[go: up one dir, main page]

US3752941A - Electroacoustic transducers - Google Patents

Electroacoustic transducers Download PDF

Info

Publication number
US3752941A
US3752941A US00210280A US3752941DA US3752941A US 3752941 A US3752941 A US 3752941A US 00210280 A US00210280 A US 00210280A US 3752941D A US3752941D A US 3752941DA US 3752941 A US3752941 A US 3752941A
Authority
US
United States
Prior art keywords
bilaminar
vibratile
transducer
square
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00210280A
Inventor
F Massa
G Barrow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MASSA DONALD P COHASSET
Dynamics Corp of America
Massa Products Corp
Original Assignee
Dynamics Corp of America
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamics Corp of America filed Critical Dynamics Corp of America
Application granted granted Critical
Publication of US3752941A publication Critical patent/US3752941A/en
Assigned to MASSA PRODUCTS CORPORATION reassignment MASSA PRODUCTS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CONSTANCE ANN MASSA TRUST, DONALD P. MASSA TRUST, GEORGIANA M. MASSA TRUST, ROBERT MASSA TRUST
Assigned to DELLORFANO, FRED M. JR., MASSA, DONALD P., COHASSET, MA reassignment DELLORFANO, FRED M. JR. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: STONELEIGH TRUST, THE
Assigned to TRUSTEES FOR AND ON BEHALF OF THE D.P. MASSA TRUST, THE C.A. MASSA TRUST, THE G.M. MASSA TRUST, AND THE R. MASSA TRUST reassignment TRUSTEES FOR AND ON BEHALF OF THE D.P. MASSA TRUST, THE C.A. MASSA TRUST, THE G.M. MASSA TRUST, AND THE R. MASSA TRUST ASSIGN TO TRUSTEES AS EQUAL TENANTS IN COMMON, THE ENTIRE INTEREST. Assignors: MASSA, CONSTANCE A., MASSA, DONALD P., MASSA, GEORGIANA M., MASSA, ROBERT
Assigned to MASSA PRODUCTS CORPORATION reassignment MASSA PRODUCTS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: CONSTANCE ANN MASSA TRUST *, DONALD P. MASSA TRUST, GEORGIANA M. MASSA TRUST, ROBERT M. MASSA TRUST
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/12Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated
    • G10K9/122Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers electrically operated using piezoelectric driving means

Definitions

  • An electroacoustic transducer uses a bilaminar vibratile element having at least two plate members which are bonded together in face-to-face relationship, at least one of the plates being made from a piezoelectric material.
  • Flexible electrical conductors freely support the bilaminar vibratile plate members on a frame. Any flexural vibrations of the bilaminar element apply an alternating voltage to the electrical conductors.
  • a sonic energy mask is positioned over and spaced away from an exposed surface of the vibratile element to prevent sound radiation from the masked surface portion of the vibratile element.
  • This invention relates to electroacoustic transducers, and more particularly to transducers employing a resonant bilaminar plate operating at its fundamental flexural mode of vibration.
  • many bilaminar transducer elements operate in a flexural mode.
  • many widely used loudspeakers and microphones have a bilaminar piezoelectric plate which is pivoted or clamped at specific regions.
  • a diaphragm is coupled to the unclamped vibratile portion of the bilaminar plate. Examples of such prior art constructions are shown, for example, in FIGS. 4, 5, 7 and 8 of US. Pat. No. 2,518,993.
  • the invention is not limited to use in any particular frequency region.
  • the improvements described herein are particularly valuable at the higher audible and ultrasonic frequencies where it has generally been extremely difficult to achieve a high efficiency operation.
  • the prior art structures are used in the ultrasonic frequency region, it is extremely difficult to operate the transducer efficiently because of the mass of the diaphragm and the relatively high compliance at any unsupported free corner of the mounted bilaminar plate. Therefore, to improve the high frequency operation, as taught by this invention, the diaphragm is removed, and the bilaminar element is suspended to vibrate freely without any restraint or added mass. By removing the mounting restraints, the fundamental resonant frequency of the bilaminar plate is increased. The high frequency vibrations are sustained more efficiently.
  • an object of this invention is to design new and efficient low-cost electroacoustic transducers utilizing a bilaminar plate operating at a fundamental free resonant mode.
  • a further object of this invention is to suspend a bilaminar piezoelectric plate within a frame-like mounting structure.
  • an object is to position the bilaminar plate accurately and without imposing mechanical restraints at the fundamental resonance mode of vibration.
  • Yet another object of this invention is to mount a piezoelectric bilaminar rectangular plate within an opening in a frame-like structure.
  • an object is to use thin ribbon-like conductor leads (mounted at right angles on opposite sides of the rectangular piezoelectric plate) as a suspension means to hold the plate with negligible restraint.
  • An additional object of this invention is to provide a sound opaque mask in a fixed spatial relationship with respect to the vibratile surface of a bilaminar disc operating at its fundamental free resonance mode. Another object is to shape the mask so that only a portion of the surface of the resonant plate is exposed to the medium.
  • a still further object of this invention is to provide a unitary mounting structure for a bilaminar transducer element and simultaneously to provide a sound opaque masking area which prevents the exposure of a portion of the vibratile plate surface to the medium.
  • Still another object of this invention is to provide a very simple mounting and housing structure for a bilaminar piezoelectric plate in order to achieve an efficient operation at its fundamental free resonant mode.
  • FIG. 1 is a plan view of one embodiment of the inventive transducer construction, with the outer transducer housing removed;
  • FIG. 2 is a cross-sectional view taken along the line 2-2 of FIG. 1 (with the outer housing in place);
  • FIG. 3 is another cross-sectional view taken along the line 3-3 of FIG. 1 (with the outer housing in place);
  • FIG. 4 is a plan view of the top of another embodiment of the inventive transducer element assembly, this embodiment using fewer parts as compared with the transducer element assembly of FIG. 1;
  • FIG. 5 is a cross-sectional view taken along the line 5-5 of FIG. 4;
  • FIG. 6 is a plan view of the bottom of the transducer element assembly shown in FIG. 5;
  • FIG. 7 is a plan view showing a one-piece frame structure before the bilaminar plate is mounted therein.
  • the reference character 10 designates a rigid flat plate, preferably made of an electrical insulation material such as Bakelite.
  • a square piezoelectric bilaminar plate assembly 12 is suspended in a square opening formed in the center of the rigid plate.
  • the bilaminar plate 12 could take either of two forms.
  • the plate may include a pair of polarized piezoelectric ceramic elements, such as barium titanate or lead zirconate titanate, for example. Alternatively, other suitable piezoelectric materials may also be used, as is well known in the art. Metalized electrodes are formed on the opposite surfaces of the two piezoelectric elements.
  • the bilaminar plates are arranged with their common positive potential surfaces, marked bonded together in face-to-face relationship.
  • the bilaminar assembly 12 could also include an inert plate (such as aluminum) which has a piezoelectric element bonded thereto. However, it should be understood that other inert materials could also be used.
  • Thin ribbon-like electrical conductors 13 and 14 are conductively bonded to the two opposite exposed electrode surfaces of the bilaminar plate assembly. These conductors lie at right angles to each other and along the center lines of these two surfaces. The conductive bond may be made by means of conducting cement, by welding, or by other suitable means.
  • the ribbon conductor 13 is attached to the bottom surface electrode of the bilaminar assembly (as viewed in FIG. 1).
  • the ribbon conductor 14 is attached to the top electrode surface.
  • Means are provided for suspending the square bilaminar piezoelectric assembly 12 with a free-free suspension. More particularly, during assembly, these two ribbon conductors 13, 14 are crossed over so that the rib bon 13 is cemented to the top surface of the plate 10 (FIG. 2), and the ribbon 14 is cemented to the bottom surface of plate 10 (FIG. 3).
  • the bilaminar element 12 is effectively held in a very accurate alignment with a free-free clamping.
  • the bilaminar element 12 is thus free to vibrate without restraint in its fundamental resonance mode. In the free fundamental resonance mode, the four corners of the square bilaminar transducer element 12 vibrate together in phase. All four corners are opposite in phase to the center area of the bilaminar element.
  • a sound opaque mask 15 is suspended over the center portion of the bilaminar piezoelectric element 12.
  • the outline contours of the mask 15 follow the shape of the nodal line on the surface of the piezoelectric plate 12.
  • the area of the mask is about onehalf the area of the piezoelectric element. Only the four corners of the piezoelectric element 12 are exposed to the medium, as illustrated in FIG. 1.
  • the mask prevents the out of phase radiation in the center area from neutralizing the radiation from the four corners of the element.
  • the mask 15 may be made from any suitable sheet of metal or plastic which is sufficiently thick to remain practically stationary during the operation of the transducer.
  • the proper thickness for any material may be easily determined by noting the sensitivity of the trans ducer at its frequency of operation. The optimum thickness is where no additional increase insensitivity results when extra thickness is added to the masking plate.
  • a U-shaped metal bracket 16 is notched at the tips of the arms forming the U. These notches lock into'mating slots 17 at the periphery of the plate 10.
  • an eyelet l8 attaches the bracket 16 to a metal lid 19.
  • the eyelet 18 is part of the insulated terminal 20.
  • the ribbon conductor 14 has its free-end soldered to the terminal pin 20.
  • the surface of the ribbon conductor 13 is soldered to the contacting surface of the U-bracket 16.
  • the somewhat cup-shaped metallic housing 21 has a protective screen 22 welded or cemented therein to cover an open surface 23.
  • the open lip of the cup housing is crimped at 19a over the edge of the lip 19 to complete the outer shell of the transducer.
  • electrical connections are made to external equipment via the terminal and the metallic plate 19.
  • FIGS. 4-7 A second embodiment of the transducer element assembly is illustrated in FIGS. 4-7.
  • one molded piece of rigid plastic provides a frame structure 24 with a square cavity 25 partly recessed in the bottom thereof.
  • the surface at the base of the cavity 25 has four corner sections which are perforated or pierced. For easy identification, one of these perforated areas is shown as cross-hatched at 26. It is somewhat triangular, lying over a corner of the bilaminar element.
  • the bilaminar piezoelectric element 12 is mounted within the frame structure 24 by means of the ribbon conductors 13 and 14. These ribbon conductors 13, 14 may be cemented or otherwise fastened to the surface of the frame structure 24. In this assembly, only one ribbon conductor 14 crosses the edge of the piezoelectric element 12, as shown in FIG. 5. The ribbon conductor 13 is drawn along the plane of the rear surface of the piezoelectric element 12 and the frame structure 24. This arrangement of conductor 13 is most clearly illustrated in FIG. 6, which shows a bottom view of the assembly. In the top surface of the molded piece 24, the
  • transducer assembly may be completed as previously described in connection with FIG. 2.
  • the four comers of the piezoelectric element 12 To obtain an efficient operation of the bilaminar transducer structure, it is necessary for the four comers of the piezoelectric element 12 to be free to vibrate with minimum restraints, during operation at the fundamental resonance mode.
  • the ribbon-like conductors 13, 14 suspend the piezoelectric members at the four nodal points in the centers of the four sides of the square bilaminar plate. This suspension achieves minimum restraints in the mounting of the element.
  • the dimensions of the bilaminar elements should preferably be such that its periphery is more than 20 times greater than its thickness.
  • An electroacoustic transducer comprising reassureminar vibratile element comprising two square piezoelectriplates bonded together in face-to-face relationship, electrode surfaces on the two exposed outer surfaces of said bonded plates, a first ribbon-like electrical conductor conductively bonded along a center line of one exposed electrode surface on one side of said bilaminar element, a second ribbon-like electrical conductor conductively bonded along a center line of the opposite exposed electrode surface on the other side of said bilaminar element, said first and second ribbon conductors being oriented to lie at right angles to each other, said ribbon conductors having a length sufficient to project beyond the edges of said bilaminar element, a structural frame member having an opening which is larger in size.
  • said masking means is approximately square and has an area which is approximately equal to one-half the area of said bilaminar element, said square masking means being located in spaced relationship over the center portion of said vibratile bilaminar element, said masking means being rotated with reference to the bilaminar element so that the diagonal axes of said masking means are in alignment with the orthogonal axes of the bilaminar element.
  • the transducer of claim 1 further characterized in that said bilaminar element has a periphery which is greater than twenty times its thickness.
  • An electroacoustic transducer comprising a bilaminar vibratile member including at least two plate members bonded in face-to-face relationship, at least one of said bonded plates being a piezoelectric material with opposing electrode surfaces, a pair of perpendicularly extending flexible electrical ribbon-like conductor means connected to the nodal points on said opposite electrode surfaces, said piezoelectric material vibrating in out-of-phase modes when said member is energized by an alternating current signal applied via said conductor means, support means comprising a structural plate member having a recessed cavity formed therein, said recessed cavity being larger than said vibratile member, and means including said conductors for freely supporting said bilaminar vibratile member within said recessed cavity and in spaced relationship with respect to the peripheral edge and the recessed surface of said cavity, said electrical conductors having a flexibility which enables said vibratile member to vibrate in a free mode of vibrations, a portion of said recessed surface being perforated opposite a portion of the area of said
  • both said recessed cavity and said bilaminar vibratile member are square, and there are four of said perforations, each perforation being approximately triangular in shape with each of said triangular perforations being located at a corresponding one of the four corners of the square recessed surface, whereby the four corner sections of said supported bilaminar vibratile plate member lie opposite said perforations.
  • the transducer of claim 6 further characterized in that the shape of the unperforated portion of said recessed surface is approximately square and at the center of the four triangles, the area of said center square being approximately one-half the area of said bilaminar vibratile member, and the diagonal axes of said unperforated center square portion of said recessed surface being aligned with the orthogonal axes of said vibratile member.
  • transducer of claim 6 further characterized in that said bilaminar member has a periphery which is greater than twenty times its thickness.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

An electroacoustic transducer uses a bilaminar vibratile element having at least two plate members which are bonded together in face-to-face relationship, at least one of the plates being made from a piezoelectric material. Flexible electrical conductors freely support the bilaminar vibratile plate members on a frame. Any flexural vibrations of the bilaminar element apply an alternating voltage to the electrical conductors. A sonic energy mask is positioned over and spaced away from an exposed surface of the vibratile element to prevent sound radiation from the masked surface portion of the vibratile element.

Description

Unite States Patent [191 Massa et al.
[451 Aug. 14, 1973 ELECTROACOUSTIC TRANSDUCERS Inventors: Frank Massa, Cohasset; Gilbert C.
Barrow, Scituate, both of Mass.
Massa Division, Dynamics Corporation of America, l-iingham, Mass.
Filed: Dec. 20, 1971 Appl. No.: 210,280
Related U.S. Application Data Continuation of Ser. No. 17,430, March 9, 1970, abandoned.
Assignee:
U.S. Cl 179/110 A, 310/82, 310/94 Int. Cl H04r 17/00 Field of Search 179/110 A; BIO/9.4,
References Cited UNITED STATES PATENTS 6/1970 Wood et a1. 310/82 2,304,835 12/1942 Lutzens BIO/9.4 3,268,855 8/1966 Hagey 340/15 2,984,111 5/1961 Kritz 3l0/8.4
Primary Examinerl(athleen H. Claffy Assistant Examiner-Thomas L. Kundert Attorney-Louis Bernat [5 7] ABSTRACT An electroacoustic transducer uses a bilaminar vibratile element having at least two plate members which are bonded together in face-to-face relationship, at least one of the plates being made from a piezoelectric material. Flexible electrical conductors freely support the bilaminar vibratile plate members on a frame. Any flexural vibrations of the bilaminar element apply an alternating voltage to the electrical conductors. A sonic energy mask is positioned over and spaced away from an exposed surface of the vibratile element to prevent sound radiation from the masked surface portion of the vibratile element.
9.Claims, 7 Drawing Figures Patented Aug. 14, 1973 l N VISA/7W5 FRANK MA SSA G/LBER 7' 6. 3,4 RROW ELECTROACOUSTIC TRANSDUCERS This is a continuation of application Ser. No. 17,430, filed Mar. 9, I970 and now abandoned.
This invention relates to electroacoustic transducers, and more particularly to transducers employing a resonant bilaminar plate operating at its fundamental flexural mode of vibration.
In general, many bilaminar transducer elements operate in a flexural mode. For example, many widely used loudspeakers and microphones have a bilaminar piezoelectric plate which is pivoted or clamped at specific regions. A diaphragm is coupled to the unclamped vibratile portion of the bilaminar plate. Examples of such prior art constructions are shown, for example, in FIGS. 4, 5, 7 and 8 of US. Pat. No. 2,518,993.
The invention is not limited to use in any particular frequency region. However, the improvements described herein are particularly valuable at the higher audible and ultrasonic frequencies where it has generally been extremely difficult to achieve a high efficiency operation. If the prior art structures are used in the ultrasonic frequency region, it is extremely difficult to operate the transducer efficiently because of the mass of the diaphragm and the relatively high compliance at any unsupported free corner of the mounted bilaminar plate. Therefore, to improve the high frequency operation, as taught by this invention, the diaphragm is removed, and the bilaminar element is suspended to vibrate freely without any restraint or added mass. By removing the mounting restraints, the fundamental resonant frequency of the bilaminar plate is increased. The high frequency vibrations are sustained more efficiently.
To enable a design of a practical transducer employing a resonant free supported bilaminar plate, it is necessary to remove all restraints from the surfaces of the vibratile plate. Further, it is necessary to couple the vibrating surface of the plate in a manner to drive a maximum radiation of sound energy into the medium.
Accordingly, an object of this invention is to design new and efficient low-cost electroacoustic transducers utilizing a bilaminar plate operating at a fundamental free resonant mode.
A further object of this invention is to suspend a bilaminar piezoelectric plate within a frame-like mounting structure. Here, an object is to position the bilaminar plate accurately and without imposing mechanical restraints at the fundamental resonance mode of vibration.
Yet another object of this invention is to mount a piezoelectric bilaminar rectangular plate within an opening in a frame-like structure. Here an object is to use thin ribbon-like conductor leads (mounted at right angles on opposite sides of the rectangular piezoelectric plate) as a suspension means to hold the plate with negligible restraint.
An additional object of this invention is to provide a sound opaque mask in a fixed spatial relationship with respect to the vibratile surface of a bilaminar disc operating at its fundamental free resonance mode. Another object is to shape the mask so that only a portion of the surface of the resonant plate is exposed to the medium.
A still further object of this invention is to provide a unitary mounting structure for a bilaminar transducer element and simultaneously to provide a sound opaque masking area which prevents the exposure of a portion of the vibratile plate surface to the medium.
Still another object of this invention is to provide a very simple mounting and housing structure for a bilaminar piezoelectric plate in order to achieve an efficient operation at its fundamental free resonant mode.
Other objects, features and advantages will become more apparent from the following description when taken in conjunction with the accompanying drawings, in which:
FIG. 1 is a plan view of one embodiment of the inventive transducer construction, with the outer transducer housing removed;
FIG. 2 is a cross-sectional view taken along the line 2-2 of FIG. 1 (with the outer housing in place);
FIG. 3 is another cross-sectional view taken along the line 3-3 of FIG. 1 (with the outer housing in place);
FIG. 4 is a plan view of the top of another embodiment of the inventive transducer element assembly, this embodiment using fewer parts as compared with the transducer element assembly of FIG. 1;
FIG. 5 is a cross-sectional view taken along the line 5-5 of FIG. 4;
FIG. 6 is a plan view of the bottom of the transducer element assembly shown in FIG. 5; and
FIG. 7 is a plan view showing a one-piece frame structure before the bilaminar plate is mounted therein.
The reference character 10 designates a rigid flat plate, preferably made of an electrical insulation material such as Bakelite. A square piezoelectric bilaminar plate assembly 12 is suspended in a square opening formed in the center of the rigid plate.
The bilaminar plate 12 could take either of two forms. In one form, the plate may include a pair of polarized piezoelectric ceramic elements, such as barium titanate or lead zirconate titanate, for example. Alternatively, other suitable piezoelectric materials may also be used, as is well known in the art. Metalized electrodes are formed on the opposite surfaces of the two piezoelectric elements. The bilaminar plates are arranged with their common positive potential surfaces, marked bonded together in face-to-face relationship. In the second form, the bilaminar assembly 12 could also include an inert plate (such as aluminum) which has a piezoelectric element bonded thereto. However, it should be understood that other inert materials could also be used.
Thin ribbon-like electrical conductors 13 and 14 are conductively bonded to the two opposite exposed electrode surfaces of the bilaminar plate assembly. These conductors lie at right angles to each other and along the center lines of these two surfaces. The conductive bond may be made by means of conducting cement, by welding, or by other suitable means. The ribbon conductor 13 is attached to the bottom surface electrode of the bilaminar assembly (as viewed in FIG. 1). The ribbon conductor 14 is attached to the top electrode surface.
Means are provided for suspending the square bilaminar piezoelectric assembly 12 with a free-free suspension. More particularly, during assembly, these two ribbon conductors 13, 14 are crossed over so that the rib bon 13 is cemented to the top surface of the plate 10 (FIG. 2), and the ribbon 14 is cemented to the bottom surface of plate 10 (FIG. 3). By thus crossing the rib bon leads, the bilaminar element 12 is effectively held in a very accurate alignment with a free-free clamping. The bilaminar element 12 is thus free to vibrate without restraint in its fundamental resonance mode. In the free fundamental resonance mode, the four corners of the square bilaminar transducer element 12 vibrate together in phase. All four corners are opposite in phase to the center area of the bilaminar element.
To improve the radiation efficiency of the transducer, a sound opaque mask 15 is suspended over the center portion of the bilaminar piezoelectric element 12. The outline contours of the mask 15 follow the shape of the nodal line on the surface of the piezoelectric plate 12. Thus, the area of the mask is about onehalf the area of the piezoelectric element. Only the four corners of the piezoelectric element 12 are exposed to the medium, as illustrated in FIG. 1. The mask prevents the out of phase radiation in the center area from neutralizing the radiation from the four corners of the element.
The mask 15 may be made from any suitable sheet of metal or plastic which is sufficiently thick to remain practically stationary during the operation of the transducer. The proper thickness for any material may be easily determined by noting the sensitivity of the trans ducer at its frequency of operation. The optimum thickness is where no additional increase insensitivity results when extra thickness is added to the masking plate.
To complete the transducer assembly, a U-shaped metal bracket 16 is notched at the tips of the arms forming the U. These notches lock into'mating slots 17 at the periphery of the plate 10. At its base, an eyelet l8 attaches the bracket 16 to a metal lid 19. The eyelet 18 is part of the insulated terminal 20. The ribbon conductor 14 has its free-end soldered to the terminal pin 20. The surface of the ribbon conductor 13 is soldered to the contacting surface of the U-bracket 16. Thus, the complete electrical circuit extends from eyelet 18, through bracket 16, conductor 13, the element 12, conductor 14, and the pin 20.
The somewhat cup-shaped metallic housing 21 has a protective screen 22 welded or cemented therein to cover an open surface 23. The open lip of the cup housing is crimped at 19a over the edge of the lip 19 to complete the outer shell of the transducer. For operating the transducer, electrical connections are made to external equipment via the terminal and the metallic plate 19.
A second embodiment of the transducer element assembly is illustrated in FIGS. 4-7. Here (FIG. 5), one molded piece of rigid plastic provides a frame structure 24 with a square cavity 25 partly recessed in the bottom thereof. The surface at the base of the cavity 25 has four corner sections which are perforated or pierced. For easy identification, one of these perforated areas is shown as cross-hatched at 26. It is somewhat triangular, lying over a corner of the bilaminar element.
The bilaminar piezoelectric element 12 is mounted within the frame structure 24 by means of the ribbon conductors 13 and 14. These ribbon conductors 13, 14 may be cemented or otherwise fastened to the surface of the frame structure 24. In this assembly, only one ribbon conductor 14 crosses the edge of the piezoelectric element 12, as shown in FIG. 5. The ribbon conductor 13 is drawn along the plane of the rear surface of the piezoelectric element 12 and the frame structure 24. This arrangement of conductor 13 is most clearly illustrated in FIG. 6, which shows a bottom view of the assembly. In the top surface of the molded piece 24, the
. transducer assembly may be completed as previously described in connection with FIG. 2.
To obtain an efficient operation of the bilaminar transducer structure, it is necessary for the four comers of the piezoelectric element 12 to be free to vibrate with minimum restraints, during operation at the fundamental resonance mode. The ribbon- like conductors 13, 14 suspend the piezoelectric members at the four nodal points in the centers of the four sides of the square bilaminar plate. This suspension achieves minimum restraints in the mounting of the element.
We have also found that, if the thickness of the bilaminar piezoelectric element is greater than approximately l/20th the outer periphery of the element, the free fundamental resonance mode of vibration of the element becomes restricted, and the vibrational efficiency is reduced. Therefore, the dimensions of the bilaminar elements should preferably be such that its periphery is more than 20 times greater than its thickness.
While several specific embodiments of the present invention have been shown and described, it should be understood that modifications and alternative constructions may be made. Therefore, the appended claims are intended to cover all equivalents falling within their true spirit and scope.
We claim:
1. An electroacoustic transducer comprising abilaminar vibratile element comprising two square piezoelectriplates bonded together in face-to-face relationship, electrode surfaces on the two exposed outer surfaces of said bonded plates, a first ribbon-like electrical conductor conductively bonded along a center line of one exposed electrode surface on one side of said bilaminar element, a second ribbon-like electrical conductor conductively bonded along a center line of the opposite exposed electrode surface on the other side of said bilaminar element, said first and second ribbon conductors being oriented to lie at right angles to each other, said ribbon conductors having a length sufficient to project beyond the edges of said bilaminar element, a structural frame member having an opening which is larger in size. than the size of said bilaminar element, and means including said ribbon-like conductors for freely supporting said vibratile bilaminar element within said opening without any restraint or added mass whereby the free fundamental resonant mode of vibration is established for said vibratile element.
2. The transducer of claim 1 and masking means spaced parallel to an exposed surface of said vibratile bilaminar plate, and said masking means having an area which is less than the area of said bilaminar plate.
3. The transducer of claim 2 and a housing structure enclosing said bilaminar element, said housing having a sound transparent opening located in a noncritical spaced proximity to said masked means and said vibratile bilaminar plate member.
4. The transducer of claim 2 wherein. said masking means is approximately square and has an area which is approximately equal to one-half the area of said bilaminar element, said square masking means being located in spaced relationship over the center portion of said vibratile bilaminar element, said masking means being rotated with reference to the bilaminar element so that the diagonal axes of said masking means are in alignment with the orthogonal axes of the bilaminar element.
5. The transducer of claim 1 further characterized in that said bilaminar element has a periphery which is greater than twenty times its thickness.
6. An electroacoustic transducer comprising a bilaminar vibratile member including at least two plate members bonded in face-to-face relationship, at least one of said bonded plates being a piezoelectric material with opposing electrode surfaces, a pair of perpendicularly extending flexible electrical ribbon-like conductor means connected to the nodal points on said opposite electrode surfaces, said piezoelectric material vibrating in out-of-phase modes when said member is energized by an alternating current signal applied via said conductor means, support means comprising a structural plate member having a recessed cavity formed therein, said recessed cavity being larger than said vibratile member, and means including said conductors for freely supporting said bilaminar vibratile member within said recessed cavity and in spaced relationship with respect to the peripheral edge and the recessed surface of said cavity, said electrical conductors having a flexibility which enables said vibratile member to vibrate in a free mode of vibrations, a portion of said recessed surface being perforated opposite a portion of the area of said vibratile member to form sound opaque energy masking means positioned over at least one portion of said member which is vibrating out of phase with respect to other portions of said member.
7. The transducer of claim 6 wherein both said recessed cavity and said bilaminar vibratile member are square, and there are four of said perforations, each perforation being approximately triangular in shape with each of said triangular perforations being located at a corresponding one of the four corners of the square recessed surface, whereby the four corner sections of said supported bilaminar vibratile plate member lie opposite said perforations.
8. The transducer of claim 6 further characterized in that the shape of the unperforated portion of said recessed surface is approximately square and at the center of the four triangles, the area of said center square being approximately one-half the area of said bilaminar vibratile member, and the diagonal axes of said unperforated center square portion of said recessed surface being aligned with the orthogonal axes of said vibratile member.
9. The transducer of claim 6 further characterized in that said bilaminar member has a periphery which is greater than twenty times its thickness.
* 5 t i i

Claims (9)

1. An electroacoustic transducer comprising a bilaminar vibratile element comprising two square piezoelectriplates bonded together in face-to-face relationship, electrode surfaces on the two exposed outer surfaces of said bonded plates, a first ribbonlike electrical conductor conductively bonded along a center line of one exposed electrode surface on one side of said bilaminar element, a second ribbon-like electrical conductor conductively bonded along a center line of the opposite exposed electrode surface on the other side of said bilaminar element, said first and second ribbon conductors being oriented to lie at right angles to each other, said ribbon conductors having a length sufficient to project beyond the edges of said bilaminar element, a structural frame member having an opening which is larger in size than the size of said bilaminar element, and means including said ribbon-like conductors for freely supporting said vibratile bilaminar element within said opening without any restraint or added mass whereby the free fundamental resonant mode of vibration is established for said vibratile element.
2. The transducer of claim 1 and masking means spaced parallel to an exposed surface of said vibratile bilaminar plate, and said masking means having an area which is less than the area of said bilaminar plate.
3. The transducer of claim 2 and a housing structure enclosing said bilaminar element, said housing having a sound transparent opening located in a noncritical spaced proximity to said masked means and said vibratile bilaminar plate member.
4. The transducer of claim 2 wherein said masking means is approximately square and has an area which is approximately equal to one-half the area of said bilaminar element, said square masking means being located in spaced relationship over the center portion of said vibratile bilaminar element, said masking means being rotated with reference to the bilaminar element so that the diagonal axes of said masking means are in alignment with the orthogonal axes of the bilaminar element.
5. The transducer of claim 1 further characterized in that said bilaminar element has a periphery which is greater than twenty times its thickness.
6. An electroacoustic transducer comprising a bilaminar vibratile member including at least two plate members bonded in face-to-face relationship, at least one of said bonded plates being a piezoelectric material with opposing electrode surfaces, a pair of perpendicularly extending flexible electrical ribbon-like conductor means connected to the nodal points on said opposite electrode surfaces, said piezoelectric material vibrating in out-of-phase modes when said member is energized by an alternating current signal applied via said conductor means, support means comprising a structural plate member having a recessed cavity formed therein, said recessed cavity being larger than said vibratile member, and means including said conductors for freely supporting said bilaminar vibratile member within said recessed cavity and in spaced relationship with respect to the peripheral edge and the recessed surface of said cavity, said electrical conductors having a flexibility which enables said vibratile member to vibrate in a free mode of vibrations, a portion of said recessed surface being perforated opposite a portion of the area of said vibratile member to form sound opaque energy masking means positioned over at least one portion of said member which is vibrating out of phase with respect to other portions of said member.
7. The transducer of claim 6 wherein both said recessed cavity and said bilaminar vibratile member are square, and there are four of said perforations, each perforation being approximately triangular in shape with each of said triangular perforations being located at a corresponding one of the four corners of the square recessed surface, whereby the four corner sections of said supported bilaminar vibratile plate member lie opposite said perforations.
8. The transducer of claim 6 further characterized in that the shape of the unperforated portion of said recessed surface is approximately square and at the center of the four triangles, the area of said center square being approximately one-half the area of said bilaminar vibratile member, and the diagonal axes of said unperforated center square portion of said recessed surface being aligned with the orthogonal axes of said vibratile member.
9. The transducer of claim 6 further characterized in that said bilaminar member has a periphery which is greater than twenty times its thickness.
US00210280A 1970-03-09 1971-12-20 Electroacoustic transducers Expired - Lifetime US3752941A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US1743070A 1970-03-09 1970-03-09
US21028071A 1971-12-20 1971-12-20

Publications (1)

Publication Number Publication Date
US3752941A true US3752941A (en) 1973-08-14

Family

ID=26689858

Family Applications (1)

Application Number Title Priority Date Filing Date
US00210280A Expired - Lifetime US3752941A (en) 1970-03-09 1971-12-20 Electroacoustic transducers

Country Status (1)

Country Link
US (1) US3752941A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834877A (en) * 1995-08-28 1998-11-10 Accuweb, Inc. Ultrasonic transducer units for web detection and the like
US20030034536A1 (en) * 2000-12-22 2003-02-20 Bruel & Kjaer Sound & Vibration Measurement A/S Micromachined capacitive electrical component
US20030235656A1 (en) * 2002-06-20 2003-12-25 Samsung Electronics Co., Ltd. Actuator using organic film membrane and manufacturing method thereof
US11078071B2 (en) * 2018-10-19 2021-08-03 Encite Llc Haptic actuators fabricated by roll-to-roll processing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2304835A (en) * 1941-11-29 1942-12-15 Rca Corp Art of mounting piezoelectric crystals
US2984111A (en) * 1959-06-19 1961-05-16 Bosch Arma Corp Accelerometer
US3268855A (en) * 1963-03-19 1966-08-23 Electro Voice Ultrasonic microphone
US3518460A (en) * 1968-10-30 1970-06-30 Euphonics Corp Ultrasonic transducer employing suspended piezoelectric plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2304835A (en) * 1941-11-29 1942-12-15 Rca Corp Art of mounting piezoelectric crystals
US2984111A (en) * 1959-06-19 1961-05-16 Bosch Arma Corp Accelerometer
US3268855A (en) * 1963-03-19 1966-08-23 Electro Voice Ultrasonic microphone
US3518460A (en) * 1968-10-30 1970-06-30 Euphonics Corp Ultrasonic transducer employing suspended piezoelectric plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834877A (en) * 1995-08-28 1998-11-10 Accuweb, Inc. Ultrasonic transducer units for web detection and the like
US20030034536A1 (en) * 2000-12-22 2003-02-20 Bruel & Kjaer Sound & Vibration Measurement A/S Micromachined capacitive electrical component
US6812620B2 (en) * 2000-12-22 2004-11-02 Bruel & Kjaer Sound & Vibration Measurement A/S Micromachined capacitive electrical component
US20030235656A1 (en) * 2002-06-20 2003-12-25 Samsung Electronics Co., Ltd. Actuator using organic film membrane and manufacturing method thereof
US7042137B2 (en) * 2002-06-20 2006-05-09 Samsung Electronics Co. Ltd. Actuator using organic film membrane and manufacturing method thereof
US11078071B2 (en) * 2018-10-19 2021-08-03 Encite Llc Haptic actuators fabricated by roll-to-roll processing

Similar Documents

Publication Publication Date Title
JP3134844B2 (en) Piezo acoustic components
US3510698A (en) Electroacoustical transducer
EP1032244A2 (en) Electroacoustic transducer
US3439128A (en) Miniature ceramic microphone
US3518460A (en) Ultrasonic transducer employing suspended piezoelectric plate
US3638052A (en) Electroacoustic transducers of the bilaminar flexural vibrating type
JP3395672B2 (en) Piezoelectric electroacoustic transducer
US3707131A (en) Electroacoustic transducers of the bilaminar flexural vibrating type
US3752941A (en) Electroacoustic transducers
US3937991A (en) Electroacoustic transducers of the bilaminar flexural vibrating type and method for manufacturing same
US3578921A (en) Miniature multiple-diaphragm acoustic mechanoelectric transducer device
US2911484A (en) Electro-acoustic transducer
US3740496A (en) Diaphragm assembly for electret transducer
US3716681A (en) Piezolectric transducer having spider-like frame structure
US4191904A (en) Electroacoustic transducers of the flexural resonant vibratile type
US3710040A (en) Microphone having improved piezoelectric transducer supports
JPS6133508B2 (en)
GB2096860A (en) Piezoelectric sound transducer
JPH03162839A (en) Ultrasonic probe
JPH11146491A (en) Electromechanical conversion parts
KR200168498Y1 (en) Thin Film Ultrasonic Transducer
US3578994A (en) Piezoelectric clamped-free beam type transducer
JPH0259647B2 (en)
JP2001119793A (en) Piezo speaker
JPH0554318B2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: MASSA PRODUCTS CORPORATION, 80 LINCOLN STREET, HIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:DONALD P. MASSA TRUST;CONSTANCE ANN MASSA TRUST *;GEORGIANA M. MASSA TRUST;AND OTHERS;REEL/FRAME:005395/0954

Effective date: 19841223

Owner name: DELLORFANO, FRED M. JR.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:STONELEIGH TRUST, THE;REEL/FRAME:005397/0016

Effective date: 19841223

Owner name: MASSA PRODUCTS CORPORATION, 280 LINCOLN STREET, HI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:DONALD P. MASSA TRUST;CONSTANCE ANN MASSA TRUST;ROBERT MASSA TRUST;AND OTHERS;REEL/FRAME:005395/0971

Effective date: 19860612

Owner name: MASSA, DONALD P., COHASSET, MA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:STONELEIGH TRUST, THE;REEL/FRAME:005397/0016

Effective date: 19841223

Owner name: TRUSTEES FOR AND ON BEHALF OF THE D.P. MASSA TRUST

Free format text: ASSIGN TO TRUSTEES AS EQUAL TENANTS IN COMMON, THE ENTIRE INTEREST.;ASSIGNORS:MASSA, DONALD P.;MASSA, CONSTANCE A.;MASSA, GEORGIANA M.;AND OTHERS;REEL/FRAME:005395/0942

Effective date: 19841223