US3785149A - Method for filling a bag with water vapor and carbon dioxide gas - Google Patents
Method for filling a bag with water vapor and carbon dioxide gas Download PDFInfo
- Publication number
- US3785149A US3785149A US00261041A US3785149DA US3785149A US 3785149 A US3785149 A US 3785149A US 00261041 A US00261041 A US 00261041A US 3785149D A US3785149D A US 3785149DA US 3785149 A US3785149 A US 3785149A
- Authority
- US
- United States
- Prior art keywords
- powder
- percent
- carbon dioxide
- water vapor
- potassium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 23
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims description 20
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Natural products OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims abstract description 64
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 claims abstract description 42
- 239000000843 powder Substances 0.000 claims abstract description 42
- 239000000203 mixture Substances 0.000 claims abstract description 40
- 239000002826 coolant Substances 0.000 claims abstract description 28
- 239000007800 oxidant agent Substances 0.000 claims abstract description 28
- AXZAYXJCENRGIM-UHFFFAOYSA-J dipotassium;tetrabromoplatinum(2-) Chemical compound [K+].[K+].[Br-].[Br-].[Br-].[Br-].[Pt+2] AXZAYXJCENRGIM-UHFFFAOYSA-J 0.000 claims abstract description 12
- 229910001487 potassium perchlorate Inorganic materials 0.000 claims abstract description 12
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 11
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 claims abstract description 8
- BAZAXWOYCMUHIX-UHFFFAOYSA-M sodium perchlorate Chemical compound [Na+].[O-]Cl(=O)(=O)=O BAZAXWOYCMUHIX-UHFFFAOYSA-M 0.000 claims abstract description 8
- 229910001488 sodium perchlorate Inorganic materials 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 54
- 238000006243 chemical reaction Methods 0.000 claims description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 12
- 239000001301 oxygen Substances 0.000 claims description 12
- 229910052760 oxygen Inorganic materials 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 11
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 10
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 10
- 239000000047 product Substances 0.000 claims description 10
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 claims description 9
- 239000011667 zinc carbonate Substances 0.000 claims description 9
- 235000004416 zinc carbonate Nutrition 0.000 claims description 9
- 229910000010 zinc carbonate Inorganic materials 0.000 claims description 9
- 239000007795 chemical reaction product Substances 0.000 claims description 8
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 6
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 claims description 3
- NQYSMCVRPOONJF-UHFFFAOYSA-N barium(2+);oxygen(2-);octahydrate Chemical compound O.O.O.O.O.O.O.O.[O-2].[Ba+2] NQYSMCVRPOONJF-UHFFFAOYSA-N 0.000 claims description 3
- 229910021538 borax Inorganic materials 0.000 claims description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 3
- 239000001095 magnesium carbonate Substances 0.000 claims description 3
- 229910000021 magnesium carbonate Inorganic materials 0.000 claims description 3
- 235000014380 magnesium carbonate Nutrition 0.000 claims description 3
- 239000011656 manganese carbonate Substances 0.000 claims description 3
- 235000006748 manganese carbonate Nutrition 0.000 claims description 3
- 229940093474 manganese carbonate Drugs 0.000 claims description 3
- 229910000016 manganese(II) carbonate Inorganic materials 0.000 claims description 3
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- 235000015497 potassium bicarbonate Nutrition 0.000 claims description 3
- 239000011736 potassium bicarbonate Substances 0.000 claims description 3
- 229910000028 potassium bicarbonate Inorganic materials 0.000 claims description 3
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 claims description 3
- 239000004328 sodium tetraborate Substances 0.000 claims description 3
- 235000010339 sodium tetraborate Nutrition 0.000 claims description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 3
- 238000004200 deflagration Methods 0.000 abstract description 2
- 239000008240 homogeneous mixture Substances 0.000 abstract description 2
- 238000005979 thermal decomposition reaction Methods 0.000 abstract description 2
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 17
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 14
- 150000007524 organic acids Chemical class 0.000 description 14
- 239000003380 propellant Substances 0.000 description 14
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 12
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 12
- ROBFUDYVXSDBQM-UHFFFAOYSA-N hydroxymalonic acid Chemical compound OC(=O)C(O)C(O)=O ROBFUDYVXSDBQM-UHFFFAOYSA-N 0.000 description 12
- 239000011975 tartaric acid Substances 0.000 description 12
- 235000002906 tartaric acid Nutrition 0.000 description 12
- 239000000463 material Substances 0.000 description 7
- 239000001103 potassium chloride Substances 0.000 description 6
- 235000011164 potassium chloride Nutrition 0.000 description 6
- 239000000446 fuel Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- XTEGARKTQYYJKE-UHFFFAOYSA-M Chlorate Chemical compound [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 231100000053 low toxicity Toxicity 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical class [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- RQWRXNYBMMRIRQ-UHFFFAOYSA-L [K+].[K+].[O-]Cl(=O)=O.[O-]Cl(=O)=O Chemical compound [K+].[K+].[O-]Cl(=O)=O.[O-]Cl(=O)=O RQWRXNYBMMRIRQ-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- -1 potassium chlorate tartaric acid Chemical compound 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical class [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/26—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
- B60R21/264—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
- B60R21/2644—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06B—EXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
- C06B29/00—Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate
- C06B29/02—Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate of an alkali metal
- C06B29/04—Compositions containing an inorganic oxygen-halogen salt, e.g. chlorate, perchlorate of an alkali metal with an inorganic non-explosive or an inorganic non-thermic component
-
- C—CHEMISTRY; METALLURGY
- C06—EXPLOSIVES; MATCHES
- C06D—MEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
- C06D5/00—Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
- C06D5/06—Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R21/00—Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
- B60R21/02—Occupant safety arrangements or fittings, e.g. crash pads
- B60R21/16—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
- B60R21/26—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
- B60R21/264—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic
- B60R21/2644—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder
- B60R2021/2648—Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous generation of gas, e.g. pyrotechnic using only solid reacting substances, e.g. pellets, powder comprising a plurality of combustion chambers or sub-chambers
Definitions
- a deflagration composition yielding a gas comprising principally carbon dioxide and water vapor comprises [52] 60/205 149/831 280/150 a substantially homogeneous mixture of citric acid 102/39 powder in the range of from about 25 to 37 percent by [51 It ll. Cl C0611 5/00 weight and an oxidizer powder selected from the [58] Field of Search 280/150 AB; 141/10; group Consisting of potassium Chlorate potassium pep 102/39; 252/5, 6, 7; 149/83; 6 chlorate, sodium chlorate, and sodium perchlorate.
- This composition may be used adjacent a coolant
- References cued powder comprising up to about 40 percent by weight UNlTED STATES PATENTS of potassium chlorate and an endothermic decomposi- 3533359 1 1970 Teague et a] 2 0 150 AB tion coolant having a thermal decomposition product 3,618,980 11/1971 Leising et a1 102/39 X selected from the class consisting of carbon dioxide 3,618,981 11/1971 Leising et a].
- Governmental requirements for automobile passenger restraint systems include an inflatable bag that momentarily and temporarily restrains a passenger during the critical instant of a collision impact.
- the bag For safe and successful use the bag must be inflated in a very short time, and thereafter deflated to release the passenger.
- the gas used to inflate the bag must be cool enough to avoid damage to the bag and injury to the passenger. For similar reasons, it is important that hot particles do not reach the interior of the bag.
- the gases used must have a low toxicity, and for this reason, carbon monoxide, nitrogen oxides, sulphur compounds, and the like are undesirable. It is therefore desirable to provide compositions that burn to produce a large volume of relatively cool non-toxic gas in a very short time interval for inflating a gas bag.
- composition must be sufficiently stable to sustain the temperature, vibration, and other environmental characteristics of an automobile for a prolonged period.
- a specified screening test requires, for example, that the composition be maintained at 250F for 100 hours without any degradation of performance. Such severe requirements effectively eliminate from consideration many otherwise apparently suitable materials.
- a non-toxic gas generating composition comprising an organic acid powder selected from the group consisting of citric acid in the range of from about 25 to 37 percent by weight, tartaric acid in the range of from about 20 to 42 percent by weight, tartronic acid in the range of from about 25 to 49.5 percent by weight, and malonic acid in the range of from about 20 to 36.7 percent by weight; and a balance of an oxidizer powder selected from the group consisting of potassium chlorate, potassium perchlorate, sodium chlorate, and sodium perchlorate.
- FIG. 1 illustrates in longitudinal cross section a typical gas generator cartridge charged with a composition embodying principles of this invention.
- a steel housing forms a gas generator cartridge which can be threaded into ahousing (not shown) or other suitable arrangement for conveying generated gases to an inflatable bag.
- the gas generator cartridge is open at its threaded end to permit generated gases to escape freely therefrom.
- a frangible or fusible protective diaphragm may be provided over the open end of the cartridge.
- the cartridge is provided with a conventional bridge wire initiator I1 and is threaded into a central opening.
- the initiator 11 is a conventional item wherein a bridge wire (not shown) is heated by an electric current when it is desired to initiate the gas generating reaction.
- a layer adjacent the initiator lll is a body of propellant 12 described in greater detail hereinafter.
- the layer 12 may comprise about 10 grams of propellant.
- Adjacent the first propellant layer 12 is an 18 gram layer of coolant 13, described in greater detail hereinafter.
- another propellant layer 14 containing five grams of propellant like that in the first layer 12, is packed on top.
- an eight gram layer 15 of coolant is provided over the propellant layer 14.
- the coolant 15 is preferably substantially the same as the first coolant layer 13.
- the propellant and coolant layers are preferably powders pressed in place at a pressure of less than about 5,000 psi.
- the two propellant layers 12 and 14 are formed of a mixture of organic acid fuel powder and an oxidizer powder.
- the organic acid is in the form of a powder having a maximum average particle size less than about 15 microns.
- the oxidizer powder preferably has an average particle size less than about 25 microns and is selected from the class consisting of potassium chlorate, potassium perchlorate, sodium chlorate, and sodium perchlorate. If the particle size of the organic acid is too large, the effective surface area for reaction is reduced, and the rate of reaction may not be sufficient for producing gases fast enough for inflation of an air bag in an automobile passenger restraint system.
- the particle size of the oxidizer powder is preferably less than about 25 microns so that the reaction rate with the fuel is rapid, and the reaction is complete. If the particle size of the oxidizer is greater than about 25 microns, unreacted particles may be ejected with the gaseous reaction products.
- the oxidizer have an average particle size less than about 15 microns, and the organic acid have an average particle size less than about 5 microns in order to obtain a'very rapid reaction therebetween.
- the particle size of the oxidizer and organic acid are about the same, that is, they do not differ from each other more than about percent so that thorough and intimate mixture of the particles is obtained without substantial segregation. Segregation of the organic acid and the oxidizer powder may lead to erratic burning or yield an incomplete reaction.
- the preferred composition of propellant comprises about 32 percent by weight of citric acid and 68 percent by weight of potassium chlorate.
- the stoichiometric reaction between citric acid and potassium chlorate is C H Q, 3KClO 6C0 4H2O+ 3KCl and the stoichiometric proportion is 34 percent by weight of citric acid to 66 percent by weight of potassium chlorate.
- the preferred composition is 2 percent by weight rich in oxidizer as compared to the stoichiometric proportion. This composition has proved eminently successful in reducing the carbon monoxide level in the resultant gases to a very low value.
- This composition is preferred since it provides an optimum combination of low toxicity, cool gases, high reliability, rapid and reproducible burning rate, long term stability at 250F without degradation of performance, and low cost.
- the problem of rapidly, reliably, and safely inflating an automobile passenger restraint bag is severe, and limited variation in the preferred composition has been found.
- the requirement that the materials be aged together at 250F for 100 hours is severe and effectively eliminates most candidate materials.
- the required low carbon monoxide level and the requirement that gas temperatures into the bag be less than about 135F further reduce possible candidate compositions.
- Citric acid is advantageous since it produces a substantial volume of gas with a relatively low heat of combustion. Thus, for example, to produce equal molar quantities of gas, combustion of citric acid produces only 81 percent as much heat as combustion of sucrose. For this reason, the temperature of gas reaching the passenger restraint bag can be lower.
- the citric acid concentration can be as low as about 25 percent by weight and still produce a commercially acceptable embodiment.
- the citric acid proportion does not drop below about 25 percent by weight since lower proportions have an undesirably low total gas output.
- the principal proportion of gas produced by reaction of the citric acid and oxidizer derives from the citric.
- the citric acid proportion may be increased up to about 37 percent by weight in a commercially acceptable embodiment. If the citric acid is increased above about 37 percent by weight, the carbon monoxide level in the resultant gases increases unacceptably.
- a few other organic acid powders may be used in practice of this invention including tartaric acid, tartronic acid and malonic acid.
- Tartaric acid which has the formula C H O reacts stoichiometricly with one and two-thirds mole of potassium chlorate to produce carbon dioxide, water vapor and potassium chloride.
- the stoichiometric proportion is 42 percent by weight of tartaric acid and 58 percent by weight of the oxidizer.
- the proportion may be decreased to about percent by weight of organic acid and 80 percent oxidizer powder with acceptable performance in a gas generator for inflation of an automotive passenger restraint bag.
- such a mixture is about 5 percent below stoichiometry for the organic acid and correspondingly rich in the oxidizer for suppressing carbon monoxide formation.
- Tartronic acid reacts stoichiometricly with one mole of potassium chlorate to produce carbon dioxide, water vapor and potassium chloride.
- the stoichiometric proportion is about 49.5v percent organic acid and 50.5 percent oxidizer.
- the proportion of tartronic acid may be reduced to about percent by weight with the oxidizer being present at about 75 percent by weight.
- the composition is about 5 percent rich in oxidizer and correspondingly deficient in fuel for production of an excess of oxygen and suppression of carbon monoxide formation.
- the stoichiometric reaction between malonic acid and potassium chlorate requires one and one-third moles of potassium chlorate for production of carbon dioxide and water vapor. This corresponds to about 36.7 percent by weight of the malonic acid and 63.3 percent by weight of the oxidizer. This proportion may be varied to about 20 percent by weight of malonic acid and percent by weight of oxidizer powder.
- the composition is about 5 percent above stoichiometry in the oxidizer and about 5 percent deficient below stoichiometry for the organic acid.
- potassium chlorate is particularly preferred since the products of reaction include potassium chloride at a sufficiently high temperature that it is molten or possibly in vapor form. Such potassium chloride principally deposits in cooler portions of a gas generator system and while so doing, entraps particles which might otherwise reach the inflatable bag.
- potassium chlorate is more sensitive than potassium perchlorate in propellant compositions, no significant safety hazards associated with its use have been identified. If such sensitivity is a problem in some applications, potassium perchlorate may be used as the oxidizer powder within principles of this invention. Potassium perchlorate is not as effective as potassium chlorate in removing hot particles from the gas stream since its melting point is about 250C higher than the potassium chlorate.
- potassium chlorate When potassium chlorate is used, it appears that a glassy layer forms on cooler surfaces (not shown) in the fluid passages leading from the gas generator cartridge to the inflatable bag. This glassy coating effectively traps particles from the gas generator cartridge and prevents them from reaching the inflatable bag.
- the sodium salts may be used but appear less capable of removing hot particles than the potassium salts.
- composition of the propellant has been stated as percent fuel and oxidizer, it should be understood that some dilution with endothermic decomposition coolant or the like can be employed.
- the present requirement for passenger restraint systems has a maximum carbon monoxide level of 750 ppm in the inflating gas. it has been found that up to about 5 percent by weight dilution of the propellant with zinc carbonate remains within that limit. If a higher level of carbon monoxide is acceptable, somewhat greater dilution can be used, for example, as high as about 25 percent. It is, therefore, to be understood that the proportions of fuel and oxidizer stated in the compositions are relative to each other and up to about 5 percent of other materials may be present in the mixture.
- the coolant layers 13 and 15 are preferably a mixture in the range of from about 20 to 60 percent by weight of potassium chlorate and about 40 to 80 percent by weight of zinc carbonate, both of which materials endothermically decompose when the propellant is ignited, thereby producing a substantial volume of oxygen and carbon dioxide and cooling the gases from the propellant.
- the presence of potassium chlorate in the coolant produces substantial quantities of potassium chloride which, as mentioned hereinabove, forms a glassy deposit on the cooler walls, thereby trapping particles of zinc oxide and the like ejected from the coolant.
- the resultant high concentration of oxygen in the gas from the gas generator is a bonus that helps reduce toxicity and assure complete reaction of the organic acid.
- potassium chlorate in the coolant can be employed in practice of this invention.
- the potassium chlorate can be as high as about 90 percent by weight without substantially changing effectiveness of the gas generation.
- potassium chlorate can be reduced to zero if desired; however, the beneficial oxygen is concomitantly decreased and the entrapment of zinc oxide powders partially sacrificed.
- potassium perchlorate can be substituted for potassium chlorate in the coolant with some decrease in the formation of a glassy deposit within the gas generator, and hence less efficacious sweeping of hot particles from the gases.
- sodium chlorate and sodium perchlorate may be used.
- Substitution for zinc carbonate can also be provided in the coolant, although this is a preferred material.
- suitable materials may be selected from the group consisting of magnesium carbonate, manganese carbonate, barium carbonate, calcium carbonate, potassium bicarbonate, hydrated magnesium carbonate, hydrated zirconium oxide, borax, and barium oxide octahydrate. If it is acceptable to have a caustic hydroxide as a possible reaction product, sodium carbonate and sodium bicarbonate are suitable coolants. The sodium oxides remaining from decomposition of sodium carbonate and sodium bicarbonate may combine with potassium chloride to form a slag that remains in the gas generator and causes no harm in the gas bag.
- compositions have been tested for suitability for practice of this invention. Some of these tests have been in the nature of screening tests where the composition was burned and the reaction observed without utilizing the gases generated. Rate and completeness of reaction are observed in unconfined burning. Experience shows that compositions burning in the same manner as successful compositions in the unconfined screening tests will perform satisfactorily in bag inflation tests. Other compositions were placed in a confined gas generator and the gases used for inflating a fabric bag. The following compositions were tested in these manners:
- tartaric acid 80% potassium chlorate tartaric acid, 70% potassium chlorate 38% tartaric acid, 62% potassium chlorate 42% tartaric acid, 58% potassium chlorate 46.5% tartaric acid, 53.5% potassium perchlorate 45% tartaric acid, potassium perchlorate 26.6% tartaric acid, 55.4% potassium chlorate, 18% zinc carbonate 8. 22.8% tartaric acid, 53.2% potassium chlorate, 24% zinc carbonate 9. 49.5% tartronic acid, 50.5% potassium chlorate 10. 36.7% malonic acid, 63.3% potassium chlorate 11. 34.3% citric acid, 66.7% potassium chlorate 12. 32% citric acid, 68% potassium chlorate 13. 25% citric acid, 75% potassium chlorate What is claimed is:
- a method for inflating a gas bag comprising the steps of:
- igniting a mixture consisting essentially of an organic acid powder selected from the group consisting of citric acid in the range of from about 25 to 37 percent by weight, tartaric acid in the range of from about 20 to 42 percent by weight, tartronic acid in the range of from about 25 to 49.5 percent by weight, and malonic acid in the range of from about 20 to 36.7 percent by weight, and an oxidizing powder selected from the class consisting of potassium chlorate, potassium perchlorate, sodium chlorate and sodium perchlorate; and
- a method as defined in claim 1 further comprising suppressing formation of carbon monoxide by providing oxidizing powder in the mixture in a proportion about 5 percent higher than the stoichiometric proportion that produces substantially entirely carbon dioxide and water vapor as gaseous reaction products.
- a method as defined in claim 2 further comprising the steps of:
- a method for inflating a gas bag comprising the steps of:
- a method as defined in claim 10 further comprising the steps of:
- coolant powder comprises up to about percent of potassium chlorate and a powder selected from the class consisting of magnesium carbonate, manganese carbonate, zinc carbonate, barium carbonate, calcium carbonate, potassium bicarbonate, hydrated magnesium carbonate, hydrated zirconium oxide, borax, and barium oxide octahydrate.
- coolant powder comprises up to about 60 percent by weight of potassium chlorate and a balance of zinc carbonate.
- cooling step is conducted partly remote from the igniting step by separating the mixture of citric acid and oxidizer powder from the coolant powder.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Air Bags (AREA)
Abstract
Description
Claims (8)
- 2. A method as defined in claim 1 further comprising suppressing formation of carbon monoxide by providing oxidizing powder in the mixture in a proportion about 5 percent higher than the stoichiometric proportion that produces substantially entirely carbon dioxide and water vapor as gaseous reaction products.
- 3. A method as defined in claim 2 further comprising the steps of: cooling the products of the ignition reaction by contacting the reaction products with an endothermic decomposition coolant powder that decomposes tO produce a gaseous decomposition product selected from the class consisting of carbon dioxide, oxygen and water vapor; and directing the carbon dioxide, oxygen or water vapor from the cooling step into the gas bag.
- 4. A method for inflating a gas bag comprising the steps of: igniting a mixture of citric acid in a proportion of from about 25 to 37 percent by weight and an oxidizing powder selected from the class consisting of potassium chlorate, potassium perchlorate, sodium chlorate, and sodium perchlorate; and directing water vapor and carbon dioxide gas from the igniting step into a gas bag.
- 5. A method as defined in claim 4 wherein the oxidizer powder is potassium chlorate.
- 6. A method as defined in claim 4 further comprising the steps of: cooling the products of the ignition reaction by contacting the reaction products with an endothermic decomposition coolant powder that decomposes to produce a gaseous decomposition product selected from the class consisting of carbon dioxide, oxygen, and water vapor; and directing the carbon dioxide, oxygen or water vapor from the cooling step into the gas bag.
- 7. A method as defined in claim 6 wherein the coolant powder comprises up to about 60 percent of potassium chlorate and a powder selected from the class consisting of magnesium carbonate, manganese carbonate, zinc carbonate, barium carbonate, calcium carbonate, potassium bicarbonate, hydrated magnesium carbonate, hydrated zirconium oxide, borax, and barium oxide octahydrate.
- 8. A method as defined in claim 6 wherein the coolant powder comprises up to about 60 percent by weight of potassium chlorate and a balance of zinc carbonate.
- 9. A method as defined in claim 6 wherein the cooling step is conducted partly remote from the igniting step by separating the mixture of citric acid and oxidizer powder from the coolant powder.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US26104172A | 1972-06-08 | 1972-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3785149A true US3785149A (en) | 1974-01-15 |
Family
ID=22991718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00261041A Expired - Lifetime US3785149A (en) | 1972-06-08 | 1972-06-08 | Method for filling a bag with water vapor and carbon dioxide gas |
Country Status (1)
Country | Link |
---|---|
US (1) | US3785149A (en) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3865660A (en) * | 1973-03-12 | 1975-02-11 | Thiokol Chemical Corp | Non-toxic, non-corrosive, odorless gas generating composition |
US3964255A (en) * | 1972-03-13 | 1976-06-22 | Specialty Products Development Corporation | Method of inflating an automobile passenger restraint bag |
US4128996A (en) * | 1977-12-05 | 1978-12-12 | Allied Chemical Corporation | Chlorite containing pyrotechnic composition and method of inflating an inflatable automobile safety restraint |
US4152891A (en) * | 1977-10-11 | 1979-05-08 | Allied Chemical Corporation | Pyrotechnic composition and method of inflating an inflatable automobile safety restraint |
US5401340A (en) * | 1993-08-10 | 1995-03-28 | Thiokol Corporation | Borohydride fuels in gas generant compositions |
US5429691A (en) * | 1993-08-10 | 1995-07-04 | Thiokol Corporation | Thermite compositions for use as gas generants comprising basic metal carbonates and/or basic metal nitrates |
US5439537A (en) * | 1993-08-10 | 1995-08-08 | Thiokol Corporation | Thermite compositions for use as gas generants |
WO1995034448A1 (en) * | 1994-06-14 | 1995-12-21 | Ad Astram Enterprises, Inc. | Improved ignition train apparatus for hybrid airbag inflators |
US5486248A (en) * | 1994-05-31 | 1996-01-23 | Morton International, Inc. | Extrudable gas generant for hybrid air bag inflation system |
US5500059A (en) * | 1993-08-02 | 1996-03-19 | Thiokol Corporation | Anhydrous 5-aminotetrazole gas generant compositions and methods of preparation |
US5567905A (en) * | 1996-01-30 | 1996-10-22 | Morton International, Inc. | Gas generant compositions containing D 1-tartaric acid |
US5586783A (en) * | 1994-02-24 | 1996-12-24 | Temic Bayern-Chemie Airbag Gmbh | Hybrid gas generator for filling a gas bag |
US5592812A (en) * | 1994-01-19 | 1997-01-14 | Thiokol Corporation | Metal complexes for use as gas generants |
EP0691317A3 (en) * | 1994-07-01 | 1997-03-05 | Temic Bayern Chem Airbag Gmbh | Non-azide gas generant formulations |
EP0763511A2 (en) * | 1995-09-15 | 1997-03-19 | Morton International, Inc. | Igniter compositions for non-azide gas generants |
EP0779260A2 (en) | 1995-12-13 | 1997-06-18 | Morton International, Inc. | Fuel compositions for use in hybrid inflators containing stored oxidizing gas |
US5670740A (en) * | 1995-10-06 | 1997-09-23 | Morton International, Inc. | Heterogeneous gas generant charges |
US5725699A (en) * | 1994-01-19 | 1998-03-10 | Thiokol Corporation | Metal complexes for use as gas generants |
WO1998018661A1 (en) | 1996-10-30 | 1998-05-07 | Atlantic Research Corporation | Autoignition propellant containing superfine iron oxide and method of lowering the autoignition temperature of an igniter |
WO2000006424A1 (en) * | 1998-07-30 | 2000-02-10 | Autoliv Asp, Inc. | Treatment of airbag inflation gases |
US6076468A (en) * | 1998-03-26 | 2000-06-20 | Atlantic Research Corporation | Solid propellant/water type hybrid gas generator |
US6095559A (en) * | 1998-07-23 | 2000-08-01 | Autoliv Asp, Inc. | Chemical cooling of airbag inflation gases |
WO2001056833A2 (en) * | 2000-02-04 | 2001-08-09 | Automotive Systems Laboratory, Inc. | Airbag release aid |
US6558487B1 (en) * | 2001-07-24 | 2003-05-06 | The United States Of America As Represented By The Secretary Of The Army | Smoke generating compositions and methods of making the same |
US20050067074A1 (en) * | 1994-01-19 | 2005-03-31 | Hinshaw Jerald C. | Metal complexes for use as gas generants |
US6969435B1 (en) | 1994-01-19 | 2005-11-29 | Alliant Techsystems Inc. | Metal complexes for use as gas generants |
US20060220362A1 (en) * | 2005-03-31 | 2006-10-05 | Hordos Deborah L | Gas generator |
US20070034307A1 (en) * | 2005-07-29 | 2007-02-15 | Hordos Deborah L | Autoignition/booster composition |
US20070044675A1 (en) * | 2005-08-31 | 2007-03-01 | Burns Sean P | Autoignition compositions |
US20070084532A1 (en) * | 2005-09-30 | 2007-04-19 | Burns Sean P | Gas generant |
US20070113940A1 (en) * | 2005-06-30 | 2007-05-24 | Burns Sean P | Autoignition compositions |
US20070169863A1 (en) * | 2006-01-19 | 2007-07-26 | Hordos Deborah L | Autoignition main gas generant |
US20070175553A1 (en) * | 2006-01-31 | 2007-08-02 | Burns Sean P | Gas Generating composition |
US20080149232A1 (en) * | 2006-12-15 | 2008-06-26 | Jason Newell | Gas generant compositions |
US20080271825A1 (en) * | 2006-09-29 | 2008-11-06 | Halpin Jeffrey W | Gas generant |
US20090008003A1 (en) * | 2005-09-30 | 2009-01-08 | Burns Sean P | Gas generant |
US20090102171A1 (en) * | 2005-03-31 | 2009-04-23 | Hordos Deborah L | Gas generator |
US20100326575A1 (en) * | 2006-01-27 | 2010-12-30 | Miller Cory G | Synthesis of 2-nitroimino-5-nitrohexahydro-1,3,5-triazine |
US9073512B1 (en) | 2012-07-23 | 2015-07-07 | Tk Holdings Inc. | Gas generating system with gas generant cushion |
US9556078B1 (en) | 2008-04-07 | 2017-01-31 | Tk Holdings Inc. | Gas generator |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3532359A (en) * | 1968-07-22 | 1970-10-06 | Chrysler Corp | Inflatable device |
US3618981A (en) * | 1969-10-31 | 1971-11-09 | Chrysler Corp | Inflatable device |
US3618980A (en) * | 1969-10-31 | 1971-11-09 | Chrysler Corp | Trap for nongaseous matter |
US3647393A (en) * | 1970-05-11 | 1972-03-07 | Chrysler Corp | Gas-generating apparatus |
US3653684A (en) * | 1970-06-18 | 1972-04-04 | Gen Motors Corp | Pressure vessel valve assembly |
US3663035A (en) * | 1970-01-27 | 1972-05-16 | Ensign Bickford Co | Self-contained passenger restraining system |
US3674059A (en) * | 1970-10-19 | 1972-07-04 | Allied Chem | Method and apparatus for filling vehicle gas bags |
US3676234A (en) * | 1969-12-09 | 1972-07-11 | Commercial Solvents Corp | Explosive slurry having constant detonation velocity over a wide temperature range |
US3690695A (en) * | 1970-08-14 | 1972-09-12 | Jones Sr John L | Personnel restraint system for vehicular occupants |
US3692495A (en) * | 1970-06-19 | 1972-09-19 | Thiokol Chemical Corp | Gas generator |
US3711115A (en) * | 1970-11-24 | 1973-01-16 | Allied Chem | Pyrotechnic gas generator |
-
1972
- 1972-06-08 US US00261041A patent/US3785149A/en not_active Expired - Lifetime
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3532359A (en) * | 1968-07-22 | 1970-10-06 | Chrysler Corp | Inflatable device |
US3618981A (en) * | 1969-10-31 | 1971-11-09 | Chrysler Corp | Inflatable device |
US3618980A (en) * | 1969-10-31 | 1971-11-09 | Chrysler Corp | Trap for nongaseous matter |
US3676234A (en) * | 1969-12-09 | 1972-07-11 | Commercial Solvents Corp | Explosive slurry having constant detonation velocity over a wide temperature range |
US3663035A (en) * | 1970-01-27 | 1972-05-16 | Ensign Bickford Co | Self-contained passenger restraining system |
US3647393A (en) * | 1970-05-11 | 1972-03-07 | Chrysler Corp | Gas-generating apparatus |
US3653684A (en) * | 1970-06-18 | 1972-04-04 | Gen Motors Corp | Pressure vessel valve assembly |
US3692495A (en) * | 1970-06-19 | 1972-09-19 | Thiokol Chemical Corp | Gas generator |
US3690695A (en) * | 1970-08-14 | 1972-09-12 | Jones Sr John L | Personnel restraint system for vehicular occupants |
US3674059A (en) * | 1970-10-19 | 1972-07-04 | Allied Chem | Method and apparatus for filling vehicle gas bags |
US3711115A (en) * | 1970-11-24 | 1973-01-16 | Allied Chem | Pyrotechnic gas generator |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3964255A (en) * | 1972-03-13 | 1976-06-22 | Specialty Products Development Corporation | Method of inflating an automobile passenger restraint bag |
US3865660A (en) * | 1973-03-12 | 1975-02-11 | Thiokol Chemical Corp | Non-toxic, non-corrosive, odorless gas generating composition |
US4152891A (en) * | 1977-10-11 | 1979-05-08 | Allied Chemical Corporation | Pyrotechnic composition and method of inflating an inflatable automobile safety restraint |
US4128996A (en) * | 1977-12-05 | 1978-12-12 | Allied Chemical Corporation | Chlorite containing pyrotechnic composition and method of inflating an inflatable automobile safety restraint |
US5500059A (en) * | 1993-08-02 | 1996-03-19 | Thiokol Corporation | Anhydrous 5-aminotetrazole gas generant compositions and methods of preparation |
US5682014A (en) * | 1993-08-02 | 1997-10-28 | Thiokol Corporation | Bitetrazoleamine gas generant compositions |
US5501823A (en) * | 1993-08-02 | 1996-03-26 | Thiokol Corporation | Preparation of anhydrous tetrazole gas generant compositions |
US5429691A (en) * | 1993-08-10 | 1995-07-04 | Thiokol Corporation | Thermite compositions for use as gas generants comprising basic metal carbonates and/or basic metal nitrates |
US5439537A (en) * | 1993-08-10 | 1995-08-08 | Thiokol Corporation | Thermite compositions for use as gas generants |
US5401340A (en) * | 1993-08-10 | 1995-03-28 | Thiokol Corporation | Borohydride fuels in gas generant compositions |
US6481746B1 (en) | 1994-01-19 | 2002-11-19 | Alliant Techsystems Inc. | Metal hydrazine complexes for use as gas generants |
US20050067074A1 (en) * | 1994-01-19 | 2005-03-31 | Hinshaw Jerald C. | Metal complexes for use as gas generants |
US6969435B1 (en) | 1994-01-19 | 2005-11-29 | Alliant Techsystems Inc. | Metal complexes for use as gas generants |
US5673935A (en) * | 1994-01-19 | 1997-10-07 | Thiokol Corporation | Metal complexes for use as gas generants |
US5592812A (en) * | 1994-01-19 | 1997-01-14 | Thiokol Corporation | Metal complexes for use as gas generants |
US20100084060A1 (en) * | 1994-01-19 | 2010-04-08 | Alliant Techsystems Inc. | Metal complexes for use as gas generants |
US9199886B2 (en) | 1994-01-19 | 2015-12-01 | Orbital Atk, Inc. | Metal complexes for use as gas generants |
US5735118A (en) * | 1994-01-19 | 1998-04-07 | Thiokol Corporation | Using metal complex compositions as gas generants |
US5725699A (en) * | 1994-01-19 | 1998-03-10 | Thiokol Corporation | Metal complexes for use as gas generants |
US5586783A (en) * | 1994-02-24 | 1996-12-24 | Temic Bayern-Chemie Airbag Gmbh | Hybrid gas generator for filling a gas bag |
US5486248A (en) * | 1994-05-31 | 1996-01-23 | Morton International, Inc. | Extrudable gas generant for hybrid air bag inflation system |
US5738371A (en) * | 1994-06-14 | 1998-04-14 | Ad Astam Scientific, L.L.C. | Hybrid airbag inflator |
US5538278A (en) * | 1994-06-14 | 1996-07-23 | Ad Astram Enterprises, Inc. | Ignition train apparatus for hybrid airbag inflators |
WO1995034448A1 (en) * | 1994-06-14 | 1995-12-21 | Ad Astram Enterprises, Inc. | Improved ignition train apparatus for hybrid airbag inflators |
EP0691317A3 (en) * | 1994-07-01 | 1997-03-05 | Temic Bayern Chem Airbag Gmbh | Non-azide gas generant formulations |
EP0763511A3 (en) * | 1995-09-15 | 1997-05-07 | Morton Int Inc | Igniter compositions for non-azide gas generants |
EP0763511A2 (en) * | 1995-09-15 | 1997-03-19 | Morton International, Inc. | Igniter compositions for non-azide gas generants |
US5670740A (en) * | 1995-10-06 | 1997-09-23 | Morton International, Inc. | Heterogeneous gas generant charges |
EP0779260A2 (en) | 1995-12-13 | 1997-06-18 | Morton International, Inc. | Fuel compositions for use in hybrid inflators containing stored oxidizing gas |
EP0787702A1 (en) | 1996-01-30 | 1997-08-06 | Morton International, Inc. | Gas generant compositions containing d,l-tartaric acid |
US5567905A (en) * | 1996-01-30 | 1996-10-22 | Morton International, Inc. | Gas generant compositions containing D 1-tartaric acid |
CN1064036C (en) * | 1996-01-30 | 2001-04-04 | 莫顿国际股份有限公司 | Gas producing composition containing d,1-tartaric acid |
WO1998018661A1 (en) | 1996-10-30 | 1998-05-07 | Atlantic Research Corporation | Autoignition propellant containing superfine iron oxide and method of lowering the autoignition temperature of an igniter |
US6076468A (en) * | 1998-03-26 | 2000-06-20 | Atlantic Research Corporation | Solid propellant/water type hybrid gas generator |
US6095559A (en) * | 1998-07-23 | 2000-08-01 | Autoliv Asp, Inc. | Chemical cooling of airbag inflation gases |
WO2000006424A1 (en) * | 1998-07-30 | 2000-02-10 | Autoliv Asp, Inc. | Treatment of airbag inflation gases |
US6051158A (en) * | 1998-07-30 | 2000-04-18 | Autoliv Asp, Inc. | Treatment of airbag inflation gases |
WO2001056833A3 (en) * | 2000-02-04 | 2003-09-04 | Automotive Systems Lab | Airbag release aid |
US6685223B2 (en) * | 2000-02-04 | 2004-02-03 | Automotive Systems Laboratory, Inc. | Airbag release aid |
US20040150201A1 (en) * | 2000-02-04 | 2004-08-05 | Takasi Furusawa | Airbag release aid |
WO2001056833A2 (en) * | 2000-02-04 | 2001-08-09 | Automotive Systems Laboratory, Inc. | Airbag release aid |
US7134690B2 (en) | 2000-02-04 | 2006-11-14 | Automotive Systems Laboratories, Inc. | Airbag release aid |
US6558487B1 (en) * | 2001-07-24 | 2003-05-06 | The United States Of America As Represented By The Secretary Of The Army | Smoke generating compositions and methods of making the same |
US20090102171A1 (en) * | 2005-03-31 | 2009-04-23 | Hordos Deborah L | Gas generator |
US20060220362A1 (en) * | 2005-03-31 | 2006-10-05 | Hordos Deborah L | Gas generator |
US9046327B2 (en) | 2005-03-31 | 2015-06-02 | Tk Holdings Inc. | Gas generator |
US20070113940A1 (en) * | 2005-06-30 | 2007-05-24 | Burns Sean P | Autoignition compositions |
US8784585B2 (en) | 2005-06-30 | 2014-07-22 | Tk Holdings Inc. | Autoignition compositions |
JP2009502718A (en) * | 2005-07-29 | 2009-01-29 | オートモーティブ システムズ ラボラトリィ、 インク. | Self-ignition / booster composition |
US20070034307A1 (en) * | 2005-07-29 | 2007-02-15 | Hordos Deborah L | Autoignition/booster composition |
US20070044675A1 (en) * | 2005-08-31 | 2007-03-01 | Burns Sean P | Autoignition compositions |
US20090008003A1 (en) * | 2005-09-30 | 2009-01-08 | Burns Sean P | Gas generant |
US20070084532A1 (en) * | 2005-09-30 | 2007-04-19 | Burns Sean P | Gas generant |
US20070169863A1 (en) * | 2006-01-19 | 2007-07-26 | Hordos Deborah L | Autoignition main gas generant |
US20100326575A1 (en) * | 2006-01-27 | 2010-12-30 | Miller Cory G | Synthesis of 2-nitroimino-5-nitrohexahydro-1,3,5-triazine |
US7959749B2 (en) * | 2006-01-31 | 2011-06-14 | Tk Holdings, Inc. | Gas generating composition |
US20070175553A1 (en) * | 2006-01-31 | 2007-08-02 | Burns Sean P | Gas Generating composition |
US20080271825A1 (en) * | 2006-09-29 | 2008-11-06 | Halpin Jeffrey W | Gas generant |
US20080149232A1 (en) * | 2006-12-15 | 2008-06-26 | Jason Newell | Gas generant compositions |
US9556078B1 (en) | 2008-04-07 | 2017-01-31 | Tk Holdings Inc. | Gas generator |
US9073512B1 (en) | 2012-07-23 | 2015-07-07 | Tk Holdings Inc. | Gas generating system with gas generant cushion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3785149A (en) | Method for filling a bag with water vapor and carbon dioxide gas | |
US3902934A (en) | Gas generating compositions | |
US3880595A (en) | Gas generating compositions and apparatus | |
US3895098A (en) | Method and composition for generating nitrogen gas | |
US3964255A (en) | Method of inflating an automobile passenger restraint bag | |
US3862866A (en) | Gas generator composition and method | |
US4948439A (en) | Composition and process for inflating a safety crash bag | |
KR960016589B1 (en) | How to Control Gas Generating Compositions and Oxides of Nitrogen | |
EP0055904B1 (en) | Azide-free compositions for generating nitrogen, the generation of nitrogen therefrom and inflation of gas bags therewith | |
EP0055547B1 (en) | Solid compositions for generating nitrogen, the generation of nitrogen therefrom and inflation of gas bags therewith | |
US4909549A (en) | Composition and process for inflating a safety crash bag | |
KR950008200B1 (en) | Azide-freegas generant composition with easily filterable combustion products | |
CA2079946C (en) | Non-azide gas generant formulations | |
US3910805A (en) | Low temperature gas generating compositions | |
KR0127642B1 (en) | Occupant restraint system and composition useful therein | |
KR920008180B1 (en) | Azide Gas Generating Compositions for Expandable Devices | |
US3964256A (en) | Production of non-toxic gas by combustion of solid propellant | |
US5536339A (en) | Air bag inflator gas compositions and inflator containing the same | |
US5324075A (en) | Gas generator for vehicle occupant restraint | |
JPH0233646B2 (en) | ||
US5763821A (en) | Autoignition propellant containing superfine iron oxide | |
US5015309A (en) | Gas generant compositions containing salts of 5-nitrobarbituric acid, salts of nitroorotic acid, or 5-nitrouracil | |
USRE32584E (en) | Method and composition for generating nitrogen gas | |
JPH10158086A (en) | Gas producing preparation and its use for air bag | |
JPH0632690A (en) | Gas-generating agent for air bag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FIRST WISCONSIN NATIONAL BANK OF MILWAUKEE, WISCON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SPECIALTY PRODUCTS DEVELEOPMENT CORPORATION;REEL/FRAME:005236/0946 Effective date: 19900118 Owner name: HBB LIMITED PARTNERSHIP, AN ILLINOIS LIMITED PARTN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:FIRST WISCONSIN NATIONAL BANK OF MILWAUKEE;REEL/FRAME:005236/0949 Effective date: 19900119 |
|
AS | Assignment |
Owner name: HBB LIMITED PARTNERSHIP, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GALLO, MICHELE;REEL/FRAME:005383/0612 Effective date: 19900428 Owner name: HBB LIMITED PARTNERSHIP, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:GIATTINO, LOUIS R.;REEL/FRAME:005383/0511 Effective date: 19900430 Owner name: HBB LIMITED PARTNERSHIP, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CALABRIA, JOSEPH;REEL/FRAME:005383/0545 Effective date: 19900426 Owner name: HBB LIMITED PARTNERSHIP, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CATANZARITE, VINCENT;REEL/FRAME:005383/0560 Effective date: 19900426 Owner name: HBB LIMITED PARTNERSHIP, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:TIMMERMAN, HUBERT;REEL/FRAME:005383/0549 Effective date: 19900427 Owner name: HBB LIMITED PARTNERSHIP, 2300 SHERIDAN RD., HIGHLA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:LYNCH, ROBERT W.;REEL/FRAME:005552/0258 Effective date: 19900430 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED FILE - (OLD CASE ADDED FOR FILE TRACKING PURPOSES) |