US3735223A - High-speed control apparatus for cloth spreading machine - Google Patents
High-speed control apparatus for cloth spreading machine Download PDFInfo
- Publication number
- US3735223A US3735223A US00254272A US3735223DA US3735223A US 3735223 A US3735223 A US 3735223A US 00254272 A US00254272 A US 00254272A US 3735223D A US3735223D A US 3735223DA US 3735223 A US3735223 A US 3735223A
- Authority
- US
- United States
- Prior art keywords
- speed control
- speed
- control circuit
- switch
- frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000007480 spreading Effects 0.000 title claims abstract description 45
- 239000004744 fabric Substances 0.000 title claims abstract description 44
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H45/00—Folding thin material
- B65H45/02—Folding limp material without application of pressure to define or form crease lines
- B65H45/06—Folding webs
- B65H45/10—Folding webs transversely
- B65H45/101—Folding webs transversely in combination with laying, i.e. forming a zig-zag pile
- B65H45/103—Folding webs transversely in combination with laying, i.e. forming a zig-zag pile by a carriage which reciprocates above the laying station
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P7/00—Arrangements for regulating or controlling the speed or torque of electric DC motors
- H02P7/03—Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors
- H02P7/05—Arrangements for regulating or controlling the speed or torque of electric DC motors for controlling the direction of rotation of DC motors by means of electronic switching
Definitions
- Cloth spreading machines have been developed, and are now in operation, which travel at high speed over the major portion of their reciprocal course between a pair of reversing stations, and in low speed adjacent each reversing station for cooperative engagement with the catcher mechanism to form folds in the ends of the layers of cloth.
- various electrical switch controls have been adopted in order to reduce the speed of the machine just prior to its cooperation with the catcher mechanism. It is also known to resume the high speed of the machine as soon as possible after it has reversed its movement and formed the fold in the layer of cloth.
- the machine resumes its high speed in a very short time after it leaves the catcher and spreads in the opposite direction to the catcher at the other end of the cutting table. If the Benson machine is spreading face-up or face-down, that is spreading in only one direction, then it returns in its non-spreading direction, or deadheads at the same high speed at which is spreads.
- the upper limit of the high speed is the maximum speed at which a machine can efficiently spread cloth without damaging, wrinkling or misaligning the cloth or the cloth layers.
- the speed control apparatus for a cloth spreading machine made in accordance with this invention includes two high speed control circuits provided with a special selector switch for connecting one or the other of the high speed control circuits in the drive circuit.
- the selector switch is also coupled to a directional switch which automatically shifts simultaneously with the actuation of the reversing control for reversing of the drive of the machine.
- the selector switch and the directional switch are also connected to the high low speed selector switch which is deactuated by the tripping mechanism for shifting the speed of the machine from high to low as it moves into the catcher, and which is actuated into high speed immediately after the spreading machine leaves the catcher.
- the high speed control circuits function only when the selector switch is in high position.
- the selector switch and directional switch are so connected that when the selector switch is shifted to its two-way spreading position, that is, face-to-face spreading, one high speed control circuit is connected to the drive means regardless of the position of the directional switch. Thus, the machine travels at the same high speed in either direction for face-to-face spread- 1ng.
- the first speed control circuit When the selector switch is shifted to the other position, the first speed control circuit is connected to the drive means when the directional switch is in its forward position so that the machine travels at its normal high speed for spreading the cloth in the reverse direction for one-way spreading.
- the second speed control circuit when the directional switch shifts to its forward position, is connected to the drive means in order to drive the machine at a much higher speed to minimize travel in the forward direction when the machine is spreading one-way, or in other words, to minimize the non-productive time of the spreading machine.
- Each of the two high speed control circuits as well as the low speed control circuit has a potentiometer.
- the potentiometer in the low speed control circuit is pre-set for a constant low speed, while both high speed potentiometers are adapted to be manually adjusted by the operator of the machine so that either or both of the spreading or deadheading speeds may be independently pre-set at any desired value.
- FIG. 1 is a side elevation of a cloth spreading machine, made in accordance with this invention, adjacent a catcher mechanism at one end of the travel of the machine;
- FIG. 2 is an enlarged view of the control panel on the side of the spreading machine disclosed in FIG. 1;
- FIG. 3 is an enlarged sectional elevation of the plunger-actuated switch mechanism mounted on the front of the machine
- FIG. 4 is a schematic circuit diagram of the electrical drive and control system for the machine.
- FIG. 1 discloses a cloth spreading machine 10 made in accordance with this invention, including a carrier frame 11 supported by wheels 12 and 13 for longitudinal movement along a spreading table 14.
- a cloth supply roll 15 is supported for rotary movement upon standard 16 mounted upon the frame 11 for unwinding and feeding a web of cloth 17.
- the web 17 is threaded through an edge control device 18, over guide bar 19 and under guide roller 20, and then over a driven top feed roll 21.
- the web 17 then depends through a cloth spreader frame or unit 22, having tuck blades or spreader blades, not shown, for spreading the cloth web 17 in layers 23 upon the table 14.
- a catcher mechanism 25 including a catcher bar 26 is stationed upon the spreading table 14 at one end of the travel or course of the carrier frame 11 to cooperate with the spreader unit 22 in a well-known manner to fold the end of each cloth layer 23.
- An electrical motor 28 (FIG. 4) mounted on the frame 11 is operatively connected to drive the rear wheels 12 by a suitable drive transmission, not shown.
- the top feed roll 21 is driven by a separate motor, not shown, within the cloth feed control system 37, in the same direction independently of the direction of movement of the frame 11.
- a power supply circuit 30 is connected to any suitable source of AC electricity, not shown, through the power switch 31, which is also disclosed in FIGS. 1 and 2 upon the control panel 32 mounted on the side of the frame 11.
- the low voltage supply circuit 33 supplies various voltages, including B+ supply voltage, to some of the other circuits of the system, such as the motor speed control circuit 34, the start-stop control circuit 35, the reversing control circuit 36, the cloth feed control circuit 37, and the high-low speed trigger circuit 38.
- a motor drive circuit 39 and the dynamic braking circuit 40 Connected in parallel with the drive motor 28 is a motor drive circuit 39 and the dynamic braking circuit 40.
- the motor drive circuit 39 is an SCR bridge circuit.
- the trigger circuit 38 includes a pair of unidirectional, momentary, normally closed, low-speed switches 43 and 44 in low-speed switch circuit 45.
- the low'speed switches 43 and 44 are mounted on the side of the frame 11 as disclosed in FIG. 1 so that each switch 43 and 44 is adapted to be opened by engagement of its corresponding lever 47 and 48 upon the trip ramp 49 fixed to the table 14.
- the low-speed switch circuit 45 is connected in series with SCR 50 and high-low selector switch relay coil 51.
- the relay coil 51 When the relay coil 51 is energized, it moves selector switch 53 to its high-speed position indicated in dashed-lines in FIG. 4, to close the high speed circuit 54.
- selector switch 53 When the relay coil 51 is de-energized, selector switch 53 is moved to its solid-line, low-speed position, as indicated in FIG. 4, to close the low-speed control circuit 55.
- the dynamic braking relay coil 57 is energized to close the dynamic braking relay switch 58 to energize the dynamic braking circuit 40 when the speed of the machine changes from high to low, as previously described in the common assignees pending application of Robert G. Reed, Ser. No. 125,470.
- the base of the selector switch 53 is connected by lead 59 into the base of transistor 85 through a diode in the motor speed control circuit 34.
- the low-speed control line 55 is connected to the resistor on the emitter of transistor 84 whose base is connected to wiper arm or lead 61 of low-speed potentiometer 62, which is connected between the common line 60 and the supply line 63 in the'motor speed control circuit 34.
- the wiper arm 61 of the low-speed potentiometer 62 is preferably adjusted to a preset value at the factory to establish a uniform low speed for the machine 10.
- the supply line 63 is also connected to maximum highspeed potentiometer 64 which is also adjusted to the pre-set maximum speed value at the factory.
- the highspeed potentiometer 64 is connected through resistor 65 to a pair of adjustable high-speed potentiometers 66 and 67 connected in parallel, and whose respective wiper arms 68 and 69 are manually adjustable independently of each other through the rotary speed knobs 71 and 70, respectively, on the control panel 32. Both adjustable high-speed potentiometers 66 and 67 are connected to the feed-back common line 60.
- the wiper arms or leads 68 and 69 are both connected to a manually operated, speed selector switch 73 also mounted on the control panel 32.
- a reverse lead 74 and forward lead 75 connect the speed selector switch 73 to the respective reverse and forward contacts of the speed directional switch 76 connected in the high-speed control circuit 54.
- the speed selector switch 73 includes first and second switch arms 78 and 79, each connected, respectively, to the reverse lead 74 and the forward lead 75.
- the first and second switch arms 78 and 79 are ganged to move between their solid-line and dashed-line positions in FIG. 4. ln their solid-line positions, the switch arms 78 and 79 make contact with branch leads 80 and 81, respectively, which are connected to the wiper lead 68 through connecting lead 82. lt will be noted in FIG. 4 that when the switch arms 78 and 79 are in this first solid-line position, the highspeed control line 54 is always in communication with the first high-speed wiper lead 68 of the potentiometer 66, regardless of the position of the directional switch 76. It will also be noted that when the switch arms 78 and 79 are in their solid-line positions, there is no electrical communication between the high-speed control line 54 and the second high-speed wiper lead 69, regardless of the position of the direction switch 76.
- the circuit is closed between the reverse lead 74 and the first high-speed wiper lead 68.
- the switch arm 79 is in its dashed-line position, electrical communication is established between the forward lead 75 and the second wiper lead 69. Therefore, the high-speed line 54 is connected to the first wiper lead 68 when the directional switch 76 is in its solid-line, reverse position, and the high-speed line 54 is connected to the second wiper lead 69 when the directional switch 76 is in its dashed-line forward position.
- a voltage signal is generated between the supply line 63 and the base of transistor through the speed selector line 59 and the respective wiper leads 61, 68 or 69 of the corresponding low-speed potentiometer 62, the first high-speed potentiometer 66 or the second high-speed potentiometer 67.
- the corresponding signal is transmitted through the successive transistors 85 and 86 and the unijunction 87 to fire the SCRs 88 and 89 in the drive circuit 39.
- the firing time of the SCRs 88 and 89 is a function of the signals generated by the respective speed potentiometers 62, 66 or 67.
- the speed directional switch 76 is a relay switch controlled by its relay coil 90 in the reversing control circuit 36.
- the direction of rotation of the drive motor 28 is determined by the direction of current through the motor field coil 91 in the reversing control circuit 36, which in turn is determined by the position of the field directional relay switches 92 and 93 responsive to the relay coil 94.
- Relay coils 94 and 90 are connected in parallel between the B+ supply line 95 and the common line 96.
- the coils 90 and 94 are energized by grounding through the directional relay switch 97 when it is in its solid-line forward position, as disclosed in FIG. 4.
- the directional relay switch 97 is pulled into its solid-line forward position by energization of the forward coil 98.
- Energization of the reverse coil 99 moves the directional relay switch 97 to its dashed-line position permitting the coils 90 and 94 to become deenergized, thereby holding their respective relay switches 92 93 and 76 in their respective reverse, solid-line positions.
- the forward coil 98 is energized through line 101 when the manual switch 100 is in its forward position, or when the reversing switch 103, in plunger box 112 (FIG. 1), is in its dashed-line position.
- the reverse coil 99 is energized when the manual switch 100 is in its reverse position, or when the reversing switch 102 is shifted to its dashed-line position in FIG. 4, when the plunger 104 engages the stop 105 at the front catcher mechanism 25 to trip the switch arm 106 in the plunger box 107.
- the frame 11 is moved by the motor 28, the top feed roll 21 is driven by the cloth feed control 37, and the spreading unit 22 cooperates with the catcher mechanism 25 at the forward extremity of travel of the frame 11.
- speed selector switch 53 and direction switch 76 are in their solid-line positions of FIG. 4, the machine is moving forward at high speed along the table 14 and is spreading cloth.
- the high-low speed selector switch 53 is in its dashed-line high-speed position and direction switch 75 is in its forward dashed-line position.
- the front switch lever arm 47 is tripped by the ramp 49 to momentarily open the low-speed switch 43.
- the relay coil 51 in the trigger circuit 38 is deenergized causing the high-low speed selector switch 53 to shift to its solid-line, low-speed position, connecting the resistor on the emitter of transistor 84 to the base of transistor 85, and producing a resultant signal causing the drive motor 28 to slow down to the low speed pre-set by the potentiometer 62.
- the opening of the momentary low-speed switch 43 energizes the dynamic brake relay coil 57 to close the relay switch 58 and thereby energize the dynamic brake circuit 40 to cause the machine 10 to dynamically brake from its high to its low speed.
- the dynamic braking circuit 40 is de-energized as described in the Reed application Ser. No. 125,470, and proceeds at low speed into the catcher mechanism 25.
- the reversing switch 102 is actuated in FIG. 3 to momentarily shift to its dashed-line position in FIG. 4, energizing the reverse coil 99. Consequently, the directional relay switch 97 shifts to its dashed-line position disconnecting the coils 90 and 94 from ground, and causing the coils 90 and 94 to become de-energized to shift the relay switches 76 and 92-93 to their reverse, solid-line positions.
- the potentiometer 67 is desirably pre-set by the speed knob to drive the motor 28 at a higher speed than will the setting of the potentiometer knob 71, so that the machine 10 deadheads in the forward direction to the front end of the table in a minimum of time.
- the machine 10 After the machine 10 has reached the forward end of the table 14, and the reversing switch 102 is actuated momentarily to its dashed-line position in FIG. 4 by plunger 104, the machine 10 moves rearward again and the high-speed line 54 is again in electrical communication through the solid-line position of the directional switch 76 with the wiper lead 68 of the first high-speed potentiometer 66. Thus, the machine 10 again spreads cloth in the reverse direction at its normal high speed, that is, at a high speed less than the high speed generated by the potentiometer 67.
- Speed control apparatus for a cloth spreading machine having a frame supported for longitudinal movement over a cloth-laying surface between reversing stations, a spreader unit to spread cloth in layers, and means for supplying cloth to the spreader unit, comprising:
- reversing switch means adapted to control said drive means to reverse the movement of said frame, when actuated, between forward and reverse directions
- actuator means for actuating said reversing switch means at said reversing stations
- first speed control means for energizing said drive means, when actuated, to move said frame at a first pre-set speed
- second speed control means for energizing said drive means, when actuated, to move said frame at a second pre-set speed
- selector switch means operable between a first position actuating said first speed control means and de-actuating said second speed control means regardless of the direction of frame movement, and a second position actuating said first speed control means and de-actuating said second speed control means when said reversing switch means is actuated to move said frame in said forward direction, and further in said second position de-actuating said first speed control means and actuating said second speed control means when said reversing switch means is actuated to move said frame in said reverse direction.
- said first speed control means comprises a first speed control circuit and said second speed control means comprises a second speed control circuit
- said reversing switch means comprising a reversing switch having a forward position closing said first speed control circuit and opening said second speed control circuit and a reverse position closing said second speed control circuit and opening said first speed control circuit.
- said selector switch means comprises a selector switch in said second speed control circuit having a first position opening said second speed control circuit and closing said first speed control circuit regardless of whether said reversing switch is in said forward or reverse direction, and a second position closing said second speed control circuit when said reversing switch is in said reverse position.
- first and second speed control circuits comprise highspeed control circuits
- a third low-speed control circuit for energizing said drive means, when closed, to move said frame at a low speed substantially lower than the high speeds produced by said first and second control circuits
- a speed selector switch movable between a high position in series with said reversing switch to close one or the other of said first and second speed control circuits depending upon the position of said reversing switch, and a low-speed position opening both said first and second high-speed control circuits and closing said low-speed control circuit
- trip means for actuating said selector switch to move said selector switch from high position to low position while said frame is moving toward a reversing station.
- said low-speed control circuit includes a third potentiometer pre-set at a value corresponding to a predetermined low speed.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Treatment Of Fiber Materials (AREA)
- Folding Of Thin Sheet-Like Materials, Special Discharging Devices, And Others (AREA)
- Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
Abstract
Description
Claims (6)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US25427272A | 1972-05-17 | 1972-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3735223A true US3735223A (en) | 1973-05-22 |
Family
ID=22963625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00254272A Expired - Lifetime US3735223A (en) | 1972-05-17 | 1972-05-17 | High-speed control apparatus for cloth spreading machine |
Country Status (5)
Country | Link |
---|---|
US (1) | US3735223A (en) |
JP (1) | JPS4925295A (en) |
CA (1) | CA999363A (en) |
DE (1) | DE2317927A1 (en) |
GB (1) | GB1406781A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4175738A (en) * | 1978-02-13 | 1979-11-27 | Frank Catallo | Horizontal folder with varying speed traverse |
US4462582A (en) * | 1982-08-09 | 1984-07-31 | Cutters Exchange, Inc. | Handle control apparatus for cloth spreading machine |
US4606533A (en) * | 1985-05-31 | 1986-08-19 | Rockwell-Rimoldi S.P.A. | Machine for converting rolled cloth into sheets |
US4633152A (en) * | 1984-11-29 | 1986-12-30 | Abex Corporation | Direct current motor controller |
US5447296A (en) * | 1993-05-26 | 1995-09-05 | Cox; Michael A. | Cloth spreading system |
US5704603A (en) * | 1995-09-20 | 1998-01-06 | Eastman Machine Company | Cloth spreading machine having improved cloth feed control and guide |
CN104210875A (en) * | 2014-09-10 | 2014-12-17 | 太仓顺峰体育用品有限公司 | Rapid high-efficiency cloth-loosening machine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3573588A (en) * | 1967-11-28 | 1971-04-06 | Siemens Ag | Automatic feed control system for a machine |
US3673482A (en) * | 1970-03-12 | 1972-06-27 | Morris Ltd Herbert | Automatically operating and controlling reciprocating motion |
US3699411A (en) * | 1970-07-10 | 1972-10-17 | Warner G S Miller | Automatic control system for forming fluted cutting tools |
-
1972
- 1972-05-17 US US00254272A patent/US3735223A/en not_active Expired - Lifetime
-
1973
- 1973-03-08 CA CA165,625A patent/CA999363A/en not_active Expired
- 1973-03-14 GB GB1227773A patent/GB1406781A/en not_active Expired
- 1973-04-10 DE DE2317927A patent/DE2317927A1/en not_active Ceased
- 1973-04-11 JP JP48040497A patent/JPS4925295A/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3573588A (en) * | 1967-11-28 | 1971-04-06 | Siemens Ag | Automatic feed control system for a machine |
US3673482A (en) * | 1970-03-12 | 1972-06-27 | Morris Ltd Herbert | Automatically operating and controlling reciprocating motion |
US3699411A (en) * | 1970-07-10 | 1972-10-17 | Warner G S Miller | Automatic control system for forming fluted cutting tools |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4175738A (en) * | 1978-02-13 | 1979-11-27 | Frank Catallo | Horizontal folder with varying speed traverse |
US4462582A (en) * | 1982-08-09 | 1984-07-31 | Cutters Exchange, Inc. | Handle control apparatus for cloth spreading machine |
US4633152A (en) * | 1984-11-29 | 1986-12-30 | Abex Corporation | Direct current motor controller |
US4606533A (en) * | 1985-05-31 | 1986-08-19 | Rockwell-Rimoldi S.P.A. | Machine for converting rolled cloth into sheets |
US5447296A (en) * | 1993-05-26 | 1995-09-05 | Cox; Michael A. | Cloth spreading system |
US5704603A (en) * | 1995-09-20 | 1998-01-06 | Eastman Machine Company | Cloth spreading machine having improved cloth feed control and guide |
CN104210875A (en) * | 2014-09-10 | 2014-12-17 | 太仓顺峰体育用品有限公司 | Rapid high-efficiency cloth-loosening machine |
Also Published As
Publication number | Publication date |
---|---|
CA999363A (en) | 1976-11-02 |
DE2317927A1 (en) | 1973-12-06 |
JPS4925295A (en) | 1974-03-06 |
GB1406781A (en) | 1975-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3735223A (en) | High-speed control apparatus for cloth spreading machine | |
US2023841A (en) | Two-motor control for screw feed machine tool units | |
US3684273A (en) | Cloth feed control for spreading machine | |
US1882219A (en) | Controller for motor driven machines | |
US3663006A (en) | Electrically controlled cloth spreading machine | |
US2003027A (en) | Control for shearing apparatus | |
US3694722A (en) | Speed reducing apparatus for a cloth spreading machine | |
US3811669A (en) | Electrically controlled cloth spreading machine | |
US1959667A (en) | Control device | |
US3760250A (en) | Emergency stop control system for cloth spreading machine | |
US2495249A (en) | Means for stopping movement of electrically operated cloth laying machines | |
CN112130522A (en) | Cloth feeding control system of cloth paving machine and cloth paving device | |
US2489203A (en) | Automatic lathe feed mechanism | |
US1946839A (en) | Lathe | |
US3791641A (en) | Electrically controlled cloth spreading machine | |
US3401926A (en) | Carriage control means for cloth laying machines | |
US2053499A (en) | Automatic spacer | |
US2345218A (en) | Duplicating machine | |
US2830811A (en) | Apparatus for automatically controlling the paper feed speed in large paper bag machiones | |
US3776542A (en) | Electrically controlled cloth spreading machine | |
US3324751A (en) | Increment size adjustment means | |
US1985049A (en) | Tool lifting device | |
US2011068A (en) | Machine tool | |
US3129369A (en) | Automatic motor reversing at limit fo travel by variable transformer means | |
US4462582A (en) | Handle control apparatus for cloth spreading machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: THIRD NATIONAL BANK IN NASHVILLE, A NATIONAL BANKI Free format text: SECURITY INTEREST;ASSIGNOR:CUTTERS EXCHANGE, INC., A CORP. OF TN.;REEL/FRAME:004747/0449 Effective date: 19870323 Owner name: NASHVILLE CITY BANK AND TRUST CO. Free format text: SECURITY INTEREST;ASSIGNOR:CUTTERS EXCHANGE, INC., A CORP. OF TN.;REEL/FRAME:004747/0449 Effective date: 19870323 Owner name: CITIZENS FIDELITY BANK & TRUST CO. Free format text: SECURITY INTEREST;ASSIGNOR:CUTTERS EXCHANGE, INC., A CORP. OF TN.;REEL/FRAME:004747/0449 Effective date: 19870323 Owner name: FIRST AMERICAN NATIONAL BANK OF NASHVILLE Free format text: SECURITY INTEREST;ASSIGNOR:CUTTERS EXCHANGE, INC., A CORP. OF TN.;REEL/FRAME:004747/0449 Effective date: 19870323 Owner name: COMMERCE UNION BANK Free format text: SECURITY INTEREST;ASSIGNOR:CUTTERS EXCHANGE, INC., A CORP. OF TN.;REEL/FRAME:004747/0449 Effective date: 19870323 |
|
AS | Assignment |
Owner name: SABER INDUSTRIES, INC. Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:CUTTERS, INC.;REEL/FRAME:005075/0474 Effective date: 19890217 Owner name: FIRST AMERICAN NATIONAL BANK, A NATIONAL BANKING A Free format text: SECURITY INTEREST;ASSIGNOR:SABER INDUSTRIES, INC.;REEL/FRAME:005075/0501 Effective date: 19890217 |