US3779602A - Process for solution mining nahcolite - Google Patents
Process for solution mining nahcolite Download PDFInfo
- Publication number
- US3779602A US3779602A US00278407A US3779602DA US3779602A US 3779602 A US3779602 A US 3779602A US 00278407 A US00278407 A US 00278407A US 3779602D A US3779602D A US 3779602DA US 3779602 A US3779602 A US 3779602A
- Authority
- US
- United States
- Prior art keywords
- nahcolite
- zone
- pressure
- liquid
- formation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010448 nahcolite Substances 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000005065 mining Methods 0.000 title claims abstract description 21
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 44
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims abstract description 22
- 239000004058 oil shale Substances 0.000 claims abstract description 22
- 238000002386 leaching Methods 0.000 claims abstract description 15
- 229910000030 sodium bicarbonate Inorganic materials 0.000 claims abstract description 11
- 235000017557 sodium bicarbonate Nutrition 0.000 claims abstract description 11
- 239000007788 liquid Substances 0.000 claims description 27
- 238000004519 manufacturing process Methods 0.000 claims description 24
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- 238000000354 decomposition reaction Methods 0.000 claims description 5
- 229910001575 sodium mineral Inorganic materials 0.000 claims description 4
- 238000010793 Steam injection (oil industry) Methods 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- 238000005755 formation reaction Methods 0.000 description 39
- 239000012530 fluid Substances 0.000 description 30
- 229910052500 inorganic mineral Inorganic materials 0.000 description 24
- 239000011707 mineral Substances 0.000 description 24
- 235000010755 mineral Nutrition 0.000 description 24
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 13
- 239000000243 solution Substances 0.000 description 11
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 229910000029 sodium carbonate Inorganic materials 0.000 description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000656145 Thyrsites atun Species 0.000 description 2
- FNYLWPVRPXGIIP-UHFFFAOYSA-N Triamterene Chemical compound NC1=NC2=NC(N)=NC(N)=C2N=C1C1=CC=CC=C1 FNYLWPVRPXGIIP-UHFFFAOYSA-N 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- -1 2 NaHCO Substances 0.000 description 1
- 241001625808 Trona Species 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- RWUHYORITHDAPW-UHFFFAOYSA-N disodium methanediolate Chemical compound [Na+].[Na+].[O-]C[O-] RWUHYORITHDAPW-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 230000008823 permeabilization Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- XHFLOLLMZOTPSM-UHFFFAOYSA-M sodium;hydrogen carbonate;hydrate Chemical compound [OH-].[Na+].OC(O)=O XHFLOLLMZOTPSM-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/28—Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent
- E21B43/281—Dissolving minerals other than hydrocarbons, e.g. by an alkaline or acid leaching agent using heat
Definitions
- ABSTRACT The process of solution mining sodium bicarbonate (e.g., nahcolite) from a subsurface sodium bicarbonate containing, oil shale formation with water is im proved by conducting leaching operations at a selected temperature greater than 250F and adjusting pressure to a particular preferred value for the selected leaching temperature.
- sodium bicarbonate e.g., nahcolite
- PROCESS FOR SOLUTION MINING NAHCOLITE BACKGROUND OF THE INVENTION Field of the Invention This invention relates to the field of producing minerals from subsurface formations; and more particularly, to a process for solution mining nahcolite from subsurface oil shale formations.
- aqueous fluid is flowed downa well into contact with a subsurface deposit.
- the solution dissolves some of the soluble mineral.
- the mineral-containing solvent is then flowed to the surface where it is treated to remove the dissolved mineral, e.g., by evaporation.
- No. 75,009 filed Sept. 24, 1970, teaches a method of producing oil from such mineral-containing oil-shale formations which includes permeabilization of the formation by dissolution of mineral with hot aqueous solution.
- the optimum pressure is that pressure at which the sodium mineral-carrying capacity of the aqueous leaching fluid is at a maximum. At pressures below the optimum, excessive conversion of bicarbonate material to carbonate with attendant precipitation of carbonate leads'to a reduced mineral-carrying capacity. At higher pressures than the optimum, conversion of bicarbonate material to carbonate is inhibited and the mineralcarrying capacity of the leaching fluid is thereby reduced.
- FIG. I is a graphical representation of cavity growth rate versus cavity temperature for a nahcolite leaching operation conducted in a nahcolite-containing oil shale formation.
- FIG. 2 is a graph of sodium content expressed as equivalent pounds of nahcolite per pound of water for a sodium carbonate saturated, sodium bicarbonatewater system as a function of temperature.
- FIG. 3 is a schematic view, partly in cross section, of a solution-mining well equipped for the practice of this invention.
- FIG. 4 is a schematic view, partly in cross-section, of another well system for use in the practice of this invention.
- a solution-mining well 13 extends into the oil shale formation 10 from the earth surface.
- the well 13 has been completed in a conventional manner with casing 14 sealed in place with cement 15.
- a solution-mining fluid injection tubing string 16 and a solution-mining fluid production tubing string 17 are extended into the well 13.
- the lower end of the injection tubing 16 is preferably positioned adjacent the top of a zone 9 of the oil shale formation 10 to be solution-mined.
- the lower end of the production tubingstring is preferably positioned near the bottom of the zone 9.
- Pack-off means such as packer 18 may be positioned in the casing 14 above the lower end of the tubing string 16.
- Production tubing string 17 is provided with suitable means for lifting solution-mining fluid to the surface.
- pumping apparatus may be positioned adjacent the bottom of production string 17 or the production string 17 may be equipped for gas lift as shown in FIG. 3.
- a pressure actuated gas lift valve 19 is operatively connected to production tubing 17 at a point above packer 18.
- a conduit 20 for injection gas is connected to the casing 14 at the surface.
- gas is injected through conduit 20 into casing 14.
- valve 19 opens and admits gas into the interior of tubing 17. This gas lightens the column of fluid in tubing 17 thereby reducing the pressure necessary to cause fluid to flow from the bottom of tubing 17 to the earth surface.
- hot aqueous solution-mining fluid preferably low quality steam
- This fluid contacts water-soluble minerals in the formation 10 and dissolves them thereby forming a leached zone and, eventually, a cavity 21.
- the cavity 21 may be at least partially filled with fragmented particles of oil shale and nahcolite 22.
- the cavity growth rate varies logarithmically with the cavity temperature as shown in FIG. 1 and that cavity growth rate is only slightly dependent upon the rate of fluid injection. It is believed that this increase in cavity growth rate with temperature is at least in part due to more rapid thermal fracturing at higher temperatures of oil shale surrounding discreet nahcolite nodules. Such fracturing allows injected aqueous fluid to reach the nahcolite nodule and leach it from the formation leaving an exposed oil shale face which is in turn thermally fractured opening up communication to yet another nodule.
- cavity temperature should be maintained above 250F and preferably above 300F.
- the rate of mineral recovery can be maximized by selecting an operating temperature for maximum desired cavity growth rate as by reference to FIG. 1, and then during operation adjusting cavity pressure to a pressure at which the sodium carrying capacity of the aqueous leaching fluid is a maximum for the selected cavity temperature.
- This pressure is less than that required to bydraulically fracture the formation and is greater than the pressure at which nahcolite decomposition to sodium carbonite, carbon dioxide and water is maximized.
- the particular selected leaching temperature will vary from operation to operation depending upon economic conditions and the desired cavity growth rate for each particular case.
- Operating pressure for a particular selected temperature is determined from pressure, temperature, saturation relationships such as those given in FIG. 2. That figure shows total sodium concentration in pounds of nahcolite per pound of water for a sodium carbonate saturated, sodium carbonate/- sodium bicarbonatewater system.
- the graph reflects the amount of nahcolite removed from a nabcolite formation which is present in the solution even though the actual composition of the solution includes both sodium bicarbonate and sodium carbonate generated by nahcolite decomposition. Best results are obtained by operating at the pressure for which the isobar intersects the upper dashed curve at the selected operating temperature. Good results are obtained at pressures varying as much as percent above or below this pressure.
- FIG. 2 for a temperature of 400, it can be seen that at that temperature and about 200 psi only sodium bicarbonate is present in the solution (as given by the lower dotted line of the Figure) and that the total amount of equivalent nahcolite dissolved is around 0.55 pounds per pound of water. However as pressure is increased, the amount of sodium bicarbonate in the system increases until at about 1,000 psi, the total sodium content is equivalent to about 1.25 pounds per pound of water even though sodium carbonate saturation remains the same. Further pressure increase to a pressure for which the extention of an isobar would intersect the 400F isotherm above the upper dotted line results in the precipitation of sodium bicarbonate and an effective reduction in the equivalent nahcolite saturation of the system.
- leaching operations can be maximized if pressure in the cavity 21 is maintained at about 1,000 psi. To maintain this pressure, it is necessary to artiflcally lift fluid from the cavity 21 if the fluid head of solution-mining fluid in production tubing 17 is greater than 1,800 psi. Therefore, the well 13 is provided with a gas lift system as heretofore described.
- FIG. 4 shows a well 22 extending into the formation 10 that is completed in a manner particularly advantageous for the practice of this invention.
- the well 22 is completed with casing 23 which extends into the nahcolite-containing formation 10.
- the casing 23 is cemented in place with cement 24 and perforated adjacent formation 10 with perforations 25 to open the interior of the casing into communication with the formation 10.
- a liquid production tubing string 26 and a gas production tubing string 27 extend into the well from the surface.
- the liquid production tubing string 26 preferably terminates at the point adjacent the bottom of the interval of the formation 10 to be treated whereas the gas production tubing string 27 terminates at a point above the lower end of the liquid production tubing 26 but below the perforations 25.
- the interior of the casing is preferably sealed to fluid flow by pack-off means such as packer 28 at a point above the terminal ends of the two tubing strings 26 and 27 and below the perforations 25.
- the liquid production tubing string is provided with means for lifting liquid from the formation 10 to the surface.
- This may be a down-hole pump or gas lift means (as illustrated in FIG. 4) in which a gas injection string extends into the well 22 and is connected in communication with production tubing 26 at a point near the lower end of that tubing. The particular point of intersection will be determined by the fluid head desired to be maintained in liquid production string 26.
- hot aqueous fluid having a temperature greater than 250 and preferably greater than 300F is injected into casing 23 through conduit 30 and then down the casing until it passes through perforations 25 into the formation 10.
- This fluid leaches nahcolite from the formation creating a cavity 31 which may be filled with fragmented particles of oil shale and nahcolite 32.
- the aqueous fluid advantageously contains high proportion of steam which upon contacting the formation 10 condenses to form a liquid phase capable of carrying dissolved mineral in solution.
- liquid is produced from the lower part of the cavern 31 through production tubing string 26 and gas is produced from the cavern 31 through gas production tubing string 27.
- the production rate of these fluids is preferably adjusted to maintain the pressure in the cavern 31 at a particular preferred value for the selected temperature operation.
- the removal of gas through the tubing 26 draws both steam and CO from the cavern 31. This results in a reduction of the partial pressure of CO in the cavern and further promotes the decomposition of nahcolite (NaHCO to sodium carbonate, CO and water (e.g., 2 NaHCO, Na CO3 C0, H O).
- FIGS. 3 and 4 illustrates single well systems for the practice of this invention. However, it should be understood that two or more wells may at any one time be in communication with any particular cavern 21 or 31 or other permeabilized zone. In such a case, aqueous fluid may be injected into the formation through one well and produced from the formation through a separate well.
- FIGS. 3 and 4 illustrate the process after a cavity 21 or 31 has been formed. It should be understood that in many cases, initial treatment will be confined to a substantially cylindrical wellbore and that the cavern is formed only after a period of leaching has expanded the wellbore radically.
- the method of claim 1 further comprising producing liquid containing dissolved sodium bicarbonate from a liquid layer adjacent the bottom of the leached zone through a production tubing string using artificial lift means to lift the liquid to the surface.
- a method for solution-mining nahcolite from a subsurface oil-shale formation comprising the steps of:
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
The process of solution mining sodium bicarbonate (e.g., nahcolite) from a subsurface sodium bicarbonate containing, oil shale formation with water is improved by conducting leaching operations at a selected temperature greater than 250*F and adjusting pressure to a particular preferred value for the selected leaching temperature.
Description
United States Patent [191 Beard et al.
[451 Dec. 18, 1973 PROCESS FOR SOLUTION MINING NAI-ICOLITE Thomas N. Beard, Denver, Colo.; Peter Van Meurs, Houston, Tex.
[75] Inventors:
Shell Oil Company, Houston, Tex.
Aug. 7, 1972 Assignee:
Filed:
Appl. No.:
U.S. Cl. 299/5, 166/303 Int. Cl E2lb 43/28 Field of Search 299/4, 5; 166/272,
References Cited UNlTED STATES PATENTS 2,388,009 Pike 299 5 x Pike et a1 299/5 X Papadopoulos et a1 299/5 Primary ExaminerErnest R; Purser Attorney-Theodore E. Bieber [57] ABSTRACT The process of solution mining sodium bicarbonate (e.g., nahcolite) from a subsurface sodium bicarbonate containing, oil shale formation with water is im proved by conducting leaching operations at a selected temperature greater than 250F and adjusting pressure to a particular preferred value for the selected leaching temperature.
6 Claims, 4 Drawing Figures I i-viii 7 I 1 EU um; I 8 I975 sum in; 3
0 0 0% @wwmm w 0 0 0 0 0 Q\.-m.wh; WD Q Q \CSQG KO MEQQ IREOID PATENIED DEC 18 I975 SHEET 2 BF 3 Dam saw Dom QQN ou z E zocqmEqm 252m 0% oux z I 3G9 8 2 m5 815 SE 8 2 E8 E 295%: 3 a
PROCESS FOR SOLUTION MINING NAHCOLITE BACKGROUND OF THE INVENTION Field of the Invention This invention relates to the field of producing minerals from subsurface formations; and more particularly, to a process for solution mining nahcolite from subsurface oil shale formations Description of the Prior Art The recovery of water-soluble minerals from subsurface deposits by solution mining with aqueous fluids is well known. In such a process, aqueous fluid is flowed downa well into contact with a subsurface deposit. The solution dissolves some of the soluble mineral. The mineral-containing solvent is then flowed to the surface where it is treated to remove the dissolved mineral, e.g., by evaporation.
The solubility of most commercially interesting water soluble minerals increases with increasing temperature. Therefore, aqueous solution-mining fluid is often heated to increase its mineral carrying capacity before it is injected into a subsurface mineral deposit. For example, U.S. Pat. No. 1,649,385 issued Nov. 15, 1927, to H. Blumenberg, Jr. teaches a method of solution-mining crystallized boron compounds by using a mixture of hot air and steam.
In the western United States, there are large subsurface oil shale formations which contain substantial amounts of water-soluble, heat-sensitive bicarbonate minerals such as trona and nahcolite. These minerals are present both in inter-bedded substantially pure soluble mineral layers and as dispersed nodules in certain layers which predominently contain oil shale.
It is known that theseheat-sensitive, water-soluble minerals can be solution-mined with hot aqueous solutions. *See, for example, U.S. Pat. 3,050,290, issued Aug. 21, 1962, to N. A. Caldwell et al. A co-pending commonly assigned application of T. N. Beard, Ser.
No. 75,009, filed Sept. 24, 1970, teaches a method of producing oil from such mineral-containing oil-shale formations which includes permeabilization of the formation by dissolution of mineral with hot aqueous solution.
SUMMARY OF THE INVENTION We have now found that the process of removing heat-sensitive, water-soluble bicarbonate minerals from subsurface oil shale deposits by solution-mining with hot aqueous solutions is improved by injecting steam into the formation at a selected temperature greater than 250F, and advantageously, greater than 300F, to leach water-soluble mineral from the formation; maintaining the temperature of fluid in the leached zone greater than 250F; and adjusting pressure in the leached zone to a particular optimum pressure for the selected temperature.
The optimum pressure is that pressure at which the sodium mineral-carrying capacity of the aqueous leaching fluid is at a maximum. At pressures below the optimum, excessive conversion of bicarbonate material to carbonate with attendant precipitation of carbonate leads'to a reduced mineral-carrying capacity. At higher pressures than the optimum, conversion of bicarbonate material to carbonate is inhibited and the mineralcarrying capacity of the leaching fluid is thereby reduced.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a graphical representation of cavity growth rate versus cavity temperature for a nahcolite leaching operation conducted in a nahcolite-containing oil shale formation.
FIG. 2 is a graph of sodium content expressed as equivalent pounds of nahcolite per pound of water for a sodium carbonate saturated, sodium bicarbonatewater system as a function of temperature.
FIG. 3 is a schematic view, partly in cross section, of a solution-mining well equipped for the practice of this invention. FIG. 4 is a schematic view, partly in cross-section, of another well system for use in the practice of this invention.
DESCRIPTION OF A PREFERRED EMBODIMENT Referring to FIG. 3, we see a subsurface oil shale formation 10 containing strata 11 of substantially pure nahcolite (NaHCO and strata 12 which are predominantly oil shale but which contain a substantial amount of nahcolite, e.g. 20 to 40 percent nahcolite dispersed in discreet nodules.
A solution-mining well 13 extends into the oil shale formation 10 from the earth surface. The well 13 has been completed in a conventional manner with casing 14 sealed in place with cement 15. A solution-mining fluid injection tubing string 16 and a solution-mining fluid production tubing string 17 are extended into the well 13. The lower end of the injection tubing 16 is preferably positioned adjacent the top of a zone 9 of the oil shale formation 10 to be solution-mined. The lower end of the production tubingstring is preferably positioned near the bottom of the zone 9.
Pack-off means such as packer 18 may be positioned in the casing 14 above the lower end of the tubing string 16. Production tubing string 17 is provided with suitable means for lifting solution-mining fluid to the surface. For example, pumping apparatus may be positioned adjacent the bottom of production string 17 or the production string 17 may be equipped for gas lift as shown in FIG. 3. In the embodiment illustrated, a pressure actuated gas lift valve 19 is operatively connected to production tubing 17 at a point above packer 18. A conduit 20 for injection gas is connected to the casing 14 at the surface. To lift fluid in the tubing 17, gas is injected through conduit 20 into casing 14. When the pressure of this gas exceeds a certain threshold value, valve 19 opens and admits gas into the interior of tubing 17. This gas lightens the column of fluid in tubing 17 thereby reducing the pressure necessary to cause fluid to flow from the bottom of tubing 17 to the earth surface.
To solution mine nahcolite from formation 10, hot aqueous solution-mining fluid, preferably low quality steam, is injected down tubing 16. This fluid contacts water-soluble minerals in the formation 10 and dissolves them thereby forming a leached zone and, eventually, a cavity 21. The cavity 21 may be at least partially filled with fragmented particles of oil shale and nahcolite 22.
We have found that in leaching formations similar to that shown in FIG. 1 with steam, the cavity growth rate varies logarithmically with the cavity temperature as shown in FIG. 1 and that cavity growth rate is only slightly dependent upon the rate of fluid injection. It is believed that this increase in cavity growth rate with temperature is at least in part due to more rapid thermal fracturing at higher temperatures of oil shale surrounding discreet nahcolite nodules. Such fracturing allows injected aqueous fluid to reach the nahcolite nodule and leach it from the formation leaving an exposed oil shale face which is in turn thermally fractured opening up communication to yet another nodule.
As can be seen in FIG. 1, for temperatures below 250F, growth rate of cavity radius is quite low, less than 0.08 feet per day; whereas at 300F, growth rate is almost doubled to 0.15 feet per day. Thus, for maximum mineral removal, cavity temperature should be maintained above 250F and preferably above 300F.
We have also found that in solution-mining nahcolite from an oil shale formation with aqueous fluid, the rate of mineral recovery can be maximized by selecting an operating temperature for maximum desired cavity growth rate as by reference to FIG. 1, and then during operation adjusting cavity pressure to a pressure at which the sodium carrying capacity of the aqueous leaching fluid is a maximum for the selected cavity temperature. This pressure is less than that required to bydraulically fracture the formation and is greater than the pressure at which nahcolite decomposition to sodium carbonite, carbon dioxide and water is maximized.
Operating in this manner can significantly reduce the energy requirement for carrying out the process since heat can be carried to the formation by relatively low pressure steam. Additionally, water requirements are reduced because the total amount of sodium mineral removed from the cavity 21 by a given volume of leaching luid is maximized.
The particular selected leaching temperature will vary from operation to operation depending upon economic conditions and the desired cavity growth rate for each particular case. Operating pressure for a particular selected temperature is determined from pressure, temperature, saturation relationships such as those given in FIG. 2. That figure shows total sodium concentration in pounds of nahcolite per pound of water for a sodium carbonate saturated, sodium carbonate/- sodium bicarbonatewater system. The graph reflects the amount of nahcolite removed from a nabcolite formation which is present in the solution even though the actual composition of the solution includes both sodium bicarbonate and sodium carbonate generated by nahcolite decomposition. Best results are obtained by operating at the pressure for which the isobar intersects the upper dashed curve at the selected operating temperature. Good results are obtained at pressures varying as much as percent above or below this pressure.
Looking at FIG. 2 for a temperature of 400, it can be seen that at that temperature and about 200 psi only sodium bicarbonate is present in the solution (as given by the lower dotted line of the Figure) and that the total amount of equivalent nahcolite dissolved is around 0.55 pounds per pound of water. However as pressure is increased, the amount of sodium bicarbonate in the system increases until at about 1,000 psi, the total sodium content is equivalent to about 1.25 pounds per pound of water even though sodium carbonate saturation remains the same. Further pressure increase to a pressure for which the extention of an isobar would intersect the 400F isotherm above the upper dotted line results in the precipitation of sodium bicarbonate and an effective reduction in the equivalent nahcolite saturation of the system. Thus at 400F, leaching operations can be maximized if pressure in the cavity 21 is maintained at about 1,000 psi. To maintain this pressure, it is necessary to artiflcally lift fluid from the cavity 21 if the fluid head of solution-mining fluid in production tubing 17 is greater than 1,800 psi. Therefore, the well 13 is provided with a gas lift system as heretofore described.
FIG. 4 shows a well 22 extending into the formation 10 that is completed in a manner particularly advantageous for the practice of this invention. The well 22 is completed with casing 23 which extends into the nahcolite-containing formation 10. The casing 23 is cemented in place with cement 24 and perforated adjacent formation 10 with perforations 25 to open the interior of the casing into communication with the formation 10.
A liquid production tubing string 26 and a gas production tubing string 27 extend into the well from the surface. The liquid production tubing string 26 preferably terminates at the point adjacent the bottom of the interval of the formation 10 to be treated whereas the gas production tubing string 27 terminates at a point above the lower end of the liquid production tubing 26 but below the perforations 25. The interior of the casing is preferably sealed to fluid flow by pack-off means such as packer 28 at a point above the terminal ends of the two tubing strings 26 and 27 and below the perforations 25.
The liquid production tubing string is provided with means for lifting liquid from the formation 10 to the surface. This may be a down-hole pump or gas lift means (as illustrated in FIG. 4) in which a gas injection string extends into the well 22 and is connected in communication with production tubing 26 at a point near the lower end of that tubing. The particular point of intersection will be determined by the fluid head desired to be maintained in liquid production string 26.
In operation, hot aqueous fluid having a temperature greater than 250 and preferably greater than 300F is injected into casing 23 through conduit 30 and then down the casing until it passes through perforations 25 into the formation 10. This fluid leaches nahcolite from the formation creating a cavity 31 which may be filled with fragmented particles of oil shale and nahcolite 32. The aqueous fluid advantageously contains high proportion of steam which upon contacting the formation 10 condenses to form a liquid phase capable of carrying dissolved mineral in solution. Simultaneously with the injection of steam down the casing 22, liquid is produced from the lower part of the cavern 31 through production tubing string 26 and gas is produced from the cavern 31 through gas production tubing string 27. The production rate of these fluids is preferably adjusted to maintain the pressure in the cavern 31 at a particular preferred value for the selected temperature operation. The removal of gas through the tubing 26 draws both steam and CO from the cavern 31. This results in a reduction of the partial pressure of CO in the cavern and further promotes the decomposition of nahcolite (NaHCO to sodium carbonate, CO and water (e.g., 2 NaHCO, Na CO3 C0, H O).
Both FIGS. 3 and 4 illustrates single well systems for the practice of this invention. However, it should be understood that two or more wells may at any one time be in communication with any particular cavern 21 or 31 or other permeabilized zone. In such a case, aqueous fluid may be injected into the formation through one well and produced from the formation through a separate well.
Both FIGS. 3 and 4 illustrate the process after a cavity 21 or 31 has been formed. It should be understood that in many cases, initial treatment will be confined to a substantially cylindrical wellbore and that the cavern is formed only after a period of leaching has expanded the wellbore radically.
We claim as our invention:
1. In a method for solution-mining heat sensitive water-soluble sodium bicarbonate minerals from a subsurface bicarbonate mineral containing oil-shale formation of the type wherein a hot aqueous fluid is injected into the formation to leach bicarbonate mineral therefrom, the improvement comprising:
injecting steam into the formation at a temperature greater than 250F to leach water-soluble mineral from the formation and thereby create a leached zone; maintaining the temperature of fluid in the leached zone at a temperature greater than 250F; and
adjusting pressure in the leached zone to an optimum pressure at which the sodium mineral carrying capacity of water at the selected temperature is a maximum.
2. The method of claim 1 further comprising producing liquid containing dissolved sodium bicarbonate from a liquid layer adjacent the bottom of the leached zone through a production tubing string using artificial lift means to lift the liquid to the surface.
3. The method of claim 2 further comprising withdrawing gas containing CO from a gas layer adjacent the top of the leached zone.
4. A method for solution-mining nahcolite from a subsurface oil-shale formation comprising the steps of:
traversing a nahcolite-containing zone of the oilshale formation with a well;
extending a production string of tubing into the well to a point adjacent the bottom of the nahcolitecontaining zone;
extending an injection tubing string into the well to a point adjacent the top of the nahcolite-containing zone; injecting steam into contact with the nahcolite containing zone through the injection tubing at a temperature such that upon contacting the formation at least some of the steam condenses to liquid which liquid flows to the bottom of the nahcolite zone leaching nahcolite therefrom; producing nahcolite-containing aqueous liquid from the nahcolite zone through the production tubing;
controlling the rate and temperature of steam injection to maintain a selected temperature of aqueous liquid adjacent the bottom of the nahcolite zone;
adjusting the pressure in the aqueous liquid adjacent the bottom of the nahcolite zone to an operating pressure substantially equal to that pressure at which the amount of sodium mineral the aqueous liquid can carry at the selected temperature is a maximum; and
maintaining the pressure in the aqueous liquid adjacent the bottom of the nahcolite zone substantially constant at the operating pressure.
5. The method of claim 4 wherein the operating pressure is a pressure less than that required to hydraulically fracture the formation.
6. The method of claim 5 wherein the operating pressure is greater than the pressure at which the rate of nahcolite decomposition is a maximum at the selected temperature.
Claims (5)
- 2. The method of claim 1 further comprising producing liquid containing dissolved sodium bicarbonate from a liquid layer adjacent the bottom of the leached zone through a production tubing string using artificial lift means to Lift the liquid to the surface.
- 3. The method of claim 2 further comprising withdrawing gas containing CO2 from a gas layer adjacent the top of the leached zone.
- 4. A method for solution-mining nahcolite from a subsurface oil-shale formation comprising the steps of: traversing a nahcolite-containing zone of the oil-shale formation with a well; extending a production string of tubing into the well to a point adjacent the bottom of the nahcolite-containing zone; extending an injection tubing string into the well to a point adjacent the top of the nahcolite-containing zone; injecting steam into contact with the nahcolite containing zone through the injection tubing at a temperature such that upon contacting the formation at least some of the steam condenses to liquid which liquid flows to the bottom of the nahcolite zone leaching nahcolite therefrom; producing nahcolite-containing aqueous liquid from the nahcolite zone through the production tubing; controlling the rate and temperature of steam injection to maintain a selected temperature of aqueous liquid adjacent the bottom of the nahcolite zone; adjusting the pressure in the aqueous liquid adjacent the bottom of the nahcolite zone to an operating pressure substantially equal to that pressure at which the amount of sodium mineral the aqueous liquid can carry at the selected temperature is a maximum; and maintaining the pressure in the aqueous liquid adjacent the bottom of the nahcolite zone substantially constant at the operating pressure.
- 5. The method of claim 4 wherein the operating pressure is a pressure less than that required to hydraulically fracture the formation.
- 6. The method of claim 5 wherein the operating pressure is greater than the pressure at which the rate of nahcolite decomposition is a maximum at the selected temperature.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27840772A | 1972-08-07 | 1972-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3779602A true US3779602A (en) | 1973-12-18 |
Family
ID=23064857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00278407A Expired - Lifetime US3779602A (en) | 1972-08-07 | 1972-08-07 | Process for solution mining nahcolite |
Country Status (1)
Country | Link |
---|---|
US (1) | US3779602A (en) |
Cited By (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3880238A (en) * | 1974-07-18 | 1975-04-29 | Shell Oil Co | Solvent/non-solvent pyrolysis of subterranean oil shale |
US3957306A (en) * | 1975-06-12 | 1976-05-18 | Shell Oil Company | Explosive-aided oil shale cavity formation |
US3967853A (en) * | 1975-06-05 | 1976-07-06 | Shell Oil Company | Producing shale oil from a cavity-surrounded central well |
US3987851A (en) * | 1975-06-02 | 1976-10-26 | Shell Oil Company | Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale |
US4033412A (en) * | 1976-06-18 | 1977-07-05 | Barrett George M | Fluid carrier recovery system and method |
US4264104A (en) * | 1979-07-16 | 1981-04-28 | Ppg Industries Canada Ltd. | Rubble mining |
US4557910A (en) * | 1982-03-29 | 1985-12-10 | Intermountain Research & Development Corporation | Production of soda ash from nahcolite |
US4815790A (en) * | 1988-05-13 | 1989-03-28 | Natec, Ltd. | Nahcolite solution mining process |
US5588713A (en) * | 1995-12-20 | 1996-12-31 | Stevenson; Tom D. | Process for making sodium bicarbonate from Nahcolite-rich solutions |
US5607018A (en) * | 1991-04-01 | 1997-03-04 | Schuh; Frank J. | Viscid oil well completion |
US5955043A (en) * | 1996-08-29 | 1999-09-21 | Tg Soda Ash, Inc. | Production of sodium carbonate from solution mine brine |
US6322767B1 (en) | 1996-05-21 | 2001-11-27 | Fmc Corporation | Process for making sodium carbonate decahydrate from sodium carbonate/bicarbonate liquors |
US20020029885A1 (en) * | 2000-04-24 | 2002-03-14 | De Rouffignac Eric Pierre | In situ thermal processing of a coal formation using a movable heating element |
US20020038711A1 (en) * | 2000-04-24 | 2002-04-04 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores |
US20030050736A1 (en) * | 2001-08-31 | 2003-03-13 | Mark Nelson | Diluting system and method |
WO2003035801A2 (en) * | 2001-10-24 | 2003-05-01 | Shell Oil Company | Producing hydrocarbons and non-hydrocarbon containing materials from a hydrocarbon containing formation |
US20030102130A1 (en) * | 2001-04-24 | 2003-06-05 | Vinegar Harold J. | In situ thermal recovery from a relatively permeable formation with quality control |
US20030131994A1 (en) * | 2001-04-24 | 2003-07-17 | Vinegar Harold J. | In situ thermal processing and solution mining of an oil shale formation |
US20030155111A1 (en) * | 2001-04-24 | 2003-08-21 | Shell Oil Co | In situ thermal processing of a tar sands formation |
US6609761B1 (en) | 1999-01-08 | 2003-08-26 | American Soda, Llp | Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale |
US6699447B1 (en) * | 1999-01-08 | 2004-03-02 | American Soda, Llp | Sodium bicarbonate production from nahcolite |
US20040177966A1 (en) * | 2002-10-24 | 2004-09-16 | Vinegar Harold J. | Conductor-in-conduit temperature limited heaters |
US20050051327A1 (en) * | 2003-04-24 | 2005-03-10 | Vinegar Harold J. | Thermal processes for subsurface formations |
US20060039842A1 (en) * | 2004-08-17 | 2006-02-23 | Sesqui Mining, Llc | Methods for constructing underground borehole configurations and related solution mining methods |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US7040400B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation using an open wellbore |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US7320364B2 (en) | 2004-04-23 | 2008-01-22 | Shell Oil Company | Inhibiting reflux in a heated well of an in situ conversion system |
US7533719B2 (en) | 2006-04-21 | 2009-05-19 | Shell Oil Company | Wellhead with non-ferromagnetic materials |
US7540324B2 (en) | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US7549470B2 (en) | 2005-10-24 | 2009-06-23 | Shell Oil Company | Solution mining and heating by oxidation for treating hydrocarbon containing formations |
US20100147521A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Perforated electrical conductors for treating subsurface formations |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US20110084030A1 (en) * | 2009-10-12 | 2011-04-14 | Force Flow | Method and system for monitoring and/or tracking sodium hypochlorite use |
US20110127825A1 (en) * | 2008-08-01 | 2011-06-02 | Solvay Chemicals, Inc. | Traveling undercut solution mining systems and methods |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US9433894B2 (en) | 2013-05-09 | 2016-09-06 | Tronox Alkali Wyoming Corporation | Removal of hydrogen sulfide from gas streams |
US9803458B2 (en) | 2013-03-13 | 2017-10-31 | Tronox Alkali Wyoming Corporation | Solution mining using subterranean drilling techniques |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
US10422210B1 (en) | 2018-05-04 | 2019-09-24 | Sesqui Mining, Llc. | Trona solution mining methods and compositions |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2388009A (en) * | 1943-10-19 | 1945-10-30 | Robert D Pike | Solution mining of trona |
US2625384A (en) * | 1949-07-01 | 1953-01-13 | Fmc Corp | Mining operation |
US3700280A (en) * | 1971-04-28 | 1972-10-24 | Shell Oil Co | Method of producing oil from an oil shale formation containing nahcolite and dawsonite |
-
1972
- 1972-08-07 US US00278407A patent/US3779602A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2388009A (en) * | 1943-10-19 | 1945-10-30 | Robert D Pike | Solution mining of trona |
US2625384A (en) * | 1949-07-01 | 1953-01-13 | Fmc Corp | Mining operation |
US3700280A (en) * | 1971-04-28 | 1972-10-24 | Shell Oil Co | Method of producing oil from an oil shale formation containing nahcolite and dawsonite |
Cited By (250)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3880238A (en) * | 1974-07-18 | 1975-04-29 | Shell Oil Co | Solvent/non-solvent pyrolysis of subterranean oil shale |
US3987851A (en) * | 1975-06-02 | 1976-10-26 | Shell Oil Company | Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale |
US3967853A (en) * | 1975-06-05 | 1976-07-06 | Shell Oil Company | Producing shale oil from a cavity-surrounded central well |
US3957306A (en) * | 1975-06-12 | 1976-05-18 | Shell Oil Company | Explosive-aided oil shale cavity formation |
US4033412A (en) * | 1976-06-18 | 1977-07-05 | Barrett George M | Fluid carrier recovery system and method |
US4264104A (en) * | 1979-07-16 | 1981-04-28 | Ppg Industries Canada Ltd. | Rubble mining |
US4557910A (en) * | 1982-03-29 | 1985-12-10 | Intermountain Research & Development Corporation | Production of soda ash from nahcolite |
US4815790A (en) * | 1988-05-13 | 1989-03-28 | Natec, Ltd. | Nahcolite solution mining process |
US5607018A (en) * | 1991-04-01 | 1997-03-04 | Schuh; Frank J. | Viscid oil well completion |
US5588713A (en) * | 1995-12-20 | 1996-12-31 | Stevenson; Tom D. | Process for making sodium bicarbonate from Nahcolite-rich solutions |
US6322767B1 (en) | 1996-05-21 | 2001-11-27 | Fmc Corporation | Process for making sodium carbonate decahydrate from sodium carbonate/bicarbonate liquors |
US5955043A (en) * | 1996-08-29 | 1999-09-21 | Tg Soda Ash, Inc. | Production of sodium carbonate from solution mine brine |
US6609761B1 (en) | 1999-01-08 | 2003-08-26 | American Soda, Llp | Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale |
US6699447B1 (en) * | 1999-01-08 | 2004-03-02 | American Soda, Llp | Sodium bicarbonate production from nahcolite |
US20040231109A1 (en) * | 1999-01-08 | 2004-11-25 | Nielsen Kurt R. | Sodium bicarbonate production from nahcolite |
US20040026982A1 (en) * | 1999-01-08 | 2004-02-12 | American Soda, Llp | Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale |
US20060120942A1 (en) * | 1999-01-08 | 2006-06-08 | American Soda, Llp | Sodium carbonate and sodium bicarbonate production |
US7128886B2 (en) * | 1999-01-08 | 2006-10-31 | Solvay Chemicals, Inc. | Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale |
US7410627B2 (en) * | 1999-01-08 | 2008-08-12 | American Soda, Llp | Sodium carbonate and sodium bicarbonate production |
US6959761B2 (en) | 2000-04-24 | 2005-11-01 | Shell Oil Company | In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells |
US20020056551A1 (en) * | 2000-04-24 | 2002-05-16 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation in a reducing environment |
US20020029885A1 (en) * | 2000-04-24 | 2002-03-14 | De Rouffignac Eric Pierre | In situ thermal processing of a coal formation using a movable heating element |
US7086468B2 (en) | 2000-04-24 | 2006-08-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores |
US8789586B2 (en) | 2000-04-24 | 2014-07-29 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US20020077515A1 (en) * | 2000-04-24 | 2002-06-20 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range |
US20020057905A1 (en) * | 2000-04-24 | 2002-05-16 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US7798221B2 (en) | 2000-04-24 | 2010-09-21 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US20020084074A1 (en) * | 2000-04-24 | 2002-07-04 | De Rouffignac Eric Pierre | In situ thermal processing of a hydrocarbon containing formation to increase a porosity of the formation |
US8485252B2 (en) | 2000-04-24 | 2013-07-16 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US20020043365A1 (en) * | 2000-04-24 | 2002-04-18 | Berchenko Ilya Emil | In situ thermal processing of a coal formation with a selected ratio of heat sources to production wells |
US20020038711A1 (en) * | 2000-04-24 | 2002-04-04 | Rouffignac Eric Pierre De | In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US20020040780A1 (en) * | 2000-04-24 | 2002-04-11 | Wellington Scott Lee | In situ thermal processing of a hydrocarbon containing formation to produce a selected mixture |
US6997255B2 (en) | 2000-04-24 | 2006-02-14 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation in a reducing environment |
US6994160B2 (en) | 2000-04-24 | 2006-02-07 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce hydrocarbons having a selected carbon number range |
US6973967B2 (en) | 2000-04-24 | 2005-12-13 | Shell Oil Company | Situ thermal processing of a coal formation using pressure and/or temperature control |
US6966372B2 (en) | 2000-04-24 | 2005-11-22 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce oxygen containing formation fluids |
US7051807B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with quality control |
US7225866B2 (en) | 2001-04-24 | 2007-06-05 | Shell Oil Company | In situ thermal processing of an oil shale formation using a pattern of heat sources |
US6964300B2 (en) | 2001-04-24 | 2005-11-15 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with backproduction through a heater wellbore |
US7066254B2 (en) | 2001-04-24 | 2006-06-27 | Shell Oil Company | In situ thermal processing of a tar sands formation |
US6966374B2 (en) | 2001-04-24 | 2005-11-22 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation using gas to increase mobility |
US7735935B2 (en) | 2001-04-24 | 2010-06-15 | Shell Oil Company | In situ thermal processing of an oil shale formation containing carbonate minerals |
US6981548B2 (en) | 2001-04-24 | 2006-01-03 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation |
US6948562B2 (en) | 2001-04-24 | 2005-09-27 | Shell Oil Company | Production of a blending agent using an in situ thermal process in a relatively permeable formation |
US20030102130A1 (en) * | 2001-04-24 | 2003-06-05 | Vinegar Harold J. | In situ thermal recovery from a relatively permeable formation with quality control |
US20030131994A1 (en) * | 2001-04-24 | 2003-07-17 | Vinegar Harold J. | In situ thermal processing and solution mining of an oil shale formation |
US6997518B2 (en) | 2001-04-24 | 2006-02-14 | Shell Oil Company | In situ thermal processing and solution mining of an oil shale formation |
US8608249B2 (en) | 2001-04-24 | 2013-12-17 | Shell Oil Company | In situ thermal processing of an oil shale formation |
US20030102124A1 (en) * | 2001-04-24 | 2003-06-05 | Vinegar Harold J. | In situ thermal processing of a blending agent from a relatively permeable formation |
US7013972B2 (en) | 2001-04-24 | 2006-03-21 | Shell Oil Company | In situ thermal processing of an oil shale formation using a natural distributed combustor |
US7040400B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively impermeable formation using an open wellbore |
US7040397B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | Thermal processing of an oil shale formation to increase permeability of the formation |
US7040398B2 (en) | 2001-04-24 | 2006-05-09 | Shell Oil Company | In situ thermal processing of a relatively permeable formation in a reducing environment |
US20030102125A1 (en) * | 2001-04-24 | 2003-06-05 | Wellington Scott Lee | In situ thermal processing of a relatively permeable formation in a reducing environment |
US7051811B2 (en) | 2001-04-24 | 2006-05-30 | Shell Oil Company | In situ thermal processing through an open wellbore in an oil shale formation |
US20030155111A1 (en) * | 2001-04-24 | 2003-08-21 | Shell Oil Co | In situ thermal processing of a tar sands formation |
US20030209348A1 (en) * | 2001-04-24 | 2003-11-13 | Ward John Michael | In situ thermal processing and remediation of an oil shale formation |
US6845298B2 (en) * | 2001-08-31 | 2005-01-18 | Force Flow | Diluting system and method |
US20030050736A1 (en) * | 2001-08-31 | 2003-03-13 | Mark Nelson | Diluting system and method |
US20050102067A1 (en) * | 2001-08-31 | 2005-05-12 | Force Flow | Diluting system and method |
US7110861B2 (en) | 2001-08-31 | 2006-09-19 | Force Flow | Diluting system and method |
US7128153B2 (en) | 2001-10-24 | 2006-10-31 | Shell Oil Company | Treatment of a hydrocarbon containing formation after heating |
US7051808B1 (en) | 2001-10-24 | 2006-05-30 | Shell Oil Company | Seismic monitoring of in situ conversion in a hydrocarbon containing formation |
US7086465B2 (en) | 2001-10-24 | 2006-08-08 | Shell Oil Company | In situ production of a blending agent from a hydrocarbon containing formation |
US20030205378A1 (en) * | 2001-10-24 | 2003-11-06 | Wellington Scott Lee | In situ recovery from lean and rich zones in a hydrocarbon containing formation |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US7100994B2 (en) | 2001-10-24 | 2006-09-05 | Shell Oil Company | Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US6991045B2 (en) | 2001-10-24 | 2006-01-31 | Shell Oil Company | Forming openings in a hydrocarbon containing formation using magnetic tracking |
US7114566B2 (en) | 2001-10-24 | 2006-10-03 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor |
WO2003035801A2 (en) * | 2001-10-24 | 2003-05-01 | Shell Oil Company | Producing hydrocarbons and non-hydrocarbon containing materials from a hydrocarbon containing formation |
WO2003035801A3 (en) * | 2001-10-24 | 2005-02-17 | Shell Oil Co | Producing hydrocarbons and non-hydrocarbon containing materials from a hydrocarbon containing formation |
US7066257B2 (en) | 2001-10-24 | 2006-06-27 | Shell Oil Company | In situ recovery from lean and rich zones in a hydrocarbon containing formation |
US7063145B2 (en) | 2001-10-24 | 2006-06-20 | Shell Oil Company | Methods and systems for heating a hydrocarbon containing formation in situ with an opening contacting the earth's surface at two locations |
US7156176B2 (en) | 2001-10-24 | 2007-01-02 | Shell Oil Company | Installation and use of removable heaters in a hydrocarbon containing formation |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US8627887B2 (en) | 2001-10-24 | 2014-01-14 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7461691B2 (en) | 2001-10-24 | 2008-12-09 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation |
US7077198B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using barriers |
US8224164B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Insulated conductor temperature limited heaters |
US20040177966A1 (en) * | 2002-10-24 | 2004-09-16 | Vinegar Harold J. | Conductor-in-conduit temperature limited heaters |
US7121341B2 (en) | 2002-10-24 | 2006-10-17 | Shell Oil Company | Conductor-in-conduit temperature limited heaters |
US7219734B2 (en) | 2002-10-24 | 2007-05-22 | Shell Oil Company | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
US7073578B2 (en) | 2002-10-24 | 2006-07-11 | Shell Oil Company | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
US8238730B2 (en) | 2002-10-24 | 2012-08-07 | Shell Oil Company | High voltage temperature limited heaters |
US8200072B2 (en) | 2002-10-24 | 2012-06-12 | Shell Oil Company | Temperature limited heaters for heating subsurface formations or wellbores |
US8224163B2 (en) | 2002-10-24 | 2012-07-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US7360588B2 (en) | 2003-04-24 | 2008-04-22 | Shell Oil Company | Thermal processes for subsurface formations |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US7942203B2 (en) | 2003-04-24 | 2011-05-17 | Shell Oil Company | Thermal processes for subsurface formations |
US20050051327A1 (en) * | 2003-04-24 | 2005-03-10 | Vinegar Harold J. | Thermal processes for subsurface formations |
US8579031B2 (en) | 2003-04-24 | 2013-11-12 | Shell Oil Company | Thermal processes for subsurface formations |
US7640980B2 (en) | 2003-04-24 | 2010-01-05 | Shell Oil Company | Thermal processes for subsurface formations |
US7424915B2 (en) | 2004-04-23 | 2008-09-16 | Shell Oil Company | Vacuum pumping of conductor-in-conduit heaters |
US7320364B2 (en) | 2004-04-23 | 2008-01-22 | Shell Oil Company | Inhibiting reflux in a heated well of an in situ conversion system |
US7353872B2 (en) | 2004-04-23 | 2008-04-08 | Shell Oil Company | Start-up of temperature limited heaters using direct current (DC) |
US7490665B2 (en) | 2004-04-23 | 2009-02-17 | Shell Oil Company | Variable frequency temperature limited heaters |
US7481274B2 (en) | 2004-04-23 | 2009-01-27 | Shell Oil Company | Temperature limited heaters with relatively constant current |
US8355623B2 (en) | 2004-04-23 | 2013-01-15 | Shell Oil Company | Temperature limited heaters with high power factors |
US7357180B2 (en) | 2004-04-23 | 2008-04-15 | Shell Oil Company | Inhibiting effects of sloughing in wellbores |
US7370704B2 (en) | 2004-04-23 | 2008-05-13 | Shell Oil Company | Triaxial temperature limited heater |
US7431076B2 (en) | 2004-04-23 | 2008-10-07 | Shell Oil Company | Temperature limited heaters using modulated DC power |
US7510000B2 (en) | 2004-04-23 | 2009-03-31 | Shell Oil Company | Reducing viscosity of oil for production from a hydrocarbon containing formation |
US7383877B2 (en) | 2004-04-23 | 2008-06-10 | Shell Oil Company | Temperature limited heaters with thermally conductive fluid used to heat subsurface formations |
US8057765B2 (en) | 2004-08-17 | 2011-11-15 | Sesqui Mining, Llc | Methods for constructing underground borehole configurations and related solution mining methods |
US9260918B2 (en) | 2004-08-17 | 2016-02-16 | Sesqui Mining LLC. | Methods for constructing underground borehole configurations and related solution mining methods |
US8899691B2 (en) | 2004-08-17 | 2014-12-02 | Sesqui Mining, Llc | Methods for constructing underground borehole configurations and related solution mining methods |
US7611208B2 (en) * | 2004-08-17 | 2009-11-03 | Sesqui Mining, Llc | Methods for constructing underground borehole configurations and related solution mining methods |
US20100066153A1 (en) * | 2004-08-17 | 2010-03-18 | Sesqui Mining, Llc | Methods for constructing underground borehole configurations and related solution mining methods |
US20060039842A1 (en) * | 2004-08-17 | 2006-02-23 | Sesqui Mining, Llc | Methods for constructing underground borehole configurations and related solution mining methods |
US8230927B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US7546873B2 (en) | 2005-04-22 | 2009-06-16 | Shell Oil Company | Low temperature barriers for use with in situ processes |
US7942197B2 (en) | 2005-04-22 | 2011-05-17 | Shell Oil Company | Methods and systems for producing fluid from an in situ conversion process |
US7986869B2 (en) | 2005-04-22 | 2011-07-26 | Shell Oil Company | Varying properties along lengths of temperature limited heaters |
US20070137857A1 (en) * | 2005-04-22 | 2007-06-21 | Vinegar Harold J | Low temperature monitoring system for subsurface barriers |
US8027571B2 (en) | 2005-04-22 | 2011-09-27 | Shell Oil Company | In situ conversion process systems utilizing wellbores in at least two regions of a formation |
US7860377B2 (en) | 2005-04-22 | 2010-12-28 | Shell Oil Company | Subsurface connection methods for subsurface heaters |
US8070840B2 (en) | 2005-04-22 | 2011-12-06 | Shell Oil Company | Treatment of gas from an in situ conversion process |
US7435037B2 (en) | 2005-04-22 | 2008-10-14 | Shell Oil Company | Low temperature barriers with heat interceptor wells for in situ processes |
US7831134B2 (en) | 2005-04-22 | 2010-11-09 | Shell Oil Company | Grouped exposed metal heaters |
US8224165B2 (en) | 2005-04-22 | 2012-07-17 | Shell Oil Company | Temperature limited heater utilizing non-ferromagnetic conductor |
US7500528B2 (en) | 2005-04-22 | 2009-03-10 | Shell Oil Company | Low temperature barrier wellbores formed using water flushing |
US7575052B2 (en) | 2005-04-22 | 2009-08-18 | Shell Oil Company | In situ conversion process utilizing a closed loop heating system |
US7527094B2 (en) | 2005-04-22 | 2009-05-05 | Shell Oil Company | Double barrier system for an in situ conversion process |
US8233782B2 (en) | 2005-04-22 | 2012-07-31 | Shell Oil Company | Grouped exposed metal heaters |
US7575053B2 (en) | 2005-04-22 | 2009-08-18 | Shell Oil Company | Low temperature monitoring system for subsurface barriers |
US7556095B2 (en) | 2005-10-24 | 2009-07-07 | Shell Oil Company | Solution mining dawsonite from hydrocarbon containing formations with a chelating agent |
US7591310B2 (en) | 2005-10-24 | 2009-09-22 | Shell Oil Company | Methods of hydrotreating a liquid stream to remove clogging compounds |
US8606091B2 (en) | 2005-10-24 | 2013-12-10 | Shell Oil Company | Subsurface heaters with low sulfidation rates |
US7549470B2 (en) | 2005-10-24 | 2009-06-23 | Shell Oil Company | Solution mining and heating by oxidation for treating hydrocarbon containing formations |
US7556096B2 (en) | 2005-10-24 | 2009-07-07 | Shell Oil Company | Varying heating in dawsonite zones in hydrocarbon containing formations |
US7584789B2 (en) | 2005-10-24 | 2009-09-08 | Shell Oil Company | Methods of cracking a crude product to produce additional crude products |
US7562706B2 (en) | 2005-10-24 | 2009-07-21 | Shell Oil Company | Systems and methods for producing hydrocarbons from tar sands formations |
US7581589B2 (en) | 2005-10-24 | 2009-09-01 | Shell Oil Company | Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid |
US7559368B2 (en) | 2005-10-24 | 2009-07-14 | Shell Oil Company | Solution mining systems and methods for treating hydrocarbon containing formations |
US7635025B2 (en) | 2005-10-24 | 2009-12-22 | Shell Oil Company | Cogeneration systems and processes for treating hydrocarbon containing formations |
US8151880B2 (en) | 2005-10-24 | 2012-04-10 | Shell Oil Company | Methods of making transportation fuel |
US7559367B2 (en) | 2005-10-24 | 2009-07-14 | Shell Oil Company | Temperature limited heater with a conduit substantially electrically isolated from the formation |
US7604052B2 (en) | 2006-04-21 | 2009-10-20 | Shell Oil Company | Compositions produced using an in situ heat treatment process |
US7866385B2 (en) | 2006-04-21 | 2011-01-11 | Shell Oil Company | Power systems utilizing the heat of produced formation fluid |
US7673786B2 (en) | 2006-04-21 | 2010-03-09 | Shell Oil Company | Welding shield for coupling heaters |
US8192682B2 (en) | 2006-04-21 | 2012-06-05 | Shell Oil Company | High strength alloys |
US7793722B2 (en) | 2006-04-21 | 2010-09-14 | Shell Oil Company | Non-ferromagnetic overburden casing |
US8083813B2 (en) | 2006-04-21 | 2011-12-27 | Shell Oil Company | Methods of producing transportation fuel |
US7683296B2 (en) | 2006-04-21 | 2010-03-23 | Shell Oil Company | Adjusting alloy compositions for selected properties in temperature limited heaters |
US7635023B2 (en) | 2006-04-21 | 2009-12-22 | Shell Oil Company | Time sequenced heating of multiple layers in a hydrocarbon containing formation |
US8857506B2 (en) | 2006-04-21 | 2014-10-14 | Shell Oil Company | Alternate energy source usage methods for in situ heat treatment processes |
US7533719B2 (en) | 2006-04-21 | 2009-05-19 | Shell Oil Company | Wellhead with non-ferromagnetic materials |
US7785427B2 (en) | 2006-04-21 | 2010-08-31 | Shell Oil Company | High strength alloys |
US7631689B2 (en) | 2006-04-21 | 2009-12-15 | Shell Oil Company | Sulfur barrier for use with in situ processes for treating formations |
US7912358B2 (en) | 2006-04-21 | 2011-03-22 | Shell Oil Company | Alternate energy source usage for in situ heat treatment processes |
US7610962B2 (en) | 2006-04-21 | 2009-11-03 | Shell Oil Company | Sour gas injection for use with in situ heat treatment |
US7597147B2 (en) | 2006-04-21 | 2009-10-06 | Shell Oil Company | Temperature limited heaters using phase transformation of ferromagnetic material |
US7845411B2 (en) | 2006-10-20 | 2010-12-07 | Shell Oil Company | In situ heat treatment process utilizing a closed loop heating system |
US8191630B2 (en) | 2006-10-20 | 2012-06-05 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7631690B2 (en) | 2006-10-20 | 2009-12-15 | Shell Oil Company | Heating hydrocarbon containing formations in a spiral startup staged sequence |
US7635024B2 (en) | 2006-10-20 | 2009-12-22 | Shell Oil Company | Heating tar sands formations to visbreaking temperatures |
US7644765B2 (en) | 2006-10-20 | 2010-01-12 | Shell Oil Company | Heating tar sands formations while controlling pressure |
US7673681B2 (en) | 2006-10-20 | 2010-03-09 | Shell Oil Company | Treating tar sands formations with karsted zones |
US7677314B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Method of condensing vaporized water in situ to treat tar sands formations |
US7677310B2 (en) | 2006-10-20 | 2010-03-16 | Shell Oil Company | Creating and maintaining a gas cap in tar sands formations |
US7681647B2 (en) | 2006-10-20 | 2010-03-23 | Shell Oil Company | Method of producing drive fluid in situ in tar sands formations |
US7540324B2 (en) | 2006-10-20 | 2009-06-02 | Shell Oil Company | Heating hydrocarbon containing formations in a checkerboard pattern staged process |
US8555971B2 (en) | 2006-10-20 | 2013-10-15 | Shell Oil Company | Treating tar sands formations with dolomite |
US7703513B2 (en) | 2006-10-20 | 2010-04-27 | Shell Oil Company | Wax barrier for use with in situ processes for treating formations |
US7717171B2 (en) | 2006-10-20 | 2010-05-18 | Shell Oil Company | Moving hydrocarbons through portions of tar sands formations with a fluid |
US7730947B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Creating fluid injectivity in tar sands formations |
US7730946B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Treating tar sands formations with dolomite |
US7730945B2 (en) | 2006-10-20 | 2010-06-08 | Shell Oil Company | Using geothermal energy to heat a portion of a formation for an in situ heat treatment process |
US7562707B2 (en) | 2006-10-20 | 2009-07-21 | Shell Oil Company | Heating hydrocarbon containing formations in a line drive staged process |
US7841401B2 (en) | 2006-10-20 | 2010-11-30 | Shell Oil Company | Gas injection to inhibit migration during an in situ heat treatment process |
US7798220B2 (en) | 2007-04-20 | 2010-09-21 | Shell Oil Company | In situ heat treatment of a tar sands formation after drive process treatment |
US7931086B2 (en) | 2007-04-20 | 2011-04-26 | Shell Oil Company | Heating systems for heating subsurface formations |
US7950453B2 (en) | 2007-04-20 | 2011-05-31 | Shell Oil Company | Downhole burner systems and methods for heating subsurface formations |
US8381815B2 (en) | 2007-04-20 | 2013-02-26 | Shell Oil Company | Production from multiple zones of a tar sands formation |
US9181780B2 (en) | 2007-04-20 | 2015-11-10 | Shell Oil Company | Controlling and assessing pressure conditions during treatment of tar sands formations |
US8327681B2 (en) | 2007-04-20 | 2012-12-11 | Shell Oil Company | Wellbore manufacturing processes for in situ heat treatment processes |
US7832484B2 (en) | 2007-04-20 | 2010-11-16 | Shell Oil Company | Molten salt as a heat transfer fluid for heating a subsurface formation |
US8042610B2 (en) | 2007-04-20 | 2011-10-25 | Shell Oil Company | Parallel heater system for subsurface formations |
US7841408B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | In situ heat treatment from multiple layers of a tar sands formation |
US8791396B2 (en) | 2007-04-20 | 2014-07-29 | Shell Oil Company | Floating insulated conductors for heating subsurface formations |
US7841425B2 (en) | 2007-04-20 | 2010-11-30 | Shell Oil Company | Drilling subsurface wellbores with cutting structures |
US8662175B2 (en) | 2007-04-20 | 2014-03-04 | Shell Oil Company | Varying properties of in situ heat treatment of a tar sands formation based on assessed viscosities |
US7849922B2 (en) | 2007-04-20 | 2010-12-14 | Shell Oil Company | In situ recovery from residually heated sections in a hydrocarbon containing formation |
US8459359B2 (en) | 2007-04-20 | 2013-06-11 | Shell Oil Company | Treating nahcolite containing formations and saline zones |
US8240774B2 (en) | 2007-10-19 | 2012-08-14 | Shell Oil Company | Solution mining and in situ treatment of nahcolite beds |
US7866388B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | High temperature methods for forming oxidizer fuel |
US7866386B2 (en) | 2007-10-19 | 2011-01-11 | Shell Oil Company | In situ oxidation of subsurface formations |
US8146669B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Multi-step heater deployment in a subsurface formation |
US8272455B2 (en) | 2007-10-19 | 2012-09-25 | Shell Oil Company | Methods for forming wellbores in heated formations |
US8276661B2 (en) | 2007-10-19 | 2012-10-02 | Shell Oil Company | Heating subsurface formations by oxidizing fuel on a fuel carrier |
US8011451B2 (en) | 2007-10-19 | 2011-09-06 | Shell Oil Company | Ranging methods for developing wellbores in subsurface formations |
US8196658B2 (en) | 2007-10-19 | 2012-06-12 | Shell Oil Company | Irregular spacing of heat sources for treating hydrocarbon containing formations |
US8536497B2 (en) | 2007-10-19 | 2013-09-17 | Shell Oil Company | Methods for forming long subsurface heaters |
US8146661B2 (en) | 2007-10-19 | 2012-04-03 | Shell Oil Company | Cryogenic treatment of gas |
US8113272B2 (en) | 2007-10-19 | 2012-02-14 | Shell Oil Company | Three-phase heaters with common overburden sections for heating subsurface formations |
US8162059B2 (en) | 2007-10-19 | 2012-04-24 | Shell Oil Company | Induction heaters used to heat subsurface formations |
US8636323B2 (en) | 2008-04-18 | 2014-01-28 | Shell Oil Company | Mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US8177305B2 (en) | 2008-04-18 | 2012-05-15 | Shell Oil Company | Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations |
US9528322B2 (en) | 2008-04-18 | 2016-12-27 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8172335B2 (en) | 2008-04-18 | 2012-05-08 | Shell Oil Company | Electrical current flow between tunnels for use in heating subsurface hydrocarbon containing formations |
US8162405B2 (en) | 2008-04-18 | 2012-04-24 | Shell Oil Company | Using tunnels for treating subsurface hydrocarbon containing formations |
US8752904B2 (en) | 2008-04-18 | 2014-06-17 | Shell Oil Company | Heated fluid flow in mines and tunnels used in heating subsurface hydrocarbon containing formations |
US8562078B2 (en) | 2008-04-18 | 2013-10-22 | Shell Oil Company | Hydrocarbon production from mines and tunnels used in treating subsurface hydrocarbon containing formations |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US9234416B2 (en) | 2008-08-01 | 2016-01-12 | Solvay Chemicals, Inc. | Traveling undercut solution mining systems and methods |
US8678513B2 (en) * | 2008-08-01 | 2014-03-25 | Solvay Chemicals, Inc. | Traveling undercut solution mining systems and methods |
US9581006B2 (en) | 2008-08-01 | 2017-02-28 | Solvay Chemicals, Inc. | Traveling undercut solution mining systems and methods |
US20110127825A1 (en) * | 2008-08-01 | 2011-06-02 | Solvay Chemicals, Inc. | Traveling undercut solution mining systems and methods |
CN102112699B (en) * | 2008-08-01 | 2014-07-09 | 索尔维化学有限公司 | Traveling undercut solution mining systems and methods |
US9022118B2 (en) | 2008-10-13 | 2015-05-05 | Shell Oil Company | Double insulated heaters for treating subsurface formations |
US8881806B2 (en) | 2008-10-13 | 2014-11-11 | Shell Oil Company | Systems and methods for treating a subsurface formation with electrical conductors |
US8256512B2 (en) | 2008-10-13 | 2012-09-04 | Shell Oil Company | Movable heaters for treating subsurface hydrocarbon containing formations |
US8261832B2 (en) | 2008-10-13 | 2012-09-11 | Shell Oil Company | Heating subsurface formations with fluids |
US8353347B2 (en) | 2008-10-13 | 2013-01-15 | Shell Oil Company | Deployment of insulated conductors for treating subsurface formations |
US8267185B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Circulated heated transfer fluid systems used to treat a subsurface formation |
US8267170B2 (en) | 2008-10-13 | 2012-09-18 | Shell Oil Company | Offset barrier wells in subsurface formations |
US20100147521A1 (en) * | 2008-10-13 | 2010-06-17 | Xueying Xie | Perforated electrical conductors for treating subsurface formations |
US8220539B2 (en) | 2008-10-13 | 2012-07-17 | Shell Oil Company | Controlling hydrogen pressure in self-regulating nuclear reactors used to treat a subsurface formation |
US9051829B2 (en) | 2008-10-13 | 2015-06-09 | Shell Oil Company | Perforated electrical conductors for treating subsurface formations |
US9129728B2 (en) | 2008-10-13 | 2015-09-08 | Shell Oil Company | Systems and methods of forming subsurface wellbores |
US8281861B2 (en) | 2008-10-13 | 2012-10-09 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US8448707B2 (en) | 2009-04-10 | 2013-05-28 | Shell Oil Company | Non-conducting heater casings |
US8851170B2 (en) | 2009-04-10 | 2014-10-07 | Shell Oil Company | Heater assisted fluid treatment of a subsurface formation |
US8327932B2 (en) | 2009-04-10 | 2012-12-11 | Shell Oil Company | Recovering energy from a subsurface formation |
US8434555B2 (en) | 2009-04-10 | 2013-05-07 | Shell Oil Company | Irregular pattern treatment of a subsurface formation |
US20110084030A1 (en) * | 2009-10-12 | 2011-04-14 | Force Flow | Method and system for monitoring and/or tracking sodium hypochlorite use |
US8833453B2 (en) | 2010-04-09 | 2014-09-16 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness |
US8701769B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations based on geology |
US9022109B2 (en) | 2010-04-09 | 2015-05-05 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US9033042B2 (en) | 2010-04-09 | 2015-05-19 | Shell Oil Company | Forming bitumen barriers in subsurface hydrocarbon formations |
US8820406B2 (en) | 2010-04-09 | 2014-09-02 | Shell Oil Company | Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore |
US9127538B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Methodologies for treatment of hydrocarbon formations using staged pyrolyzation |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US8701768B2 (en) | 2010-04-09 | 2014-04-22 | Shell Oil Company | Methods for treating hydrocarbon formations |
US9399905B2 (en) | 2010-04-09 | 2016-07-26 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
US9309755B2 (en) | 2011-10-07 | 2016-04-12 | Shell Oil Company | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
US9803458B2 (en) | 2013-03-13 | 2017-10-31 | Tronox Alkali Wyoming Corporation | Solution mining using subterranean drilling techniques |
US9433894B2 (en) | 2013-05-09 | 2016-09-06 | Tronox Alkali Wyoming Corporation | Removal of hydrogen sulfide from gas streams |
US10422210B1 (en) | 2018-05-04 | 2019-09-24 | Sesqui Mining, Llc. | Trona solution mining methods and compositions |
US10995598B2 (en) | 2018-05-04 | 2021-05-04 | Sesqui Mining, Llc | Trona solution mining methods and compositions |
US11193362B2 (en) | 2018-05-04 | 2021-12-07 | Sesqui Mining, Llc | Trona solution mining methods and compositions |
US11746639B2 (en) | 2018-05-04 | 2023-09-05 | Sesqui Mining, Llc. | Trona solution mining methods and compositions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3779602A (en) | Process for solution mining nahcolite | |
US3502372A (en) | Process of recovering oil and dawsonite from oil shale | |
CA1277590C (en) | Disposal of produced formation fines during oil recovery | |
US2813583A (en) | Process for recovery of petroleum from sands and shale | |
US4163580A (en) | Pressure swing recovery system for mineral deposits | |
US3759574A (en) | Method of producing hydrocarbons from an oil shale formation | |
US3779601A (en) | Method of producing hydrocarbons from an oil shale formation containing nahcolite | |
US3739851A (en) | Method of producing oil from an oil shale formation | |
US3967853A (en) | Producing shale oil from a cavity-surrounded central well | |
US3878884A (en) | Formation fracturing method | |
US3804172A (en) | Method for the recovery of oil from oil shale | |
US3759328A (en) | Laterally expanding oil shale permeabilization | |
US3804169A (en) | Spreading-fluid recovery of subterranean oil | |
US3741306A (en) | Method of producing hydrocarbons from oil shale formations | |
US3572838A (en) | Recovery of aluminum compounds and oil from oil shale formations | |
US2952449A (en) | Method of forming underground communication between boreholes | |
US4815790A (en) | Nahcolite solution mining process | |
CA1130201A (en) | Method for continuously producing viscous hydrocarbons by gravity drainage while injecting heated fluids | |
US2946382A (en) | Process for recovering hydrocarbons from underground formations | |
US3893511A (en) | Foam recovery process | |
US3498378A (en) | Oil recovery from fractured matrix reservoirs | |
US8528989B2 (en) | Method for simultaneously mining vertically disposed beds | |
US4026359A (en) | Producing shale oil by flowing hot aqueous fluid along vertically varied paths within leached oil shale | |
US3303883A (en) | Thermal notching technique | |
US3753594A (en) | Method of producing hydrocarbons from an oil shale formation containing halite |