US10314638B2 (en) | 2015-04-07 | 2019-06-11 | Ethicon Llc | Articulating radio frequency (RF) tissue seal with articulating state sensing |
US10034684B2 (en) | 2015-06-15 | 2018-07-31 | Ethicon Llc | Apparatus and method for dissecting and coagulating tissue |
US11020140B2 (en) | 2015-06-17 | 2021-06-01 | Cilag Gmbh International | Ultrasonic surgical blade for use with ultrasonic surgical instruments |
US11141213B2 (en) | 2015-06-30 | 2021-10-12 | Cilag Gmbh International | Surgical instrument with user adaptable techniques |
US10034704B2 (en) | 2015-06-30 | 2018-07-31 | Ethicon Llc | Surgical instrument with user adaptable algorithms |
US10357303B2 (en) | 2015-06-30 | 2019-07-23 | Ethicon Llc | Translatable outer tube for sealing using shielded lap chole dissector |
US11129669B2 (en) | 2015-06-30 | 2021-09-28 | Cilag Gmbh International | Surgical system with user adaptable techniques based on tissue type |
US10898256B2 (en) | 2015-06-30 | 2021-01-26 | Ethicon Llc | Surgical system with user adaptable techniques based on tissue impedance |
US11051873B2 (en) | 2015-06-30 | 2021-07-06 | Cilag Gmbh International | Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters |
US10154852B2 (en) | 2015-07-01 | 2018-12-18 | Ethicon Llc | Ultrasonic surgical blade with improved cutting and coagulation features |
US9987078B2 (en) | 2015-07-22 | 2018-06-05 | Covidien Lp | Surgical forceps |
US10631918B2 (en) | 2015-08-14 | 2020-04-28 | Covidien Lp | Energizable surgical attachment for a mechanical clamp |
US10987159B2 (en) | 2015-08-26 | 2021-04-27 | Covidien Lp | Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread |
US20170086909A1 (en) | 2015-09-30 | 2017-03-30 | Ethicon Endo-Surgery, Llc | Frequency agile generator for a surgical instrument |
US10595930B2 (en) | 2015-10-16 | 2020-03-24 | Ethicon Llc | Electrode wiping surgical device |
US10959771B2 (en) | 2015-10-16 | 2021-03-30 | Ethicon Llc | Suction and irrigation sealing grasper |
US10058393B2 (en) | 2015-10-21 | 2018-08-28 | P Tech, Llc | Systems and methods for navigation and visualization |
US10213250B2 (en) | 2015-11-05 | 2019-02-26 | Covidien Lp | Deployment and safety mechanisms for surgical instruments |
US10959806B2 (en) | 2015-12-30 | 2021-03-30 | Ethicon Llc | Energized medical device with reusable handle |
US10179022B2 (en) | 2015-12-30 | 2019-01-15 | Ethicon Llc | Jaw position impedance limiter for electrosurgical instrument |
US10575892B2 (en) | 2015-12-31 | 2020-03-03 | Ethicon Llc | Adapter for electrical surgical instruments |
US12193698B2 (en) | 2016-01-15 | 2025-01-14 | Cilag Gmbh International | Method for self-diagnosing operation of a control switch in a surgical instrument system |
US10716615B2 (en) | 2016-01-15 | 2020-07-21 | Ethicon Llc | Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade |
US11129670B2 (en) | 2016-01-15 | 2021-09-28 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization |
US11229471B2 (en) | 2016-01-15 | 2022-01-25 | Cilag Gmbh International | Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization |
US10299821B2 (en) | 2016-01-15 | 2019-05-28 | Ethicon Llc | Modular battery powered handheld surgical instrument with motor control limit profile |
US10555769B2 (en) | 2016-02-22 | 2020-02-11 | Ethicon Llc | Flexible circuits for electrosurgical instrument |
US10485607B2 (en) | 2016-04-29 | 2019-11-26 | Ethicon Llc | Jaw structure with distal closure for electrosurgical instruments |
US10702329B2 (en) | 2016-04-29 | 2020-07-07 | Ethicon Llc | Jaw structure with distal post for electrosurgical instruments |
US10856934B2 (en) | 2016-04-29 | 2020-12-08 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting and tissue engaging members |
US10646269B2 (en) | 2016-04-29 | 2020-05-12 | Ethicon Llc | Non-linear jaw gap for electrosurgical instruments |
US10987156B2 (en) | 2016-04-29 | 2021-04-27 | Ethicon Llc | Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members |
US10456193B2 (en) | 2016-05-03 | 2019-10-29 | Ethicon Llc | Medical device with a bilateral jaw configuration for nerve stimulation |
US10245064B2 (en) | 2016-07-12 | 2019-04-02 | Ethicon Llc | Ultrasonic surgical instrument with piezoelectric central lumen transducer |
US10893883B2 (en) | 2016-07-13 | 2021-01-19 | Ethicon Llc | Ultrasonic assembly for use with ultrasonic surgical instruments |
US10842522B2 (en) | 2016-07-15 | 2020-11-24 | Ethicon Llc | Ultrasonic surgical instruments having offset blades |
US10856933B2 (en) | 2016-08-02 | 2020-12-08 | Covidien Lp | Surgical instrument housing incorporating a channel and methods of manufacturing the same |
US10376305B2 (en) | 2016-08-05 | 2019-08-13 | Ethicon Llc | Methods and systems for advanced harmonic energy |
US10285723B2 (en) | 2016-08-09 | 2019-05-14 | Ethicon Llc | Ultrasonic surgical blade with improved heel portion |
USD847990S1 (en) | 2016-08-16 | 2019-05-07 | Ethicon Llc | Surgical instrument |
US10779847B2 (en) | 2016-08-25 | 2020-09-22 | Ethicon Llc | Ultrasonic transducer to waveguide joining |
US10952759B2 (en) | 2016-08-25 | 2021-03-23 | Ethicon Llc | Tissue loading of a surgical instrument |
US10751117B2 (en) | 2016-09-23 | 2020-08-25 | Ethicon Llc | Electrosurgical instrument with fluid diverter |
US10918407B2 (en) | 2016-11-08 | 2021-02-16 | Covidien Lp | Surgical instrument for grasping, treating, and/or dividing tissue |
US10603064B2 (en) | 2016-11-28 | 2020-03-31 | Ethicon Llc | Ultrasonic transducer |
US11266430B2 (en) | 2016-11-29 | 2022-03-08 | Cilag Gmbh International | End effector control and calibration |
US11033325B2 (en) | 2017-02-16 | 2021-06-15 | Cilag Gmbh International | Electrosurgical instrument with telescoping suction port and debris cleaner |
US10799284B2 (en) | 2017-03-15 | 2020-10-13 | Ethicon Llc | Electrosurgical instrument with textured jaws |
US11497546B2 (en) | 2017-03-31 | 2022-11-15 | Cilag Gmbh International | Area ratios of patterned coatings on RF electrodes to reduce sticking |
US11166759B2 (en) | 2017-05-16 | 2021-11-09 | Covidien Lp | Surgical forceps |
US10603117B2 (en) | 2017-06-28 | 2020-03-31 | Ethicon Llc | Articulation state detection mechanisms |
US10820920B2 (en) | 2017-07-05 | 2020-11-03 | Ethicon Llc | Reusable ultrasonic medical devices and methods of their use |
US11033323B2 (en) | 2017-09-29 | 2021-06-15 | Cilag Gmbh International | Systems and methods for managing fluid and suction in electrosurgical systems |
US11484358B2 (en) | 2017-09-29 | 2022-11-01 | Cilag Gmbh International | Flexible electrosurgical instrument |
US11490951B2 (en) | 2017-09-29 | 2022-11-08 | Cilag Gmbh International | Saline contact with electrodes |
US12114870B1 (en) * | 2018-03-29 | 2024-10-15 | Rex Implants, Llc | Osteotomy method and instruments |
EP3968870A4 (en) * | 2019-05-13 | 2022-12-07 | Covidien LP | System and method for selectively sealing small vessels |
US11090050B2 (en) | 2019-09-03 | 2021-08-17 | Covidien Lp | Trigger mechanisms for surgical instruments and surgical instruments including the same |
US12082808B2 (en) | 2019-12-30 | 2024-09-10 | Cilag Gmbh International | Surgical instrument comprising a control system responsive to software configurations |
US11950797B2 (en) | 2019-12-30 | 2024-04-09 | Cilag Gmbh International | Deflectable electrode with higher distal bias relative to proximal bias |
US12076006B2 (en) | 2019-12-30 | 2024-09-03 | Cilag Gmbh International | Surgical instrument comprising an orientation detection system |
US11944366B2 (en) | 2019-12-30 | 2024-04-02 | Cilag Gmbh International | Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode |
US11779329B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a flex circuit including a sensor system |
US11779387B2 (en) | 2019-12-30 | 2023-10-10 | Cilag Gmbh International | Clamp arm jaw to minimize tissue sticking and improve tissue control |
US11452525B2 (en) | 2019-12-30 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising an adjustment system |
US11684412B2 (en) | 2019-12-30 | 2023-06-27 | Cilag Gmbh International | Surgical instrument with rotatable and articulatable surgical end effector |
US11986201B2 (en) | 2019-12-30 | 2024-05-21 | Cilag Gmbh International | Method for operating a surgical instrument |
US12114912B2 (en) | 2019-12-30 | 2024-10-15 | Cilag Gmbh International | Non-biased deflectable electrode to minimize contact between ultrasonic blade and electrode |
US12023086B2 (en) | 2019-12-30 | 2024-07-02 | Cilag Gmbh International | Electrosurgical instrument for delivering blended energy modalities to tissue |
US11660089B2 (en) | 2019-12-30 | 2023-05-30 | Cilag Gmbh International | Surgical instrument comprising a sensing system |
US12064109B2 (en) | 2019-12-30 | 2024-08-20 | Cilag Gmbh International | Surgical instrument comprising a feedback control circuit |
US20210196363A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instrument with electrodes operable in bipolar and monopolar modes |
US11786291B2 (en) | 2019-12-30 | 2023-10-17 | Cilag Gmbh International | Deflectable support of RF energy electrode with respect to opposing ultrasonic blade |
US11937863B2 (en) | 2019-12-30 | 2024-03-26 | Cilag Gmbh International | Deflectable electrode with variable compression bias along the length of the deflectable electrode |
US12053224B2 (en) | 2019-12-30 | 2024-08-06 | Cilag Gmbh International | Variation in electrode parameters and deflectable electrode to modify energy density and tissue interaction |
US11696776B2 (en) | 2019-12-30 | 2023-07-11 | Cilag Gmbh International | Articulatable surgical instrument |
US11723716B2 (en) | 2019-12-30 | 2023-08-15 | Cilag Gmbh International | Electrosurgical instrument with variable control mechanisms |
US11812957B2 (en) | 2019-12-30 | 2023-11-14 | Cilag Gmbh International | Surgical instrument comprising a signal interference resolution system |
US11759251B2 (en) | 2019-12-30 | 2023-09-19 | Cilag Gmbh International | Control program adaptation based on device status and user input |
US11911063B2 (en) | 2019-12-30 | 2024-02-27 | Cilag Gmbh International | Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade |
US20210196359A1 (en) | 2019-12-30 | 2021-07-01 | Ethicon Llc | Electrosurgical instruments with electrodes having energy focusing features |
US11633224B2 (en) | 2020-02-10 | 2023-04-25 | Icecure Medical Ltd. | Cryogen pump |
US11957342B2 (en) | 2021-11-01 | 2024-04-16 | Cilag Gmbh International | Devices, systems, and methods for detecting tissue and foreign objects during a surgical operation |
US12215811B2 (en) | 2022-07-18 | 2025-02-04 | Icecure Medical Ltd. | Cryogenic system connector |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1586645A (en) * | 1925-07-06 | 1926-06-01 | Bierman William | Method of and means for treating animal tissue to coagulate the same |
US1881250A (en) * | 1929-06-20 | 1932-10-04 | Tomlinson George Milton | Electrosurgical instrument |
US2714890A (en) * | 1953-08-06 | 1955-08-09 | Vang Alfred | Vibratory surgical instruments |
US2730103A (en) * | 1954-11-22 | 1956-01-10 | Mackta Leo | Magnetostrictive cutting tool |
US3086288A (en) * | 1955-04-20 | 1963-04-23 | Cavitron Ultrasonics Inc | Ultrasonically vibrated cutting knives |
BE556940A (en) * | 1956-04-26 | |||
US2985954A (en) * | 1956-09-05 | 1961-05-30 | Jones James Byron | Method and apparatus employing vibratory energy for bonding metals |
US3022814A (en) * | 1957-02-04 | 1962-02-27 | Jr Albert G Bodine | Method and apparatus for sonic bonding |
US2888928A (en) * | 1957-04-15 | 1959-06-02 | Seiger Harry Wright | Coagulating surgical instrument |
US3193424A (en) * | 1961-10-31 | 1965-07-06 | Olin Mathieson | Process for adhesive bonding |
US3308003A (en) * | 1962-02-16 | 1967-03-07 | Kleer Vu Ind Inc | Ultrasonic sealing apparatus |
US3184354A (en) * | 1962-02-28 | 1965-05-18 | West Point Mfg Co | Method of splicing multifilament yarns by vibratory treatment |
US3478744A (en) * | 1964-12-30 | 1969-11-18 | Harry Leiter | Surgical apparatus |
FR1466124A (en) * | 1965-03-22 | 1900-01-01 | ||
US3433226A (en) * | 1965-07-21 | 1969-03-18 | Aeroprojects Inc | Vibratory catheterization apparatus and method of using |
US3636943A (en) * | 1967-10-27 | 1972-01-25 | Ultrasonic Systems | Ultrasonic cauterization |
US3565062A (en) * | 1968-06-13 | 1971-02-23 | Ultrasonic Systems | Ultrasonic method and apparatus for removing cholesterol and other deposits from blood vessels and the like |
US3528410A (en) * | 1968-09-16 | 1970-09-15 | Surgical Design Corp | Ultrasonic method for retinal attachment |
US3618594A (en) * | 1970-04-06 | 1971-11-09 | Surgical Design Corp | Ultrasonic apparatus for retinal reattachment |
US3636947A (en) * | 1970-12-03 | 1972-01-25 | Ultrasonic Systems | Ultrasonic home dental instrument and method |
-
1967
- 1967-10-27 US US678649A patent/US3636943A/en not_active Expired - Lifetime
-
1971
- 1971-09-10 US US00179459A patent/US3794040A/en not_active Expired - Lifetime
-
1973
- 1973-12-10 US US423061A patent/US3862630A/en not_active Expired - Lifetime
-
1974
- 1974-07-08 US US486401A patent/US3898992A/en not_active Expired - Lifetime
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3898992A (en) * | 1967-10-27 | 1975-08-12 | Ultrasonic Systems | Ultrasonic surgical methods |
US3862630A (en) * | 1967-10-27 | 1975-01-28 | Ultrasonic Systems | Ultrasonic surgical methods |
US5041108A (en) * | 1981-12-11 | 1991-08-20 | Pillco Limited Partnership | Method for laser treatment of body lumens |
US4854320A (en) * | 1983-10-06 | 1989-08-08 | Laser Surgery Software, Inc. | Laser healing method and apparatus |
US5002051A (en) * | 1983-10-06 | 1991-03-26 | Lasery Surgery Software, Inc. | Method for closing tissue wounds using radiative energy beams |
US5140984A (en) * | 1983-10-06 | 1992-08-25 | Proclosure, Inc. | Laser healing method and apparatus |
US4911161A (en) * | 1987-04-29 | 1990-03-27 | Noetix, Inc. | Capsulectomy cutting apparatus |
US5151099A (en) * | 1989-03-28 | 1992-09-29 | Young Michael J R | Tool for removal of plastics material |
US5154694A (en) * | 1989-06-06 | 1992-10-13 | Kelman Charles D | Tissue scraper device for medical use |
US5536266A (en) * | 1991-08-24 | 1996-07-16 | Orthosonics, Ltd. | Tool for removal of plastics material |
US5810810A (en) * | 1992-04-23 | 1998-09-22 | Scimed Life Systems, Inc. | Apparatus and method for sealing vascular punctures |
USRE40863E1 (en) * | 1992-04-23 | 2009-07-21 | Boston Scientific Scimed, Inc. | Apparatus and method for sealing vascular punctures |
US6063085A (en) * | 1992-04-23 | 2000-05-16 | Scimed Life Systems, Inc. | Apparatus and method for sealing vascular punctures |
US5507744A (en) * | 1992-04-23 | 1996-04-16 | Scimed Life Systems, Inc. | Apparatus and method for sealing vascular punctures |
US5417654A (en) * | 1994-02-02 | 1995-05-23 | Alcon Laboratories, Inc. | Elongated curved cavitation-generating tip for disintegrating tissue |
US6283935B1 (en) * | 1998-09-30 | 2001-09-04 | Hearten Medical | Ultrasonic device for providing reversible tissue damage to heart muscle |
US6719770B2 (en) | 1998-09-30 | 2004-04-13 | Tony R. Brown | Ultrasonic device for providing reversible tissue damage to heart muscle |
US20060235376A1 (en) * | 2003-02-04 | 2006-10-19 | Cardiodex Ltd. | Methods and apparatus for hemostasis following arterial catheterization |
US20070055223A1 (en) * | 2003-02-04 | 2007-03-08 | Cardiodex, Ltd. | Methods and apparatus for hemostasis following arterial catheterization |
US20070213710A1 (en) * | 2003-02-04 | 2007-09-13 | Hayim Lindenbaum | Methods and apparatus for hemostasis following arterial catheterization |
US20100228241A1 (en) * | 2003-02-04 | 2010-09-09 | Cardiodex Ltd. | Methods and apparatus for hemostasis following arterial catheterization |
US8372072B2 (en) | 2003-02-04 | 2013-02-12 | Cardiodex Ltd. | Methods and apparatus for hemostasis following arterial catheterization |
US20080167643A1 (en) * | 2004-11-22 | 2008-07-10 | Cardiodex Ltd. | Techniques for Heating-Treating Varicose Veins |
US8435236B2 (en) | 2004-11-22 | 2013-05-07 | Cardiodex, Ltd. | Techniques for heat-treating varicose veins |
US8366706B2 (en) | 2007-08-15 | 2013-02-05 | Cardiodex, Ltd. | Systems and methods for puncture closure |
USD843596S1 (en) | 2014-01-09 | 2019-03-19 | Axiosonic, Llc | Ultrasound applicator |
Also Published As
Publication number | Publication date |
---|---|
US3636943A (en) | 1972-01-25 |
US3898992A (en) | 1975-08-12 |
US3862630A (en) | 1975-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3794040A (en) | Ultrasonic surgical procedures | |
US3513848A (en) | Ultrasonic suturing | |
EP1049411B1 (en) | Ultrasonic cutting tool | |
US3918442A (en) | Surgical instrument for ultrasonic joining of biological tissue | |
US3657056A (en) | Ultrasonic suturing apparatus | |
US3526219A (en) | Method and apparatus for ultrasonically removing tissue from a biological organism | |
Lee et al. | Ultrasonic energy in endoscopic surgery | |
US6071260A (en) | Ultrasonic liposuction device and a method of using the same | |
EP1551321B1 (en) | Ultrasonic device for tissue coagulation | |
US6558376B2 (en) | Method of use of an ultrasonic clamp and coagulation apparatus with tissue support surface | |
US5957943A (en) | Method and devices for increasing ultrasonic effects | |
US5342380A (en) | Ultrasonic knife | |
US20030212422A1 (en) | Ultrasonic soft tissue cutting and coagulation systems with movable vibrating probe and fixed receiving clamp | |
US3727619A (en) | Ultrasonic apparatus for hair joining | |
JP3330603B2 (en) | Method and apparatus for cosmetic treatment of body by removing fat lumps | |
US20020002380A1 (en) | Ultrasonic clamp and coagulation apparatus with tissue support surface | |
CA2652740A1 (en) | Ultrasonic surgical tool | |
US3642010A (en) | Ultrasonic method for hair joining | |
US3666975A (en) | Ultrasonic motors | |
Sun et al. | Development and application of ultrasonic surgical instruments | |
JP2500213B2 (en) | Surgical tools | |
JPH0426298B2 (en) | ||
JP3318057B2 (en) | Ultrasonic treatment equipment | |
JP3679747B2 (en) | Ultrasonic treatment device | |
JP2001037771A (en) | Ultrasonic treatment device |