[go: up one dir, main page]

US3759319A - Method for increasing effective scavenging vent steam within heat exchangers which condense vapor inside long tubes - Google Patents

Method for increasing effective scavenging vent steam within heat exchangers which condense vapor inside long tubes Download PDF

Info

Publication number
US3759319A
US3759319A US00248913A US3759319DA US3759319A US 3759319 A US3759319 A US 3759319A US 00248913 A US00248913 A US 00248913A US 3759319D A US3759319D A US 3759319DA US 3759319 A US3759319 A US 3759319A
Authority
US
United States
Prior art keywords
tubes
heat exchanger
manifold
head
set forth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00248913A
Inventor
P Ritland
C Peake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Application granted granted Critical
Publication of US3759319A publication Critical patent/US3759319A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/005Steam superheating characterised by heating method the heat being supplied by steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements
    • F22B37/266Separator reheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/002Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using inserts or attachments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/184Indirect-contact condenser
    • Y10S165/196Baffle defines flow passage within header for condensate to bypass portion of vapor flow path

Definitions

  • ABSTRACT A device for scavenging condensate from long heat exchange tubes by recirculating the steam which is passed through one portion of a U-shaped tube bundle through another portion of the tube bundle and thus reducing the build-up of slugs of liquid in the tubes by increasing the velocity therethrough without reducing the heat transfer surface and also protecting the welds which seal the tubes to the tube sheet from thermal shocks and stresses by incorporating a thermal sleeve in the device which cooperates with the scavenging of condensate from the tube to provide optimum protection.
  • This invention relates to heat exchangers and more particularly to a device for scavenging condensate from the tubes of a heat exchanger.
  • a heat exchanger having a shell, a head, a tube sheet having a plurality of holes, and a plurality of long tubes having at least one end thereof secured in the holes in the tube sheet, when made in accordance with this invention, has the head divided into an inlet portion and an outlet portion and the heat exchanger is adapted to heat a first fluid passing through the shell and over the outer surface of the tubes by removing heat from a second fluid which passes through the tubes. A portion of the second fluid changes state from a gas to a liquid in the tubes.
  • the heat exchanger further comprises, in combination, a first manifold disposed within the outlet portion of the head and a second manifold disposed within the inlet portion of the head, the manifolds being in fluid communication with each other and each manifold having means for placing the manifold in communication with a plurality of tubes, which have their ends associated with the respective portions of the head and the first manifold has a port disposed therein for draining liquid therefrom.
  • FIG. 1 is a sectional view of a moisture separator reheater incorporating a liquid scavenging device made in accordance with this invention
  • FIG. 2 is an enlarged partial sectional view showing the scavenger device
  • FIG. 3 is an enlarged partial sectional view showing how the scavenging device is connected to the tubes to form a thermal shield surrounding the area where the tube is welded to the tube sheet.
  • FIG. 1 shows a moisture separator reheater 1 incorporating a condensate scavenging device 3 made in accordance with this invention.
  • the reheater 1 is a shell 5 and tube 7 heat exchanger in which a first fluid, such as steam, flows within the shell 5 and passes over the outer surface of the tubes 7 picking up heat from a second fluid,
  • the second fluid in giving up heat has a portion thereof change state from a gas, steam, to a liquid, water or condensate.
  • the reheater 1 comprises the axially elongated shell 5, a flanged and dished head, are disposed on one end of the shell, the end on the right as shown in FIG. 1, and a hemispherical head 11 disposed on the other end of the shell, the end on the left as shown in FIG. 1.
  • a bundle of U-shaped or U-tubes 7 extend lengthwise across the upper portion of the shell 5, a meshed pad or moisture separator 13 traverses the shell horizontally adjacent the axis thereof, and a distributor plate 15 is disposed horizontally below the meshed pad 13.
  • a first fluid inlet nozzle 17 is disposed in the flanged and 'dished head 9 and a plurality of first fluid outlet or discharge nozzles 19 are disposed in the upper portion of the shell 5.
  • a hot well 21 and drain nozzle 23 are disposed in the lower portion of the hemispherical head 11.
  • a tube sheet 25 having a plurality of holes 27 disposed therein to receive the end of the U-tubes 7 which are seal welded thereto is disposed in the upper portion of the hemispherical head 11 so that the tubes 7 extend lengthwise across the upper portion of the shell 5.
  • a hemispherical head 29 is made integral with the tube sheet 25, of course a head of some other design could also be utilized.
  • a dividing plate 30 divides the head 29 into two po'rtions, an inlet portion 31 having an inlet nozzle 33 for the second fluid and disposed to be in fluid-communication with the inlet end of all of the U-tubes forming the tube bundle and an outlet portion 35 having an outlet nozzle 37 for the second fluid and disposed to be in fluid communication with the outlet end of all of the U-tubes.
  • the scavenging device 3 comprises a first manifold 41 disposed in the outlet portion 35 of the head 29 and a second manifold 43 disposed in the inlet portion 31 of the head 29.
  • the manifolds 41 and 43 are placed in fluid communication with each other by a conduit 45 extending therebetween.
  • Each manifold comprises a tube sheet 47, peripheral walls 49, and a cover plate 51.
  • the tube sheets 47 are generally disposed parallel to the tube sheet 25 of the heat exchanger and have holes 53 which register with a plurality of the holes 27 in the tube sheet 25.
  • Short tubes 55 are received by the holes 53 and extend into less than a majority of the ends of the U-tubes 7 in the associated portion of the head 29.
  • the header 41 in the outlet portion 35 of the head 29 is in communication with the lower tubes dis-' posed therein.
  • some of the outside tubes may be included to form a generally crescent-shaped header, in other words, the tubes connected to the header 41 are the tubes initially contacted by the first fluid as it enters the tube bundle.
  • the header 43 in the inlet portion of the head 29 is in communication with the central tubes of the tube bundle and the shape of this header is generally rectangular.
  • the headers 41 or 43 may take any shape, the general arrangement being that the headers are disposed so that U-tubes are only in communication with one of the headers.
  • the short tubes 55 are generally expanded into the header tube sheet 47 by rolling or other means.
  • the short tubes 55 may be sufficiently smaller in diameter than the U-tubes to provide an annular space therebetween.
  • a seal 57 is formed between the short tubes 55 and the U-tubes 7 by expanding a short portion of the short tube 55 by rolling or other means.
  • the rolling may be such that only a small'annular ring contacts the outer tube 7 forming a seal 57 therebetween and providing an annular space 59 which cooperates with the short tubes 55 to act as a thermal shield to protect the weld areas from thermal shocks produced by plugs of water which collect in the tubes 7 and cause thermal stresses and premature failure of the tubes adjacent the welds. It is, of course, understood that other rolling procedures and sealing arrangements could be utilized.
  • a drain nozzle 61 is disposed in the lower portion of the manifold 41 disposed in the outlet portion 35 of the head 29 to bleed off condensate flowing from the tubes 7.
  • a vent nozzle 63 is disposed in the outlet portion 35 of the head 29 to vent steam therefrom.
  • the operation of the reheater and scavenging device 3 is as follows:
  • the second fluid, high temperature steam enters the inlet portion of the head 29 and flows into the ends of the U-tubes not connected to the header 43.
  • the second fluid then flows through the tubes 7 giving up its heat and condensing a portion thereof.
  • Some of the tubes may discharge directly into the outlet portion 41 of the head 29, while other tubes discharge through the short tubes 55 into the header 41 disposed in the outlet portion 35 of the head 29.
  • steam separates from the water and the water flows through the drain nozzle 61 while the steam flows up through the conduit 45 and into the header 43 in the inlet portion 31 of the head 29.
  • the header 43 distributes the steam through the short tubes 55 to the U-tubes which discharge in the outlet portion of the head 29 causing a portion of the second fluid to make two passes through the tubes, which effectively increases the flow rate through all the tubes without increasing the mass flow rate or increasing the quantity of steam vented from the discharge portion of the head 29.
  • a heat exchanger having a shell, a head, a tube sheet connected to said head and having a plurality of holes, and a plurality of long tubes having their ends secured in the holes disposed in the tube sheet, the head portion having means to divide it into an inlet portion and an outlet portion, the heat exchanger being adapted to heat a first fluid flowing through the shell and over the outer surface of the tube by removing heat from a second fluid which passes through the tubes, a portion of said second fluid changing state from a gas to a liquid, in combination with; a first manifold disposed within the outlet portion of the head, and a second manifold disposed in the inlet portion of the head, means providing fluid communication between said manifolds and each manifold having means for placing the manifold in sealed fluid communication with a plurality of tubes which have their ends associated with the respective portions of the head, and said first manifold having a drain port disposed therein for draining liquid therefrom.
  • each header comprises a second tube sheet generally parallel to the tube sheet of the heat exchanger, the shape of the second tube sheet depending on the arrangement of U-tubed ends which are in fluid communication with the header.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A device for scavenging condensate from long heat exchange tubes by recirculating the steam which is passed through one portion of a U-shaped tube bundle through another portion of the tube bundle and thus reducing the build-up of slugs of liquid in the tubes by increasing the velocity therethrough without reducing the heat transfer surface and also protecting the welds which seal the tubes to the tube sheet from thermal shocks and stresses by incorporating a thermal sleeve in the device which cooperates with the scavenging of condensate from the tube to provide optimum protection.

Description

United States Patent 1 Ritland et al.
[ 1 Sept. 18, 1973 METHOD FOR INCREASING EFFECTIVE SCAVENGING VENT STEAM WITHIN HEAT EXCHANGERS WHICH CONDENSE VAPOR INSIDE LONG TUBES [75] Inventors: Paul D. Ritland, Clifton Heights, Pa.;
Charles C. Peake, Media, Pa.
[73] Assignee: Westinghouse Electric Corporation,
Pittsburgh, Pa.
22 Filed: May 1,1972
21 Appl. No.: 248,913
[52] U.S. Cl ..l65/111,165/145,165/158,
[51] Int. Cl. F01k 17/00, F28f 9/02, F28b H00 [58] Field of Search 165/110, 111, 145, l65/15 8,174, 176
[56] References Cited UNITED STATES PATENTS 2,097,602 ll/l937 Rohlin 165/174 X FOREIGN PATENTS OR APPLICATIONS 844,660 8/1960 Great Britain 165/176 Primary Examiner-Albert W. Davis, Jr. Attorney-A. T. Stratton et al.
[57] ABSTRACT A device for scavenging condensate from long heat exchange tubes by recirculating the steam which is passed through one portion of a U-shaped tube bundle through another portion of the tube bundle and thus reducing the build-up of slugs of liquid in the tubes by increasing the velocity therethrough without reducing the heat transfer surface and also protecting the welds which seal the tubes to the tube sheet from thermal shocks and stresses by incorporating a thermal sleeve in the device which cooperates with the scavenging of condensate from the tube to provide optimum protection.
10 Claims, 3 Drawing Figures Patented Sept; 18, 1973 2 Sheets-Sheet 1 vrral Patented Sept. 18, 1973 2 Sheets-Sheet 2 a a w w WI BACKGROUND OF THE INVENTION This invention relates to heat exchangers and more particularly to a device for scavenging condensate from the tubes of a heat exchanger.
When there are a number of tubes condensing in parallel, variations in condensing produces different flow patterns in different tubes, which result in condensate build-up in certain tubes. After the condensate plugs the tubes, the flooded tubes purge themselves and the cycle begins again, resulting in thermal shocks and stresses, which in time cause failure adjacent the area where the tubes are welded to the tube sheet.
One solution to this problem is to vent a portion of the steam to a lower pressure receptacle, increasing the flow through the tubes and thereby scavenging the condensate, which collects therein; however, unless very large quantities of steam are vented, this method is ineffective in keeping all of the tubes free from plugs of condensate. From a thermodynamic standpoint, the greater the quantity of vented steam, the lower the thermal efficiency of the system and, therefore, the more costly it is to operate.
SUMMARY OF THE INVENTION In general, a heat exchanger, having a shell, a head, a tube sheet having a plurality of holes, and a plurality of long tubes having at least one end thereof secured in the holes in the tube sheet, when made in accordance with this invention, has the head divided into an inlet portion and an outlet portion and the heat exchanger is adapted to heat a first fluid passing through the shell and over the outer surface of the tubes by removing heat from a second fluid which passes through the tubes. A portion of the second fluid changes state from a gas to a liquid in the tubes. The heat exchanger further comprises, in combination, a first manifold disposed within the outlet portion of the head and a second manifold disposed within the inlet portion of the head, the manifolds being in fluid communication with each other and each manifold having means for placing the manifold in communication with a plurality of tubes, which have their ends associated with the respective portions of the head and the first manifold has a port disposed therein for draining liquid therefrom.
BRIEF DESCRIPTION OF THE DRAWINGS The objects and advantages of this invention will become more apparent from reading the following detailed description in connection with the accompanying drawings, in which:
FIG. 1 is a sectional view of a moisture separator reheater incorporating a liquid scavenging device made in accordance with this invention;
FIG. 2 is an enlarged partial sectional view showing the scavenger device; and
FIG. 3 is an enlarged partial sectional view showing how the scavenging device is connected to the tubes to form a thermal shield surrounding the area where the tube is welded to the tube sheet.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings in detail, FIG. 1 shows a moisture separator reheater 1 incorporating a condensate scavenging device 3 made in accordance with this invention. The reheater 1 is a shell 5 and tube 7 heat exchanger in which a first fluid, such as steam, flows within the shell 5 and passes over the outer surface of the tubes 7 picking up heat from a second fluid,
in this case also steam, which flows through the tubes 7. The second fluid in giving up heat has a portion thereof change state from a gas, steam, to a liquid, water or condensate.
The reheater 1 comprises the axially elongated shell 5, a flanged and dished head, are disposed on one end of the shell, the end on the right as shown in FIG. 1, and a hemispherical head 11 disposed on the other end of the shell, the end on the left as shown in FIG. 1. A bundle of U-shaped or U-tubes 7 extend lengthwise across the upper portion of the shell 5, a meshed pad or moisture separator 13 traverses the shell horizontally adjacent the axis thereof, and a distributor plate 15 is disposed horizontally below the meshed pad 13. A first fluid inlet nozzle 17 is disposed in the flanged and 'dished head 9 and a plurality of first fluid outlet or discharge nozzles 19 are disposed in the upper portion of the shell 5. A hot well 21 and drain nozzle 23 are disposed in the lower portion of the hemispherical head 11. A tube sheet 25 having a plurality of holes 27 disposed therein to receive the end of the U-tubes 7 which are seal welded thereto is disposed in the upper portion of the hemispherical head 11 so that the tubes 7 extend lengthwise across the upper portion of the shell 5. A hemispherical head 29 is made integral with the tube sheet 25, of course a head of some other design could also be utilized.
A dividing plate 30 divides the head 29 into two po'rtions, an inlet portion 31 having an inlet nozzle 33 for the second fluid and disposed to be in fluid-communication with the inlet end of all of the U-tubes forming the tube bundle and an outlet portion 35 having an outlet nozzle 37 for the second fluid and disposed to be in fluid communication with the outlet end of all of the U-tubes.
- As shown best in FIG. 2, the scavenging device 3 comprises a first manifold 41 disposed in the outlet portion 35 of the head 29 and a second manifold 43 disposed in the inlet portion 31 of the head 29. The manifolds 41 and 43 are placed in fluid communication with each other by a conduit 45 extending therebetween. Each manifold comprises a tube sheet 47, peripheral walls 49, and a cover plate 51.
The tube sheets 47 are generally disposed parallel to the tube sheet 25 of the heat exchanger and have holes 53 which register with a plurality of the holes 27 in the tube sheet 25. Short tubes 55 are received by the holes 53 and extend into less than a majority of the ends of the U-tubes 7 in the associated portion of the head 29. Generally, the header 41 in the outlet portion 35 of the head 29 is in communication with the lower tubes dis-' posed therein. However, some of the outside tubes may be included to form a generally crescent-shaped header, in other words, the tubes connected to the header 41 are the tubes initially contacted by the first fluid as it enters the tube bundle.
Generally, the header 43 in the inlet portion of the head 29 is in communication with the central tubes of the tube bundle and the shape of this header is generally rectangular. However, the headers 41 or 43 may take any shape, the general arrangement being that the headers are disposed so that U-tubes are only in communication with one of the headers.
As shown in FIG. 3, the short tubes 55 are generally expanded into the header tube sheet 47 by rolling or other means. The short tubes 55 may be sufficiently smaller in diameter than the U-tubes to provide an annular space therebetween. A seal 57 is formed between the short tubes 55 and the U-tubes 7 by expanding a short portion of the short tube 55 by rolling or other means. As shown in FIG. 3 the rolling may be such that only a small'annular ring contacts the outer tube 7 forming a seal 57 therebetween and providing an annular space 59 which cooperates with the short tubes 55 to act as a thermal shield to protect the weld areas from thermal shocks produced by plugs of water which collect in the tubes 7 and cause thermal stresses and premature failure of the tubes adjacent the welds. It is, of course, understood that other rolling procedures and sealing arrangements could be utilized.
A drain nozzle 61 is disposed in the lower portion of the manifold 41 disposed in the outlet portion 35 of the head 29 to bleed off condensate flowing from the tubes 7. And a vent nozzle 63 is disposed in the outlet portion 35 of the head 29 to vent steam therefrom.
The operation of the reheater and scavenging device 3 is as follows:
The first fluid, wet steam, enters the inlet nozzle 17, passes through the distributor plate and flows through the meshed pad 13, wherein large droplets of water are removed and then the first fluid flows over the outside of the U-tubes picking up heat and raising its temperature to become a superheated fluid and then flows out the discharge nozzles 19.
The second fluid, high temperature steam, enters the inlet portion of the head 29 and flows into the ends of the U-tubes not connected to the header 43. The second fluid then flows through the tubes 7 giving up its heat and condensing a portion thereof. Some of the tubes may discharge directly into the outlet portion 41 of the head 29, while other tubes discharge through the short tubes 55 into the header 41 disposed in the outlet portion 35 of the head 29. In the header 41 steam separates from the water and the water flows through the drain nozzle 61 while the steam flows up through the conduit 45 and into the header 43 in the inlet portion 31 of the head 29. The header 43 distributes the steam through the short tubes 55 to the U-tubes which discharge in the outlet portion of the head 29 causing a portion of the second fluid to make two passes through the tubes, which effectively increases the flow rate through all the tubes without increasing the mass flow rate or increasing the quantity of steam vented from the discharge portion of the head 29. Thus, by selecting those tubes which are particularly susceptable to periodic condensate plugging the scavenging device, hereinbefore described, effectively increases the scavenging in the tubes and thereby prevents condensate plugging and subcooling, and also provides a thermal shield to protect the weld areas against thermal shocks and What is claimed is:
i. A heat exchanger having a shell, a head, a tube sheet connected to said head and having a plurality of holes, and a plurality of long tubes having their ends secured in the holes disposed in the tube sheet, the head portion having means to divide it into an inlet portion and an outlet portion, the heat exchanger being adapted to heat a first fluid flowing through the shell and over the outer surface of the tube by removing heat from a second fluid which passes through the tubes, a portion of said second fluid changing state from a gas to a liquid, in combination with; a first manifold disposed within the outlet portion of the head, and a second manifold disposed in the inlet portion of the head, means providing fluid communication between said manifolds and each manifold having means for placing the manifold in sealed fluid communication with a plurality of tubes which have their ends associated with the respective portions of the head, and said first manifold having a drain port disposed therein for draining liquid therefrom.
2. A heat exchanger as set forth in claim 1, wherein the second manifold is in fluid communication with less than a majority of the tube ends associated with the inlet portion of the head. 3. A heat exchanger as set forth in claim 1, wherein the tubes are U-shaped and the first manifold is in fluid communication with the tubes contacted by the coolest first fluid and the second manifold is in fluid communication with tubes other than those that are in communication with the first manifold.
4. A heat exchanger as set forth in claim 1, wherein the means placing the manifold in fluid communication with the ends of the tubes are short tubes extending from the manifolds into the ends of the long tubes.
5. A heat exchanger as set forth in claim 4 and further comprising a seal between the long tubes and the short tubes extending therein.
6. A heat exchanger as set forth in claim 4, wherein the short tubes are expanded in the ends of the long tubes forming a seal therebetween.
7. A heat exchanger as set forth in claim 4, wherein the short tubes have an outer diameter sufficiently smaller than the inner diameter of the long tubes to provide an annular space therebetween and the short tubes are expanded to produce at least one small annular area of contact between the tubes thereby forming a seal therebetween.
8. A heat exchanger as set forth in claim 4, wherein the short tubes have an outer diameter sufficiently smaller than the inner diameter of the long tubes to produce an annular space therebetween and the short tubes being expanded to form two small annular areas of contact between the tubes thereby forming seals therebetween.
9. A heat exchanger as set forth in claim 4, wherein each header comprises a second tube sheet generally parallel to the tube sheet of the heat exchanger, the shape of the second tube sheet depending on the arrangement of U-tubed ends which are in fluid communication with the header.
10. A heat exchanger as set forth in claim 1, wherein the discharge portion of the head has venting means stresses thereby eliminating premature tube failures of 65 disposed therein.
the tubes adjacent the welds.

Claims (10)

1. A heat exchanger having a shell, a head, a tube sheet connected to said head and having a plurality of holes, and a plurality of long tubes having their ends secured in the holes disposed in the tube sheet, the head portion having means to divide it into an inlet portion and an outlet portion, the heat exchanger being adapted to heat a first fluid flowing through the shell and over the outer surface of the tube by removing heat from a second fluid which passes through the tubes, a portion of said second fluid changing state from a gas to a liquid, in combination with; a first manifold disposed within the outlet portion of the head, and a second manifold disposed in the inlet portion of the head, means providing fluid communication between said manifolds and each manifold having means for placing the manifold in sealed fluid communication with a plurality of tubes which have their ends associated with the respective portions of the head, and said first manifold having a drain port disposed therein for draining liquid therefrom.
2. A heat exchanger as set forth in claim 1, wherein the second manifold Is in fluid communication with less than a majority of the tube ends associated with the inlet portion of the head.
3. A heat exchanger as set forth in claim 1, wherein the tubes are U-shaped and the first manifold is in fluid communication with the tubes contacted by the coolest first fluid and the second manifold is in fluid communication with tubes other than those that are in communication with the first manifold.
4. A heat exchanger as set forth in claim 1, wherein the means placing the manifold in fluid communication with the ends of the tubes are short tubes extending from the manifolds into the ends of the long tubes.
5. A heat exchanger as set forth in claim 4 and further comprising a seal between the long tubes and the short tubes extending therein.
6. A heat exchanger as set forth in claim 4, wherein the short tubes are expanded in the ends of the long tubes forming a seal therebetween.
7. A heat exchanger as set forth in claim 4, wherein the short tubes have an outer diameter sufficiently smaller than the inner diameter of the long tubes to provide an annular space therebetween and the short tubes are expanded to produce at least one small annular area of contact between the tubes thereby forming a seal therebetween.
8. A heat exchanger as set forth in claim 4, wherein the short tubes have an outer diameter sufficiently smaller than the inner diameter of the long tubes to produce an annular space therebetween and the short tubes being expanded to form two small annular areas of contact between the tubes thereby forming seals therebetween.
9. A heat exchanger as set forth in claim 4, wherein each header comprises a second tube sheet generally parallel to the tube sheet of the heat exchanger, the shape of the second tube sheet depending on the arrangement of U-tubed ends which are in fluid communication with the header.
10. A heat exchanger as set forth in claim 1, wherein the discharge portion of the head has venting means disposed therein.
US00248913A 1972-05-01 1972-05-01 Method for increasing effective scavenging vent steam within heat exchangers which condense vapor inside long tubes Expired - Lifetime US3759319A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US24891372A 1972-05-01 1972-05-01

Publications (1)

Publication Number Publication Date
US3759319A true US3759319A (en) 1973-09-18

Family

ID=22941229

Family Applications (1)

Application Number Title Priority Date Filing Date
US00248913A Expired - Lifetime US3759319A (en) 1972-05-01 1972-05-01 Method for increasing effective scavenging vent steam within heat exchangers which condense vapor inside long tubes

Country Status (9)

Country Link
US (1) US3759319A (en)
JP (1) JPS5316445B2 (en)
BE (1) BE798900A (en)
CA (1) CA946833A (en)
DE (1) DE2314732C2 (en)
ES (1) ES413955A1 (en)
FR (1) FR2183123B1 (en)
IT (1) IT984237B (en)
NL (1) NL173555C (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2311252A1 (en) * 1975-05-16 1976-12-10 Fives Cail Babcock Steam generator with feedwater heating - by indirect heat exchange with exhaust steam and condensate
US3996897A (en) * 1975-11-21 1976-12-14 General Electric Company Reheater for a moisture separator reheater
US4047562A (en) * 1975-05-16 1977-09-13 Sulzer Brothers Limited Heat exchanger utilizing a vaporized heat-containing medium
US4083707A (en) * 1976-04-12 1978-04-11 Bivins Jr Henry W Flow stabilizer for tube and shell vaporizer
US4106559A (en) * 1976-12-29 1978-08-15 Westinghouse Electric Corp. Tube side flow control device for moisture separator reheaters
US4121656A (en) * 1977-05-27 1978-10-24 Ecodyne Corporation Header
US4141409A (en) * 1977-04-21 1979-02-27 Karmazin Products Corporation Condenser header construction
US4166497A (en) * 1976-01-21 1979-09-04 Westinghouse Electric Corp. Apparatus for increasing effective scavenging vent steam within a heat exchanger which condenses vapor inside long tubes
DE2912113A1 (en) * 1978-03-27 1979-10-04 Gen Electric PROCESS AND EQUIPMENT FOR DRAINING AND REHEATING OF STEAM
US4223722A (en) * 1978-10-02 1980-09-23 General Electric Company Controllable inlet header partitioning
DE2914116A1 (en) * 1979-04-07 1980-10-23 Balcke Duerr Ag DEVICE FOR OVERHEATING STEAM
US4300481A (en) * 1979-12-12 1981-11-17 General Electric Company Shell and tube moisture separator reheater with outlet orificing
US4304222A (en) * 1980-08-18 1981-12-08 Novinger Harry E Low profile evacuated-bottle solar collector module
US4473112A (en) * 1981-02-23 1984-09-25 Southwestern Engineering Company Manifold
US4702308A (en) * 1983-08-26 1987-10-27 Southwestern Engineering Company Manifold
US5186249A (en) * 1992-06-08 1993-02-16 General Motors Corporation Heater core
EP0599107A2 (en) * 1992-11-26 1994-06-01 Behr GmbH & Co. Radiator for a motor vehicle
US5752566A (en) * 1997-01-16 1998-05-19 Ford Motor Company High capacity condenser
US5755113A (en) * 1997-07-03 1998-05-26 Ford Motor Company Heat exchanger with receiver dryer
US20050022982A1 (en) * 2003-08-01 2005-02-03 Roland Dilley Heat exchanger with flow director
US20130125839A1 (en) * 2010-08-02 2013-05-23 L'air Liquide Societe Anonyme Pour L'etude Et L' Exploitation Des Procedes Georges Claude U-tube vaporizer
US20130213081A1 (en) * 2012-02-17 2013-08-22 Hussmann Corporation Microchannel suction line heat exchanger
US8997492B2 (en) 2012-01-20 2015-04-07 Balcke-Durr Gmbh Apparatus and method for reheating turbine steam
EP3097971A1 (en) * 2015-05-25 2016-11-30 Parker Hannifin Manufacturing S.r.l. Improved compressed gas dryer
US20170328642A1 (en) * 2017-02-28 2017-11-16 Zhengzhou University Shell-and-tube heat exchanger with distributed inlet-outlets
US20170328641A1 (en) * 2017-02-28 2017-11-16 Zhengzhou University Shell-and-tube heat exchanger with externally-connected tube chambers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1078380B (en) * 1976-01-21 1985-05-08 Westinghouse Electric Corp DEVICE TO INCREASE THE EFFICIENCY OF THE WASHING STEAM IN A HEAT EXCHANGER THAT CONDENSATES THE STEAM WITHIN LONG TUBES
US4526137A (en) * 1984-03-05 1985-07-02 The Babcock & Wilcox Company Thermal sleeve for superheater nozzle to header connection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2097602A (en) * 1936-03-06 1937-11-02 Warren Webster & Co Radiator
GB844660A (en) * 1958-04-03 1960-08-17 Ferguson Superheaters Ltd Improvements in and relating to heat exchangers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2097602A (en) * 1936-03-06 1937-11-02 Warren Webster & Co Radiator
GB844660A (en) * 1958-04-03 1960-08-17 Ferguson Superheaters Ltd Improvements in and relating to heat exchangers

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2311252A1 (en) * 1975-05-16 1976-12-10 Fives Cail Babcock Steam generator with feedwater heating - by indirect heat exchange with exhaust steam and condensate
US4047562A (en) * 1975-05-16 1977-09-13 Sulzer Brothers Limited Heat exchanger utilizing a vaporized heat-containing medium
US3996897A (en) * 1975-11-21 1976-12-14 General Electric Company Reheater for a moisture separator reheater
US4166497A (en) * 1976-01-21 1979-09-04 Westinghouse Electric Corp. Apparatus for increasing effective scavenging vent steam within a heat exchanger which condenses vapor inside long tubes
US4083707A (en) * 1976-04-12 1978-04-11 Bivins Jr Henry W Flow stabilizer for tube and shell vaporizer
US4106559A (en) * 1976-12-29 1978-08-15 Westinghouse Electric Corp. Tube side flow control device for moisture separator reheaters
US4141409A (en) * 1977-04-21 1979-02-27 Karmazin Products Corporation Condenser header construction
US4121656A (en) * 1977-05-27 1978-10-24 Ecodyne Corporation Header
DE2912113A1 (en) * 1978-03-27 1979-10-04 Gen Electric PROCESS AND EQUIPMENT FOR DRAINING AND REHEATING OF STEAM
US4223722A (en) * 1978-10-02 1980-09-23 General Electric Company Controllable inlet header partitioning
DE2914116A1 (en) * 1979-04-07 1980-10-23 Balcke Duerr Ag DEVICE FOR OVERHEATING STEAM
US4300481A (en) * 1979-12-12 1981-11-17 General Electric Company Shell and tube moisture separator reheater with outlet orificing
US4304222A (en) * 1980-08-18 1981-12-08 Novinger Harry E Low profile evacuated-bottle solar collector module
US4473112A (en) * 1981-02-23 1984-09-25 Southwestern Engineering Company Manifold
US4702308A (en) * 1983-08-26 1987-10-27 Southwestern Engineering Company Manifold
US5186249A (en) * 1992-06-08 1993-02-16 General Motors Corporation Heater core
EP0599107A2 (en) * 1992-11-26 1994-06-01 Behr GmbH & Co. Radiator for a motor vehicle
EP0599107A3 (en) * 1992-11-26 1995-04-19 Behr Gmbh & Co Radiator for a motor vehicle.
US5752566A (en) * 1997-01-16 1998-05-19 Ford Motor Company High capacity condenser
US5755113A (en) * 1997-07-03 1998-05-26 Ford Motor Company Heat exchanger with receiver dryer
US20050022982A1 (en) * 2003-08-01 2005-02-03 Roland Dilley Heat exchanger with flow director
US6997250B2 (en) * 2003-08-01 2006-02-14 Honeywell International, Inc. Heat exchanger with flow director
US9109795B2 (en) * 2010-08-02 2015-08-18 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude U-tube vaporizer
US20130125839A1 (en) * 2010-08-02 2013-05-23 L'air Liquide Societe Anonyme Pour L'etude Et L' Exploitation Des Procedes Georges Claude U-tube vaporizer
US8997492B2 (en) 2012-01-20 2015-04-07 Balcke-Durr Gmbh Apparatus and method for reheating turbine steam
US20130213081A1 (en) * 2012-02-17 2013-08-22 Hussmann Corporation Microchannel suction line heat exchanger
US9303925B2 (en) * 2012-02-17 2016-04-05 Hussmann Corporation Microchannel suction line heat exchanger
US10514189B2 (en) 2012-02-17 2019-12-24 Hussmann Corporation Microchannel suction line heat exchanger
EP3097971A1 (en) * 2015-05-25 2016-11-30 Parker Hannifin Manufacturing S.r.l. Improved compressed gas dryer
US20170328642A1 (en) * 2017-02-28 2017-11-16 Zhengzhou University Shell-and-tube heat exchanger with distributed inlet-outlets
US20170328641A1 (en) * 2017-02-28 2017-11-16 Zhengzhou University Shell-and-tube heat exchanger with externally-connected tube chambers

Also Published As

Publication number Publication date
FR2183123A1 (en) 1973-12-14
IT984237B (en) 1974-11-20
ES413955A1 (en) 1976-02-01
NL7305909A (en) 1973-11-05
CA946833A (en) 1974-05-07
NL173555B (en) 1983-09-01
FR2183123B1 (en) 1977-02-11
JPS4925306A (en) 1974-03-06
BE798900A (en) 1973-10-30
DE2314732C2 (en) 1982-08-19
NL173555C (en) 1984-02-01
DE2314732A1 (en) 1973-11-15
JPS5316445B2 (en) 1978-06-01

Similar Documents

Publication Publication Date Title
US3759319A (en) Method for increasing effective scavenging vent steam within heat exchangers which condense vapor inside long tubes
US3168136A (en) Shell and tube-type heat exchanger
US3187807A (en) Heat exchanger
US3942481A (en) Blowdown arrangement
US2756028A (en) Heat exchange apparatus
CN204359159U (en) A kind of horizontal condensing heat exchanger
US2946570A (en) Vertical feedwater heater
US4165783A (en) Heat exchanger for two vapor media
US3333630A (en) Uniformly spaced tube banks
US3896770A (en) Steam generator with split flow preheater
US3812907A (en) Heat exchangers
US3398720A (en) Once-through steam generator having a central manifold and tube bundles of spiral tube construction
US3245464A (en) Liquid metal heated vapor generator
US3706301A (en) Integral economizer for u-tube generator
US3991720A (en) J tube discharge or feedwater header
US2819882A (en) Heat exchange apparatus
US3482626A (en) Heat exchanger
US3376858A (en) Steam generator with spherical steam generating chamber
US4298058A (en) Tube bundle heat exchanger
US3885621A (en) Vent condenser for a feedwater heater
US4166497A (en) Apparatus for increasing effective scavenging vent steam within a heat exchanger which condenses vapor inside long tubes
US4010797A (en) Heat exchanger
US4047562A (en) Heat exchanger utilizing a vaporized heat-containing medium
CN111426104A (en) A shell and tube condenser
US3867907A (en) Steam generator

Legal Events

Date Code Title Description
PS Patent suit(s) filed