US3771715A - Self-cleaning centrifugal separator - Google Patents
Self-cleaning centrifugal separator Download PDFInfo
- Publication number
- US3771715A US3771715A US00201314A US3771715DA US3771715A US 3771715 A US3771715 A US 3771715A US 00201314 A US00201314 A US 00201314A US 3771715D A US3771715D A US 3771715DA US 3771715 A US3771715 A US 3771715A
- Authority
- US
- United States
- Prior art keywords
- membrane
- drum
- centrifugal separator
- sections
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004140 cleaning Methods 0.000 title description 3
- 239000012528 membrane Substances 0.000 claims abstract description 72
- 239000012530 fluid Substances 0.000 claims abstract description 68
- 239000010802 sludge Substances 0.000 claims abstract description 25
- 239000007787 solid Substances 0.000 claims abstract description 19
- 239000000203 mixture Substances 0.000 claims description 14
- 238000004873 anchoring Methods 0.000 claims description 12
- 238000007599 discharging Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 2
- 230000000694 effects Effects 0.000 claims description 2
- 230000013011 mating Effects 0.000 claims description 2
- 230000010349 pulsation Effects 0.000 abstract description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 101100264195 Caenorhabditis elegans app-1 gene Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B15/00—Other accessories for centrifuges
- B04B15/06—Other accessories for centrifuges for cleaning bowls, filters, sieves, inserts, or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B04—CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
- B04B—CENTRIFUGES
- B04B11/00—Feeding, charging, or discharging bowls
- B04B11/04—Periodical feeding or discharging; Control arrangements therefor
Definitions
- the present invention relates to new fluid controlled annular membrane linings to be used in particular but not exclusively in connection with a centrifugal separator with conical bowl and usually supported in a horizontal position where the precipitated sludge of a fluidsludge mixture is conveyed to the narrow end of the bowl to one or several ejection openings, while the fluid phase leaves the bowl via the wide end. It is known in the art to employ centrifugal separators with a bowl of a generally conical shape and incorporating a conveyor screw in a coaxial position.
- the object of the present invention is to eliminate conveyor screw and differential gears, and to substitute instead one or several membrane liningsof a suitably resilient and or pliable material capable to generate pulsating movements in a predetermined direction and able to propel precipitated sludge and solids in a predetermined direction.
- Another object of the invention is to provide a centrifugal bowl furnished with adjacent open annular grooves which in connection with the annular membrane linings or lining form annular pockets for sludge. and solids when deflated, and profilated chambers with slanting outer surfaces when inflated by a control fluid respectively.
- a further object of the invention is to provide an advantageous hydraulic system incorporated in the bowl and or the membrane lining to generate predetermined pulsation sequences.
- FIG. 2 is an enlarged diagrammatic detail in vertical sectional view of the bowl with membrane lining illustrating by way of examplea way of securing the lining to the bowl;
- FIG. 3 is a diagrammatical sectional view'of a special type of lining attached to a bowl without said annular grooves;.and
- FIG. 4 is a diagrammatical sectional view of another embodiment according to the invention.
- FIG. 1 a centrifugalseparator bowl 1 with end sections 2 and'3 which are furnished with hollow shafts 4 and 5 respectively, said bowl and shafts l, 2, 3 rotating in connection with suitable bearings, supports and driving means not shown in the drawing;
- the inner surface of bowl 1 is furnished with adjacent open annular grooves 6 each being covered by an annular membrane lining 7. All liningswill preferably be integ'rated into one single membrane lining 8 as indicated in the drawing made of a suitably pliable and or elastic material.
- the individual membrane linings 7 are shown'altematingly in a deflated and in an inflated condition, thus either forming a kind of annular pocket together with grooves 6 or forming inflated chambers under the influence of a control fluid in- I jected through, channels 9 belonging to control fluid I clean phase leavesthe bowl 1 through openings 19 while the sludge is ejected through openings 20.
- the'control fluid linings 7 will be inflated to form outer surfaces 21 which slant downwardly in the direction of ejection openings '20.
- FIG. 2 exemplifies means of securing membrane lin ings 7 or lining 8 to the bowl 1.
- a further narrow groove is provided to house a suitably formed part or lip of linings .7 or 8 respectively under the pressure of an expandable ring 22 of steel or other suitably resilient and strong material. Rings 22 may have advantageous slanting outer surfaces.
- FIG-3 illustrates the-employment of an outer lining 23 preferably of the same material as the membrane linings 7 or 8 respectively, these parts being bonded together by way of example by welding along seams 24.
- the outer lining 23 needs only to be fastened at its ends near end sections 2 and 3. Thus, the inside of bowl 1 needs no expensive machining.
- bowl 1 is shown to include an alternative fluid conduit 25 which is in direct connection with the first channel 9 and from there through a short length of conduit 11 to chamber 13.
- a bowl of this type has neither chamber 12, conduit 10 with its channels 9 and valve 16 nor the rest of conduit 11.
- Pipe 14 is'not needed.
- Conduits 25 may be holes interconnecting grooves 6 or open channels milled through the tops of the grooves.
- centrifugal separator may work as follows:
- the bowl 1 incorporates only control fluid conduit 26 with one channel and part of conduit 10 with chamber 12 and supply pipe 15, the transportation of the sludge will be obtained by intermittent opening and closing of pipe 15. As pipe 15 is opened, the control fluid will run through said conduits into the first groove 6. Conduits 26 must be dimensioned in such a manner that the first membrane lining is expanded entirely before the adjacent membrane lining changes considerably from its pocket shape inside groove 6. In this manner, membrane linings 7'will expand one after the other like a wave rolling through the length of bowl 1 propelling all the deposited sludge before it towards openings 20.
- the scope of the present invention is not necessarily limited to parallel annular grooves 6. Especially in connection with said wave-principle propulsion, it is possible to use one single groove spiralling through the length of the bowl beginning in connection with channel 9 and ending blindly near openings 20. This feature applies also to the embodiment shown in FIG. 3.
- the scope of the present invention also embraces the employmentof a membranelining which is inflatable in a rolling wave fashion without any grooves'either in the wall of the bowl or integrated in outerlining 23. In that case, the lining will have suitably elastic and or pliable parts either parallel and adjacent to each other or in the shape of a spiral acting as a rolling wave by expanding pro gressively under the influence of the progressively advancing control fluid as described above.
- a centrifugal separator comprising a conical bowl having an inner surface presenting a wide end and a narrow end opposite thereto, means for delivering a fluid-sledge mixture into said bowl, in which the bowl is provided with discharge opening means at said wide end for discharging fluid phase of said mixture and discharge means at said narrowfend for discharging a precipitated sludge of said fluid-sludge mixture while the fluid phase leaves the bowl via the wide end, a plurality of ring-shaped elastic membrane sections covering said inner wall of the bowl, means engaging opposite ends of said sections in fluid tight relation to said inner surface for allowing said sections to be inwardly flexed therebetween, the bowl being provided with an opening below each membrane section, and means connected with said openings for the supply and the withdrawal of a pressure fluid to flex and release said sections and including means for controlling the supply and withdrawal of the pressure fluid such that when supplying pressure fluid the membrane section are flexed away from the wall of the bowl in a predetermined sequence which progresses from the wide toward the narrow end of the
- Centrifugal separator according to claim 1 in which the inner surface of the bowl is provided with adjacent open annular grooves, said membrane sections being in fluid tight connection with the rims of the grooves, the membrane sections following the shape of the grooves when the membrane is not pressurized.
- Centrifugal separator according to claim 1 in which the ring-shaped sections are divided in two or more groups, each group being connected with a common supply for pressure fluid, such that the groups can be pressurized at will.
- Centrifugal separator according to claim 1 characterized in that only the membrane section lying at the end remote from the end where the precipitated sludge is ejected is directlyconnected with the supply for pressurized fluid, each section communicating with the adjacent section through a duct with a flow restriction.
- Centrifugal separator according to claim 1 in which the several membrane sections are combined to one single membrane extending through the whole length of the bowl of the separator.
- Centrifugal separator according to claim 5 in which the membrane between the ring-shaped sections is connected with the wall of the bowl.
- said means for periodically deforming said membrane means comprises a pressure fluid-conveying system communicating with the interface between said interior surface and said membrane means, and means for periodically conveying pressure fluid to such interface.
- said pressure fluid-conveying system includes means for conveying pressure fluid to different longitudinal sections of said drum in time-delayed relation from said one end of the drum to said opposite end thereof.
- centrifugal separator as defined in claim 10 wherein the interior surface of said drum is formed as a series of frusto-conical sections.
- said pressure fluid conveying system includes inlet means, discharge means having a restricted opeining, and means for introducing pressure fluid through said inlet means alternately at rates exceeding and less than the rate at which pressure fluid escapes through said restricted opening.
- the centrifugal separator as defined in claim 9 including anchoring means spaced longitudinally of said drum for anchoring said membrane means to the interior surface of said drum, said interior surface of the drum and those portions of the membrane means between said anchoring means being detailed in design to allow said solids to'be worked toward and discharged from said opposite end of the drum without affecting the normal centrifugal separating .action of the separator. I r
- said pressure fluid-conveying system includes means for conveying pressure fluid to different longitudinal sections of said drum in time-delayed relation from said one end of the drum to said opposite end thereof.
- said pressure fluid-conveying system includes means for conveying pressure fluid to different longitudinal sections of said drum in time-delayed relation from said one end of the drum to said opposite end thereof.
- each of said portions of the membrane means is of annular form and of V-shaped cross section.
- centrifugal separator as defined in claim 9 wherein said membrane means comprises a plurality of annular sections each of generally V-shaped cross section, and including anchoring means attaching the opposite edges of each such annular section to the interior surface of said drum.
- centrifugal separator as defined in claim 21 wherein said means for periodically deforming said membrane means comprises a pressure fluid-conveying system communicating with the interfaces between said portions of the membrane means between said anchoring means and said interior surface of the drum.
- centrifugal separator as defined in claim 21 wherein said interior surface of the drum is formed as a series of frusto-conical sections mating with said V- shaped annular sections of the membrane means.
- a centrifugal separator as defined in claim 9 "wherein said. means for introducing said fluid-solids mixture continuously maintains a body of fluid in said chamber which terminates short of said opposite end thereof whereby separation of said .solids from said fluid phase and discharge of said fluid phase occur continuously and discharge of said solids occurs during such continuous separation and such continuous discharge of fluid phase.
Landscapes
- Centrifugal Separators (AREA)
Abstract
Fluid controlled pulsations of one or several elastic and or pliable annular membrane linings in a centrifugal separator, preferably of the ''''Decanter''''-type, to transport precipitated sludge and solids to ejection openings.
Description
STRACT 556,567 3/1896 3,244,362 4/1966 Hein Primary Examiner-George H. Krizmanich Attorney-John P. Snyder Fluid controlled pulsations of one or several elastic I and or pliable annular membrane linings in a centrifugal separator, preferably of the Decanter-type, to transport precipitated sludge and solids to ejection openings. I
25 Claims, 4 Drawing Figures SEPARATOR [75] Inventor: Martin Baram, Brondy Strand,
Denmark [73] Assignee: Escher Wyss Aktiengesellschaft,
Zurich, Switzerland Nov. 23, 1971 Foreign Application Priority Data H Nov. 24. 1970 5989 233/27 B04b 1/00 233/3, 9,19 R, 19 A, 233/20 R, 20 A, 27, 28, 46; 210/211, 74
References Cited UNITED STATES PATENTS l/l940 McGlaughlin 233/27 X United States Patent [191 Baram [54] SELF-CLEANING CENTRIFUGAL [22] Filed:
[21 App1.No.:201,314
[51 1m. [58] Field of Search................
1 SELF-CLEANING CENTRIFUGAL SEPARATOR BACKGROUND OF THE INVENTION The present invention relates to new fluid controlled annular membrane linings to be used in particular but not exclusively in connection with a centrifugal separator with conical bowl and usually supported in a horizontal position where the precipitated sludge of a fluidsludge mixture is conveyed to the narrow end of the bowl to one or several ejection openings, while the fluid phase leaves the bowl via the wide end. It is known in the art to employ centrifugal separators with a bowl of a generally conical shape and incorporating a conveyor screw in a coaxial position. Bowl and screw rotate at different speeds, and thus the peripheral windings of the screw scrape most of the sludge along the inner surface of the bowl towards one or several ejection openings at the narrow end of the bowl. This construction suffers from several serious drawbacks such as:
l. the conveyor screw is a very expensive part to fabricate; g
2. the peripheral edge of the conveyor screw is worn away relatively quickly resulting in expensive work stoppage and repairs;
3. the difference in speeds of bowl and conveyor screw respectively demands expensive and damage prone differential gears or equivalent mechanical means; I. I
4. because of the necessary gap between the wall of the bowl and the periphery of the conveyor screw not all the sludge is moved but a thin compressed layer of solids is always left behind prone to bacterial contamination and unwanted chemical processes;
5. the conveyor screw stirs up already settled sludge and smashes advantageous coagulations; and
6. this kind of machine works at a very high noise level.
SUMMARY OF THE INVENTION The object of the present invention is to eliminate conveyor screw and differential gears, and to substitute instead one or several membrane liningsof a suitably resilient and or pliable material capable to generate pulsating movements in a predetermined direction and able to propel precipitated sludge and solids in a predetermined direction.
Another object of the invention is to provide a centrifugal bowl furnished with adjacent open annular grooves which in connection with the annular membrane linings or lining form annular pockets for sludge. and solids when deflated, and profilated chambers with slanting outer surfaces when inflated by a control fluid respectively. 7
A further object of the invention is to provide an advantageous hydraulic system incorporated in the bowl and or the membrane lining to generate predetermined pulsation sequences.
These and other novel features and advantages of the present invention will be described and defined in the following specification and claims.
BRIEF DESCRIPTION OF DRAWINGS open annular grooves of thepresent invention, the latter being shown without membrane lining in the lower half of the bowl;
FIG. 2 is an enlarged diagrammatic detail in vertical sectional view of the bowl with membrane lining illustrating by way of examplea way of securing the lining to the bowl;
FIG. 3 is a diagrammatical sectional view'of a special type of lining attached to a bowl without said annular grooves;.and
FIG. 4 is a diagrammatical sectional view of another embodiment according to the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring more specifically to the drawing in FIG. 1 is shown a centrifugalseparator bowl 1 with end sections 2 and'3 which are furnished with hollow shafts 4 and 5 respectively, said bowl and shafts l, 2, 3 rotating in connection with suitable bearings, supports and driving means not shown in the drawing;
The inner surface of bowl 1 is furnished with adjacent open annular grooves 6 each being covered by an annular membrane lining 7. All liningswill preferably be integ'rated into one single membrane lining 8 as indicated in the drawing made of a suitably pliable and or elastic material. In the drawing, the individual membrane linings 7 are shown'altematingly in a deflated and in an inflated condition, thus either forming a kind of annular pocket together with grooves 6 or forming inflated chambers under the influence of a control fluid in- I jected through, channels 9 belonging to control fluid I clean phase leavesthe bowl 1 through openings 19 while the sludge is ejected through openings 20. When underthe influence of the'control fluid linings 7 will be inflated to form outer surfaces 21 which slant downwardly in the direction of ejection openings '20.
FIG. 2 exemplifies means of securing membrane lin ings 7 or lining 8 to the bowl 1. At every top of grooves 6 a further narrow grooveis provided to house a suitably formed part or lip of linings .7 or 8 respectively under the pressure of an expandable ring 22 of steel or other suitably resilient and strong material. Rings 22 may have advantageous slanting outer surfaces.
FIG-3 illustrates the-employment of an outer lining 23 preferably of the same material as the membrane linings 7 or 8 respectively, these parts being bonded together by way of example by welding along seams 24. The outer lining 23 needs only to be fastened at its ends near end sections 2 and 3. Thus, the inside of bowl 1 needs no expensive machining.
Returning to FIG. 1, bowl 1 is shown to include an alternative fluid conduit 25 which is in direct connection with the first channel 9 and from there through a short length of conduit 11 to chamber 13. A bowl of this type has neither chamber 12, conduit 10 with its channels 9 and valve 16 nor the rest of conduit 11. Pipe 14 is'not needed. Conduits 25 may be holes interconnecting grooves 6 or open channels milled through the tops of the grooves.
OPERATION Regardless of whether the embodiment'of the invention is as shown in FIG. 1 or FIG. 3, the centrifugal separator may work as follows:
When bowl 1 rotates at full speed control fluid is injected through both fluid systems at the same time. Thus, all linings 7 will be inflated and will act as accelerators on the sludge-fluid mixture fed through pipe 18 provided the supply of control fluid exceeds the constant losses through valves 16 and. 17. At a certain moment, the supply of control fluid is stopped forexample through pipe 14 as shown in FIG. 1 causing the fluid in conduit and its channels 9 to leave through valve 16. As a result, the particular membrane linings 7 subside into their grooves 6 forming annular pockets to receive sludge sliding down from slanting surfaces 21 in addi tion to the sludge already deposited therein. After a suitable interval, this procedure is reversed, the fluid supply through pipe 15 is stopped, the fluid pressure falls through valve 17 and pipe 14 is opened. In this manner, the sludge deposited in the subsided membrane lining pockets will be lifted up by the expanding membrane 7 and transferred into the annular pocket next to it. In this manner, all sludge will be propelled through the length of the bowl 1 towards openings 20.
In FIG. 4, the bowl 1 incorporates only control fluid conduit 26 with one channel and part of conduit 10 with chamber 12 and supply pipe 15, the transportation of the sludge will be obtained by intermittent opening and closing of pipe 15. As pipe 15 is opened, the control fluid will run through said conduits into the first groove 6. Conduits 26 must be dimensioned in such a manner that the first membrane lining is expanded entirely before the adjacent membrane lining changes considerably from its pocket shape inside groove 6. In this manner, membrane linings 7'will expand one after the other like a wave rolling through the length of bowl 1 propelling all the deposited sludge before it towards openings 20.
When the control fluid supply is closed, the hydrostatic pressure inside the fluid conduits will be evacuated through valve 17, and all the members linings 7 will subside into the grooves 6. This procedure can be repeated at predetermined intervals. The scope of the present invention is not necessarily limited to parallel annular grooves 6. Especially in connection with said wave-principle propulsion, it is possible to use one single groove spiralling through the length of the bowl beginning in connection with channel 9 and ending blindly near openings 20. This feature applies also to the embodiment shown in FIG. 3. The scope of the present invention also embraces the employmentof a membranelining which is inflatable in a rolling wave fashion without any grooves'either in the wall of the bowl or integrated in outerlining 23. In that case, the lining will have suitably elastic and or pliable parts either parallel and adjacent to each other or in the shape of a spiral acting as a rolling wave by expanding pro gressively under the influence of the progressively advancing control fluid as described above.
While the preferred embodiments of the present invention have been shown and described herein, it is obvious that many structural details may be changed without departing from the spirit and scope of the appended claims.
What is claimed is:
1. A centrifugal separator comprising a conical bowl having an inner surface presenting a wide end and a narrow end opposite thereto, means for delivering a fluid-sledge mixture into said bowl, in which the bowl is provided with discharge opening means at said wide end for discharging fluid phase of said mixture and discharge means at said narrowfend for discharging a precipitated sludge of said fluid-sludge mixture while the fluid phase leaves the bowl via the wide end, a plurality of ring-shaped elastic membrane sections covering said inner wall of the bowl, means engaging opposite ends of said sections in fluid tight relation to said inner surface for allowing said sections to be inwardly flexed therebetween, the bowl being provided with an opening below each membrane section, and means connected with said openings for the supply and the withdrawal of a pressure fluid to flex and release said sections and including means for controlling the supply and withdrawal of the pressure fluid such that when supplying pressure fluid the membrane section are flexed away from the wall of the bowl in a predetermined sequence which progresses from the wide toward the narrow end of the bowl thereby to effect discharge of said sludge while the mixture is still being delivered to the bowl and the fluid phase is being discharged, said membrane sections being detailed in design so that at least a part of the surface of each ring-shaped membrane section when flexed is slanted toward said narrow end of the bowl where the precipitated sludge is ejected.
2. Centrifugal separator according to claim 1 in which the inner surface of the bowl is provided with adjacent open annular grooves, said membrane sections being in fluid tight connection with the rims of the grooves, the membrane sections following the shape of the grooves when the membrane is not pressurized.
3. Centrifugal separator according to claim 1 in which the ring-shaped sections are divided in two or more groups, each group being connected with a common supply for pressure fluid, such that the groups can be pressurized at will.
4. Centrifugal separator according to claim 1 characterized in that only the membrane section lying at the end remote from the end where the precipitated sludge is ejected is directlyconnected with the supply for pressurized fluid, each section communicating with the adjacent section through a duct with a flow restriction.
5. Centrifugal separator according to claim 1 in which the several membrane sections are combined to one single membrane extending through the whole length of the bowl of the separator.
6. Centrifugal separator according to claim 5 in which the membrane between the ring-shaped sections is connected with the wall of the bowl.
a horizontally elongate drum and means for supporting said drum for rotation about its longitudinal axis, said drum having an interior surface defining a chamber which decreases in diameter from one end of the drum to the opposite end thereof;
fluid outlet means at said one end of the drum;
solids outlet means at said opposite end of the drum;
means for introducing a fluid-solids mixture into said chamber;
membrane means on said interior surface of the drum; and
means for periodically deforming said membrane means to work centrifugally separated solids toward said opposite end of the drum.
10. The centrifugal separator as defined in claim 9 wherein said means for periodically deforming said membrane means comprises a pressure fluid-conveying system communicating with the interface between said interior surface and said membrane means, and means for periodically conveying pressure fluid to such interface.
11. The centrifugal separator as defined in claim 10 wherein said pressure fluid-conveying system includes means for conveying pressure fluid to different longitudinal sections of said drum in time-delayed relation from said one end of the drum to said opposite end thereof.
12. The centrifugal separator as defined in claim 10 wherein the interior surface of said drum is formed as a series of frusto-conical sections.
13. The centrifugal separator as defined in claim 12 wherein said pressure fluid-conveying system communicates with interfaces at alternate ones of said frustoconical sections.
14. The centrifugal separator as defined in claim 10 wherein said pressure fluid conveying system includes inlet means, discharge means having a restricted opeining, and means for introducing pressure fluid through said inlet means alternately at rates exceeding and less than the rate at which pressure fluid escapes through said restricted opening.
15. The centrifugal separator as defined in claim 9 including anchoring means spaced longitudinally of said drum for anchoring said membrane means to the interior surface of said drum, said interior surface of the drum and those portions of the membrane means between said anchoring means being detailed in design to allow said solids to'be worked toward and discharged from said opposite end of the drum without affecting the normal centrifugal separating .action of the separator. I r
16. The centrifugal separator as defined in claiin 15 wherein said means for periodically deforming said membrane means comprises a pressure fluid-conveying system communicating with the interfaces between said portions of the-membrane means between said anchoring means and said interior surface of the drum.
17. The centrifugal separator as defined in claim 16 wherein said pressure fluid-conveying system includes means for conveying pressure fluid to different longitudinal sections of said drum in time-delayed relation from said one end of the drum to said opposite end thereof.
18. The centrifugal separator as defined in claim 16 wherein said pressure fluid-conveying system includes means for conveying pressure fluid to different longitudinal sections of said drum in time-delayed relation from said one end of the drum to said opposite end thereof.
19. The centrifugal separator as defined in claim 15 wherein the interior surface of said drum is formed as a series of frusto-conical sections.
20. The centrifugal separator as defined in claim 15 wherein each of said portions of the membrane means is of annular form and of V-shaped cross section.
21. The centrifugal separator as defined in claim 9 wherein said membrane means comprises a plurality of annular sections each of generally V-shaped cross section, and including anchoring means attaching the opposite edges of each such annular section to the interior surface of said drum.
22. The centrifugal separator as defined in claim 21 wherein said means for periodically deforming said membrane means comprises a pressure fluid-conveying system communicating with the interfaces between said portions of the membrane means between said anchoring means and said interior surface of the drum.
23. The centrifugal separator as defined in claim 22 wherein said pressure fluid-conveying system includes means for conveying pressure fluid to different longitudinal sections of said drum in time-delayed relation from said one end of the drum to said opposite end thereof.
24. The centrifugal separator as defined in claim 21 wherein said interior surface of the drum is formed as a series of frusto-conical sections mating with said V- shaped annular sections of the membrane means.
25. A centrifugal separator as defined in claim 9 "wherein said. means for introducing said fluid-solids mixture continuously maintains a body of fluid in said chamber which terminates short of said opposite end thereof whereby separation of said .solids from said fluid phase and discharge of said fluid phase occur continuously and discharge of said solids occurs during such continuous separation and such continuous discharge of fluid phase.
Claims (25)
1. A centrifugal separator comprising a conical bowl having an inner surface presenting a wide end and a narrow end opposite thereto, means for delivering a fluid-sledge mixture into said bowl, in which the bowl is provided with discharge opening means at said wide end for discharging fluid phase of said mixture and discharge means at said narrow end for discharging a precipitated sludge of said fluid-sludge mixture while the fluid phase leaves the bowl via the wide end, a plurality of ring-shaped elastic membrane sections covering said inner wall of the bowl, means engaging opposite ends of said sections in fluid tight relation to said inner surface for allowing said sections to be inwardly flexed therebetween, the bowl being provided with an opening below each membrane section, and means connected with said openings for the supply and the withdrawal of a pressure fluid to flex and release said sections and including means for controlling the supply and withdrawal of the pressure fluid such that when supplying pressure fluid the membrane section are flexed away from the wall of the bowl in a predetermined sequence which progresses from the wide toward the narrow end of the bowl thereby to effect discharge of said sludge while the mixture is still being delivered to the bowl and the fluid phase is being discharged, said membrane sections being detailed in design so that at least a part of the surface of each ring-shaped membrane section when flexed is slanted toward said narrow end of the bowl where the precipitated sludge is ejected.
2. Centrifugal separator according to claim 1 in which the inner surface of the bowl is provided with adjacent open annular grooves, said membrane sections being in fluid tight connection with the rims of the grooves, the membrane sections following the shape of the grooves when the membrane is not pressurized.
3. Centrifugal separator according to claim 1 in which the ring-shaped sections are divided in two or more groups, each group being connected with a common supply for pressure fluid, such that the groups can be pressurized at will.
4. Centrifugal separator according to claim 1 characterized in that only the membrane section lying at the end remote from the end where the precipitated sludge is ejected is directly connected with the supply for pressurized fluid, each section communicating with the adjacent section through a duct with a flow restriction.
5. Centrifugal separator according to claim 1 in which the several membrane sections are combined to one single membrane extending through the whole length of the bowl of the separator.
6. Centrifugal separator according to claim 5 in which the membrane between the ring-shaped sections is connected with the wall of the bowl.
7. Centrifugal separator according to claim 5 in which the membrane between the ring-shaped membrane sections has a portion which is less elastic than the material of the membrane sections themselves.
8. Centrifugal separator according to claim 5 in which the separator consists of ring-shaped segments which are combined to centrifugal units of predetermined length.
9. A centrifugal separator comprising, in combination: a horizontally elongate drum and means for supporting said drum for rotation about its longitudinal axis, said drum having an interior surface defining a chamber which decreases in diameter from one end of the drum to the opposite end thereof; fluid outlet means at said one end of the drum; solids outlet means at said opposite end of the drum; means for introducing a fluid-solids mixture into said chamber; membrane means on said interior surface of the drum; and means for periodically deforming said membrane means to work centrifugally separated solids toward said opposite end of the drum.
10. The centrifugal separator as defined in claim 9 wherein said means for periodically deforming said membrane means comprises a pressure fluid-conveying system communicating with the interface between said interior surface and said membrane means, and means for periodically conveying pressure fluid to such interface.
11. The centrifugal separator as defined in claim 10 wherein said pressure fluid-conveying system includes means for conveying pressure fluid to different longitudinal sections of said drum in time-delayed relation from said one end of the drum to said opposite end thereof.
12. The centrifugal separator as defined in claim 10 wherein the interior surface of said drum is formed as a series of frusto-conical sections.
13. The centrifugal separator as defined in claim 12 wherein said pressure fluid-conveying system communicates with interfaces at alternate ones of said frusto-conical sections.
14. The centrifugal separator as defined in claim 10 wherein said pressure fluid conveying system includes inlet means, discharge means having a restricted opeining, and means for introducing pressure fluid through said inlet means alternately at rates exceeding and less than the rate at which pressure fluid escapes through said restricted opening.
15. The centrifugal separator as defined in claim 9 including anchoring means spaced longitudinally of said drum for anchoring said membrane means to the interior surface of said drum, said interior surface of the drum and those portions of the membrane means between said anchoring means being detailed in design to allow Said solids to be worked toward and discharged from said opposite end of the drum without affecting the normal centrifugal separating action of the separator.
16. The centrifugal separator as defined in claim 15 wherein said means for periodically deforming said membrane means comprises a pressure fluid-conveying system communicating with the interfaces between said portions of the membrane means between said anchoring means and said interior surface of the drum.
17. The centrifugal separator as defined in claim 16 wherein said pressure fluid-conveying system includes means for conveying pressure fluid to different longitudinal sections of said drum in time-delayed relation from said one end of the drum to said opposite end thereof.
18. The centrifugal separator as defined in claim 16 wherein said pressure fluid-conveying system includes means for conveying pressure fluid to different longitudinal sections of said drum in time-delayed relation from said one end of the drum to said opposite end thereof.
19. The centrifugal separator as defined in claim 15 wherein the interior surface of said drum is formed as a series of frusto-conical sections.
20. The centrifugal separator as defined in claim 15 wherein each of said portions of the membrane means is of annular form and of V-shaped cross section.
21. The centrifugal separator as defined in claim 9 wherein said membrane means comprises a plurality of annular sections each of generally V-shaped cross section, and including anchoring means attaching the opposite edges of each such annular section to the interior surface of said drum.
22. The centrifugal separator as defined in claim 21 wherein said means for periodically deforming said membrane means comprises a pressure fluid-conveying system communicating with the interfaces between said portions of the membrane means between said anchoring means and said interior surface of the drum.
23. The centrifugal separator as defined in claim 22 wherein said pressure fluid-conveying system includes means for conveying pressure fluid to different longitudinal sections of said drum in time-delayed relation from said one end of the drum to said opposite end thereof.
24. The centrifugal separator as defined in claim 21 wherein said interior surface of the drum is formed as a series of frusto-conical sections mating with said V-shaped annular sections of the membrane means.
25. A centrifugal separator as defined in claim 9 wherein said means for introducing said fluid-solids mixture continuously maintains a body of fluid in said chamber which terminates short of said opposite end thereof whereby separation of said solids from said fluid phase and discharge of said fluid phase occur continuously and discharge of said solids occurs during such continuous separation and such continuous discharge of fluid phase.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK598970 | 1970-11-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3771715A true US3771715A (en) | 1973-11-13 |
Family
ID=8146640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00201314A Expired - Lifetime US3771715A (en) | 1970-11-24 | 1971-11-23 | Self-cleaning centrifugal separator |
Country Status (7)
Country | Link |
---|---|
US (1) | US3771715A (en) |
CH (1) | CH532423A (en) |
DE (1) | DE2157900C3 (en) |
FR (1) | FR2116014A5 (en) |
GB (1) | GB1371227A (en) |
SE (1) | SE372429B (en) |
SU (1) | SU460608A3 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3910489A (en) * | 1973-02-13 | 1975-10-07 | Pellerin Zenith As | Centrifuge |
US3930608A (en) * | 1972-09-11 | 1976-01-06 | Escher Wyss Limited | Centrifuge |
US3997103A (en) * | 1974-09-02 | 1976-12-14 | Escher Wyss Limited | Path of conveyance with membrane |
US4009822A (en) * | 1974-09-02 | 1977-03-01 | Escher Wyss Limited | Weir in a path of conveyance |
US5674173A (en) * | 1995-04-18 | 1997-10-07 | Cobe Laboratories, Inc. | Apparatus for separating particles |
US5906570A (en) * | 1995-04-18 | 1999-05-25 | Cobe Laboratories, Inc. | Particle filter apparatus |
US6022306A (en) * | 1995-04-18 | 2000-02-08 | Cobe Laboratories, Inc. | Method and apparatus for collecting hyperconcentrated platelets |
US6053856A (en) * | 1995-04-18 | 2000-04-25 | Cobe Laboratories | Tubing set apparatus and method for separation of fluid components |
US6334842B1 (en) | 1999-03-16 | 2002-01-01 | Gambro, Inc. | Centrifugal separation apparatus and method for separating fluid components |
US6354986B1 (en) | 2000-02-16 | 2002-03-12 | Gambro, Inc. | Reverse-flow chamber purging during centrifugal separation |
US7279107B2 (en) | 2002-04-16 | 2007-10-09 | Gambro, Inc. | Blood component processing system, apparatus, and method |
US20080272067A1 (en) * | 2007-05-01 | 2008-11-06 | Cavaliere William A | Methods and Apparatus for Classification of Suspended Materials |
US9248446B2 (en) | 2013-02-18 | 2016-02-02 | Terumo Bct, Inc. | System for blood separation with a separation chamber having an internal gravity valve |
CN105562222A (en) * | 2016-03-02 | 2016-05-11 | 苏州盛天力离心机制造有限公司 | Residual filter cake removing device for vertical scraper type centrifuge with top suspension motor |
CN105562220A (en) * | 2016-03-02 | 2016-05-11 | 苏州盛天力离心机制造有限公司 | Residual filter cake removing device for scraper type centrifuge |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US556567A (en) * | 1896-03-17 | John b | ||
US2186836A (en) * | 1937-07-10 | 1940-01-09 | John P Mcglaughlin | Process and apparatus for treating materials in centrifugals |
US2661150A (en) * | 1947-12-17 | 1953-12-01 | Jr William G Abbott | Centrifuge |
US3244362A (en) * | 1959-06-24 | 1966-04-05 | George N Hein | Centrifuging apparatus and fractionating system |
-
1971
- 1971-11-23 DE DE2157900A patent/DE2157900C3/en not_active Expired
- 1971-11-23 SE SE7114989A patent/SE372429B/xx unknown
- 1971-11-23 CH CH1711871A patent/CH532423A/en not_active IP Right Cessation
- 1971-11-23 US US00201314A patent/US3771715A/en not_active Expired - Lifetime
- 1971-11-24 SU SU1720816A patent/SU460608A3/en active
- 1971-11-24 FR FR7142117A patent/FR2116014A5/fr not_active Expired
- 1971-11-24 GB GB5463371A patent/GB1371227A/en not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US556567A (en) * | 1896-03-17 | John b | ||
US2186836A (en) * | 1937-07-10 | 1940-01-09 | John P Mcglaughlin | Process and apparatus for treating materials in centrifugals |
US2661150A (en) * | 1947-12-17 | 1953-12-01 | Jr William G Abbott | Centrifuge |
US3244362A (en) * | 1959-06-24 | 1966-04-05 | George N Hein | Centrifuging apparatus and fractionating system |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3930608A (en) * | 1972-09-11 | 1976-01-06 | Escher Wyss Limited | Centrifuge |
US3910489A (en) * | 1973-02-13 | 1975-10-07 | Pellerin Zenith As | Centrifuge |
US3997103A (en) * | 1974-09-02 | 1976-12-14 | Escher Wyss Limited | Path of conveyance with membrane |
US4009822A (en) * | 1974-09-02 | 1977-03-01 | Escher Wyss Limited | Weir in a path of conveyance |
US5906570A (en) * | 1995-04-18 | 1999-05-25 | Cobe Laboratories, Inc. | Particle filter apparatus |
US5722926A (en) * | 1995-04-18 | 1998-03-03 | Cobe Laboratories, Inc. | Method for separating particles |
US6022306A (en) * | 1995-04-18 | 2000-02-08 | Cobe Laboratories, Inc. | Method and apparatus for collecting hyperconcentrated platelets |
US6053856A (en) * | 1995-04-18 | 2000-04-25 | Cobe Laboratories | Tubing set apparatus and method for separation of fluid components |
US5674173A (en) * | 1995-04-18 | 1997-10-07 | Cobe Laboratories, Inc. | Apparatus for separating particles |
US7549956B2 (en) | 1999-03-16 | 2009-06-23 | Caridianbct, Inc. | Centrifugal separation apparatus and method for separating fluid components |
US6334842B1 (en) | 1999-03-16 | 2002-01-01 | Gambro, Inc. | Centrifugal separation apparatus and method for separating fluid components |
US6514189B1 (en) | 1999-03-16 | 2003-02-04 | Gambro, Inc. | Centrifugal separation method for separating fluid components |
US7029430B2 (en) | 1999-03-16 | 2006-04-18 | Gambro, Inc. | Centrifugal separation apparatus and method for separating fluid components |
US6354986B1 (en) | 2000-02-16 | 2002-03-12 | Gambro, Inc. | Reverse-flow chamber purging during centrifugal separation |
US7497944B2 (en) | 2002-04-16 | 2009-03-03 | Caridianbct, Inc. | Blood component processing system, apparatus, and method |
US7279107B2 (en) | 2002-04-16 | 2007-10-09 | Gambro, Inc. | Blood component processing system, apparatus, and method |
US7708889B2 (en) | 2002-04-16 | 2010-05-04 | Caridianbct, Inc. | Blood component processing system method |
US20080272067A1 (en) * | 2007-05-01 | 2008-11-06 | Cavaliere William A | Methods and Apparatus for Classification of Suspended Materials |
US9248446B2 (en) | 2013-02-18 | 2016-02-02 | Terumo Bct, Inc. | System for blood separation with a separation chamber having an internal gravity valve |
CN105562222A (en) * | 2016-03-02 | 2016-05-11 | 苏州盛天力离心机制造有限公司 | Residual filter cake removing device for vertical scraper type centrifuge with top suspension motor |
CN105562220A (en) * | 2016-03-02 | 2016-05-11 | 苏州盛天力离心机制造有限公司 | Residual filter cake removing device for scraper type centrifuge |
Also Published As
Publication number | Publication date |
---|---|
DE2157900A1 (en) | 1972-05-25 |
GB1371227A (en) | 1974-10-23 |
SU460608A3 (en) | 1975-02-15 |
DE2157900C3 (en) | 1980-01-03 |
CH532423A (en) | 1973-01-15 |
DE2157900B2 (en) | 1979-05-03 |
SE372429B (en) | 1974-12-23 |
FR2116014A5 (en) | 1972-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3771715A (en) | Self-cleaning centrifugal separator | |
US5147277A (en) | Power-efficient liquid-solid separating centrifuge | |
US4334647A (en) | Centrifuges | |
AU668126B2 (en) | Continuous discharge centrifuge | |
US2703676A (en) | Solids discharge mechanism for centrifuges | |
GB1408997A (en) | Decanter centrifuge | |
US3368747A (en) | Centrifuge | |
WO1991000148A1 (en) | Centrifugal separator | |
SE458342B (en) | CENTRIFUGAL SEPARATOR INCLUDING A ROTOR WITH A SEPARATION CHAMBER CONSISTING OF TWO DEPARTMENTS | |
EP0766602B1 (en) | Centrifugal separator with conical bowl section and axially spaced recesses | |
US20040072667A1 (en) | Centrifuge discharge port with power recovery | |
US2662687A (en) | Centrifugal separator for cold milk products and the like | |
US3854658A (en) | Solid bowl conveyer type centrifuge | |
US2750040A (en) | Centrifugal separation | |
US4790806A (en) | Decanter centrifuge incorporating airlift device | |
US5545119A (en) | Solid bowl worm centrifuge | |
KR102685054B1 (en) | separator | |
US3419148A (en) | Continuous-type centrifugal machine | |
US2230210A (en) | Process and apparatus for saturating fruit juices and other liquids with gas | |
US3674206A (en) | Centrifugal separator with means controlling flow | |
US2459944A (en) | Centrifugal separator | |
US4054244A (en) | Centrifuge drum equipped with discharge valves | |
US3250462A (en) | Method and apparatus for sludge concentration by centrifugation | |
GB697606A (en) | A method and apparatus for the centrifugal treatment of liquids and particles suspended in liquids | |
US3708067A (en) | Separating apparatus |