US3747694A - Pressure-medium operated percussion or impact apparatus - Google Patents
Pressure-medium operated percussion or impact apparatus Download PDFInfo
- Publication number
- US3747694A US3747694A US00204607A US3747694DA US3747694A US 3747694 A US3747694 A US 3747694A US 00204607 A US00204607 A US 00204607A US 3747694D A US3747694D A US 3747694DA US 3747694 A US3747694 A US 3747694A
- Authority
- US
- United States
- Prior art keywords
- piston
- cylinder
- channels
- pressure
- pressure medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000009527 percussion Methods 0.000 title claims description 9
- 239000011435 rock Substances 0.000 abstract description 6
- 238000005553 drilling Methods 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 238000004891 communication Methods 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000002000 scavenging effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B6/00—Drives for drilling with combined rotary and percussive action
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25D—PERCUSSIVE TOOLS
- B25D9/00—Portable percussive tools with fluid-pressure drive, i.e. driven directly by fluids, e.g. having several percussive tool bits operated simultaneously
- B25D9/06—Means for driving the impulse member
- B25D9/12—Means for driving the impulse member comprising a built-in liquid motor, i.e. the tool being driven by hydraulic pressure
Definitions
- the present invention relates to a pressure medium operated percussion or impact apparatus where a valveless arrangement is to control the axial movement in the apparatus which may be, for example, a rock drilling machine in which a working piston must execute rapid axial movements in a cylinder between one reversing position on the tool side and one reversing position at a distance from the tool.
- the invention can also be used in an apparatus without special tools, for example, by utilizing the vibration occuring in the actual cylinder.
- the piston By forming the lwork piston with great inertia in relation to the cylinder, the piston can work freely and the vibrations inthecylinder may be utilized instead, for example, for soil compression etc.
- FIG. 1 is a view partly in elevation and partly crosssection of an embodiment of the invention
- FIGS. 2-4 are views similar to FIG. 1 of further embodiments.
- FIG. 5 is a view in cross-section ofthe locking mechanism in FIG. 4,
- FIG. 6 is aview similar to FIG. llofyet a further embodiment
- FIG. 7 is a view in cross-section through the cylinder and piston of the inlet and outlet channels, the view.
- FIG. 1 shows an embodiment of the invention for percussion drilling machine, that is to say that the workingpiston, the drill. rod and. drill bit are rigidly connected so that the drill bit is lifted clear of the bottom of the drill hole between each working stroke whereafter it strikes the bottom with great force.
- the construction consists of a rotary motor. 1. with a supply channel-A and an outlet channelB for the drive medium.
- the rotary motor canpreferably be constructed for hydraulic operation, but may also be driven by means of compressed air or electricity.
- a coupling sleeve 3 is rig idly connected. This is .provided with longitudinal grooves toward a working piston 4 which has opposing grooves so that the piston is forced to rotate at the same speed, but with free axial movement.
- the workingpiston 4 has two tapered throats 5 and 6 on either side of a portion 7 of greater diameter.
- a cylinder 8 encloses the piston so that annular working chambers 9 and 10 are provided on either side of the piston 7.
- the piston is further provided with longitudinal grooves 11 and 12 for the pressure medium. Every other groove opens to the annular chambers 9 and 10.
- a-channel C is further provided for supply of pressure medium and a channel D for the outlet.
- the channels are located with respect to the grooves in such a manner that, when the supply channel C via groove 11 is in communication with a chamber 9 at the topside thereof, the bottom chamber 10 via the channel 12 is in communication with the outlet channel D.
- the cylindrical portion of the piston fits tightly in the cylinder and prevents direct overflow.
- the oil under pressure in the annular chamber 9 will thereby drive the piston with great force.
- the communications will be reversed so that the annular chamber 10 is under pressure and chamber 9 is connected to the outlet conduit whereby the piston is drive medium, that suitable stroke length is achievedbetween each reversal of the direction offorce onthe piston.
- I t i The cylinder is further provided with an inlet channel E for scavenging water or scavenging compressed air.
- the cylinder opens intoan annular chamber 42 which,
- a bore 43in-the piston via a bore 43in-the piston, is in communication with a central bore through a connecting sleeve 13, a drill rod 14 and a drill bit 15.
- the drilling dust is thereby scavenged in a direction away from the bit and out of the drill hole.
- FIG. 2 shows a second embodiment example for impact drilling, that is to say that the working piston is not rigidly connected to the drill rod, but instead strikes on the drill rod.
- a piston 16 is here provided with a central bore 'for a separate shaft 17 which, via longitudinal grooves 18 and 19, transfers the rotation to a neckadapter 20 which, in a corresponding manner as in FIG. 1 is connected to the drill rod and bit.
- the rotary motor rotates thereby both the working piston 16 and the drill bit. Instead of raising the entire drill rod between each impact, only the piston 16 is raised. At the termination of the working stroke, the piston strikes with great force against the neck-adapter whereby the energy is transmitted as a pressure wave through the drill rod to the bit.
- FIG. 3 shows a third embodiment example having two rotary motors.
- Motor 21 rotates only the piston; a separate motor 22 driving, via gearwheel 23 and intermediate wheel 24, a gearwheel 25 on a neck-adapter 26.
- the speed of rotation may here be adjusted independently of the stroke frequency. Otherwise the effect is as described hereinabove.
- FIG. 4 shows a further embodiment example of the invention where the rotary motor is replaced by a locking mechanism.
- the working piston is provided here with, in part, right-hand grooves 28 in engagement with a locking wheel 30 and, in part, left-hand grooves 29 in engagement a locking wheel 31. Both the locking wheels are adapted freely to rotate in one direction of rotation, but are locked against the opposite direction by locks 32 and 33.
- FIG. shows a section with the locking mechanism seen from above.
- piston 27 On supply of pressure medium, piston 27 is pressed in direction toward the drill bit.
- the locks 32 thereby lock the locking wheel 30 while the locks 33 permit the locking wheel 31 to rotate freely.
- the piston arrives in a lower reversing position, it is rotated to the extent that the oil conduits are reversed so that the piston is forced to return.
- Locks 33 are thereby actuated and lock the locking wheel 31, with the locking wheel 30 being now freely rotatable.
- the piston is also provided here with straight grooves 35 which are in engagement with opposing grooves in a neck-adapter 34. The drill rod and drill bit are thereby forced to rotate.
- FIG. 6 shows an even further embodiment example which externally is similar to FIG. 1, but in which a piston 36 has grooves only to annular chamber 37 while annular chamber 38, through a separate channel 39, is in communication with the inlet conduit. Further, piston throat 40 is of substantially less diameter than throat 41. The axial force on the piston from the annular chamber 37 is thereby greater than that from chamber 38 and, in the illustrated position, the piston will be pressed in the direction of the drill bit even though both chambers are under pressure. On further rotation of the piston, the communication between the inletchannel and the annular chamber 37 is closed. The annular chamber 37 is connected instead with the outlet channel, the pressure in chamber 37 is released, and the piston is pressed back by the continuous pressure in chamber 38, and the entire cycle is repeated.
- annular surface on the piston in the chamber 37 is double the surface in the chamber 38, the axial force is equal in both ways, however, other conditions may be of interest in the same way that the annular chambers from the previously mentioned embodiments do not have to be equal.
- a disadvantage of the embodiment according to FIG. 6 with respect to previous embodiments is that the return oil flow becomes more pulsative.
- FIG. 7 shows a section in larger scale the through cylinder and piston at the inlet and outlet channels.
- inlet channel and an outlet channel there are, in cylinder 42; nine inlet channels 43 which, via branches (not shown), are in communication with the inlet conduit, and also nine outlet channels 44 with connection channels (not shown) for a common return conduit.
- a piston 45 is provided with eighteen longitudinal grooves, every other groove having communication to the bottom and top side. Nine working cycles are thereby provided for each rotation, that is to say at, for example, 300 rpm; 2,700 strokes per minute. In that the oil flow when passing out and in from cylinder to piston is split into nine courses, the speed and thereby the loss of effect in the drive medium is moderate.
- Various numbers of channels may be expedient depending, inter alia, on the size of the machine.
- the supply and outlet conduits respectively may be provided with accumulators. These may be either built into the actual drilling machine or may be located in the conduits at some distance therefrom. Furthermore, the hydraulic unit should be provided with valves forstarting and stopping; prevention of over-pressure when, for example, the drill is wedged fast, the filter is clogged etc., which are outside the scope of the present invention.
- a good hydraulic oil is preferably used as pressure medium, however, oil-water emulsions, pure pressure water or other liquids can also be envisaged for use where this is expedient.
- a pressure medium-driven or impact apparatus including a cylinder, a working piston in said cylinder, means for supplying pressure to the piston, in which by supply of pressure to alternating sides of the piston the piston is caused to reciprocate, means to rotate the piston, the piston and cylinder being provided with channels which, on rotory movement of the piston relative to the cylinder, open and close the pressure medium channels, with the channels opening at the top and bottom side of the piston respectively.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Drilling And Exploitation, And Mining Machines And Methods (AREA)
- Earth Drilling (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO4686/70A NO126144B (de) | 1970-12-07 | 1970-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3747694A true US3747694A (en) | 1973-07-24 |
Family
ID=19880518
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00204607A Expired - Lifetime US3747694A (en) | 1970-12-07 | 1971-12-03 | Pressure-medium operated percussion or impact apparatus |
Country Status (5)
Country | Link |
---|---|
US (1) | US3747694A (de) |
CA (1) | CA938846A (de) |
FR (1) | FR2117497A5 (de) |
NO (1) | NO126144B (de) |
SE (1) | SE398835B (de) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3918532A (en) * | 1974-05-10 | 1975-11-11 | Chicago Pneumatic Tool Co | Hydraulic tool |
US3918531A (en) * | 1974-06-14 | 1975-11-11 | Chicago Pneumatic Tool Co | Hydraulic rock drill having automatic carriage feed |
US3945442A (en) * | 1974-10-07 | 1976-03-23 | Chicago Pneumatic Tool Company | Hydraulic rock drill with stroke responsive advance |
US5207280A (en) * | 1991-05-30 | 1993-05-04 | Uniroc Ab | Device in hammer machines |
US20060225922A1 (en) * | 2003-06-20 | 2006-10-12 | Roger Pfahlert | Vibrational heads and assemblies and uses thereof |
US20070033811A1 (en) * | 2002-01-18 | 2007-02-15 | Max Co., Ltd. | Concrete drill |
US20090159305A1 (en) * | 2006-06-22 | 2009-06-25 | Montabert | Hydraulic Rotary Percussive Device of the Drill Type |
EP2819813A4 (de) * | 2012-01-18 | 2015-12-30 | Yrjö Raunisto | Hammervorrichtung |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3453657A (en) * | 1967-04-17 | 1969-07-01 | Maston C Bolton | Fluid actuated percussion tool |
US3480088A (en) * | 1967-12-05 | 1969-11-25 | Leo L Ghelfi | Differential pressure tool |
US3616865A (en) * | 1969-02-26 | 1971-11-02 | Boris Vasilievich Sudnishnikov | Pneumatic percussion device for making holes in the ground by packing the latter |
US3692122A (en) * | 1970-12-23 | 1972-09-19 | Baker Oil Tools Inc | High frequency pneumatically actuated drilling hammer |
-
1970
- 1970-12-07 NO NO4686/70A patent/NO126144B/no unknown
-
1971
- 1971-11-29 CA CA128805A patent/CA938846A/en not_active Expired
- 1971-12-03 US US00204607A patent/US3747694A/en not_active Expired - Lifetime
- 1971-12-07 SE SE7115698A patent/SE398835B/xx unknown
- 1971-12-07 FR FR7143920A patent/FR2117497A5/fr not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3453657A (en) * | 1967-04-17 | 1969-07-01 | Maston C Bolton | Fluid actuated percussion tool |
US3480088A (en) * | 1967-12-05 | 1969-11-25 | Leo L Ghelfi | Differential pressure tool |
US3616865A (en) * | 1969-02-26 | 1971-11-02 | Boris Vasilievich Sudnishnikov | Pneumatic percussion device for making holes in the ground by packing the latter |
US3692122A (en) * | 1970-12-23 | 1972-09-19 | Baker Oil Tools Inc | High frequency pneumatically actuated drilling hammer |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3918532A (en) * | 1974-05-10 | 1975-11-11 | Chicago Pneumatic Tool Co | Hydraulic tool |
US3918531A (en) * | 1974-06-14 | 1975-11-11 | Chicago Pneumatic Tool Co | Hydraulic rock drill having automatic carriage feed |
US3945442A (en) * | 1974-10-07 | 1976-03-23 | Chicago Pneumatic Tool Company | Hydraulic rock drill with stroke responsive advance |
US5207280A (en) * | 1991-05-30 | 1993-05-04 | Uniroc Ab | Device in hammer machines |
US20070033811A1 (en) * | 2002-01-18 | 2007-02-15 | Max Co., Ltd. | Concrete drill |
US7308949B2 (en) * | 2002-01-18 | 2007-12-18 | Max Co., Ltd. | Concrete drill |
US20060225922A1 (en) * | 2003-06-20 | 2006-10-12 | Roger Pfahlert | Vibrational heads and assemblies and uses thereof |
US20090159305A1 (en) * | 2006-06-22 | 2009-06-25 | Montabert | Hydraulic Rotary Percussive Device of the Drill Type |
US8413741B2 (en) * | 2006-06-22 | 2013-04-09 | Montabert | Hydraulic rotary percussive device of the drill type |
EP2819813A4 (de) * | 2012-01-18 | 2015-12-30 | Yrjö Raunisto | Hammervorrichtung |
Also Published As
Publication number | Publication date |
---|---|
FR2117497A5 (de) | 1972-07-21 |
NO126144B (de) | 1972-12-27 |
CA938846A (en) | 1973-12-25 |
SE398835B (sv) | 1978-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3568783A (en) | Fluid-actuated impact apparatus | |
WO2021159620A1 (zh) | 双液驱动旋冲钻井冲击器及双液驱动旋冲钻进方法 | |
CN105239929A (zh) | 利用旋冲振荡加压实现高效破岩的井下工具 | |
US4852669A (en) | Directional downhole drill apparatus | |
GB1515442A (en) | Hydraulic percussion tool with impact blow and frequency control | |
SE458018B (sv) | Hydraulisk tryckmanoevrerad slagbergborr | |
US3747694A (en) | Pressure-medium operated percussion or impact apparatus | |
US3866746A (en) | Rotary bore hole air hammer drive mechanism | |
US20030230430A1 (en) | Pneumatic percussion hammer for generic rotary fluid motors | |
US2943603A (en) | Fluid actuated impact tool | |
US3620312A (en) | Rock drill | |
Gonghui et al. | New technology with composite percussion drilling and rock breaking | |
US3760887A (en) | Reversible piston hammer for percussion tool | |
EP1458950B1 (de) | Flüssigkeits getriebene bohrloch-bohrmaschine | |
US6752222B2 (en) | Downhole percussion drills | |
US3154153A (en) | Percussion drilling apparatus | |
US1773366A (en) | Rotation mechanism for rock drills | |
US4166507A (en) | Percussive drilling apparatus | |
US3918532A (en) | Hydraulic tool | |
SU927947A1 (ru) | Снар д ударного бурени | |
US3056390A (en) | Internal combustion percussion tools and hammer pistons for such tools | |
US5730230A (en) | Rotary percussion drill | |
US3547006A (en) | Variable stroke percussion tool | |
US1196040A (en) | smith | |
US3229775A (en) | Rotary percussion tool for earth drilling |