US3731683A - Bandage for the controlled metering of topical drugs to the skin - Google Patents
Bandage for the controlled metering of topical drugs to the skin Download PDFInfo
- Publication number
- US3731683A US3731683A US00150085A US3731683DA US3731683A US 3731683 A US3731683 A US 3731683A US 00150085 A US00150085 A US 00150085A US 3731683D A US3731683D A US 3731683DA US 3731683 A US3731683 A US 3731683A
- Authority
- US
- United States
- Prior art keywords
- bandage
- drug
- skin
- topically active
- microcapsules
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
- A61K9/7023—Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
- A61K9/703—Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
- A61K9/7038—Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer
- A61K9/7046—Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds
- A61K9/7053—Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds, e.g. polyvinyl, polyisobutylene, polystyrene
- A61K9/7061—Polyacrylates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
- A61K9/7023—Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
- A61K9/703—Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
- A61K9/7038—Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer
- A61K9/7046—Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds
- A61K9/7069—Transdermal patches of the drug-in-adhesive type, i.e. comprising drug in the skin-adhesive layer the adhesive comprising macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. polysiloxane, polyesters, polyurethane, polyethylene oxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
- A61K9/7023—Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
- A61K9/703—Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
- A61K9/7084—Transdermal patches having a drug layer or reservoir, and one or more separate drug-free skin-adhesive layers, e.g. between drug reservoir and skin, or surrounding the drug reservoir; Liquid-filled reservoir patches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/70—Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
- A61K9/7023—Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
- A61K9/703—Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
- A61K9/7092—Transdermal patches having multiple drug layers or reservoirs, e.g. for obtaining a specific release pattern, or for combining different drugs
Definitions
- Sabatine 57 ABSTRACT Bandage for the topical administration of controlled therapeutically effective quantities of topically active drugs has a backing member, a pressure-sensitive adhesive, and a reservoir layer containing a topically active drug confined within a wall member.
- the wall member is formed from drug release rate controlling material to continuously meter the flow of a therapeutically effective amount of the drug through the wall to the skin at a controlled and predetermined rate over a period of time.
- Topically active drugs are agents which primarily cause a pharmacological or physiological response at or near the site of their application. They are to be distinguished from systemically active drugs which are transported from their site of application by the recipients circulatory system or lymphatic system, to cause a pharmacologic or physiologic response at a remote site in the body.
- a large number of locally acting drugs are available to treat skin disorders or other conditions which manifest themselves in a manner such that they are susceptible to treatment via the skin.
- These drugs can be broadly classified as astringents, irritants, sclerosing agents, caustics, melanizing and demelanizing agents, keratolytics, mucolytics, antibacterials, anti-fungals, anti-inflammatories, antiporasitics, antiperspirants and deodorants, and the like.
- These drugs are conventionally topically administered to the skin with the active agent carried in the form of ointments, creams, salves, liniments, powders, dressings, and the like.
- an object of this invention is to provide a bandage for the improved continuous administration of predetermined controlled quantities of topically active drugs to the skin over a period of time.
- this invention in its broadest aspects resides in a medicated bandage for the continuous administration of controlled quantities of topically active drugs to the skin of a patient by direct application to the affected skin area.
- the bandage is comprised of a laminate of: l a backing member defining one face surface of the bandage; (2) a pressure-sensitive adhesive adapted for contact with the skin or mucosa, the external surface of said pressuresensitive adhesive defining the other face surface of the bandage and disposed between the face surfaces defined by l) and (2); (3) at least one reservoir comprised of a topically active drug formulation confined within a wall member, said wall member being formed from drug release rate controlling material to continuously meter the flow of drug from the said reservoir to the skin or mucosa at a controlled and predetermined rate over a prolonged period of time.
- reservoir refers both to microcapsules as well as distinct reservoir compartments or matrix layers.
- An embodiment of the invention described above resides in a bandage comprised of a laminate of: (l) a backing member; bearing (2) a discrete middle reservoir layer containing a topically active therapeutic agent confined within a wall member, said wall member being formed from drug release rate controlling material permeable to the passage of agent, to continuously meter the flow of a therapeutically effective amount of the agent to the skin from the reservoir at a controlled and predetermined rate over a period of time; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin and positioned on one wall of the reservoir remote from the backing member.
- Another aspect of this invention resides in a bandage as described immediately above including a solubility membrane interposed between the wall of the reservoir and the pressure-sensitive adhesive layer.
- a medicated adhesive bandage comprising a laminate of: l a backing member; bearing (2)'a pressure-sensitive adhesive on one surface thereof adapted for contact with the skin, said pressure-sensitive adhesive having distributed therethrough, (3) a plurality of discrete microcapsules, each of which microcapsules comprise a topically active therapeutic agent confined within a wall member, the wall member being formed from drug release rate controlling material, to continuously meter the flow of a therapeutically effective amount of the agent to the skin from the microcapsules at a controlled and predetermined rate over a period of time.
- FIG. 1 is a perspective view of the medical adhesive bandage of the invention wherein the topically active agent is microencapsulated with a material permeable to the passage of those agents and the microcapsules are uniformly distributed throughout the pressure-sensitive adhesive coating;
- FIG. 2 is a cross-sectional view of the bandage of the invention shown in FIG. 1;
- FIG. 3 is a cross-sectional view of another embodiment of the invention wherein the topically active agent is uniformly distributed throughout a matrix of material permeable to the passage of those agents and the material is laminated to a backing member.
- the matrix material which acts as a reservoir for the agent bears a coating of the pressure-sensitive adhesive thereon;
- FIG. 4 is a cross-sectional view of still another embodiment of the invention wherein the adhesive bandage of the invention is comprised of a backing member having a reservoir on one surface thereof of topically active agent uniformly distributed throughout a matrix of material permeable to passage of agent, and on the surface of the reservoir remote from the backing member bearing a pressure-sensitive adhesive coating.
- a solubility membrane is interposed between the reservoir layer and the pressure-sensitive adhesive coating;
- FIG. 5 is a cross-sectional view of another embodiment of the invention wherein the reservoir laminated to the backing member is a hollow container permeable to passage of agent and having the agent confined within the interior chamber thereof.
- a v medicated bandage containing a topically active drug therein for the predetermined controlled metering of the flow of topically active drugs to the skin over a period of time.
- FIG. 1 illustrates an adhesive tape 10 of the invention including a backing member 11 bearing a pressure-sensitive adhesive coating 12 on one surface thereof.
- Ad-. hesive coating 12 has uniformly distributed therethrough microcapsules 13 of topically active agent encapsulated with a material permeable to passage of the drug.
- Suitable materials for use in encapsulating the drug include hydrophobic polymers such as polyvinylchloride either unplasticized or plasticized with long-chain fatty amides or other plasticizer; plasticized nylon; unplasticized soft nylon; silicone rubber; polyethylene, and polyethylene terephthalate; and hydrophilic polymers such as esters of acrylic and methacrylic acid (as described in US. Pat. Nos. 2,976,576 and 3,220,960 and Belgian Pat. No. 701,813); modified collagen; cross-linked hydrophilic polyether gels (as described in US. Pat. No. 3,419,006); cross-linked polyvinylalcohol; and crosslinked partially hydrolyzed polyvinylacetate.
- hydrophobic polymers such as polyvinylchloride either unplasticized or plasticized with long-chain fatty amides or other plasticizer
- plasticized nylon unplasticized soft nylon
- silicone rubber polyethylene
- polyethylene terephthalate polyethylene terephthalate
- the encapsulating material can be uniformly impregnated with the drug to form microcapsules which are a matrix having the drug distributed therethrough.
- particles of drug can be encapsulated with thin coatings of the encapsulating material to form microcapsules having an interior chamber containing the drug.
- parti cles of a matrix such as starch, gum acadia, gum tragacanth, and polyvinylchloride
- a matrix such as starch, gum acadia, gum tragacanth, and polyvinylchloride
- other materials such as the encapsulating materials previously described which function as a solubility membrane to .meter the flow of drug to the adhesives; use of a matrix and a different solubility membrane coating can slow the passage of the drug from the microcapsules which is desirable with drugs that are released too rapidly from available encapsulating materials.
- Airy of the encapsulation or impregnation techniques known in the art can be used to prepare the microcapsules to be incorporated into the pressure-sensitive adhesive in accord with the embodiment of FIGS. 1 and 2.
- the drug can be added to the encapsulating material in liquid form and uniformly distributed therethrough by mixing and subsequently converting to a solid by curing or cooling; or solid encapsulating material can be impregnated with a drug by immersion in a bath of the drug to diffuse into the material. Subsequently, the solid material can be reduced to fine microcapsules by grinding, each of the microcapsules comprising drug coated with and distributed throughout the encapsulating material. Alternatively, fineparticles of the drug can be encapsulated with the coating.
- One suitable technique comprises suspending dry particles of the drug in an air stream and contacting that stream with a stream containing the encapsulating material to coat the drug particles.
- the microcapsules have an average particle size of from I to l ,000 microns, although this is not critical to the invention.
- adhesive bandage 20 of the invention is comprised of topically active agent 24 uniformly distributed in a reservoir 22 which is a polymeric matrix material.
- the matrix material is laminated to backing member 21 and bears a pressure-sensitive adhesive coating 23 thereon.
- the polymeric matrix material has a release rate for the particular drug used which continuously controls the releasing drug.
- FIG. 4 illustrates a further modified form of the invention wherein the adhesive bandage 30 of the invention is comprised of a backing member 21 having a reservoir 32 on one surface thereof. A solubility member 35 is interposed between the reservoir 32 and a pressure-sensitive adhesive coating 23. Topically active agent 24 is confined in polymeric matrix material 32 which acts as the reservoir for the drug.
- FIG. 5 illustrates a further form of the bandage 40 including a backing member 21 and a reservoir 42 in the form of a hollow container having an interior chamber 43 containing topically active agent 34.
- Wall 45 of reservoir 42, remote from backing member 21, is permeable to passage of drug 34, as by diffusion, to meter the flow of drug to pressure-sensitive adhesive layer 23 on the outer surface thereof.
- This form of the bandage is less preferred since it cannot conveniently be cut to fit precisely the size of skin lesions to which applied. However, it is satisfactory for application to large areas of skin.
- Suitable materials for forming the reservoir are those materials permeable to passage of the drug previously described as suitable encapsulating materials.
- the reservoir can be formed by molding into the form of a hollow container with the drug trapped therein.
- the reservoir can bein the form of an envelope formed from sheets of polymeric material permeable to passage of the drug and enclosing the drug. While the walls of the reservoir can be of any convenient thickness, usually they have a thickness of from 0.01 to 7 millimeters.
- the reservoir comprises a matrix with the drug distributed therethrough, it can be prepared by adding the drug to the matrix material in liquid form or solvent solution form and subsequently converting the matrix to a solid by curing, cooling or evaporation of solvent.
- the reservoir of the bandage is a hollow drug container or a solid matrix.
- Drug is metered from the reservoir to the adhesive layer, at a rate controlled by the composition and thickness of the reservoir or of the reservoir wall. From the adhesive layer, drug is directly transmitted to the skin to which the bandage is applied.
- metering of the drug from the reservoir to the adhesive is further controlled by interposing a further solubility membrane therebetween.
- the solubility membrane is formed of a material in which the drug is soluble and capable of diffusing through. Any of the materials previously mentioned for use in microencapsulation may be used as the solubility membrane.
- the solubility membrane will have different characteristics than the reservoir wall of the particular device. This use of a pair of solubility membranes, that is, the reservoir wall and the further solubility membrane, allows for precise metering of drug to the adhesive layer; for the thickness and composition of both membranes can be varied to provide for wide range of dosage levels for a given area of bandage. It will be appreciated that this solubility membrane can be used with either the matrix or container type of reservoir.
- Suitable drugs include, without limitation: Antiperspirants, e.g. aluminum chloride; Deodorants, e.g. hexachlorophene, methylbenzethonium chloride; Astringents, e.g. tannic acid; Irritants, e.g. methyl salicylate, camphor, cantharidin; Keratolytics, e.g.
- Antifungal Agents such as tolnaftate, griseofulvin, nystatin and amphotericin
- Anti-Inflammatory Agents such as corticosteroids, e.g.
- hydrocortisone hydrocortisone acetate, prednisolone, methylprednisolone, triamcinolone acetonide, fluidrocortisone, flurandrenolone, fiumethasone, dexamethasone sodium phosphate, bethamethasone valerate, fluocinolone acetonide; fluorometholone; and pramoxine HCl; and Antibacterial Agents, such as bacitracin, neomycin, erythromycin, tetracycline HCI, chlortetracycline HCI, chloramphenicole, oxytetracycline, polymyxin B, nitrofurazone, mafenide (aamino-p-toluenesulfonamide), hexachlorophene, benzalkonium chloride, cetalkonium chloride, methylbenzethonium chloride, and neomycin sulfate.
- simple pharmacologically acceptable derivatives of the drugs such as ethers, esters, amides, acetals, salts, etc., or formulations of these drugs, having the desired polymeric permeability or transport properties can be prepared and used in practicing the invention.
- Drugs mentioned above can be used alone or in combination with others and each other.
- the amount of topically active agent to be incorporated in the bandage to obtain the desired therapeutic effect will vary depending upon the desired dosage, the permeability of the polymeric materials of the bandage which are employed to the particular agent to be used, and the length of time the bandage is to remain on the skin.
- the effective rate or release of the active agent to the skin can be in the range of from 0.5 to 1,000 micrograms per square centimeter of bandage per day. The exact amount will depend on the desired dosage as well as the area of the skin to be treated. These effective rates of release of active agent to the skin can be obtained by altering the permeability and thickness of the release rate controlling barrier.
- the release rate can also be controlled by varying the number of microcapsules present in a given volume of the matrix of the device. This is a particular desirable feature of this aspect of the invention. Additionally, the duration of action of the device can be altered by controlling the amount of active agent initially incorporated consistent with the release rate. Further, the release rate of drug as well as the duration of release of the drug from the device can be predetermined to be in consonance with the optimum therapeutic values. Once this dosage level in micrograms per square centimeter of bandage has been determined, the total amount of drug to be incorporated in the bandage can be established by obtaining the release rate of the agent in the particular material or materials which are to be used.
- a film of the material is used as a barrier between a rapidly stirred (e.g. 150 r.p.m.) saturated solution of the drug containing excess solid drug (or a concentrated solution of the drug) and a rapidly stirred solvent bath, both maintained at :constant temperature (typically 37 C).
- Samples are periodically withdrawing from the solvent bath and analyzed for drug concentration. By plotting drug concentration in the solvent bath versus time, the permeability constant P of the membrane is determined by the Ficks First Law of Diffusion.
- the permeability P constant in cm /time of the material or membrane for a given compound is readily determined.
- this permeability constant is an inherent characteristic of the material for a given compound.
- any of the well-known dermatologically acceptable permeable pressure-sensitive adhesives which permit drug migration can be used in practicing this invention.
- exemplary adhesives include acrylic or methacrylic resins such as polymers of esters of acrylic or methacrylic acid with alcohols such as n-butanol, npentanol, isopentanol, 2-methyl butanol, l-methyl butanol, l-methyl pentanol, 2-methyl pentanol, 3-methyl pentanol, 2-ethyl butanol, isooctanol, n-decanol, or ndodecanol, alone or copolymerized with ethylenically unsaturated monomers such as acrylic acid, methacrylic acid, acrylamide, methacrylamide, N-alkoxymethyl acrylamides, N-alkoxymethyl methacrylamides, N-tert.
- Suitable backings include cellophane, cellulose acetate, ethylcellulose plasticized vinylacetate-vinylchloride copolymers, polyethylene terephthalate, nylon, polyethylene,
- a flexible occlusive backing is employed to conform to the shape of the body member to which the adhesive tape is applied and to enhance administration of the agent to the skin.
- the adhesive surface of the tape generally is covered with a protective release film or foil, such as waxed paper.
- a protective release film or foil such as waxed paper.
- the exposed rear surface of the backing member can be coated with a low-adhesion backsize and the bandage rolled about itself.
- the therapeutic bandage usually is packaged between hermetically sealed polyethylene terephthalate films under an inert atmosphere, such as gaseous nitrogen.
- the adhesive bandage of the invention is applied directly to skin, to release a therapeutically effective amount of the agent to the affected area.
- this invention one ensures that an accurately measured quantity of the active drug is available when the bandage is applied to the skin.
- EXAMPLE I Z-hydroxyethyl methacrylate (100 grams) is diluted with water (100 grams) and mixed with tertiary butyl peroctoate (0.20 gram). Ethylene glycol dimethacrylate (0.20 gram) is added along with 4 grams of sodium bicarbonate as a foaming agent. The mixture is heated to C under an atmosphere of nitrogen and the resulting solid, friable polymeric foam is ground into fine powder of 20 micron average particle size. The polymeric powder (10 grams) is mixed with neomycin (2 grams) dissolved in a mixture of ethyl alcohol: water (50:50) and the resultant mixture placed on a mechanical roller until the polymeric powder has absorbed the drug. The solution is then filtered.
- the resulting microcapsules of neomycin are mixed with 100 grams of a 22 percent solution in hexane: isopropylacetate (70:30) of a viscoelastic copolymer of isooctyl acrylate and acrylic acid (94:6) adhesive to uniformly distribute the microcapsules throughout the adhesive solution.
- the resulting slurry is coated onto a cellophane sheet 10 centimeters in width by 100 centimeters in length and the solvent removed by evaporation from the coated film.
- the resulting bandage When applied to the infected skin area of a subject, the resulting bandage is effective to control the continuous administration of a daily therapeutically effective dosage of neomycin to the skin.
- EXAMPLE ll Liquid dimethyl silicone polymeric rubber 100 grams, Dow-Corning Silastic) is mixed with 5 grams of nitrofurazone. After uniformly mixing the drug with unvulcanized silicone rubber, 0.5 gram of stannous octoate catalyst is added and the rubber cured at room temperature. The resulting silicone rubber body is reduced to an average particle size of 100 microns.
- Pressure-sensitive adhesive composition is prepared by adding to 100 milliliters of hexane the following:
- glycerol ester of hydrogenated rosin 4 grams
- polyethylene glycol 400 Ten grams of the resulting nitrofurazone capsules are mixed with pressure-sensitive adhesive prepared above to uniformly distribute the microcapsules throughout the adhesive. Immediately thereafter, the adhesive mixture is coated onto one surface of a 1,000 square centimeter Mylar sheet. The resulting bandage can be used for control of skin infections.
- EXAMPLE lll Ten milligrams of betamethasone is placed on a sheet of dimethyl silicone rubber having a thickness of 0.13 millimeters. The sheet is folded to provide a surface area of 100 square centimeters on each face and the flaps sealed with silicone adhesive to provide a thin envelope containing the drug.
- polyacrylate solution ethylacetate: hexane/5:1
- percent nonvolatile matter obtained by the catalytic polymerization of isoamylacrylatc and acrylic acid in the ratio of 95:5 in ethylacetatc and then diluting with hexane
- USP l gram castor oil
- One face surface of the envelope is bonded to a sheet of cellophane while the other is coated with adhesive prepared above to a thickness of2 millimeters.
- the adhesive face surface of the bandage has an area of 100 square centimeters. The bandage is effective to release a therapeutically effective daily dosage of the drug when applied to the skin for control of psoriasis.
- this invention provides a reliable and easy to use device for administering topically active drugs directly to the skin. Uncertainties resulting from topical application of these agents, from creams and solutions, are not encountered; and a precisely determined amount of the drug is applied in a controlled manner.
- adhesive bandage includes any product having a backing member and a pressure-sensitive adhesive face surface.
- Such products can be provided in various sizes and configurations, including tapes, bandages, sheets, plasters, and the like.
- a medical bandage for the continuous administration to the skin or mucosa of controlled quantities of topically active drugs over a prolonged period of time comprising a laminate of (1) a backing member defining one face surface of the bandage; (2) a pressure-sensitive adhesive adapted for contact with the skin or mucosa, the external surface of said pressure-sensitive adhesive defining the other face surface of the bandage and disposed between the face surfaces defined by (l) and (2); (3) at least one reservoir comprised of a topically active drug formulation confined within a wall member, said wall member being formed from drug release rate controlling material to continuously meter the flow of drug from the said reservoir to the skin or mucosa at a controlled and predetermined rate over a prolonged period of time.
- said bandage comprises a laminate of: (l) a backing member; bearing (2) a pressure-sensitive adhesive on one surface thereof adapted for contact with the skin, said pressure-sensitive adhesive having distributed therethrough; (3) a plurality of discrete microcapsules, each of which microcapsules comprises a topically active drug formulation confined within a wall member, said wall member being formed from drug release rate controlling material to continuously meter the flow of a therapeutically effective amount of the drug in the skin through the wall of said microcapsules at a controlled and predetermined rate over a period of time.
- each of said microcapsules (3) is comprised of topically active drug formulation microencapsulated with the drug release rate controlling material.
- each of said microcapsules (3) is comprised of a matrix of the drug release rate controlling wall material, said matrix having the topically active drug formulation distributed therethrough.
- said bandage comprises a laminate of: (l) a backing member; bearing (2) a discrete, middle reservoir layer, which reservoir layer is comprised of topically active drug formulation confined within a wall member, said wall member being formed from drug release rate controlling material to continuously meter the flow of a therapeutically effective amount of the drug to the skin through the wall at a controlled and predetermined rate over a period of time; and (3) a pressure-sensitive adhesive adapted for contact with the skin and carried by the reservoir remote from the backing member.
- the reservoir layer (2) is comprised of a walled container having an interior chamber containing the topically active drug formulation.
- the reservoir layer (2) is comprised of a matrix of the drug release rate controlling wall material, said matrix having the topically active drug formulation distributed therethrough.
- rate release controlling material is a hydrophilic polymer of an ester of an olefinic acid.
- rate release controlling material is a hydrophilic polymer of an ester of an olefinic acid.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dermatology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Preparation (AREA)
Abstract
Bandage for the topical administration of controlled therapeutically effective quantities of topically active drugs has a backing member, a pressure-sensitive adhesive, and a reservoir layer containing a topically active drug confined within a wall member. The wall member is formed from drug release rate controlling material to continuously meter the flow of a therapeutically effective amount of the drug through the wall to the skin at a controlled and predetermined rate over a period of time.
Description
United States Patent 91 Zalfaroni 51 *May 8,1973
[54) BANDAGE FOR THE CONTROLLED METERING OF TOPICAL DRUGS TO THE SKIN [75] Inventor: Alejandro Zafiaroni, Atherton,
Calif.
[73] Assignee: Alza Corporation Notice: The portion of the term of this patent subsequent to Aug. 10, 1988, has been disclaimed.
[22] Filed: June 4, 1971 [21] Appl. No.: 150,085
Related US. Application Data [63] Continuation-impart of Ser. No. 136,981, April 23,
[52] US. Cl. ..l28/268, 128/156, 424/28 [51] Int. Cl. ..A6lf 7/02 [58] Field of Search ..l28/260, 268, 156,
[56] References Cited UNITED STATES PATENTS 3,339,546 9/1967 Chen ..l28/268 X 3,444,858 5/1969 Russell ..l28/268 X 3,536,809 10/1970 Applczweig ..424l28 3,551,556 12/1970 Kliment et al. ..424 22 3,598,122 3 1971 Zaffaroni ..l28/268 3,598,123 8/1971 Zaffaroni .....l28/268 3,632,740 1 1972 Robinson et a1 ..424 28 Primary Examiner-Charles F. Rosenbaum Attorney-Steven D. Goldby, Edward L. Mandell and Paul L. Sabatine 57 ABSTRACT Bandage for the topical administration of controlled therapeutically effective quantities of topically active drugs has a backing member, a pressure-sensitive adhesive, and a reservoir layer containing a topically active drug confined within a wall member. The wall member is formed from drug release rate controlling material to continuously meter the flow of a therapeutically effective amount of the drug through the wall to the skin at a controlled and predetermined rate over a period of time.
14 Claims, 5 Drawing Figures BANDAGE FOR THE CONTROLLED METERING OF TOPICAL DRUGS TO THE SKIN RELATED APPLICATIONS This application is a continuation-in-part of Ser. No. 136,981, filed Apr. 23, 1971, (Docket No. LR. 165A- CIP; Dl), entitled Therapeutic Adhesive Tape, of Alejandro Zaffaroni.
BACKGROUND OF THE INVENTION This invention relates to a device for the administration of drugs and more particularly to a medical bandage for the predetermined controlled metering of the flow of topically active drugs to the skin over a period of time. Topically active drugs, as that term is used in this specification and the appended claims, are agents which primarily cause a pharmacological or physiological response at or near the site of their application. They are to be distinguished from systemically active drugs which are transported from their site of application by the recipients circulatory system or lymphatic system, to cause a pharmacologic or physiologic response at a remote site in the body.
A large number of locally acting drugs are available to treat skin disorders or other conditions which manifest themselves in a manner such that they are susceptible to treatment via the skin. These drugs can be broadly classified as astringents, irritants, sclerosing agents, caustics, melanizing and demelanizing agents, keratolytics, mucolytics, antibacterials, anti-fungals, anti-inflammatories, antiporasitics, antiperspirants and deodorants, and the like. These drugs are conventionally topically administered to the skin with the active agent carried in the form of ointments, creams, salves, liniments, powders, dressings, and the like. The popularity of these types of formulations resides in the fact that it is quite easy to topically apply the agent to the skin in this manner. In most cases, however, it is not possible to determine how much of the preparation has been taken up or effectively administered to the skin since only non-uniform levels of the agent are available. A further undesirable feature is the unsightliness of these formulations which often discourage patients from using them during their waking hours of the day when they are most likely to be seen by others. Further, the preparations are subject to rub off onto clothing, thus causing much inconvenience and annoyance to the user.
In order to obviate some of these undesirable effects, it has been proposed to provide medicinal bandages wherein the absorbent portion to be applied to the area to be treated is further provided with drug material adhered thereto. The advantage of a bandage construction of this type, of course, resides in the elimination of the intermediate step of applying the drug. A further advantage is realized by the elimination of the possibility that the drug which is often in a liquid formulation will be lost by run-off or leakage. A significant disadvantage, however, also exists with these prior art devices for the administration of topically active drugs in that the amount of medication applied to the affected areas cannot be accurately controlled, nor is there any assurance that sufficient medication will be available for the duration of periods that it is required.
It has also been proposed to admix certain topical drugs in the adhesive materials of bandages to treat various skin conditions with improved convenience; see for example British Pat. No. l,2l6,908. Further, it is known that medicaments can be incorporated into certain types of crushable microcapsules which are then incorporated in bandages; see for example Goldfarb US. Pat. No. 3,464,4l3. The microcapsules, however, merely function as drug carriers releasing the drug by rupture of the microcapsules. Therefore, these bandages are not suitable for continuously controlling the dosage of the drug administered, which is a most desirable objective of drug therapy.
SUMMARY OF THE INVENTION Accordingly, an object of this invention is to provide a bandage for the improved continuous administration of predetermined controlled quantities of topically active drugs to the skin over a period of time.
In accomplishing these objects, this invention in its broadest aspects resides in a medicated bandage for the continuous administration of controlled quantities of topically active drugs to the skin of a patient by direct application to the affected skin area. The bandage is comprised of a laminate of: l a backing member defining one face surface of the bandage; (2) a pressure-sensitive adhesive adapted for contact with the skin or mucosa, the external surface of said pressuresensitive adhesive defining the other face surface of the bandage and disposed between the face surfaces defined by l) and (2); (3) at least one reservoir comprised of a topically active drug formulation confined within a wall member, said wall member being formed from drug release rate controlling material to continuously meter the flow of drug from the said reservoir to the skin or mucosa at a controlled and predetermined rate over a prolonged period of time.
The termreservoir as used herein refers both to microcapsules as well as distinct reservoir compartments or matrix layers.
An embodiment of the invention described above resides in a bandage comprised of a laminate of: (l) a backing member; bearing (2) a discrete middle reservoir layer containing a topically active therapeutic agent confined within a wall member, said wall member being formed from drug release rate controlling material permeable to the passage of agent, to continuously meter the flow of a therapeutically effective amount of the agent to the skin from the reservoir at a controlled and predetermined rate over a period of time; and (3) a pressure-sensitive adhesive surface adapted for contact with the skin and positioned on one wall of the reservoir remote from the backing member.
Another aspect of this invention resides in a bandage as described immediately above including a solubility membrane interposed between the wall of the reservoir and the pressure-sensitive adhesive layer.
Still, another embodiment of this invention resides in a medicated adhesive bandage comprising a laminate of: l a backing member; bearing (2)'a pressure-sensitive adhesive on one surface thereof adapted for contact with the skin, said pressure-sensitive adhesive having distributed therethrough, (3) a plurality of discrete microcapsules, each of which microcapsules comprise a topically active therapeutic agent confined within a wall member, the wall member being formed from drug release rate controlling material, to continuously meter the flow of a therapeutically effective amount of the agent to the skin from the microcapsules at a controlled and predetermined rate over a period of time.
Other objects, features and advantages of the invention will become more apparent from the following description when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS In the drawings:
FIG. 1 is a perspective view of the medical adhesive bandage of the invention wherein the topically active agent is microencapsulated with a material permeable to the passage of those agents and the microcapsules are uniformly distributed throughout the pressure-sensitive adhesive coating;
FIG. 2 is a cross-sectional view of the bandage of the invention shown in FIG. 1;
FIG. 3 is a cross-sectional view of another embodiment of the invention wherein the topically active agent is uniformly distributed throughout a matrix of material permeable to the passage of those agents and the material is laminated to a backing member. The matrix material which acts as a reservoir for the agent bears a coating of the pressure-sensitive adhesive thereon;
FIG. 4 is a cross-sectional view of still another embodiment of the invention wherein the adhesive bandage of the invention is comprised of a backing member having a reservoir on one surface thereof of topically active agent uniformly distributed throughout a matrix of material permeable to passage of agent, and on the surface of the reservoir remote from the backing member bearing a pressure-sensitive adhesive coating. A solubility membrane is interposed between the reservoir layer and the pressure-sensitive adhesive coating;
FIG. 5 is a cross-sectional view of another embodiment of the invention wherein the reservoir laminated to the backing member is a hollow container permeable to passage of agent and having the agent confined within the interior chamber thereof.
DETAILED DESCRIPTION OF THE INVENTION In accordance with this invention there is provided a v medicated bandage containing a topically active drug therein for the predetermined controlled metering of the flow of topically active drugs to the skin over a period of time.
FIG. 1 illustrates an adhesive tape 10 of the invention including a backing member 11 bearing a pressure-sensitive adhesive coating 12 on one surface thereof. Ad-. hesive coating 12 has uniformly distributed therethrough microcapsules 13 of topically active agent encapsulated with a material permeable to passage of the drug.
Materials used to encapsulate the drug and form the microcapsules to be distributed throughout the adhependent on the particular drug used in the bandage. By varying the encapsulating material and the wall thickness, the dosage rate per area of bandage can be controlled and movement of drug to the adhesive regulated.
Suitable materials for use in encapsulating the drug include hydrophobic polymers such as polyvinylchloride either unplasticized or plasticized with long-chain fatty amides or other plasticizer; plasticized nylon; unplasticized soft nylon; silicone rubber; polyethylene, and polyethylene terephthalate; and hydrophilic polymers such as esters of acrylic and methacrylic acid (as described in US. Pat. Nos. 2,976,576 and 3,220,960 and Belgian Pat. No. 701,813); modified collagen; cross-linked hydrophilic polyether gels (as described in US. Pat. No. 3,419,006); cross-linked polyvinylalcohol; and crosslinked partially hydrolyzed polyvinylacetate.
To provide the microcapsules, the encapsulating material can be uniformly impregnated with the drug to form microcapsules which are a matrix having the drug distributed therethrough. Alternatively, particles of drug can be encapsulated with thin coatings of the encapsulating material to form microcapsules having an interior chamber containing the drug. If desired, parti cles of a matrix, such as starch, gum acadia, gum tragacanth, and polyvinylchloride, can be impregnated with the drug and encapsulated with other materials such as the encapsulating materials previously described which function as a solubility membrane to .meter the flow of drug to the adhesives; use of a matrix and a different solubility membrane coating can slow the passage of the drug from the microcapsules which is desirable with drugs that are released too rapidly from available encapsulating materials.
Airy of the encapsulation or impregnation techniques known in the art can be used to prepare the microcapsules to be incorporated into the pressure-sensitive adhesive in accord with the embodiment of FIGS. 1 and 2. Thus, the drug can be added to the encapsulating material in liquid form and uniformly distributed therethrough by mixing and subsequently converting to a solid by curing or cooling; or solid encapsulating material can be impregnated with a drug by immersion in a bath of the drug to diffuse into the material. Subsequently, the solid material can be reduced to fine microcapsules by grinding, each of the microcapsules comprising drug coated with and distributed throughout the encapsulating material. Alternatively, fineparticles of the drug can be encapsulated with the coating. One suitable technique comprises suspending dry particles of the drug in an air stream and contacting that stream with a stream containing the encapsulating material to coat the drug particles. Usually, the microcapsules have an average particle size of from I to l ,000 microns, although this is not critical to the invention.
Further embodiments of the adhesive bandage of the invention are illustrated in FIGS. 3, 4 and 5. As illustrated in FIG. 3, adhesive bandage 20 of the invention is comprised of topically active agent 24 uniformly distributed in a reservoir 22 which is a polymeric matrix material. The matrix material is laminated to backing member 21 and bears a pressure-sensitive adhesive coating 23 thereon. The polymeric matrix material has a release rate for the particular drug used which continuously controls the releasing drug.
FIG. 4 illustrates a further modified form of the invention wherein the adhesive bandage 30 of the invention is comprised of a backing member 21 having a reservoir 32 on one surface thereof. A solubility member 35 is interposed between the reservoir 32 and a pressure-sensitive adhesive coating 23. Topically active agent 24 is confined in polymeric matrix material 32 which acts as the reservoir for the drug.
FIG. 5 illustrates a further form of the bandage 40 including a backing member 21 and a reservoir 42 in the form of a hollow container having an interior chamber 43 containing topically active agent 34. Wall 45 of reservoir 42, remote from backing member 21, is permeable to passage of drug 34, as by diffusion, to meter the flow of drug to pressure-sensitive adhesive layer 23 on the outer surface thereof. This form of the bandage is less preferred since it cannot conveniently be cut to fit precisely the size of skin lesions to which applied. However, it is satisfactory for application to large areas of skin.
Suitable materials for forming the reservoir, whether of the matrix or hollow container type, are those materials permeable to passage of the drug previously described as suitable encapsulating materials. The reservoir can be formed by molding into the form of a hollow container with the drug trapped therein. Alternatively, the reservoir can bein the form of an envelope formed from sheets of polymeric material permeable to passage of the drug and enclosing the drug. While the walls of the reservoir can be of any convenient thickness, usually they have a thickness of from 0.01 to 7 millimeters. When the reservoir comprises a matrix with the drug distributed therethrough, it can be prepared by adding the drug to the matrix material in liquid form or solvent solution form and subsequently converting the matrix to a solid by curing, cooling or evaporation of solvent.
Thus, the reservoir of the bandage is a hollow drug container or a solid matrix. Drug is metered from the reservoir to the adhesive layer, at a rate controlled by the composition and thickness of the reservoir or of the reservoir wall. From the adhesive layer, drug is directly transmitted to the skin to which the bandage is applied.
In the embodiment of the invention illustrated in FIG. 4, metering of the drug from the reservoir to the adhesive is further controlled by interposing a further solubility membrane therebetween. The solubility membrane is formed ofa material in which the drug is soluble and capable of diffusing through. Any of the materials previously mentioned for use in microencapsulation may be used as the solubility membrane. Of course, in each instance, the solubility membrane will have different characteristics than the reservoir wall of the particular device. This use of a pair of solubility membranes, that is, the reservoir wall and the further solubility membrane, allows for precise metering of drug to the adhesive layer; for the thickness and composition of both membranes can be varied to provide for wide range of dosage levels for a given area of bandage. It will be appreciated that this solubility membrane can be used with either the matrix or container type of reservoir.
In practicing this invention one can employ a wide variety of topically active drugs consistent with their known dosages and uses. Suitable drugs include, without limitation: Antiperspirants, e.g. aluminum chloride; Deodorants, e.g. hexachlorophene, methylbenzethonium chloride; Astringents, e.g. tannic acid; Irritants, e.g. methyl salicylate, camphor, cantharidin; Keratolytics, e.g. benzoic acid, salicylic acid, resorcinol, iodochlorhydroxyguin; Antifungal Agents such as tolnaftate, griseofulvin, nystatin and amphotericin; Anti-Inflammatory Agents, such as corticosteroids, e.g. hydrocortisone, hydrocortisone acetate, prednisolone, methylprednisolone, triamcinolone acetonide, fluidrocortisone, flurandrenolone, fiumethasone, dexamethasone sodium phosphate, bethamethasone valerate, fluocinolone acetonide; fluorometholone; and pramoxine HCl; and Antibacterial Agents, such as bacitracin, neomycin, erythromycin, tetracycline HCI, chlortetracycline HCI, chloramphenicole, oxytetracycline, polymyxin B, nitrofurazone, mafenide (aamino-p-toluenesulfonamide), hexachlorophene, benzalkonium chloride, cetalkonium chloride, methylbenzethonium chloride, and neomycin sulfate.
In addition to the aforementioned drugs, simple pharmacologically acceptable derivatives of the drugs, such as ethers, esters, amides, acetals, salts, etc., or formulations of these drugs, having the desired polymeric permeability or transport properties can be prepared and used in practicing the invention. Drugs mentioned above can be used alone or in combination with others and each other.
The amount of topically active agent to be incorporated in the bandage to obtain the desired therapeutic effect will vary depending upon the desired dosage, the permeability of the polymeric materials of the bandage which are employed to the particular agent to be used, and the length of time the bandage is to remain on the skin. The effective rate or release of the active agent to the skin can be in the range of from 0.5 to 1,000 micrograms per square centimeter of bandage per day. The exact amount will depend on the desired dosage as well as the area of the skin to be treated. These effective rates of release of active agent to the skin can be obtained by altering the permeability and thickness of the release rate controlling barrier. In the case of the microencapsulated active agent, the release rate can also be controlled by varying the number of microcapsules present in a given volume of the matrix of the device. This is a particular desirable feature of this aspect of the invention. Additionally, the duration of action of the device can be altered by controlling the amount of active agent initially incorporated consistent with the release rate. Further, the release rate of drug as well as the duration of release of the drug from the device can be predetermined to be in consonance with the optimum therapeutic values. Once this dosage level in micrograms per square centimeter of bandage has been determined, the total amount of drug to be incorporated in the bandage can be established by obtaining the release rate of the agent in the particular material or materials which are to be used.
Those skilled in the art can readily determine the rate of permeation of agent through a polymeric material or selected combinations of polymeric materials. One method that has been found to be eminently well suited is to cast or hot press a film of the material to a thickness in the range of 2 to 60 mils. The film is used as a barrier between a rapidly stirred (e.g. 150 r.p.m.) saturated solution of the drug containing excess solid drug (or a concentrated solution of the drug) and a rapidly stirred solvent bath, both maintained at :constant temperature (typically 37 C). Samples are periodically withdrawing from the solvent bath and analyzed for drug concentration. By plotting drug concentration in the solvent bath versus time, the permeability constant P of the membrane is determined by the Ficks First Law of Diffusion.
Slope of plot Q, Q /t z =p (AC/h) I wherein Q' cumulative amount of drug in solvent in micrograms at t Q cumulative amount of drug in solvent in microgram at 1 t, elapsed time to first sample i.e. Q
t elapsed time to second sample i.e. Q
A area of membrane in cm C saturation concentration of drug in solution h thickness of membrane in cm.
By determining the slop of the plot i.e. Q Q /t t and solving the equation using the known or measured values of A, C, and h, the permeability P constant in cm /time of the material or membrane for a given compound is readily determined. Of course, this permeability constant is an inherent characteristic of the material for a given compound.
Using the above technique, the permeability constant P of hydrocortisone from isotonic solution through different membranes into isotonic solution at 37 C was found to be:
Membrane Permeability Constant (cm lhr) Silicone Rubber 835 Aromatic Polyamide 2 Down Corning- HH07l7 2 Allied Chemical Capran Using the abovetechnique and data, the permeability constant P for a select membrane and drug can be determined. These data can then be employed to design a device of the invention to release the agent to the skin in the desired dosage range. Similarly, this experimental procedure or others known to those skilled in the art can be used to determine release rates for the suitable polymeric materials as above disclosed in order to design the bandage of this invention.
Other methods of the determining passage of drugs by diffusion through drug permeable polymeric material are available. See Dziuk, P. J. and Cook, 3., Passage of Steroids Through Silicone Rubbers, Endocrinology, 78:208, 1966; U.S. Pat. No. 3,279,996; Folkman and Edmonds, Circulation Research 10:632, l962; Folkman and Long, J. Surg. Res. 432139, 1964; Powers, J. Parasitology 51 :53 April, 1965), No. 2 Section 2.
Any of the well-known dermatologically acceptable permeable pressure-sensitive adhesives which permit drug migration can be used in practicing this invention. Exemplary adhesives include acrylic or methacrylic resins such as polymers of esters of acrylic or methacrylic acid with alcohols such as n-butanol, npentanol, isopentanol, 2-methyl butanol, l-methyl butanol, l-methyl pentanol, 2-methyl pentanol, 3-methyl pentanol, 2-ethyl butanol, isooctanol, n-decanol, or ndodecanol, alone or copolymerized with ethylenically unsaturated monomers such as acrylic acid, methacrylic acid, acrylamide, methacrylamide, N-alkoxymethyl acrylamides, N-alkoxymethyl methacrylamides, N-tert. butylacrylamide, itaconic acid, vinylacetate, N- branched alkyl maleamic acids wherein the alkyl group has l0 to 24 carbon atoms, glycol diacrylates, or mixtures of these; natural or synthetic rubbers such as silicone rubber, styrene-butadiene, butyl-ether, neoprene, polyisobutylene, polybutadiene, and polyisoprene; polyurethane elastomers; vinyl polymers, such as polyvinylalcohol, polyvinyl ethers, polyvinyl pyrrolidone, and polyvinylacetate; ureaformaldehyde resins; phenolformaldehyde resins; resorcinol formaldehyde resins; cellulose derivatives such as ethyl cellulose, methyl cellulose, nitrocellulose, cellulose acetatebutyrate, and carboxymethyl cellulose; and natural gums such as guar, acacia, pectins, starch, dextrin, albumin, gelatin, casein, etc. The adhesives may be compounded with tackifiers and stabilizers as is well known in the art.
Various occlusive and non-occlusive, flexible or nonflexible backing members can be used inthe adhesive bandageof the invention. Suitable backings include cellophane, cellulose acetate, ethylcellulose plasticized vinylacetate-vinylchloride copolymers, polyethylene terephthalate, nylon, polyethylene,
polypropylene, polyvinylidenechloride, paper, cloth, and aluminum foil. Preferably, a flexible occlusive backing is employed to conform to the shape of the body member to which the adhesive tape is applied and to enhance administration of the agent to the skin.
To prevent passage of the drug away from the exposed surface of the pressure-sensitive adhesive prior to use, the adhesive surface of the tape generally is covered with a protective release film or foil, such as waxed paper. Alternatively, the exposed rear surface of the backing member can be coated with a low-adhesion backsize and the bandage rolled about itself. To enhance stability of the active compounds, the therapeutic bandage usually is packaged between hermetically sealed polyethylene terephthalate films under an inert atmosphere, such as gaseous nitrogen.
To use the adhesive bandage of the invention, it is applied directly to skin, to release a therapeutically effective amount of the agent to the affected area. By use of this invention, one ensures that an accurately measured quantity of the active drug is available when the bandage is applied to the skin.
The following examples will serve to illustrate the invention without in any way being limiting thereon.
EXAMPLE I Z-hydroxyethyl methacrylate (100 grams) is diluted with water (100 grams) and mixed with tertiary butyl peroctoate (0.20 gram). Ethylene glycol dimethacrylate (0.20 gram) is added along with 4 grams of sodium bicarbonate as a foaming agent. The mixture is heated to C under an atmosphere of nitrogen and the resulting solid, friable polymeric foam is ground into fine powder of 20 micron average particle size. The polymeric powder (10 grams) is mixed with neomycin (2 grams) dissolved in a mixture of ethyl alcohol: water (50:50) and the resultant mixture placed on a mechanical roller until the polymeric powder has absorbed the drug. The solution is then filtered.
The resulting microcapsules of neomycin are mixed with 100 grams of a 22 percent solution in hexane: isopropylacetate (70:30) of a viscoelastic copolymer of isooctyl acrylate and acrylic acid (94:6) adhesive to uniformly distribute the microcapsules throughout the adhesive solution. The resulting slurry is coated onto a cellophane sheet 10 centimeters in width by 100 centimeters in length and the solvent removed by evaporation from the coated film.
When applied to the infected skin area of a subject, the resulting bandage is effective to control the continuous administration of a daily therapeutically effective dosage of neomycin to the skin.
EXAMPLE ll Liquid dimethyl silicone polymeric rubber 100 grams, Dow-Corning Silastic) is mixed with 5 grams of nitrofurazone. After uniformly mixing the drug with unvulcanized silicone rubber, 0.5 gram of stannous octoate catalyst is added and the rubber cured at room temperature. The resulting silicone rubber body is reduced to an average particle size of 100 microns. Pressure-sensitive adhesive composition is prepared by adding to 100 milliliters of hexane the following:
grams of polyvinylethyl ether (reduced visosity= 5.0 i 0.5)
4 grams of polyvinylethylether (reduced viscosity= 0.3 i 0. l
4 grams of glycerol ester of hydrogenated rosin and 2 grams polyethylene glycol 400 Ten grams of the resulting nitrofurazone capsules are mixed with pressure-sensitive adhesive prepared above to uniformly distribute the microcapsules throughout the adhesive. Immediately thereafter, the adhesive mixture is coated onto one surface of a 1,000 square centimeter Mylar sheet. The resulting bandage can be used for control of skin infections.
EXAMPLE lll Ten milligrams of betamethasone is placed on a sheet of dimethyl silicone rubber having a thickness of 0.13 millimeters. The sheet is folded to provide a surface area of 100 square centimeters on each face and the flaps sealed with silicone adhesive to provide a thin envelope containing the drug.
Pressure-sensitive adhesive is prepared by mixing together, 90 grams of polyacrylate solution (ethylacetate: hexane/5:1) containing percent nonvolatile matter, (obtained by the catalytic polymerization of isoamylacrylatc and acrylic acid in the ratio of 95:5 in ethylacetatc and then diluting with hexane), 5 grams polyvinylethylether (reduced viscosity= 0.3 i 0.1), l gram castor oil (USP) and 4 grams polyethyleneglycol 400.
One face surface of the envelope is bonded to a sheet of cellophane while the other is coated with adhesive prepared above to a thickness of2 millimeters. The adhesive face surface of the bandage has an area of 100 square centimeters. The bandage is effective to release a therapeutically effective daily dosage of the drug when applied to the skin for control of psoriasis.
Thus, this invention provides a reliable and easy to use device for administering topically active drugs directly to the skin. Uncertainties resulting from topical application of these agents, from creams and solutions, are not encountered; and a precisely determined amount of the drug is applied in a controlled manner.
Although the product of this invention has been referred to as an adhesive bandage, those skilled in the art will appreciate that the term adhesive bandage as used herein includes any product having a backing member and a pressure-sensitive adhesive face surface. Such products can be provided in various sizes and configurations, including tapes, bandages, sheets, plasters, and the like.
While there have been shown and described and pointed out the fundamental novel features of the invention as applied to the preferred embodiment, it will be understood that various omissions and substitutions and changes in the form and details of the adhesive tape illustrated may be made by those skilled in the art without departing from the spirit of the invention. It is the intention, therefore, to be limited only as indicated by the scope of the following claims.
What is claimed is:
l. A medical bandage for the continuous administration to the skin or mucosa of controlled quantities of topically active drugs over a prolonged period of time, said bandage comprising a laminate of (1) a backing member defining one face surface of the bandage; (2) a pressure-sensitive adhesive adapted for contact with the skin or mucosa, the external surface of said pressure-sensitive adhesive defining the other face surface of the bandage and disposed between the face surfaces defined by (l) and (2); (3) at least one reservoir comprised of a topically active drug formulation confined within a wall member, said wall member being formed from drug release rate controlling material to continuously meter the flow of drug from the said reservoir to the skin or mucosa at a controlled and predetermined rate over a prolonged period of time.
2. The medical bandage of claim 1, wherein said bandage comprises a laminate of: (l) a backing member; bearing (2) a pressure-sensitive adhesive on one surface thereof adapted for contact with the skin, said pressure-sensitive adhesive having distributed therethrough; (3) a plurality of discrete microcapsules, each of which microcapsules comprises a topically active drug formulation confined within a wall member, said wall member being formed from drug release rate controlling material to continuously meter the flow of a therapeutically effective amount of the drug in the skin through the wall of said microcapsules at a controlled and predetermined rate over a period of time.
3. The bandage as defined by claim 2, wherein each of said microcapsules (3) is comprised of topically active drug formulation microencapsulated with the drug release rate controlling material.
4. The bandage as defined by claim 2, wherein each of said microcapsules (3) is comprised of a matrix of the drug release rate controlling wall material, said matrix having the topically active drug formulation distributed therethrough.
5. The bandage as defined by claim 2, wherein the drug formulation includes a pharmacologically acceptable solvent.
6. The medical bandage of claim 1, wherein said bandage comprises a laminate of: (l) a backing member; bearing (2) a discrete, middle reservoir layer, which reservoir layer is comprised of topically active drug formulation confined within a wall member, said wall member being formed from drug release rate controlling material to continuously meter the flow of a therapeutically effective amount of the drug to the skin through the wall at a controlled and predetermined rate over a period of time; and (3) a pressure-sensitive adhesive adapted for contact with the skin and carried by the reservoir remote from the backing member.
7. The bandage as defined by claim 6, wherein the reservoir layer (2) is comprised of a walled container having an interior chamber containing the topically active drug formulation.
8. The bandage as defined by claim 6, wherein the reservoir layer (2) is comprised of a matrix of the drug release rate controlling wall material, said matrix having the topically active drug formulation distributed therethrough.
9. The bandage as defined by claim 6, wherein the drug formulation includes a pharmacologically acceptable solvent.
10. The bandage as defined by claim 6, further comprising a solubility membrane (4) interposed between said reservoir layer (2) and said surface of pressuresensitive adhesive (3).
11. The bandage as defined by claim 2, wherein the rate release controlling material is silicone rubber.
12. The bandage as defined by claim 6, wherein the rate release controlling material is silicone rubber.
13. The bandage as defined by claim 2, wherein the rate release controlling material is a hydrophilic polymer of an ester of an olefinic acid.
14. The bandage as defined by claim 6, wherein the rate release controlling material is a hydrophilic polymer of an ester of an olefinic acid.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,731, 3 Dated May 8l975 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 3, lines 33, 34, and 35, "...agent, and on the surface of the reservoir remote from the backing member bearing a..." should read ...a ent, and bearing on the surface of the reservoir remote rom the backing member a.
Column 4, line 27, "acadia" should read -acacia-; Column 5, line 7, "member" should read --membrane--; Column 5, line 54, add after "and" and before "capable" the following: -through which the drug is-; same column and line, delete the word "through" after the word "diffusing"; Column 7, line 8, "withdrawing" should read --withdrawn-. I
' Signed and sealed this 17th day of September 1974.
(SEAL) Attest:
McCOY M. GIBSON JR. C. MARSHALL DANN Attesting Officer Commissioner of Patents USCOMM-DC 60376-P69 u 5. GOVERNMENT PRINTING OFFICE: I969 o-aes-aaa FORM O-1050 (10-69]
Claims (12)
- 2. The medical bandage of claim 1, wherein said bandage comprises a laminate of: (1) a backing member; bearing (2) a pressure-sensitive adhesive on one surface thereof adapted for contact with the skin, said pressure-sensitive adhesive having distributed therethrough; (3) a plurality of discrete microcapsules, each of which microcapsules comprises a topically active drug formulation confined within a wall member, said wall member being formed from drug release rate controlling material to continuously meter the flow of a therapeutically effective amount of the drug in the skin through the wall of said microcapsules at a controlled and predetermined rate over a period of time.
- 3. The bandage as defined by claim 2, wherein each of said microcapsules (3) is comprised of topically active drug formulation microencapsulated with the drug release rate controlling material.
- 4. The bandage as defined by claim 2, wherein each of said microcapsules (3) is comprised of a matrix of the drug release rate controlling wall material, said matrix having the topically active drug formulation distributed therethrough.
- 5. The bandage as defined by claim 2, wherein the drug formulation includes a pharmacologically acceptable solvent.
- 6. The medical bandage of claim 1, wherein said bandage comprises a laminate of: (1) a backing member; bearing (2) a discrete, middle reservoir layer, which reservoir layer is comprised of topically active drug formulation confined within a wall member, said wall member being formed from drug release rate controlling material to continuously meter the flow of a therapeutically effective amount of the drug to the skin through the wall at a controlled and predetermined rate over a period of time; and (3) a pressure-sensitive adhesive adapted for contact with the skin and carried by the reservoir remote from the backing member.
- 7. The bandage as defined by claim 6, wherein the reservoir layer (2) is comprised of a walled container having an interior chamber containing the topically active drug formulation.
- 8. The bandage as defined by claim 6, wherein the reservoir layer (2) is comprised of a matrix of the drug release rate controlling wall material, said matrix having the topically active drug formulation distributed therethrough.
- 9. The bandage as defined by claim 6, wherein the drug formulation includes a pharmacologically acceptable solvent.
- 10. The bandage as defined by claim 6, further comprising a solubility membrane (4) interposed between said reservoir layer (2) and said surface of pressure-sensitive adhesive (3). 11. The bandage as defined by claim 2, wherein the rate release controlling material is silicone rubber.
- 12. The bandage as defined by claim 6, wherein the rate release controlling material is silicone rubber.
- 13. The bandage as defined by claim 2, wherein the rate release controlling material is a hydrophilic polymer of an ester of an olefinic acid.
- 14. The bandage as defined by claim 6, wherein the rate release controlling material is a hydrophilic polymer of an ester of an olefinic acid.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15008571A | 1971-06-04 | 1971-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3731683A true US3731683A (en) | 1973-05-08 |
Family
ID=22533069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00150085A Expired - Lifetime US3731683A (en) | 1971-06-04 | 1971-06-04 | Bandage for the controlled metering of topical drugs to the skin |
Country Status (1)
Country | Link |
---|---|
US (1) | US3731683A (en) |
Cited By (294)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870041A (en) * | 1973-08-16 | 1975-03-11 | Btr Industries Ltd | Surgical dressings |
US3900027A (en) * | 1974-01-02 | 1975-08-19 | Pall Corp | Process for preparing integral absorbent pad bandages and product |
US3972995A (en) * | 1975-04-14 | 1976-08-03 | American Home Products Corporation | Dosage form |
US4031894A (en) * | 1975-12-08 | 1977-06-28 | Alza Corporation | Bandage for transdermally administering scopolamine to prevent nausea |
US4039653A (en) * | 1974-01-23 | 1977-08-02 | Defoney, Brenman, Mayes & Baron | Long-acting articles for oral delivery and process |
US4060084A (en) * | 1976-09-07 | 1977-11-29 | Alza Corporation | Method and therapeutic system for providing chemotherapy transdermally |
FR2368962A1 (en) * | 1976-11-02 | 1978-05-26 | Merck Patent Gmbh | ANTI-BACTERIAL DRESSING AND ITS MANUFACTURING PROCESS |
US4201211A (en) * | 1977-07-12 | 1980-05-06 | Alza Corporation | Therapeutic system for administering clonidine transdermally |
US4226232A (en) * | 1979-04-09 | 1980-10-07 | Spenco Medical Corporation | Wound dressing |
US4289749A (en) * | 1979-08-14 | 1981-09-15 | Key Pharmaceuticals, Inc. | Polymeric diffusion matrix containing phenylpropanolamine |
US4291014A (en) * | 1979-01-11 | 1981-09-22 | Key Pharmaceuticals, Inc. | Polymeric diffusion matrix containing estradiol diacetate |
US4329333A (en) * | 1980-11-24 | 1982-05-11 | Arthur Barr | Method for the oral treatment of dogs and other animals |
US4336243A (en) * | 1980-08-11 | 1982-06-22 | G. D. Searle & Co. | Transdermal nitroglycerin pad |
US4340043A (en) * | 1978-11-17 | 1982-07-20 | Smith & Nephew Research Ltd. | Adhesive-coated sheet material incorporating anti-bacterial substances |
DE3208853A1 (en) * | 1981-03-13 | 1982-09-23 | Nitto Electric Industrial Co., Ltd., Ibaraki, Osaka | METHOD FOR PRODUCING A COMPARATIVE PHARMACEUTICAL PREPARATION |
US4363319A (en) * | 1980-06-30 | 1982-12-14 | Applied Medical Devices, Inc. | Ready-to-use bandage incorporating a coagulant composition and method of preparing same |
US4373519A (en) * | 1981-06-26 | 1983-02-15 | Minnesota Mining And Manufacturing Company | Composite wound dressing |
US4379454A (en) * | 1981-02-17 | 1983-04-12 | Alza Corporation | Dosage for coadministering drug and percutaneous absorption enhancer |
US4390520A (en) * | 1980-10-30 | 1983-06-28 | Nitto Electric Industrial Co., Ltd. | Antiphlogistic analgesic adhesive |
US4455146A (en) * | 1979-04-03 | 1984-06-19 | Hisamitsu Pharmaceutical Co., Ltd. | Novel plasters |
WO1984002460A1 (en) * | 1982-12-28 | 1984-07-05 | Dermatec Ltd | Sebum collection and monitoring means |
US4460372A (en) * | 1981-02-17 | 1984-07-17 | Alza Corporation | Percutaneous absorption enhancer dispenser for use in coadministering drug and percutaneous absorption enhancer |
US4563184A (en) * | 1983-10-17 | 1986-01-07 | Bernard Korol | Synthetic resin wound dressing and method of treatment using same |
US4594240A (en) * | 1982-09-10 | 1986-06-10 | Teikoku Seiyaku Kabushiki Kaisha | Sheet-shape adhesive preparation |
US4597961A (en) * | 1985-01-23 | 1986-07-01 | Etscorn Frank T | Transcutaneous application of nicotine |
US4614787A (en) * | 1984-11-13 | 1986-09-30 | Thermedics, Inc. | Drug dispensing wound dressing |
US4631227A (en) * | 1982-12-08 | 1986-12-23 | Kenji Nakamura | Toilet article |
WO1987000042A1 (en) * | 1985-07-02 | 1987-01-15 | Rutgers, The State University Of New Jersey | Transdermal verapamil delivery device |
US4638043A (en) * | 1984-11-13 | 1987-01-20 | Thermedics, Inc. | Drug release system |
US4655767A (en) * | 1984-10-29 | 1987-04-07 | Dow Corning Corporation | Transdermal drug delivery devices with amine-resistant silicone adhesives |
US4666441A (en) * | 1985-12-17 | 1987-05-19 | Ciba-Geigy Corporation | Multicompartmentalized transdermal patches |
WO1987003477A1 (en) * | 1985-12-12 | 1987-06-18 | Flexcon Company, Inc. | Transdermal methods and adhesives |
EP0236266A1 (en) * | 1986-02-14 | 1987-09-09 | Ciba-Geigy Ag | Dermal and transdermal therapeutic system having a discontinuous-pattern adhesive layer and method of manufacturing thereof |
US4727868A (en) * | 1984-11-13 | 1988-03-01 | Thermedics, Inc. | Anisotropic wound dressing |
DE3629304A1 (en) * | 1986-08-28 | 1988-03-24 | Lohmann Gmbh & Co Kg | TRANSDERMAL THERAPEUTIC SYSTEM, ITS USE AND METHOD FOR THE PRODUCTION THEREOF |
US4743249A (en) * | 1986-02-14 | 1988-05-10 | Ciba-Geigy Corp. | Dermal and transdermal patches having a discontinuous pattern adhesive layer |
US4751133A (en) * | 1984-11-13 | 1988-06-14 | Thermedics, Inc. | Medical patches and processes for producing same |
EP0273004A2 (en) * | 1986-11-20 | 1988-06-29 | Ciba-Geigy Ag | User-activated therapeutical system |
US4830854A (en) * | 1987-12-18 | 1989-05-16 | James B. Copelan | Chemical splinter removal |
US4839174A (en) * | 1987-10-05 | 1989-06-13 | Pharmetrix Corporation | Novel transdermal nicotine patch |
US4844903A (en) * | 1986-11-07 | 1989-07-04 | Mepha Ag | Process for the production of an adhesive plaster |
USRE32991E (en) * | 1984-11-13 | 1989-07-18 | Thermedics, Inc. | Drug dispensing wound dressing |
US4879275A (en) * | 1987-09-30 | 1989-11-07 | Nelson Research & Development Co. | Penetration enhancers for transdermal delivery of systemic agent |
US4880690A (en) * | 1984-11-13 | 1989-11-14 | Thermedics, Inc. | Perfume patch |
US4889720A (en) * | 1986-09-01 | 1989-12-26 | Teikoku Seiyaku Kabushiki Kaisha | Sustained release dosage form for use with tissues of the oral cavity |
US4898920A (en) * | 1987-10-15 | 1990-02-06 | Dow Corning Corporation | Adhesive compositions, controlled release compositions and transdermal delivery device |
US4906475A (en) * | 1988-02-16 | 1990-03-06 | Paco Pharmaceutical Services | Estradiol transdermal delivery system |
US4908027A (en) * | 1986-09-12 | 1990-03-13 | Alza Corporation | Subsaturated transdermal therapeutic system having improved release characteristics |
US4920101A (en) * | 1987-09-30 | 1990-04-24 | Nelson Research & Development Co. | Compositions comprising 1-oxo- or thiohydrocarbyl substituted azacycloaklkanes |
US4943435A (en) * | 1987-10-05 | 1990-07-24 | Pharmetrix Corporation | Prolonged activity nicotine patch |
US4969871A (en) * | 1989-02-15 | 1990-11-13 | Alza Corporation | Intravenous system for delivering a beneficial agent |
US4973468A (en) * | 1989-03-22 | 1990-11-27 | Cygnus Research Corporation | Skin permeation enhancer compositions |
US4985016A (en) * | 1989-02-15 | 1991-01-15 | Alza Corporation | Intravenous system for delivering a beneficial agent |
US4991574A (en) * | 1987-07-22 | 1991-02-12 | Dow Corning Corporation | Surgical dressing |
US5004610A (en) * | 1988-06-14 | 1991-04-02 | Alza Corporation | Subsaturated nicotine transdermal therapeutic system |
US5034386A (en) * | 1986-01-31 | 1991-07-23 | Whitby Research, Inc. | Methods for administration using 1-substituted azacycloalkanes |
US5035894A (en) * | 1987-10-15 | 1991-07-30 | Dow Corning Corporation | Controlled release compositions and transdermal drug delivery device |
US5045059A (en) * | 1989-02-15 | 1991-09-03 | Alza Corporation | Intravenous system for delivering a beneficial agent |
US5053227A (en) * | 1989-03-22 | 1991-10-01 | Cygnus Therapeutic Systems | Skin permeation enhancer compositions, and methods and transdermal systems associated therewith |
US5059189A (en) * | 1987-09-08 | 1991-10-22 | E. R. Squibb & Sons, Inc. | Method of preparing adhesive dressings containing a pharmaceutically active ingredient |
US5059426A (en) * | 1989-03-22 | 1991-10-22 | Cygnus Therapeutic Systems | Skin permeation enhancer compositions, and methods and transdermal systems associated therewith |
US5124157A (en) * | 1989-08-18 | 1992-06-23 | Cygnus Therapeutic Systems | Method and device for administering dexmedetomidine transdermally |
US5173302A (en) * | 1990-09-28 | 1992-12-22 | Medtronic, Inc. | Hydrophilic pressure sensitive adhesive for topical administration of hydrophobic drugs |
US5176915A (en) * | 1989-03-14 | 1993-01-05 | Lts Lohmann | Plaster used as therapeutic system for the administration of active substances to the skin which exhibits a graduated active substance release, process for the production of the plaster and the use thereof |
US5204339A (en) * | 1986-01-31 | 1993-04-20 | Whitby Research, Inc. | Penetration enhancers for transdermal delivery of systemic agents |
US5230896A (en) * | 1989-10-12 | 1993-07-27 | Warner-Lambert Company | Transdermal nicotine delivery system |
US5250028A (en) * | 1989-02-15 | 1993-10-05 | Alza Corporation | Intravenous system for delivering a beneficial agent using permeability enhancers |
US5268179A (en) * | 1992-02-14 | 1993-12-07 | Ciba-Geigy Corporation | Ultrasonically sealed transdermal drug delivery systems |
US5298257A (en) * | 1987-05-01 | 1994-03-29 | Elan Transdermal Limited | Method for the treatment of withdrawal symptoms associated with smoking cessation and preparations for use in said method |
US5340585A (en) * | 1991-04-12 | 1994-08-23 | University Of Southern California | Method and formulations for use in treating benign gynecological disorders |
US5340586A (en) * | 1991-04-12 | 1994-08-23 | University Of Southern California | Methods and formulations for use in treating oophorectomized women |
US5342623A (en) * | 1986-09-12 | 1994-08-30 | Alza Corporation | Subsaturated transdermal therapeutic system having improved release characteristics |
US5422118A (en) * | 1986-11-07 | 1995-06-06 | Pure Pac, Inc. | Transdermal administration of amines with minimal irritation and high transdermal flux rate |
US5451407A (en) * | 1993-06-21 | 1995-09-19 | Alza Corporation | Reduction or prevention of skin irritation or sensitization during transdermal administration of a irritating or sensitizing drug |
US5508039A (en) * | 1991-10-18 | 1996-04-16 | Alza Corporation | Controlled transdermal administration of melatonin |
US5508038A (en) * | 1990-04-16 | 1996-04-16 | Alza Corporation | Polyisobutylene adhesives for transdermal devices |
US5512292A (en) * | 1990-10-29 | 1996-04-30 | Alza Corporation | Transdermal contraceptive formulations methods and devices |
US5536263A (en) * | 1994-03-30 | 1996-07-16 | Lectec Corporation | Non-occulusive adhesive patch for applying medication to the skin |
US5633009A (en) * | 1990-11-28 | 1997-05-27 | Sano Corporation | Transdermal administration of azapirones |
US5643596A (en) * | 1993-11-03 | 1997-07-01 | Clarion Pharmaceuticals, Inc. | Hemostatic patch |
US5747065A (en) * | 1993-09-29 | 1998-05-05 | Lee; Eun Soo | Monoglyceride/lactate ester permeation enhancer for oxybutynin |
US5785991A (en) * | 1995-06-07 | 1998-07-28 | Alza Corporation | Skin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate |
US5820876A (en) * | 1986-08-28 | 1998-10-13 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Transdermal therapeutic system |
US5840327A (en) * | 1995-08-21 | 1998-11-24 | Alza Corporation | Transdermal drug delivery device having enhanced adhesion |
US5900250A (en) * | 1992-05-13 | 1999-05-04 | Alza Corporation | Monoglyceride/lactate ester permeation enhancer for oxybutnin |
US5919478A (en) * | 1993-06-25 | 1999-07-06 | Alza Corporation | Incorporating poly-N-vinyl amide in a transdermal system |
WO1999040955A2 (en) * | 1998-02-12 | 1999-08-19 | Watson Pharmaceuticals, Inc. | Pressure sensitive adhesive matrix patch for the treatment of onychomycosis |
US6001390A (en) * | 1995-06-07 | 1999-12-14 | Alza Corporation | Formulations for transdermal delivery of pergolide |
US6110488A (en) * | 1986-08-28 | 2000-08-29 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Transdermal therapeutic system, its use and production process |
US6117448A (en) * | 1986-08-28 | 2000-09-12 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Transdermal therapeutic system, its use and production process |
US6121289A (en) * | 1998-10-09 | 2000-09-19 | Theramax, Inc. | Method for enhanced brain delivery of nicotinic antagonist |
US6126963A (en) * | 1986-08-28 | 2000-10-03 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Transdermal therapeutic system, its use and production process |
US6139868A (en) * | 1986-08-28 | 2000-10-31 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Transdermal therapeutic system, its use and production process |
US6183770B1 (en) * | 1999-04-15 | 2001-02-06 | Acutek International | Carrier patch for the delivery of agents to the skin |
US6203817B1 (en) | 1997-02-19 | 2001-03-20 | Alza Corporation | Reduction of skin reactions caused by transdermal drug delivery |
US6267984B1 (en) | 1997-12-22 | 2001-07-31 | Alza Corporation | Skin permeation enhancer compositions comprising a monoglyceride and ethyl palmitate |
US6300327B1 (en) | 1991-11-08 | 2001-10-09 | The University Of Southern California | Compositions and methods for potentiation of neurotrophin activity |
US6348210B1 (en) | 1998-11-13 | 2002-02-19 | Alza Corporation | Methods for transdermal drug administration |
US6469227B1 (en) | 1999-12-10 | 2002-10-22 | Lectec Corporation | Antipruritic patch |
US6479073B1 (en) * | 1996-10-07 | 2002-11-12 | 3M Innovative Properties Company | Pressure sensitive adhesive articles and methods for preparing same |
USRE37934E1 (en) | 1986-08-28 | 2002-12-10 | Lts Lohmann Therapie-Systeme Ag | Transdermal therapeutic system |
US6512010B1 (en) | 1996-07-15 | 2003-01-28 | Alza Corporation | Formulations for the administration of fluoxetine |
US20030107149A1 (en) * | 2001-10-12 | 2003-06-12 | International Fluidics. | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US6592892B1 (en) | 1999-08-30 | 2003-07-15 | Tepha, Inc. | Flushable disposable polymeric products |
US6660295B2 (en) | 1997-09-30 | 2003-12-09 | Alza Corporation | Transdermal drug delivery device package with improved drug stability |
US6699497B1 (en) | 1998-07-24 | 2004-03-02 | Alza Corporation | Formulations for the transdermal administration of fenoldopam |
US20040209907A1 (en) * | 2003-01-23 | 2004-10-21 | Richard Franklin | Formulation and methods for the treatment of thrombocythemia |
US20040234576A1 (en) * | 2003-05-08 | 2004-11-25 | Tepha, Inc., State Of Incorporation Delaware | Polyhydroxyalkanoate medical textiles and fibers |
US20040234585A1 (en) * | 1998-12-18 | 2004-11-25 | Gale Robert M. | Transparent transdermal nicotine delivery devices |
US20040258742A1 (en) * | 2003-04-11 | 2004-12-23 | Van Osdol William Woodson | Transdermal administration of N-(2,5-disubstituted phenyl)-N'-(3-substituted phenyl)-N'-methyl guanidines |
US20050002997A1 (en) * | 2003-04-30 | 2005-01-06 | Howard Stephen A. | Tamper resistant transdermal dosage form |
US20050025809A1 (en) * | 2003-07-08 | 2005-02-03 | Tepha, Inc. | Poly-4-hydroxybutyrate matrices for sustained drug delivery |
US20050037055A1 (en) * | 2002-04-11 | 2005-02-17 | Monosolrx Llc. | Polyethylene oxide-based films and drug delivery systems made therefrom |
US20050048104A1 (en) * | 1999-04-01 | 2005-03-03 | Venkatraman Subramanian S. | Transdermal drug delivery devices comprising a polyurethane drug reservoir |
US20050065062A1 (en) * | 2003-09-24 | 2005-03-24 | 3M Innovative Properties Company | Method of formulating a pharmaceutical composition |
US20050142475A1 (en) * | 2003-12-30 | 2005-06-30 | Moudry Ronald J. | Dry toner comprising encapsulated pigment, methods and uses |
US6974588B1 (en) | 1999-12-07 | 2005-12-13 | Elan Pharma International Limited | Transdermal patch for delivering volatile liquid drugs |
US20060008432A1 (en) * | 2004-07-07 | 2006-01-12 | Sebastiano Scarampi | Gilsonite derived pharmaceutical delivery compositions and methods: nail applications |
US20060009099A1 (en) * | 2004-07-12 | 2006-01-12 | Closure Medical Corporation | Adhesive-containing wound closure device and method |
US20060039958A1 (en) * | 2003-05-28 | 2006-02-23 | Monosolrx, Llc. | Multi-layer films having uniform content |
US20060058470A1 (en) * | 2004-08-03 | 2006-03-16 | Tepha, Inc. | Non-curling polyhydroxyalkanoate sutures |
US20060121103A1 (en) * | 2000-05-11 | 2006-06-08 | Kenneth Kirby | Transdermal delivery system |
EP1674068A1 (en) | 1996-02-19 | 2006-06-28 | Acrux DDS Pty Ltd | Dermal penetration enhancers and drug delivery systems involving same |
US20060147493A1 (en) * | 2002-07-22 | 2006-07-06 | Yang Robert K | Packaging and dispensing of rapid dissolve dosage form |
US20060287659A1 (en) * | 2003-08-22 | 2006-12-21 | Tepha, Inc. | Polyhydroxyalkanoate nerve regeneration devices |
US20070071740A1 (en) * | 2005-09-27 | 2007-03-29 | Bio-Tissue, Inc. | Purified amniotic membrane compositions and methods of use |
US20070071828A1 (en) * | 2005-09-27 | 2007-03-29 | Bio-Tissue, Inc. | Amniotic membrane preparations and purified compositions and anti-angiogenesis treatment |
US20070086958A1 (en) * | 2005-10-14 | 2007-04-19 | Medafor, Incorporated | Formation of medically useful gels comprising microporous particles and methods of use |
USRE39588E1 (en) | 1987-11-09 | 2007-04-24 | Alza Corporation | Transdermal drug delivery device |
WO2007062266A2 (en) | 2005-11-28 | 2007-05-31 | Marinus Pharmaceuticals | Ganaxolone formulations and methods for the making and use thereof |
US20070122455A1 (en) * | 2001-10-12 | 2007-05-31 | Monosolrx, Llc. | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
US20070149731A1 (en) * | 2001-10-12 | 2007-06-28 | Monosolrx, Llc. | PH modulated films for delivery of actives |
US20070154527A1 (en) * | 2001-10-12 | 2007-07-05 | Monosoirx, Llc | Topical film compositions for delivery of actives |
WO2007011763A3 (en) * | 2005-07-15 | 2007-07-12 | 3M Innovative Properties Co | Adhesive sheet and methods of use thereof |
US20070172515A1 (en) * | 2006-01-20 | 2007-07-26 | Monosolrx, Llc | Film bandage for mucosal administration of actives |
US20070190157A1 (en) * | 2006-01-20 | 2007-08-16 | Monosoirx, Llc. | Film lined packaging and method of making same |
US20070202245A1 (en) * | 2004-04-08 | 2007-08-30 | Gantner David C | Silicone Skin Adhesive Gels With Enhanced Adhesion To Plastic |
US7267829B2 (en) | 1998-07-07 | 2007-09-11 | Transdermal Technologies, Inc. | Compositions for rapid and non-irritating transdermal delivery of pharmaceutically active agents and methods for formulating such compositions and delivery thereof |
US20070237812A1 (en) * | 2006-04-11 | 2007-10-11 | Tyco Healthcare Group | Multi-layer wound dressings |
US20070258935A1 (en) * | 2006-05-08 | 2007-11-08 | Mcentire Edward Enns | Water dispersible films for delivery of active agents to the epidermis |
US20070259930A1 (en) * | 2006-04-10 | 2007-11-08 | Knopp Neurosciences, Inc. | Compositions and methods of using r(+) pramipexole |
US20070259029A1 (en) * | 2006-05-08 | 2007-11-08 | Mcentire Edward Enns | Water-dispersible patch containing an active agent for dermal delivery |
US20070281003A1 (en) * | 2001-10-12 | 2007-12-06 | Fuisz Richard C | Polymer-Based Films and Drug Delivery Systems Made Therefrom |
US20080014259A1 (en) * | 2006-05-16 | 2008-01-17 | Knopp Neurosciences, Inc. | Compositions of R(+) and S(-) Pramipexole and Methods of Using the Same |
US20080044454A1 (en) * | 2002-04-11 | 2008-02-21 | Monosolrx Llc | Uniform films for rapid dissolve dosage form incorporating taste-masking compositions |
WO2008021368A2 (en) | 2006-08-11 | 2008-02-21 | The Johns Hopkins University | Compositions and methods for neuroprotection |
US20080051490A1 (en) * | 1999-03-25 | 2008-02-28 | Williams Simon F | Medical Devices and Applications of Polyhydroxyalkanoate Polymers |
US20080057090A1 (en) * | 2006-09-01 | 2008-03-06 | Mcentire Edward Enns | Wrinkle masking film composition for skin |
US20080075825A1 (en) * | 2006-09-20 | 2008-03-27 | Fuisz Richard C | Edible Water-Soluble Film Containing a Foam Reducing Flavoring Agent |
US20080081071A1 (en) * | 2006-09-29 | 2008-04-03 | Pradeep Sanghvi | Film Embedded Packaging and Method of Making Same |
WO2008039218A2 (en) | 2006-09-22 | 2008-04-03 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
US20080085972A1 (en) * | 2006-10-05 | 2008-04-10 | O'brien Emmett Patrick | Switchable adhesive article for attachment to skin and method of using the same |
US7357891B2 (en) | 2001-10-12 | 2008-04-15 | Monosol Rx, Llc | Process for making an ingestible film |
US20080132602A1 (en) * | 2006-12-01 | 2008-06-05 | Tepha, Inc. | Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers |
WO2008066899A2 (en) | 2006-11-28 | 2008-06-05 | Marinus Pharmaceuticals | Nanoparticulate formulations and methods for the making and use thereof |
US20080160065A1 (en) * | 2006-07-12 | 2008-07-03 | Janet Anne Halliday | Drug delivery polymer with hydrochloride salt of clindamycin |
US20080227985A1 (en) * | 2007-03-14 | 2008-09-18 | Knopp Neurosciences, Inc. | Synthesis of chirally purified substituted benzothiazoles |
US20080260809A1 (en) * | 2002-04-11 | 2008-10-23 | Monosol Rx, Llc | Polyethylene oxide-based films and drug delivery systems made therefrom |
US20080260653A1 (en) * | 2004-05-06 | 2008-10-23 | Buttar Rashid A | Transdermal Delivery Systems and Transdermal Chelation Preparations |
US20090042956A1 (en) * | 2006-04-10 | 2009-02-12 | Knopp Neurosciences, Inc. | Compositions and methods of using (r)-pramipexole |
US20090054504A1 (en) * | 2006-12-14 | 2009-02-26 | Knopp Neurosciences, Inc. | Modified Release Formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and Methods of Using the Same |
WO2009035818A1 (en) | 2007-09-10 | 2009-03-19 | Calcimedica, Inc. | Compounds that modulate intracellular calcium |
US20090076542A1 (en) * | 2004-02-18 | 2009-03-19 | Jerry Jonn | Adhesive-Containing Wound Closure Device And Method |
US20090098069A1 (en) * | 2007-09-14 | 2009-04-16 | Drugtech Corporation | Transdermal, alcohol-free, pharmaceutical compositions |
US20090196911A1 (en) * | 2006-06-06 | 2009-08-06 | Loubert Gary L | Silicone Acrylate Hybride Composition and Method Of Making Same |
US20090286246A1 (en) * | 2008-05-07 | 2009-11-19 | Wintherix Llc | Methods for Identifying Compounds that Affect Expression of Cancer-Related Protein Isoforms |
US20090291120A1 (en) * | 2006-07-05 | 2009-11-26 | Jukka Tuominen | Hydrophilic Polyurethane Compositions |
US20090324692A1 (en) * | 2006-07-08 | 2009-12-31 | Controlled Therapeutics (Scotland) Limited | Polyurethane Elastomers |
US20100021526A1 (en) * | 2001-10-12 | 2010-01-28 | Monosol Rx, Llc | Ph modulated films for delivery of actives |
US20100055437A1 (en) * | 2008-08-28 | 2010-03-04 | Tyco Healthcare Group Lp | Anti-microbial fibers and related articles and methods |
WO2010027875A2 (en) | 2008-08-27 | 2010-03-11 | Calcimedica Inc. | Compounds that modulate intracellular calcium |
US20100068708A1 (en) * | 2008-05-07 | 2010-03-18 | Wintherix Llc | Methods for Identifying Compounds that Modulate WNT Signaling in Cancer Cells |
US20100121304A1 (en) * | 2008-11-10 | 2010-05-13 | Kimberly-Clark Worldwide, Inc. | Multifunctional Acrylate Skin-Adhesive Composition |
WO2010071866A2 (en) | 2008-12-19 | 2010-06-24 | Nuon Therapeutics, Inc. | Combination therapy for arthritis with tranilast |
US20110009460A1 (en) * | 2009-06-19 | 2011-01-13 | Valentin Gribkoff | Compositions and methods for treating amyotrophic lateral sclerosis |
US20110033542A1 (en) * | 2009-08-07 | 2011-02-10 | Monosol Rx, Llc | Sublingual and buccal film compositions |
US20110033541A1 (en) * | 2009-08-07 | 2011-02-10 | Monosol Rx, Llc | Sublingual and buccal film compositions |
US20110091488A1 (en) * | 2002-09-27 | 2011-04-21 | Controlled Therapeutics (Scotland) Limited | Water-swellable polymers |
US20110190356A1 (en) * | 2008-08-19 | 2011-08-04 | Knopp Neurosciences Inc. | Compositions and Methods of Using (R)- Pramipexole |
WO2011119894A2 (en) | 2010-03-24 | 2011-09-29 | Kinagen, Inc | Heterocyclic compounds useful for kinase inhibition |
WO2011130689A1 (en) | 2010-04-15 | 2011-10-20 | Tracon Pharmaceuticals, Inc. | Potentiation of anti-cancer activity through combination therapy with ber pathway inhibitors |
WO2011139489A2 (en) | 2010-04-27 | 2011-11-10 | Calcimedica Inc. | Compounds that modulate intracellular calcium |
WO2011139765A2 (en) | 2010-04-27 | 2011-11-10 | Calcimedica, Inc. | Compounds that modulate intracellular calcium |
WO2011143152A2 (en) | 2010-05-11 | 2011-11-17 | Questcor Pharmaceuticals | Acth for treatment of amyotrophic lateral sclerosis |
WO2011153514A2 (en) | 2010-06-03 | 2011-12-08 | Pharmacyclics, Inc. | The use of inhibitors of bruton's tyrosine kinase (btk) |
DE102010053792A1 (en) | 2010-12-08 | 2012-06-14 | Frank Becher | Device for germ-free keeping of surfaces, such as door handles, handrails, grip bars, handles of shopping carts and toilet seating surfaces, has flat support material and self-adhesive portion formed on one side of flat support material |
WO2012094638A1 (en) | 2011-01-07 | 2012-07-12 | Skinmedica, Inc. | Melanin modification compositions and methods of use |
EP2584016A1 (en) | 2011-10-21 | 2013-04-24 | Dow Corning Corporation | Single phase silicone acrylate formulation |
EP2599847A1 (en) | 2011-11-29 | 2013-06-05 | Dow Corning Corporation | A Silicone Acrylate Hybrid Composition and Method of Making Same |
US8460707B2 (en) | 2004-08-05 | 2013-06-11 | Ferring B.V. | Stabilised prostaglandin composition |
DE102013202928A1 (en) | 2012-02-23 | 2013-08-29 | Golden Biotechnology Corporation | Methods and compositions for treating cancer metastasis |
US8524254B2 (en) | 2006-10-18 | 2013-09-03 | Ferring B.V. | Bioresorbable polymers |
WO2013148701A1 (en) | 2012-03-26 | 2013-10-03 | Golden Biotechnology Corporation | Methods and compositions for treating arteriosclerotic vascular diseases |
EP2650294A1 (en) | 2009-10-12 | 2013-10-16 | Pharmacyclics, Inc. | Inhibitors of Bruton's Tyrosine Kinase |
US8569416B2 (en) | 2006-06-06 | 2013-10-29 | Dow Corning Corporation | Single phase silicone acrylate formulation |
US8614278B2 (en) | 2006-06-06 | 2013-12-24 | Dow Corning Corporation | Silicone acrylate hybrid composition and method of making same |
US8663687B2 (en) | 2001-10-12 | 2014-03-04 | Monosol Rx, Llc | Film compositions for delivery of actives |
DE102013107024A1 (en) | 2011-11-15 | 2014-05-15 | Golden Biotechnology Corporation | Methods and compositions for treating, modifying, and managing bone cancer pain |
WO2014081675A1 (en) | 2012-11-21 | 2014-05-30 | Golden Biotechnology Corporation | Methods and compositions for treating neurodegenerative diseases |
DE102013107025A1 (en) | 2011-12-30 | 2014-07-03 | Golden Biotechnology Corporation | METHODS AND COMPOSITIONS FOR THE MANAGEMENT OF DIABETIS |
US8790689B2 (en) | 2003-04-30 | 2014-07-29 | Purdue Pharma L.P. | Tamper resistant transdermal dosage form |
US8796416B1 (en) | 2010-10-25 | 2014-08-05 | Questcor Pharmaceuticals, Inc | ACTH prophylactic treatment of renal disorders |
WO2014130619A2 (en) | 2013-02-20 | 2014-08-28 | Golden Biotechnology Corporation | Methods and compositions for treating leukemia |
US8900497B2 (en) | 2001-10-12 | 2014-12-02 | Monosol Rx, Llc | Process for making a film having a substantially uniform distribution of components |
US8900498B2 (en) | 2001-10-12 | 2014-12-02 | Monosol Rx, Llc | Process for manufacturing a resulting multi-layer pharmaceutical film |
US8974826B2 (en) | 2010-06-10 | 2015-03-10 | Monosol Rx, Llc | Nanoparticle film delivery systems |
WO2015084998A1 (en) | 2013-12-05 | 2015-06-11 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
US9072636B2 (en) | 2007-08-03 | 2015-07-07 | Kimberly-Clark Worldwide, Inc. | Dynamic fitting body adhering absorbent article |
WO2015138919A1 (en) | 2014-03-14 | 2015-09-17 | The University Of North Carolina At Chapel Hill | Small molecules for inhibiting male fertility |
US9175066B2 (en) | 2009-04-24 | 2015-11-03 | Tissuetech, Inc. | Compositions containing HC-HA complex and methods of use thereof |
US9260417B2 (en) | 2010-02-08 | 2016-02-16 | Amitech Therapeutic Solutions, Inc. | Therapeutic methods and compositions involving allosteric kinase inhibition |
US9265749B2 (en) | 2014-02-10 | 2016-02-23 | Patara Pharma, LLC | Methods for the treatment of systemic disorders treatable with mast cell stabilizers, including mast cell related disorders |
US9273051B2 (en) | 2011-12-30 | 2016-03-01 | Pharmacyclics Llc | Pyrazolo[3,4-d]pyrimidine and pyrrolo[2,3-d]pyrimidine compounds as kinase inhibitors |
WO2016086063A1 (en) | 2014-11-25 | 2016-06-02 | Concentric Analgesics, Inc. | Prodrugs of phenolic trpv1 agonists |
WO2016138479A1 (en) | 2015-02-27 | 2016-09-01 | Curtana Pharmaceuticals, Inc. | Inhibition of olig2 activity |
US9468630B2 (en) | 2013-07-12 | 2016-10-18 | Knopp Biosciences Llc | Compositions and methods for treating conditions related to increased eosinophils |
US9480770B2 (en) | 2002-10-23 | 2016-11-01 | Covidien Lp | Methods for preparation of medical dressing containing antimicrobial agent |
US9512116B2 (en) | 2012-10-12 | 2016-12-06 | Calcimedica, Inc. | Compounds that modulate intracellular calcium |
US9512096B2 (en) | 2011-12-22 | 2016-12-06 | Knopp Biosciences, LLP | Synthesis of amine substituted 4,5,6,7-tetrahydrobenzothiazole compounds |
US9526770B2 (en) | 2011-04-28 | 2016-12-27 | Tissuetech, Inc. | Methods of modulating bone remodeling |
US9555155B2 (en) | 2014-12-11 | 2017-01-31 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
WO2017027402A1 (en) | 2015-08-07 | 2017-02-16 | Patara Pharma, LLC | Methods for the treatment of systemic disorders treatable with mast cell stabilizers, including mast cell related disorders |
WO2017040617A1 (en) | 2015-08-31 | 2017-03-09 | Pharmacyclics Llc | Btk inhibitor combinations for treating multiple myeloma |
US9611263B2 (en) | 2013-10-08 | 2017-04-04 | Calcimedica, Inc. | Compounds that modulate intracellular calcium |
US9642840B2 (en) | 2013-08-13 | 2017-05-09 | Knopp Biosciences, Llc | Compositions and methods for treating plasma cell disorders and B-cell prolymphocytic disorders |
US9662313B2 (en) | 2013-02-28 | 2017-05-30 | Knopp Biosciences Llc | Compositions and methods for treating amyotrophic lateral sclerosis in responders |
US9682044B2 (en) | 2011-06-10 | 2017-06-20 | Tissuetech, Inc. | Methods of processing fetal support tissues, fetal support tissue powder products, and uses thereof |
US9682068B2 (en) | 2013-05-20 | 2017-06-20 | Mylan Inc. | Transdermal therapeutic system for extended dosing of pramipexole in treating neurological disorders |
US9700522B2 (en) | 2007-03-19 | 2017-07-11 | Vita Sciences Llc | Transdermal patch and method for delivery of vitamin B12 |
US9758533B2 (en) | 2014-04-23 | 2017-09-12 | The Research Foundation For The State University Of New York | Rapid and efficient bioorthogonal ligation reaction and boron-containing heterocycles useful in conjunction therewith |
US9763918B2 (en) | 2013-08-13 | 2017-09-19 | Knopp Biosciences Llc | Compositions and methods for treating chronic urticaria |
US9808491B2 (en) | 2014-06-03 | 2017-11-07 | Tissuetech, Inc. | Compositions of morselized umbilical cord and/or amniotic membrane and methods of use thereof |
US9814632B2 (en) | 2007-08-03 | 2017-11-14 | Kimberly-Clark Worldwide, Inc. | Body adhering absorbent article |
WO2017197240A1 (en) | 2016-05-12 | 2017-11-16 | The Regents Of The University Of Michigan | Ash1l inhibitors and methods of treatment therewith |
US9820892B2 (en) | 2007-08-03 | 2017-11-21 | Kimberly-Clark Worldwide, Inc. | Packaged body adhering absorbent article |
WO2017205766A1 (en) | 2016-05-27 | 2017-11-30 | Pharmacyclics Llc | Inhibitors of interleukin-1 receptor-associated kinase |
WO2017205762A1 (en) | 2016-05-27 | 2017-11-30 | Pharmacyclics Llc | Inhibitors of interleukin-1 receptor-associated kinase |
WO2017205769A1 (en) | 2016-05-27 | 2017-11-30 | Pharmacyclics Llc | Inhibitors of interleukin-1 receptor-associated kinase |
US9839644B2 (en) | 2014-09-09 | 2017-12-12 | ARKAY Therapeutics, LLC | Formulations and methods for treatment of metabolic syndrome |
US9895274B2 (en) | 2007-12-28 | 2018-02-20 | Kimberly-Clark Worldwide, Inc. | Body adhering absorbent article |
US9993444B2 (en) | 2011-01-10 | 2018-06-12 | Invion, Inc. | Use of beta-adrenergic inverse agonists for smoking cessation |
US10022468B2 (en) | 2009-02-02 | 2018-07-17 | Kimberly-Clark Worldwide, Inc. | Absorbent articles containing a multifunctional gel |
USD824525S1 (en) | 2014-09-25 | 2018-07-31 | Ethicon Llc | Release paper for wound treament devices |
US10040821B2 (en) | 2012-07-11 | 2018-08-07 | Tissuetech, Inc. | Compositions containing HC-HA/PTX3 complexes and methods of use thereof |
US10227333B2 (en) | 2015-02-11 | 2019-03-12 | Curtana Pharmaceuticals, Inc. | Inhibition of OLIG2 activity |
US10232018B2 (en) | 2013-03-14 | 2019-03-19 | Mallinckrodt Ard Ip Limited | ACTH for treatment of acute respiratory distress syndrome |
US10238625B2 (en) | 2015-08-07 | 2019-03-26 | Respivant Sciences Gmbh | Methods for the treatment of mast cell related disorders with mast cell stabilizers |
US10265267B2 (en) | 2016-08-31 | 2019-04-23 | Respivant Sciences Gmbh | Cromolyn compositions for treatment of chronic cough due to idiopathic pulmonary fibrosis |
US10272607B2 (en) | 2010-10-22 | 2019-04-30 | Aquestive Therapeutics, Inc. | Manufacturing of small film strips |
US10285910B2 (en) | 2001-10-12 | 2019-05-14 | Aquestive Therapeutics, Inc. | Sublingual and buccal film compositions |
WO2019094772A1 (en) | 2017-11-10 | 2019-05-16 | The Regents Of The University Of Michigan | Ash1l degraders and methods of treatment therewith |
WO2019113469A1 (en) | 2017-12-07 | 2019-06-13 | The Regents Of The University Of Michigan | Nsd family inhibitors and methods of treatment therewith |
US10336738B2 (en) | 2010-08-27 | 2019-07-02 | Calcimedica, Inc. | Compounds that modulate intracellular calcium |
US10342831B2 (en) | 2015-05-20 | 2019-07-09 | Tissuetech, Inc. | Composition and methods for preventing the proliferation and epithelial-mesenchymal transition of epithelial cells |
US10383857B2 (en) | 2013-07-12 | 2019-08-20 | Knopp Biosciences Llc | Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils |
US10470934B2 (en) | 2016-09-29 | 2019-11-12 | Ethicon, Inc. | Methods and devices for skin closure |
US10470935B2 (en) | 2017-03-23 | 2019-11-12 | Ethicon, Inc. | Skin closure systems and devices of improved flexibility and stretchability for bendable joints |
US10500303B2 (en) | 2014-08-15 | 2019-12-10 | Tepha, Inc. | Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof |
WO2019236957A1 (en) | 2018-06-07 | 2019-12-12 | The Regents Of The University Of Michigan | Prc1 inhibitors and methods of treatment therewith |
US10561635B2 (en) | 2016-10-07 | 2020-02-18 | Respivant Sciences Gmbh | Cromolyn compositions for treatment of pulmonary fibrosis |
US10626521B2 (en) | 2014-12-11 | 2020-04-21 | Tepha, Inc. | Methods of manufacturing mesh sutures from poly-4-hydroxybutyrate and copolymers thereof |
US10687986B2 (en) | 2016-09-29 | 2020-06-23 | Ethicon, Inc. | Methods and devices for skin closure |
WO2020142557A1 (en) | 2018-12-31 | 2020-07-09 | Biomea Fusion, Llc | Irreversible inhibitors of menin-mll interaction |
US10717712B2 (en) | 2018-07-27 | 2020-07-21 | Concentric Analgesics, Inc. | Pegylated prodrugs of phenolic TRPV1 agonists |
WO2020190890A1 (en) | 2019-03-15 | 2020-09-24 | Unicycive Therapeutics Inc. | Nicorandil derivatives |
US10792024B2 (en) | 2016-09-28 | 2020-10-06 | Ethicon, Inc. | Scaffolds with channels for joining layers of tissue at discrete points |
US10821105B2 (en) | 2016-05-25 | 2020-11-03 | Concentric Analgesics, Inc. | Prodrugs of phenolic TRPV1 agonists in combination with local anesthetics and vasoconstrictors for improved local anesthesia |
US10835512B2 (en) | 2014-02-10 | 2020-11-17 | Respivant Sciences Gmbh | Methods of treating respiratory syncytial virus infections |
US10851123B2 (en) | 2016-02-23 | 2020-12-01 | Concentric Analgesics, Inc. | Prodrugs of phenolic TRPV1 agonists |
USD907217S1 (en) | 2016-09-29 | 2021-01-05 | Ethicon, Inc. | Release paper for wound treatment devices |
US10993708B2 (en) | 2018-07-31 | 2021-05-04 | Ethicon, Inc. | Skin closure devices with interrupted closure |
US11077068B2 (en) | 2001-10-12 | 2021-08-03 | Aquestive Therapeutics, Inc. | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
WO2021226412A1 (en) | 2020-05-08 | 2021-11-11 | Golden Biotechnology Corporation | Methods and compositions for treating an rna virus induced disease |
US11191737B2 (en) | 2016-05-05 | 2021-12-07 | Aquestive Therapeutics, Inc. | Enhanced delivery epinephrine compositions |
US11207805B2 (en) | 2001-10-12 | 2021-12-28 | Aquestive Therapeutics, Inc. | Process for manufacturing a resulting pharmaceutical film |
US11242323B2 (en) | 2016-08-26 | 2022-02-08 | Curtana Pharmaceuticals, Inc. | Inhibition of OLIG2 activity |
US11273131B2 (en) | 2016-05-05 | 2022-03-15 | Aquestive Therapeutics, Inc. | Pharmaceutical compositions with enhanced permeation |
WO2022133064A1 (en) | 2020-12-16 | 2022-06-23 | Biomea Fusion, Inc. | Fused pyrimidine compounds as inhibitors of menin-mll interaction |
US11504446B2 (en) | 2017-04-25 | 2022-11-22 | Ethicon, Inc. | Skin closure devices with self-forming exudate drainage channels |
WO2023018825A1 (en) | 2021-08-11 | 2023-02-16 | Biomea Fusion, Inc. | Covalent inhibitors of menin-mll interaction for diabetes mellitus |
US11590265B2 (en) | 2015-02-23 | 2023-02-28 | Biotissue Holdings Inc. | Apparatuses and methods for treating ophthalmic diseases and disorders |
WO2023027966A1 (en) | 2021-08-24 | 2023-03-02 | Biomea Fusion, Inc. | Pyrazine compounds as irreversible inhibitors of flt3 |
WO2023039240A1 (en) | 2021-09-13 | 2023-03-16 | Biomea Fusion, Inc. | IRREVERSIBLE INHIBITORS OF KRas |
WO2023086341A1 (en) | 2021-11-09 | 2023-05-19 | Biomea Fusion, Inc. | Inhibitors of kras |
US11685722B2 (en) | 2018-02-28 | 2023-06-27 | Curtana Pharmaceuticals, Inc. | Inhibition of Olig2 activity |
WO2023119230A1 (en) | 2021-12-22 | 2023-06-29 | L'oreal | Coagulation pathway and nicotinamide-adenine dinucleotide pathway modulating compositions and methods of their use |
WO2023129667A1 (en) | 2021-12-30 | 2023-07-06 | Biomea Fusion, Inc. | Pyrazine compounds as inhibitors of flt3 |
US11707492B2 (en) | 2016-01-29 | 2023-07-25 | Biotissue Holdings Inc. | Fetal support tissue products and methods of use |
WO2023235618A1 (en) | 2022-06-03 | 2023-12-07 | Biomea Fusion, Inc. | Fused pyrimidine compounds as inhibitors of menin |
US11858925B2 (en) | 2020-07-10 | 2024-01-02 | The Regents Of The University Of Michigan | GAS41 inhibitors and methods of use thereof |
US11965120B2 (en) | 2018-04-05 | 2024-04-23 | 3M Innovative Properties Company | Gel adhesive comprising crosslinked blend of polydiorganosiloxane and acrylic polymer |
US11980354B2 (en) | 2017-03-23 | 2024-05-14 | Ethicon, Inc. | Scaffolds for joining layers of tissue at discrete points |
WO2024243402A2 (en) | 2023-05-24 | 2024-11-28 | Unicycive Therapeutics Inc. | Salt forms of nicorandil derivatives |
WO2024249950A1 (en) | 2023-06-02 | 2024-12-05 | Biomea Fusion, Inc. | Fused pyrimidine compounds as inhibitors of menin |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3339546A (en) * | 1963-12-13 | 1967-09-05 | Squibb & Sons Inc | Bandage for adhering to moist surfaces |
US3444858A (en) * | 1965-05-14 | 1969-05-20 | Higham S Russell | Method and means for administering drugs |
US3536809A (en) * | 1969-02-17 | 1970-10-27 | Alza Corp | Medication method |
US3551556A (en) * | 1966-01-06 | 1970-12-29 | Ceskoslovenska Akademie Ved | Carriers for biologically active substances |
US3598123A (en) * | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
US3598122A (en) * | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
US3632740A (en) * | 1968-06-13 | 1972-01-04 | Johnson & Johnson | Topical device for the therapeutic management of dermatological lesions with steroids |
-
1971
- 1971-06-04 US US00150085A patent/US3731683A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3339546A (en) * | 1963-12-13 | 1967-09-05 | Squibb & Sons Inc | Bandage for adhering to moist surfaces |
US3444858A (en) * | 1965-05-14 | 1969-05-20 | Higham S Russell | Method and means for administering drugs |
US3551556A (en) * | 1966-01-06 | 1970-12-29 | Ceskoslovenska Akademie Ved | Carriers for biologically active substances |
US3632740A (en) * | 1968-06-13 | 1972-01-04 | Johnson & Johnson | Topical device for the therapeutic management of dermatological lesions with steroids |
US3536809A (en) * | 1969-02-17 | 1970-10-27 | Alza Corp | Medication method |
US3598123A (en) * | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
US3598122A (en) * | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
US3598122B1 (en) * | 1969-04-01 | 1982-11-23 |
Cited By (511)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3870041A (en) * | 1973-08-16 | 1975-03-11 | Btr Industries Ltd | Surgical dressings |
US3900027A (en) * | 1974-01-02 | 1975-08-19 | Pall Corp | Process for preparing integral absorbent pad bandages and product |
US4039653A (en) * | 1974-01-23 | 1977-08-02 | Defoney, Brenman, Mayes & Baron | Long-acting articles for oral delivery and process |
US3972995A (en) * | 1975-04-14 | 1976-08-03 | American Home Products Corporation | Dosage form |
US4031894A (en) * | 1975-12-08 | 1977-06-28 | Alza Corporation | Bandage for transdermally administering scopolamine to prevent nausea |
US4060084A (en) * | 1976-09-07 | 1977-11-29 | Alza Corporation | Method and therapeutic system for providing chemotherapy transdermally |
FR2368962A1 (en) * | 1976-11-02 | 1978-05-26 | Merck Patent Gmbh | ANTI-BACTERIAL DRESSING AND ITS MANUFACTURING PROCESS |
US4201211A (en) * | 1977-07-12 | 1980-05-06 | Alza Corporation | Therapeutic system for administering clonidine transdermally |
US4340043A (en) * | 1978-11-17 | 1982-07-20 | Smith & Nephew Research Ltd. | Adhesive-coated sheet material incorporating anti-bacterial substances |
US4460369A (en) * | 1978-11-17 | 1984-07-17 | Smith & Nephew Research Ltd. | Adhesive-coated sheet material incorporating anti-bacterial substances |
US4291014A (en) * | 1979-01-11 | 1981-09-22 | Key Pharmaceuticals, Inc. | Polymeric diffusion matrix containing estradiol diacetate |
US4455146A (en) * | 1979-04-03 | 1984-06-19 | Hisamitsu Pharmaceutical Co., Ltd. | Novel plasters |
US4226232A (en) * | 1979-04-09 | 1980-10-07 | Spenco Medical Corporation | Wound dressing |
US4289749A (en) * | 1979-08-14 | 1981-09-15 | Key Pharmaceuticals, Inc. | Polymeric diffusion matrix containing phenylpropanolamine |
US4292302A (en) * | 1979-08-14 | 1981-09-29 | Key Pharmaceuticals, Inc. | Polymeric diffusion matrix containing terbutaline |
US4294820A (en) * | 1979-08-14 | 1981-10-13 | Key Pharmaceuticals, Inc. | Polymeric diffusion matrix containing phenylephrine |
US4321252A (en) * | 1979-08-14 | 1982-03-23 | Key Pharmaceuticals, Inc. | Polymeric diffusion matrix containing ester derivatives of estradiol |
US4492685A (en) * | 1979-08-14 | 1985-01-08 | Key Pharmaceuticals, Inc. | Protective skin matrix |
US4291015A (en) * | 1979-08-14 | 1981-09-22 | Key Pharmaceuticals, Inc. | Polymeric diffusion matrix containing a vasodilator |
US4292301A (en) * | 1979-08-14 | 1981-09-29 | Key Pharmaceuticals, Inc. | Polymeric diffusion matrix containing ephedrine |
US4292303A (en) * | 1979-08-14 | 1981-09-29 | Key Pharmaceuticals, Inc. | Polymeric diffusion matrix containing clonidine |
US4363319A (en) * | 1980-06-30 | 1982-12-14 | Applied Medical Devices, Inc. | Ready-to-use bandage incorporating a coagulant composition and method of preparing same |
US4336243A (en) * | 1980-08-11 | 1982-06-22 | G. D. Searle & Co. | Transdermal nitroglycerin pad |
US4390520A (en) * | 1980-10-30 | 1983-06-28 | Nitto Electric Industrial Co., Ltd. | Antiphlogistic analgesic adhesive |
US4329333A (en) * | 1980-11-24 | 1982-05-11 | Arthur Barr | Method for the oral treatment of dogs and other animals |
US4379454A (en) * | 1981-02-17 | 1983-04-12 | Alza Corporation | Dosage for coadministering drug and percutaneous absorption enhancer |
US4460372A (en) * | 1981-02-17 | 1984-07-17 | Alza Corporation | Percutaneous absorption enhancer dispenser for use in coadministering drug and percutaneous absorption enhancer |
DE3208853A1 (en) * | 1981-03-13 | 1982-09-23 | Nitto Electric Industrial Co., Ltd., Ibaraki, Osaka | METHOD FOR PRODUCING A COMPARATIVE PHARMACEUTICAL PREPARATION |
US4485087A (en) * | 1981-03-13 | 1984-11-27 | Nitto Electric Industrial Co., Ltd. | Process for obtaining composite pharmaceutical preparation |
US4373519A (en) * | 1981-06-26 | 1983-02-15 | Minnesota Mining And Manufacturing Company | Composite wound dressing |
US4594240A (en) * | 1982-09-10 | 1986-06-10 | Teikoku Seiyaku Kabushiki Kaisha | Sheet-shape adhesive preparation |
US4767787A (en) * | 1982-09-10 | 1988-08-30 | Kaken Pharmaceutical Co., Ltd. | Sheet-shape adhesive preparation |
US4631227A (en) * | 1982-12-08 | 1986-12-23 | Kenji Nakamura | Toilet article |
WO1984002460A1 (en) * | 1982-12-28 | 1984-07-05 | Dermatec Ltd | Sebum collection and monitoring means |
US4532937A (en) * | 1982-12-28 | 1985-08-06 | Cuderm Corporation | Sebum collection and monitoring means and method |
US4563184A (en) * | 1983-10-17 | 1986-01-07 | Bernard Korol | Synthetic resin wound dressing and method of treatment using same |
USRE35474E (en) * | 1984-10-29 | 1997-03-11 | Dow Corning Corporation | Transdermal drug delivery devices with amine-resistant silicone adhesives |
US4655767A (en) * | 1984-10-29 | 1987-04-07 | Dow Corning Corporation | Transdermal drug delivery devices with amine-resistant silicone adhesives |
US4638043A (en) * | 1984-11-13 | 1987-01-20 | Thermedics, Inc. | Drug release system |
US4880690A (en) * | 1984-11-13 | 1989-11-14 | Thermedics, Inc. | Perfume patch |
US4614787A (en) * | 1984-11-13 | 1986-09-30 | Thermedics, Inc. | Drug dispensing wound dressing |
USRE32991E (en) * | 1984-11-13 | 1989-07-18 | Thermedics, Inc. | Drug dispensing wound dressing |
US4751133A (en) * | 1984-11-13 | 1988-06-14 | Thermedics, Inc. | Medical patches and processes for producing same |
US4727868A (en) * | 1984-11-13 | 1988-03-01 | Thermedics, Inc. | Anisotropic wound dressing |
US4597961A (en) * | 1985-01-23 | 1986-07-01 | Etscorn Frank T | Transcutaneous application of nicotine |
US4690683A (en) * | 1985-07-02 | 1987-09-01 | Rutgers, The State University Of New Jersey | Transdermal varapamil delivery device |
WO1987000042A1 (en) * | 1985-07-02 | 1987-01-15 | Rutgers, The State University Of New Jersey | Transdermal verapamil delivery device |
WO1987003477A1 (en) * | 1985-12-12 | 1987-06-18 | Flexcon Company, Inc. | Transdermal methods and adhesives |
US4666441A (en) * | 1985-12-17 | 1987-05-19 | Ciba-Geigy Corporation | Multicompartmentalized transdermal patches |
US5034386A (en) * | 1986-01-31 | 1991-07-23 | Whitby Research, Inc. | Methods for administration using 1-substituted azacycloalkanes |
US5204339A (en) * | 1986-01-31 | 1993-04-20 | Whitby Research, Inc. | Penetration enhancers for transdermal delivery of systemic agents |
US4743249A (en) * | 1986-02-14 | 1988-05-10 | Ciba-Geigy Corp. | Dermal and transdermal patches having a discontinuous pattern adhesive layer |
EP0236266A1 (en) * | 1986-02-14 | 1987-09-09 | Ciba-Geigy Ag | Dermal and transdermal therapeutic system having a discontinuous-pattern adhesive layer and method of manufacturing thereof |
AU597618B2 (en) * | 1986-02-14 | 1990-06-07 | Ciba-Geigy Ag | Dermal and transdermal patches having a discontinuous pattern adhesive layer |
US6126963A (en) * | 1986-08-28 | 2000-10-03 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Transdermal therapeutic system, its use and production process |
US6139868A (en) * | 1986-08-28 | 2000-10-31 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Transdermal therapeutic system, its use and production process |
DE3629304A1 (en) * | 1986-08-28 | 1988-03-24 | Lohmann Gmbh & Co Kg | TRANSDERMAL THERAPEUTIC SYSTEM, ITS USE AND METHOD FOR THE PRODUCTION THEREOF |
USRE37934E1 (en) | 1986-08-28 | 2002-12-10 | Lts Lohmann Therapie-Systeme Ag | Transdermal therapeutic system |
US5820876A (en) * | 1986-08-28 | 1998-10-13 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Transdermal therapeutic system |
US6264977B1 (en) | 1986-08-28 | 2001-07-24 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Transdermal therapeutic system, its use and production process |
US6224900B1 (en) | 1986-08-28 | 2001-05-01 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Sealing bag for a transdermal therapeutic system |
US6110488A (en) * | 1986-08-28 | 2000-08-29 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Transdermal therapeutic system, its use and production process |
US6117448A (en) * | 1986-08-28 | 2000-09-12 | Lts Lohmann Therapie-Systeme Gmbh & Co. Kg | Transdermal therapeutic system, its use and production process |
US4889720A (en) * | 1986-09-01 | 1989-12-26 | Teikoku Seiyaku Kabushiki Kaisha | Sustained release dosage form for use with tissues of the oral cavity |
US4908027A (en) * | 1986-09-12 | 1990-03-13 | Alza Corporation | Subsaturated transdermal therapeutic system having improved release characteristics |
US5342623A (en) * | 1986-09-12 | 1994-08-30 | Alza Corporation | Subsaturated transdermal therapeutic system having improved release characteristics |
US4844903A (en) * | 1986-11-07 | 1989-07-04 | Mepha Ag | Process for the production of an adhesive plaster |
US5422118A (en) * | 1986-11-07 | 1995-06-06 | Pure Pac, Inc. | Transdermal administration of amines with minimal irritation and high transdermal flux rate |
EP0273004A3 (en) * | 1986-11-20 | 1988-07-13 | Ciba-Geigy Ag | User-activated therapeutical system |
EP0273004A2 (en) * | 1986-11-20 | 1988-06-29 | Ciba-Geigy Ag | User-activated therapeutical system |
US5298257A (en) * | 1987-05-01 | 1994-03-29 | Elan Transdermal Limited | Method for the treatment of withdrawal symptoms associated with smoking cessation and preparations for use in said method |
US4991574A (en) * | 1987-07-22 | 1991-02-12 | Dow Corning Corporation | Surgical dressing |
US5059189A (en) * | 1987-09-08 | 1991-10-22 | E. R. Squibb & Sons, Inc. | Method of preparing adhesive dressings containing a pharmaceutically active ingredient |
US4920101A (en) * | 1987-09-30 | 1990-04-24 | Nelson Research & Development Co. | Compositions comprising 1-oxo- or thiohydrocarbyl substituted azacycloaklkanes |
US4879275A (en) * | 1987-09-30 | 1989-11-07 | Nelson Research & Development Co. | Penetration enhancers for transdermal delivery of systemic agent |
US4839174A (en) * | 1987-10-05 | 1989-06-13 | Pharmetrix Corporation | Novel transdermal nicotine patch |
US4943435A (en) * | 1987-10-05 | 1990-07-24 | Pharmetrix Corporation | Prolonged activity nicotine patch |
US4898920A (en) * | 1987-10-15 | 1990-02-06 | Dow Corning Corporation | Adhesive compositions, controlled release compositions and transdermal delivery device |
US5035894A (en) * | 1987-10-15 | 1991-07-30 | Dow Corning Corporation | Controlled release compositions and transdermal drug delivery device |
USRE39588E1 (en) | 1987-11-09 | 2007-04-24 | Alza Corporation | Transdermal drug delivery device |
US4830854A (en) * | 1987-12-18 | 1989-05-16 | James B. Copelan | Chemical splinter removal |
WO1989005582A1 (en) * | 1987-12-18 | 1989-06-29 | Russell Isaac Copelan | Chemical splinter removal |
AU617754B2 (en) * | 1987-12-18 | 1991-12-05 | Russell Isaac Copelan | Chemical splinter removal |
US4906475A (en) * | 1988-02-16 | 1990-03-06 | Paco Pharmaceutical Services | Estradiol transdermal delivery system |
US6165497A (en) * | 1988-06-14 | 2000-12-26 | Alza Corporation | Subsaturated nicotine transdermal therapeutic system |
US5004610A (en) * | 1988-06-14 | 1991-04-02 | Alza Corporation | Subsaturated nicotine transdermal therapeutic system |
US5633008A (en) * | 1988-06-14 | 1997-05-27 | Osborne; James L. | Method of administering nicotine transdermally |
US4985016A (en) * | 1989-02-15 | 1991-01-15 | Alza Corporation | Intravenous system for delivering a beneficial agent |
US4969871A (en) * | 1989-02-15 | 1990-11-13 | Alza Corporation | Intravenous system for delivering a beneficial agent |
US5250028A (en) * | 1989-02-15 | 1993-10-05 | Alza Corporation | Intravenous system for delivering a beneficial agent using permeability enhancers |
US5160320A (en) * | 1989-02-15 | 1992-11-03 | Alza Corporation | Intravenous system for delivering a beneficial agent |
US5045059A (en) * | 1989-02-15 | 1991-09-03 | Alza Corporation | Intravenous system for delivering a beneficial agent |
US5176915A (en) * | 1989-03-14 | 1993-01-05 | Lts Lohmann | Plaster used as therapeutic system for the administration of active substances to the skin which exhibits a graduated active substance release, process for the production of the plaster and the use thereof |
US5059426A (en) * | 1989-03-22 | 1991-10-22 | Cygnus Therapeutic Systems | Skin permeation enhancer compositions, and methods and transdermal systems associated therewith |
US5053227A (en) * | 1989-03-22 | 1991-10-01 | Cygnus Therapeutic Systems | Skin permeation enhancer compositions, and methods and transdermal systems associated therewith |
US4973468A (en) * | 1989-03-22 | 1990-11-27 | Cygnus Research Corporation | Skin permeation enhancer compositions |
US5124157A (en) * | 1989-08-18 | 1992-06-23 | Cygnus Therapeutic Systems | Method and device for administering dexmedetomidine transdermally |
US5230896A (en) * | 1989-10-12 | 1993-07-27 | Warner-Lambert Company | Transdermal nicotine delivery system |
US5508038A (en) * | 1990-04-16 | 1996-04-16 | Alza Corporation | Polyisobutylene adhesives for transdermal devices |
US5173302A (en) * | 1990-09-28 | 1992-12-22 | Medtronic, Inc. | Hydrophilic pressure sensitive adhesive for topical administration of hydrophobic drugs |
US5512292A (en) * | 1990-10-29 | 1996-04-30 | Alza Corporation | Transdermal contraceptive formulations methods and devices |
US5633009A (en) * | 1990-11-28 | 1997-05-27 | Sano Corporation | Transdermal administration of azapirones |
US5817331A (en) * | 1990-11-28 | 1998-10-06 | Sano Corporation | Transdermal administration of azapirones |
US5837280A (en) * | 1990-11-28 | 1998-11-17 | Sano Corporation | Transdermal administration of azapirones |
US5340586A (en) * | 1991-04-12 | 1994-08-23 | University Of Southern California | Methods and formulations for use in treating oophorectomized women |
US5340585A (en) * | 1991-04-12 | 1994-08-23 | University Of Southern California | Method and formulations for use in treating benign gynecological disorders |
US5508039A (en) * | 1991-10-18 | 1996-04-16 | Alza Corporation | Controlled transdermal administration of melatonin |
US6300327B1 (en) | 1991-11-08 | 2001-10-09 | The University Of Southern California | Compositions and methods for potentiation of neurotrophin activity |
US5268179A (en) * | 1992-02-14 | 1993-12-07 | Ciba-Geigy Corporation | Ultrasonically sealed transdermal drug delivery systems |
US5900250A (en) * | 1992-05-13 | 1999-05-04 | Alza Corporation | Monoglyceride/lactate ester permeation enhancer for oxybutnin |
US5451407A (en) * | 1993-06-21 | 1995-09-19 | Alza Corporation | Reduction or prevention of skin irritation or sensitization during transdermal administration of a irritating or sensitizing drug |
US5919478A (en) * | 1993-06-25 | 1999-07-06 | Alza Corporation | Incorporating poly-N-vinyl amide in a transdermal system |
US5750137A (en) * | 1993-09-29 | 1998-05-12 | Taskovich; Lina Tormen | Monoglyceride/lactate ester permeation enhancer |
US5747065A (en) * | 1993-09-29 | 1998-05-05 | Lee; Eun Soo | Monoglyceride/lactate ester permeation enhancer for oxybutynin |
US5643596A (en) * | 1993-11-03 | 1997-07-01 | Clarion Pharmaceuticals, Inc. | Hemostatic patch |
US5645849A (en) * | 1993-11-03 | 1997-07-08 | Clarion Pharmaceuticals, Inc. | Hemostatic patch |
US6096333A (en) * | 1994-03-30 | 2000-08-01 | Lectec Corporation | Method of forming adhesive patch for applying medication to the skin |
US6096334A (en) * | 1994-03-30 | 2000-08-01 | Lectec Corporation | Adhesive patch for applying medication to the skin and method |
US5741510A (en) * | 1994-03-30 | 1998-04-21 | Lectec Corporation | Adhesive patch for applying analgesic medication to the skin |
US5536263A (en) * | 1994-03-30 | 1996-07-16 | Lectec Corporation | Non-occulusive adhesive patch for applying medication to the skin |
US5785991A (en) * | 1995-06-07 | 1998-07-28 | Alza Corporation | Skin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate |
US6572879B1 (en) | 1995-06-07 | 2003-06-03 | Alza Corporation | Formulations for transdermal delivery of pergolide |
US6001390A (en) * | 1995-06-07 | 1999-12-14 | Alza Corporation | Formulations for transdermal delivery of pergolide |
US20040209909A1 (en) * | 1995-06-07 | 2004-10-21 | Su Il Yum | Novel formulations for transdermal delivery of pergolide |
US5843468A (en) * | 1995-06-07 | 1998-12-01 | Alza Corporation | Skin permeation enhancer compositions comprising glycerol monolaurate and lauryl acetate |
US5840327A (en) * | 1995-08-21 | 1998-11-24 | Alza Corporation | Transdermal drug delivery device having enhanced adhesion |
EP1674068A1 (en) | 1996-02-19 | 2006-06-28 | Acrux DDS Pty Ltd | Dermal penetration enhancers and drug delivery systems involving same |
US20050186277A1 (en) * | 1996-07-15 | 2005-08-25 | Gale Robert M. | Novel formulations for the administration of fluoxetine |
US7011844B2 (en) | 1996-07-15 | 2006-03-14 | Alza Corporation | Formulations for the administration of fluoxetine |
US6512010B1 (en) | 1996-07-15 | 2003-01-28 | Alza Corporation | Formulations for the administration of fluoxetine |
US20040137047A1 (en) * | 1996-10-07 | 2004-07-15 | 3M Innovative Properties Company | Pressure sensitive adhesive articles and methods for preparing same |
US6479073B1 (en) * | 1996-10-07 | 2002-11-12 | 3M Innovative Properties Company | Pressure sensitive adhesive articles and methods for preparing same |
US6203817B1 (en) | 1997-02-19 | 2001-03-20 | Alza Corporation | Reduction of skin reactions caused by transdermal drug delivery |
US6660295B2 (en) | 1997-09-30 | 2003-12-09 | Alza Corporation | Transdermal drug delivery device package with improved drug stability |
US6267984B1 (en) | 1997-12-22 | 2001-07-31 | Alza Corporation | Skin permeation enhancer compositions comprising a monoglyceride and ethyl palmitate |
AU760588B2 (en) * | 1998-02-12 | 2003-05-15 | Watson Pharmaceuticals, Inc. | Pressure sensitive adhesive matrix patch for the treatment of onychomycosis |
EP1399145A2 (en) * | 1998-02-12 | 2004-03-24 | Watson Pharmaceuticals, Inc. | Pressure sensitive adhesive matrix patch for the treatment of onychomycosis |
US6727401B1 (en) | 1998-02-12 | 2004-04-27 | Watson Pharmaceuticals, Inc. | Pressure sensitive adhesive matrix patch for the treatment of onychomycosis |
EP1399145A4 (en) * | 1998-02-12 | 2004-08-18 | Watson Pharmaceuticals Inc | SELF-ADHESIVE MATRIX STAMP FOR THE TREATMENT OF ONYCHOMYCOSIS |
WO1999040955A2 (en) * | 1998-02-12 | 1999-08-19 | Watson Pharmaceuticals, Inc. | Pressure sensitive adhesive matrix patch for the treatment of onychomycosis |
US7267829B2 (en) | 1998-07-07 | 2007-09-11 | Transdermal Technologies, Inc. | Compositions for rapid and non-irritating transdermal delivery of pharmaceutically active agents and methods for formulating such compositions and delivery thereof |
US6699497B1 (en) | 1998-07-24 | 2004-03-02 | Alza Corporation | Formulations for the transdermal administration of fenoldopam |
US6960353B2 (en) | 1998-07-24 | 2005-11-01 | Alza Corporation | Formulations for the transdermal administration of fenoldopam |
US6121289A (en) * | 1998-10-09 | 2000-09-19 | Theramax, Inc. | Method for enhanced brain delivery of nicotinic antagonist |
US6348210B1 (en) | 1998-11-13 | 2002-02-19 | Alza Corporation | Methods for transdermal drug administration |
US20080031933A1 (en) * | 1998-12-18 | 2008-02-07 | Alza Corporation | Transparent transdermal nicotine delivery devices |
US7622136B2 (en) | 1998-12-18 | 2009-11-24 | Alza Corporation | Transparent transdermal nicotine delivery devices |
US8075911B2 (en) | 1998-12-18 | 2011-12-13 | Alza Corporation | Transparent transdermal nicotine delivery devices |
US8999379B2 (en) | 1998-12-18 | 2015-04-07 | Alza Corporation | Transparent transdermal nicotine delivery devices |
US9205059B2 (en) | 1998-12-18 | 2015-12-08 | Alza Corporation | Transparent transdermal nicotine delivery devices |
US8663680B2 (en) | 1998-12-18 | 2014-03-04 | Alza Corporation | Transparent transdermal nicotine delivery devices |
US20040234585A1 (en) * | 1998-12-18 | 2004-11-25 | Gale Robert M. | Transparent transdermal nicotine delivery devices |
EP2158903A2 (en) | 1998-12-18 | 2010-03-03 | ALZA Corporation | Transparent Transdermal Nicotine Delivery Devices |
US20080051490A1 (en) * | 1999-03-25 | 2008-02-28 | Williams Simon F | Medical Devices and Applications of Polyhydroxyalkanoate Polymers |
US20080095823A1 (en) * | 1999-03-25 | 2008-04-24 | Metabolix, Inc. | Medical Devices and Applications of Polyhydroxyalkanoate Polymers |
US7553923B2 (en) | 1999-03-25 | 2009-06-30 | Metabolix, Inc. | Medical devices and applications of polyhydroxyalkanoate polymers |
US20050048104A1 (en) * | 1999-04-01 | 2005-03-03 | Venkatraman Subramanian S. | Transdermal drug delivery devices comprising a polyurethane drug reservoir |
US6261593B1 (en) | 1999-04-15 | 2001-07-17 | Acutek International | Carrier patch for the delivery of agents to the skin |
US6183770B1 (en) * | 1999-04-15 | 2001-02-06 | Acutek International | Carrier patch for the delivery of agents to the skin |
US6592892B1 (en) | 1999-08-30 | 2003-07-15 | Tepha, Inc. | Flushable disposable polymeric products |
US6974588B1 (en) | 1999-12-07 | 2005-12-13 | Elan Pharma International Limited | Transdermal patch for delivering volatile liquid drugs |
US6469227B1 (en) | 1999-12-10 | 2002-10-22 | Lectec Corporation | Antipruritic patch |
US20060121103A1 (en) * | 2000-05-11 | 2006-06-08 | Kenneth Kirby | Transdermal delivery system |
US20070154527A1 (en) * | 2001-10-12 | 2007-07-05 | Monosoirx, Llc | Topical film compositions for delivery of actives |
US20070281003A1 (en) * | 2001-10-12 | 2007-12-06 | Fuisz Richard C | Polymer-Based Films and Drug Delivery Systems Made Therefrom |
US7824588B2 (en) | 2001-10-12 | 2010-11-02 | Monosol Rx, Llc | Method of making self-supporting therapeutic active-containing film |
US8652378B1 (en) | 2001-10-12 | 2014-02-18 | Monosol Rx Llc | Uniform films for rapid dissolve dosage form incorporating taste-masking compositions |
US8685437B2 (en) | 2001-10-12 | 2014-04-01 | Monosol Rx, Llc | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US20030107149A1 (en) * | 2001-10-12 | 2003-06-12 | International Fluidics. | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US11207805B2 (en) | 2001-10-12 | 2021-12-28 | Aquestive Therapeutics, Inc. | Process for manufacturing a resulting pharmaceutical film |
US11077068B2 (en) | 2001-10-12 | 2021-08-03 | Aquestive Therapeutics, Inc. | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
US20100021526A1 (en) * | 2001-10-12 | 2010-01-28 | Monosol Rx, Llc | Ph modulated films for delivery of actives |
US10888499B2 (en) | 2001-10-12 | 2021-01-12 | Aquestive Therapeutics, Inc. | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US20070122455A1 (en) * | 2001-10-12 | 2007-05-31 | Monosolrx, Llc. | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
US20070149731A1 (en) * | 2001-10-12 | 2007-06-28 | Monosolrx, Llc. | PH modulated films for delivery of actives |
US7910641B2 (en) | 2001-10-12 | 2011-03-22 | Monosol Rx, Llc | PH modulated films for delivery of actives |
US9855221B2 (en) | 2001-10-12 | 2018-01-02 | Monosol Rx, Llc | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
US20070069416A1 (en) * | 2001-10-12 | 2007-03-29 | Monosolrx, Llc | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US8765167B2 (en) | 2001-10-12 | 2014-07-01 | Monosol Rx, Llc | Uniform films for rapid-dissolve dosage form incorporating anti-tacking compositions |
US20090181069A1 (en) * | 2001-10-12 | 2009-07-16 | Monosol Rx, Llc | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US20050184427A1 (en) * | 2001-10-12 | 2005-08-25 | Monosolrx, Llc. | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US8900497B2 (en) | 2001-10-12 | 2014-12-02 | Monosol Rx, Llc | Process for making a film having a substantially uniform distribution of components |
US10285910B2 (en) | 2001-10-12 | 2019-05-14 | Aquestive Therapeutics, Inc. | Sublingual and buccal film compositions |
US8900498B2 (en) | 2001-10-12 | 2014-12-02 | Monosol Rx, Llc | Process for manufacturing a resulting multi-layer pharmaceutical film |
US8906277B2 (en) | 2001-10-12 | 2014-12-09 | Monosol Rx, Llc | Process for manufacturing a resulting pharmaceutical film |
US20080260805A1 (en) * | 2001-10-12 | 2008-10-23 | Monosol Rx, Llc | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US8663687B2 (en) | 2001-10-12 | 2014-03-04 | Monosol Rx, Llc | Film compositions for delivery of actives |
US7425292B2 (en) | 2001-10-12 | 2008-09-16 | Monosol Rx, Llc | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US9108340B2 (en) | 2001-10-12 | 2015-08-18 | Monosol Rx, Llc | Process for manufacturing a resulting multi-layer pharmaceutical film |
US7357891B2 (en) | 2001-10-12 | 2008-04-15 | Monosol Rx, Llc | Process for making an ingestible film |
US9931305B2 (en) | 2001-10-12 | 2018-04-03 | Monosol Rx, Llc | Uniform films for rapid dissolve dosage form incorporating taste-masking compositions |
US20050037055A1 (en) * | 2002-04-11 | 2005-02-17 | Monosolrx Llc. | Polyethylene oxide-based films and drug delivery systems made therefrom |
US8603514B2 (en) | 2002-04-11 | 2013-12-10 | Monosol Rx, Llc | Uniform films for rapid dissolve dosage form incorporating taste-masking compositions |
US10111810B2 (en) | 2002-04-11 | 2018-10-30 | Aquestive Therapeutics, Inc. | Thin film with non-self-aggregating uniform heterogeneity and drug delivery systems made therefrom |
US8017150B2 (en) | 2002-04-11 | 2011-09-13 | Monosol Rx, Llc | Polyethylene oxide-based films and drug delivery systems made therefrom |
US7666337B2 (en) | 2002-04-11 | 2010-02-23 | Monosol Rx, Llc | Polyethylene oxide-based films and drug delivery systems made therefrom |
US20080044454A1 (en) * | 2002-04-11 | 2008-02-21 | Monosolrx Llc | Uniform films for rapid dissolve dosage form incorporating taste-masking compositions |
US20080260809A1 (en) * | 2002-04-11 | 2008-10-23 | Monosol Rx, Llc | Polyethylene oxide-based films and drug delivery systems made therefrom |
US20060147493A1 (en) * | 2002-07-22 | 2006-07-06 | Yang Robert K | Packaging and dispensing of rapid dissolve dosage form |
US8557281B2 (en) | 2002-09-27 | 2013-10-15 | Ferring B.V. | Water-swellable polymers |
US8628798B2 (en) | 2002-09-27 | 2014-01-14 | Ferring B.V. | Water-swellable polymers |
US9987364B2 (en) | 2002-09-27 | 2018-06-05 | Ferring B.V. | Water-swellable polymers |
US20110091488A1 (en) * | 2002-09-27 | 2011-04-21 | Controlled Therapeutics (Scotland) Limited | Water-swellable polymers |
US9480770B2 (en) | 2002-10-23 | 2016-11-01 | Covidien Lp | Methods for preparation of medical dressing containing antimicrobial agent |
US20040209907A1 (en) * | 2003-01-23 | 2004-10-21 | Richard Franklin | Formulation and methods for the treatment of thrombocythemia |
US20040258742A1 (en) * | 2003-04-11 | 2004-12-23 | Van Osdol William Woodson | Transdermal administration of N-(2,5-disubstituted phenyl)-N'-(3-substituted phenyl)-N'-methyl guanidines |
US20050002997A1 (en) * | 2003-04-30 | 2005-01-06 | Howard Stephen A. | Tamper resistant transdermal dosage form |
US8790689B2 (en) | 2003-04-30 | 2014-07-29 | Purdue Pharma L.P. | Tamper resistant transdermal dosage form |
US8778382B2 (en) | 2003-04-30 | 2014-07-15 | Purdue Pharma L.P. | Tamper resistant transdermal dosage form |
US20040234576A1 (en) * | 2003-05-08 | 2004-11-25 | Tepha, Inc., State Of Incorporation Delaware | Polyhydroxyalkanoate medical textiles and fibers |
US8758657B2 (en) | 2003-05-08 | 2014-06-24 | Tepha, Inc. | Process of making polyhydroxyalkanoate medical textiles |
US10136982B2 (en) | 2003-05-08 | 2018-11-27 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
US8034270B2 (en) | 2003-05-08 | 2011-10-11 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
US10111738B2 (en) | 2003-05-08 | 2018-10-30 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
US9333066B2 (en) | 2003-05-08 | 2016-05-10 | Tepha, Inc. | Method of making a medical textile from polyhydroxyalkanoate fibers |
US10314683B2 (en) | 2003-05-08 | 2019-06-11 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
US9125719B2 (en) | 2003-05-08 | 2015-09-08 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
US20060039958A1 (en) * | 2003-05-28 | 2006-02-23 | Monosolrx, Llc. | Multi-layer films having uniform content |
US20050025809A1 (en) * | 2003-07-08 | 2005-02-03 | Tepha, Inc. | Poly-4-hydroxybutyrate matrices for sustained drug delivery |
US20090209983A1 (en) * | 2003-08-22 | 2009-08-20 | Tepha, Inc. | Polyhydroxyalkanoate nerve regeneration devices |
US20060287659A1 (en) * | 2003-08-22 | 2006-12-21 | Tepha, Inc. | Polyhydroxyalkanoate nerve regeneration devices |
US20050065062A1 (en) * | 2003-09-24 | 2005-03-24 | 3M Innovative Properties Company | Method of formulating a pharmaceutical composition |
US20050142475A1 (en) * | 2003-12-30 | 2005-06-30 | Moudry Ronald J. | Dry toner comprising encapsulated pigment, methods and uses |
US10434211B2 (en) | 2004-02-18 | 2019-10-08 | Ethicon, Inc. | Adhesive-containing wound closure device and method |
US11413370B2 (en) | 2004-02-18 | 2022-08-16 | Ethicon, Inc. | Adhesive-containing wound closure device and method |
US10398802B2 (en) | 2004-02-18 | 2019-09-03 | Ethicon, Inc. | Adhesive-containing wound closure device and method |
US20090076542A1 (en) * | 2004-02-18 | 2009-03-19 | Jerry Jonn | Adhesive-Containing Wound Closure Device And Method |
US9655622B2 (en) | 2004-02-18 | 2017-05-23 | Ethicon, Inc. | Adhesive-containing wound closure device and method |
US20070202245A1 (en) * | 2004-04-08 | 2007-08-30 | Gantner David C | Silicone Skin Adhesive Gels With Enhanced Adhesion To Plastic |
US20080260653A1 (en) * | 2004-05-06 | 2008-10-23 | Buttar Rashid A | Transdermal Delivery Systems and Transdermal Chelation Preparations |
US20060008432A1 (en) * | 2004-07-07 | 2006-01-12 | Sebastiano Scarampi | Gilsonite derived pharmaceutical delivery compositions and methods: nail applications |
US10398800B2 (en) | 2004-07-12 | 2019-09-03 | Ethicon, Inc. | Adhesive-containing wound closure device and method |
US20080255610A1 (en) * | 2004-07-12 | 2008-10-16 | Closure Medical Corporation | Adhesive-Containing Wound Closure Device and Method |
US20060009099A1 (en) * | 2004-07-12 | 2006-01-12 | Closure Medical Corporation | Adhesive-containing wound closure device and method |
US11446407B2 (en) | 2004-07-12 | 2022-09-20 | Ethicon, Inc. | Adhesive-containing wound closure device and method |
US9623142B2 (en) | 2004-07-12 | 2017-04-18 | Ethicon, Inc. | Adhesive-containing wound closure device and method |
US8084125B2 (en) | 2004-08-03 | 2011-12-27 | Tepha, Inc. | Non-curling polyhydroxyalkanoate sutures |
US20060058470A1 (en) * | 2004-08-03 | 2006-03-16 | Tepha, Inc. | Non-curling polyhydroxyalkanoate sutures |
US20100093237A1 (en) * | 2004-08-03 | 2010-04-15 | Tepha, Inc. | Non-curling polyhydroxyalkanoate sutures |
US7641825B2 (en) | 2004-08-03 | 2010-01-05 | Tepha, Inc. | Method of making a polyhydroxyalkanoate filament |
US8460707B2 (en) | 2004-08-05 | 2013-06-11 | Ferring B.V. | Stabilised prostaglandin composition |
US8491934B2 (en) | 2004-08-05 | 2013-07-23 | Ferring B.V. | Stabilised prostaglandin composition |
US8709482B2 (en) | 2004-08-05 | 2014-04-29 | Ferring B.V. | Stabilised prostaglandin composition |
WO2007011763A3 (en) * | 2005-07-15 | 2007-07-12 | 3M Innovative Properties Co | Adhesive sheet and methods of use thereof |
US9750771B2 (en) | 2005-09-27 | 2017-09-05 | Tissuetech, Inc. | Amniotic membrane preparations and purified compositions and anti-inflammation methods |
US9161954B2 (en) | 2005-09-27 | 2015-10-20 | Tissuetech, Inc. | Amniotic membrane preparations and purified compositions and anti-angiogenesis treatment |
US9724370B2 (en) | 2005-09-27 | 2017-08-08 | Tissuetech, Inc. | Amniotic membrane preparations and purified compositions and therapy for scar reversal and inhibition |
US9750772B2 (en) | 2005-09-27 | 2017-09-05 | Tissuetech, Inc. | Amniotic membrane preparations and purified compositions and anti-angiogenesis treatment |
US8420126B2 (en) | 2005-09-27 | 2013-04-16 | Tissue Tech, Inc. | Amniotic membrane preparations and purified compositions and anti-angiogenesis treatment |
US8455009B2 (en) | 2005-09-27 | 2013-06-04 | Tissuetech, Inc. | Amniotic membrane preparations and purified compositions and anti-inflammation methods |
US10632155B2 (en) | 2005-09-27 | 2020-04-28 | Tissuetech, Inc. | Amniotic membrane preparations and purified compositions and therapy for scar reversal and inhibition |
US9161956B2 (en) | 2005-09-27 | 2015-10-20 | Tissuetech, Inc. | Amniotic membrane preparations and purified compositions and anti-inflammation methods |
US8460714B2 (en) | 2005-09-27 | 2013-06-11 | Tissuetech, Inc. | Purified amniotic membrane compositions and methods of use |
US9198939B2 (en) | 2005-09-27 | 2015-12-01 | Tissuetech, Inc. | Purified amniotic membrane compositions and methods of use |
US20070231401A1 (en) * | 2005-09-27 | 2007-10-04 | Bio-Tissue, Inc. | Amniotic membrane preparations and purified compositions and anti-inflammation methods |
US8440235B2 (en) | 2005-09-27 | 2013-05-14 | Tissuetech, Inc. | Amniotic membrane preparations and purified compositions and therapy for scar reversal and inhibition |
US8153162B2 (en) | 2005-09-27 | 2012-04-10 | Tissuetech, Inc. | Purified amniotic membrane compositions and methods of use |
US20070071740A1 (en) * | 2005-09-27 | 2007-03-29 | Bio-Tissue, Inc. | Purified amniotic membrane compositions and methods of use |
US8182840B2 (en) | 2005-09-27 | 2012-05-22 | Tissue Tech, Inc. | Amniotic membrane preparations and purified compositions and therapy for scar reversal and inhibition |
US8182841B2 (en) | 2005-09-27 | 2012-05-22 | Tissue Tech, Inc. | Amniotic membrane preparations and purified compositions and anti-inflammation methods |
US8187639B2 (en) | 2005-09-27 | 2012-05-29 | Tissue Tech, Inc. | Amniotic membrane preparations and purified compositions and anti-angiogenesis treatment |
US9161955B2 (en) | 2005-09-27 | 2015-10-20 | Tissuetech, Inc. | Amniotic membrane preparations and purified compositions and therapy for scar reversal and inhibition |
US10272119B2 (en) | 2005-09-27 | 2019-04-30 | Tissuetech, Inc. | Amniotic membrane preparations and purified compositions and therapy for scar reversal and inhibition |
US20080299087A1 (en) * | 2005-09-27 | 2008-12-04 | Bio-Tissue, Inc. | Amniotic membrane preparations and purified compositions and therapy for scar reversal and inhibition |
EP2664337A1 (en) | 2005-09-27 | 2013-11-20 | TissueTech, Inc. | Amniotic membrane preparations and purified compositions and methods of use |
US9956252B2 (en) | 2005-09-27 | 2018-05-01 | Tissuetech, Inc. | Purified amniotic membrane compositions and methods of use |
US20070071828A1 (en) * | 2005-09-27 | 2007-03-29 | Bio-Tissue, Inc. | Amniotic membrane preparations and purified compositions and anti-angiogenesis treatment |
US20070086958A1 (en) * | 2005-10-14 | 2007-04-19 | Medafor, Incorporated | Formation of medically useful gels comprising microporous particles and methods of use |
WO2007062266A2 (en) | 2005-11-28 | 2007-05-31 | Marinus Pharmaceuticals | Ganaxolone formulations and methods for the making and use thereof |
US20070190157A1 (en) * | 2006-01-20 | 2007-08-16 | Monosoirx, Llc. | Film lined packaging and method of making same |
US20070172515A1 (en) * | 2006-01-20 | 2007-07-26 | Monosolrx, Llc | Film bandage for mucosal administration of actives |
US8518926B2 (en) | 2006-04-10 | 2013-08-27 | Knopp Neurosciences, Inc. | Compositions and methods of using (R)-pramipexole |
US20090042956A1 (en) * | 2006-04-10 | 2009-02-12 | Knopp Neurosciences, Inc. | Compositions and methods of using (r)-pramipexole |
US20070259930A1 (en) * | 2006-04-10 | 2007-11-08 | Knopp Neurosciences, Inc. | Compositions and methods of using r(+) pramipexole |
US20070237812A1 (en) * | 2006-04-11 | 2007-10-11 | Tyco Healthcare Group | Multi-layer wound dressings |
US20070259029A1 (en) * | 2006-05-08 | 2007-11-08 | Mcentire Edward Enns | Water-dispersible patch containing an active agent for dermal delivery |
US20070258935A1 (en) * | 2006-05-08 | 2007-11-08 | Mcentire Edward Enns | Water dispersible films for delivery of active agents to the epidermis |
US8017598B2 (en) | 2006-05-16 | 2011-09-13 | Knopp Neurosciences, Inc. | Compositions of R(+) and S(−) pramipexole and methods of using the same |
US8445474B2 (en) | 2006-05-16 | 2013-05-21 | Knopp Neurosciences, Inc. | Compositions of R(+) and S(−) pramipexole and methods of using the same |
US20080014259A1 (en) * | 2006-05-16 | 2008-01-17 | Knopp Neurosciences, Inc. | Compositions of R(+) and S(-) Pramipexole and Methods of Using the Same |
US8614278B2 (en) | 2006-06-06 | 2013-12-24 | Dow Corning Corporation | Silicone acrylate hybrid composition and method of making same |
US8124689B2 (en) | 2006-06-06 | 2012-02-28 | Dow Corning Corporation | Silicone acrylate hybride composition and method of making same |
US20090196911A1 (en) * | 2006-06-06 | 2009-08-06 | Loubert Gary L | Silicone Acrylate Hybride Composition and Method Of Making Same |
US8569416B2 (en) | 2006-06-06 | 2013-10-29 | Dow Corning Corporation | Single phase silicone acrylate formulation |
US8974813B2 (en) | 2006-07-05 | 2015-03-10 | Ferring B.V. | Hydrophilic polyurethane compositions |
US10105445B2 (en) | 2006-07-05 | 2018-10-23 | Ferring B.V. | Hydrophilic polyurethane compositions |
US20090291120A1 (en) * | 2006-07-05 | 2009-11-26 | Jukka Tuominen | Hydrophilic Polyurethane Compositions |
US20090324692A1 (en) * | 2006-07-08 | 2009-12-31 | Controlled Therapeutics (Scotland) Limited | Polyurethane Elastomers |
US8361272B2 (en) | 2006-07-08 | 2013-01-29 | Ferring B.V. | Polyurethane elastomers |
US8361273B2 (en) | 2006-07-08 | 2013-01-29 | Ferring B.V. | Polyurethane elastomers |
US20080160065A1 (en) * | 2006-07-12 | 2008-07-03 | Janet Anne Halliday | Drug delivery polymer with hydrochloride salt of clindamycin |
WO2008021368A2 (en) | 2006-08-11 | 2008-02-21 | The Johns Hopkins University | Compositions and methods for neuroprotection |
US20080057090A1 (en) * | 2006-09-01 | 2008-03-06 | Mcentire Edward Enns | Wrinkle masking film composition for skin |
US20080075825A1 (en) * | 2006-09-20 | 2008-03-27 | Fuisz Richard C | Edible Water-Soluble Film Containing a Foam Reducing Flavoring Agent |
US7972618B2 (en) | 2006-09-20 | 2011-07-05 | Monosol Rx, Llc | Edible water-soluble film containing a foam reducing flavoring agent |
EP2443929A1 (en) | 2006-09-22 | 2012-04-25 | Pharmacyclics, Inc. | Inhibitors of Bruton's Tyrosine Kinase |
WO2008039218A2 (en) | 2006-09-22 | 2008-04-03 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
EP2529622A1 (en) | 2006-09-22 | 2012-12-05 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
EP2532234A1 (en) | 2006-09-22 | 2012-12-12 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
EP2526934A2 (en) | 2006-09-22 | 2012-11-28 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
EP2526933A2 (en) | 2006-09-22 | 2012-11-28 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
EP2526771A1 (en) | 2006-09-22 | 2012-11-28 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
EP2530083A1 (en) | 2006-09-22 | 2012-12-05 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
EP2532235A1 (en) | 2006-09-22 | 2012-12-12 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
EP2529621A1 (en) | 2006-09-22 | 2012-12-05 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
EP2201840A1 (en) | 2006-09-22 | 2010-06-30 | Pharmacyclics, Inc. | Inhibitors of Bruton's Tyrosine Kinase |
US20080081071A1 (en) * | 2006-09-29 | 2008-04-03 | Pradeep Sanghvi | Film Embedded Packaging and Method of Making Same |
US20080085972A1 (en) * | 2006-10-05 | 2008-04-10 | O'brien Emmett Patrick | Switchable adhesive article for attachment to skin and method of using the same |
US7879942B2 (en) | 2006-10-05 | 2011-02-01 | Eastman Chemical Company | Switchable adhesive article for attachment to skin and method of using the same |
US8524254B2 (en) | 2006-10-18 | 2013-09-03 | Ferring B.V. | Bioresorbable polymers |
WO2008066899A2 (en) | 2006-11-28 | 2008-06-05 | Marinus Pharmaceuticals | Nanoparticulate formulations and methods for the making and use thereof |
US8753555B2 (en) | 2006-12-01 | 2014-06-17 | Tepha, Inc. | Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers |
US20110189475A1 (en) * | 2006-12-01 | 2011-08-04 | Tepha, Inc. | Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers |
US7943683B2 (en) | 2006-12-01 | 2011-05-17 | Tepha, Inc. | Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers |
US20080132602A1 (en) * | 2006-12-01 | 2008-06-05 | Tepha, Inc. | Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers |
US8524695B2 (en) | 2006-12-14 | 2013-09-03 | Knopp Neurosciences, Inc. | Modified release formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and methods of using the same |
US20090054504A1 (en) * | 2006-12-14 | 2009-02-26 | Knopp Neurosciences, Inc. | Modified Release Formulations of (6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine and Methods of Using the Same |
US8519148B2 (en) | 2007-03-14 | 2013-08-27 | Knopp Neurosciences, Inc. | Synthesis of chirally purified substituted benzothiazole diamines |
US10179774B2 (en) | 2007-03-14 | 2019-01-15 | Knopp Biosciences Llc | Synthesis of chirally purified substituted benzothiazole diamines |
US20080227985A1 (en) * | 2007-03-14 | 2008-09-18 | Knopp Neurosciences, Inc. | Synthesis of chirally purified substituted benzothiazoles |
US9700522B2 (en) | 2007-03-19 | 2017-07-11 | Vita Sciences Llc | Transdermal patch and method for delivery of vitamin B12 |
US9814632B2 (en) | 2007-08-03 | 2017-11-14 | Kimberly-Clark Worldwide, Inc. | Body adhering absorbent article |
US9072636B2 (en) | 2007-08-03 | 2015-07-07 | Kimberly-Clark Worldwide, Inc. | Dynamic fitting body adhering absorbent article |
US9820892B2 (en) | 2007-08-03 | 2017-11-21 | Kimberly-Clark Worldwide, Inc. | Packaged body adhering absorbent article |
US11123233B2 (en) | 2007-08-03 | 2021-09-21 | Kimberly-Clark Worldwide, Inc. | Packaged body adhering absorbent article |
WO2009035818A1 (en) | 2007-09-10 | 2009-03-19 | Calcimedica, Inc. | Compounds that modulate intracellular calcium |
US20090098069A1 (en) * | 2007-09-14 | 2009-04-16 | Drugtech Corporation | Transdermal, alcohol-free, pharmaceutical compositions |
US9895274B2 (en) | 2007-12-28 | 2018-02-20 | Kimberly-Clark Worldwide, Inc. | Body adhering absorbent article |
US20100068708A1 (en) * | 2008-05-07 | 2010-03-18 | Wintherix Llc | Methods for Identifying Compounds that Modulate WNT Signaling in Cancer Cells |
US20090286246A1 (en) * | 2008-05-07 | 2009-11-19 | Wintherix Llc | Methods for Identifying Compounds that Affect Expression of Cancer-Related Protein Isoforms |
US9849116B2 (en) | 2008-08-19 | 2017-12-26 | Knopp Biosciences Llc | Compositions and methods of using (R)-pramipexole |
US20110190356A1 (en) * | 2008-08-19 | 2011-08-04 | Knopp Neurosciences Inc. | Compositions and Methods of Using (R)- Pramipexole |
WO2010027875A2 (en) | 2008-08-27 | 2010-03-11 | Calcimedica Inc. | Compounds that modulate intracellular calcium |
US20100055437A1 (en) * | 2008-08-28 | 2010-03-04 | Tyco Healthcare Group Lp | Anti-microbial fibers and related articles and methods |
AU2009312495B2 (en) * | 2008-11-10 | 2015-06-25 | Kimberly-Clark Worldwide, Inc. | Multifunctional acrylate skin-adhesive composition |
US11147722B2 (en) * | 2008-11-10 | 2021-10-19 | Kimberly-Clark Worldwide, Inc. | Absorbent article with a multifunctional acrylate skin-adhesive composition |
US20100121304A1 (en) * | 2008-11-10 | 2010-05-13 | Kimberly-Clark Worldwide, Inc. | Multifunctional Acrylate Skin-Adhesive Composition |
WO2010071866A2 (en) | 2008-12-19 | 2010-06-24 | Nuon Therapeutics, Inc. | Combination therapy for arthritis with tranilast |
US10022468B2 (en) | 2009-02-02 | 2018-07-17 | Kimberly-Clark Worldwide, Inc. | Absorbent articles containing a multifunctional gel |
US11285239B2 (en) | 2009-02-02 | 2022-03-29 | Kimberly-Clark Worldwide, Inc. | Absorbent articles containing a multifunctional gel |
US9175066B2 (en) | 2009-04-24 | 2015-11-03 | Tissuetech, Inc. | Compositions containing HC-HA complex and methods of use thereof |
US20110009460A1 (en) * | 2009-06-19 | 2011-01-13 | Valentin Gribkoff | Compositions and methods for treating amyotrophic lateral sclerosis |
US10034833B2 (en) | 2009-08-07 | 2018-07-31 | Aquestive Therapeutics, Inc. | Sublingual and buccal film compositions |
US8475832B2 (en) | 2009-08-07 | 2013-07-02 | Rb Pharmaceuticals Limited | Sublingual and buccal film compositions |
US10821074B2 (en) | 2009-08-07 | 2020-11-03 | Aquestive Therapeutics, Inc. | Sublingual and buccal film compositions |
US9687454B2 (en) | 2009-08-07 | 2017-06-27 | Indivior Uk Limited | Sublingual and buccal film compositions |
US20110033542A1 (en) * | 2009-08-07 | 2011-02-10 | Monosol Rx, Llc | Sublingual and buccal film compositions |
US11135216B2 (en) | 2009-08-07 | 2021-10-05 | Indivior Uk Limited | Sublingual and buccal film compositions |
US20110033541A1 (en) * | 2009-08-07 | 2011-02-10 | Monosol Rx, Llc | Sublingual and buccal film compositions |
EP2650294A1 (en) | 2009-10-12 | 2013-10-16 | Pharmacyclics, Inc. | Inhibitors of Bruton's Tyrosine Kinase |
US9260417B2 (en) | 2010-02-08 | 2016-02-16 | Amitech Therapeutic Solutions, Inc. | Therapeutic methods and compositions involving allosteric kinase inhibition |
US9212151B2 (en) | 2010-03-24 | 2015-12-15 | Amitech Therapeutic Solutions, Inc. | Heterocyclic compounds useful for kinase inhibition |
US10214513B2 (en) | 2010-03-24 | 2019-02-26 | Amitech Therapeutic Solutions, Inc. | Heterocyclic compounds useful for kinase inhibition |
WO2011119894A2 (en) | 2010-03-24 | 2011-09-29 | Kinagen, Inc | Heterocyclic compounds useful for kinase inhibition |
US8957216B2 (en) | 2010-03-24 | 2015-02-17 | Amitech Therapeutic Solutions, Inc. | Heterocyclic compounds useful for kinase inhibition |
WO2011130689A1 (en) | 2010-04-15 | 2011-10-20 | Tracon Pharmaceuticals, Inc. | Potentiation of anti-cancer activity through combination therapy with ber pathway inhibitors |
WO2011139489A2 (en) | 2010-04-27 | 2011-11-10 | Calcimedica Inc. | Compounds that modulate intracellular calcium |
WO2011139765A2 (en) | 2010-04-27 | 2011-11-10 | Calcimedica, Inc. | Compounds that modulate intracellular calcium |
WO2011143152A2 (en) | 2010-05-11 | 2011-11-17 | Questcor Pharmaceuticals | Acth for treatment of amyotrophic lateral sclerosis |
WO2011153514A2 (en) | 2010-06-03 | 2011-12-08 | Pharmacyclics, Inc. | The use of inhibitors of bruton's tyrosine kinase (btk) |
US8974826B2 (en) | 2010-06-10 | 2015-03-10 | Monosol Rx, Llc | Nanoparticle film delivery systems |
US10336738B2 (en) | 2010-08-27 | 2019-07-02 | Calcimedica, Inc. | Compounds that modulate intracellular calcium |
US10940626B2 (en) | 2010-10-22 | 2021-03-09 | Aquestive Therapeutics, Inc. | Manufacturing of small film strips |
US10272607B2 (en) | 2010-10-22 | 2019-04-30 | Aquestive Therapeutics, Inc. | Manufacturing of small film strips |
US8796416B1 (en) | 2010-10-25 | 2014-08-05 | Questcor Pharmaceuticals, Inc | ACTH prophylactic treatment of renal disorders |
US9550822B2 (en) | 2010-10-25 | 2017-01-24 | Questcor Pharmaceuticals, Inc. | ACTH prophylactic treatment of renal disorders |
US10286041B2 (en) | 2010-10-25 | 2019-05-14 | Mallinckrodt Ard Ip Limited | ACTH prophylactic treatment of renal disorders |
DE102010053792A1 (en) | 2010-12-08 | 2012-06-14 | Frank Becher | Device for germ-free keeping of surfaces, such as door handles, handrails, grip bars, handles of shopping carts and toilet seating surfaces, has flat support material and self-adhesive portion formed on one side of flat support material |
US8236288B2 (en) | 2011-01-07 | 2012-08-07 | Skinmedica, Inc. | Melanin modification compositions and methods of use |
US9044404B2 (en) | 2011-01-07 | 2015-06-02 | Allergan, Inc. | Melanin modification compositions and methods of use |
US8778315B2 (en) | 2011-01-07 | 2014-07-15 | Allergan, Inc. | Melanin modification compositions and methods of use |
WO2012094638A1 (en) | 2011-01-07 | 2012-07-12 | Skinmedica, Inc. | Melanin modification compositions and methods of use |
EP3513787A1 (en) | 2011-01-10 | 2019-07-24 | Invion, Inc | Use of beta-adrenergic inverse agonists for smoking cessation |
US9993444B2 (en) | 2011-01-10 | 2018-06-12 | Invion, Inc. | Use of beta-adrenergic inverse agonists for smoking cessation |
US9675733B2 (en) | 2011-04-28 | 2017-06-13 | Tissuetech, Inc. | Methods of modulating bone remodeling |
US9526770B2 (en) | 2011-04-28 | 2016-12-27 | Tissuetech, Inc. | Methods of modulating bone remodeling |
US9682044B2 (en) | 2011-06-10 | 2017-06-20 | Tissuetech, Inc. | Methods of processing fetal support tissues, fetal support tissue powder products, and uses thereof |
US10426731B2 (en) | 2011-06-10 | 2019-10-01 | Tissuetech, Inc. | Methods of processing fetal support tissues, fetal support tissue powder products, and uses thereof |
EP2584016A1 (en) | 2011-10-21 | 2013-04-24 | Dow Corning Corporation | Single phase silicone acrylate formulation |
DE102013107024A1 (en) | 2011-11-15 | 2014-05-15 | Golden Biotechnology Corporation | Methods and compositions for treating, modifying, and managing bone cancer pain |
EP2599847A1 (en) | 2011-11-29 | 2013-06-05 | Dow Corning Corporation | A Silicone Acrylate Hybrid Composition and Method of Making Same |
US10208003B2 (en) | 2011-12-22 | 2019-02-19 | Knopp Biosciences Llc | Synthesis of amine substituted 4,5,6,7-tetrahydrobenzothiazole compounds |
US9512096B2 (en) | 2011-12-22 | 2016-12-06 | Knopp Biosciences, LLP | Synthesis of amine substituted 4,5,6,7-tetrahydrobenzothiazole compounds |
US9273051B2 (en) | 2011-12-30 | 2016-03-01 | Pharmacyclics Llc | Pyrazolo[3,4-d]pyrimidine and pyrrolo[2,3-d]pyrimidine compounds as kinase inhibitors |
DE102013107025A1 (en) | 2011-12-30 | 2014-07-03 | Golden Biotechnology Corporation | METHODS AND COMPOSITIONS FOR THE MANAGEMENT OF DIABETIS |
DE102013202928A1 (en) | 2012-02-23 | 2013-08-29 | Golden Biotechnology Corporation | Methods and compositions for treating cancer metastasis |
WO2013148701A1 (en) | 2012-03-26 | 2013-10-03 | Golden Biotechnology Corporation | Methods and compositions for treating arteriosclerotic vascular diseases |
US11518782B2 (en) | 2012-07-11 | 2022-12-06 | Tissuetech, Inc. | Compositions containing HC-HA/PTX3 complexes and methods of use thereof |
US10253065B2 (en) | 2012-07-11 | 2019-04-09 | Tissuetech, Inc. | Compositions containing HC-HA/PTX3 complexes and methods of use thereof |
US10040821B2 (en) | 2012-07-11 | 2018-08-07 | Tissuetech, Inc. | Compositions containing HC-HA/PTX3 complexes and methods of use thereof |
US10717763B2 (en) | 2012-07-11 | 2020-07-21 | Tissuetech, Inc. | Compositions containing HC-HA/PTX3 complexes and methods of use thereof |
US9512116B2 (en) | 2012-10-12 | 2016-12-06 | Calcimedica, Inc. | Compounds that modulate intracellular calcium |
WO2014081675A1 (en) | 2012-11-21 | 2014-05-30 | Golden Biotechnology Corporation | Methods and compositions for treating neurodegenerative diseases |
WO2014130619A2 (en) | 2013-02-20 | 2014-08-28 | Golden Biotechnology Corporation | Methods and compositions for treating leukemia |
US10285981B2 (en) | 2013-02-28 | 2019-05-14 | Knopp Biosciences Llc | Compositions and methods for treating amyotrophic lateral sclerosis in responders |
US9662313B2 (en) | 2013-02-28 | 2017-05-30 | Knopp Biosciences Llc | Compositions and methods for treating amyotrophic lateral sclerosis in responders |
US9956206B2 (en) | 2013-02-28 | 2018-05-01 | Knopp Biosciences Llc | Compositions and methods for treating amyotrophic lateral sclerosis in responders |
US10232018B2 (en) | 2013-03-14 | 2019-03-19 | Mallinckrodt Ard Ip Limited | ACTH for treatment of acute respiratory distress syndrome |
US9682068B2 (en) | 2013-05-20 | 2017-06-20 | Mylan Inc. | Transdermal therapeutic system for extended dosing of pramipexole in treating neurological disorders |
US10383856B2 (en) | 2013-07-12 | 2019-08-20 | Knopp Biosciences Llc | Compositions and methods for treating conditions related to increased eosinophils |
US10828284B2 (en) | 2013-07-12 | 2020-11-10 | Knopp Biosciences Llc | Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils |
US11612589B2 (en) | 2013-07-12 | 2023-03-28 | Areteia Therapeutics, Inc. | Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils |
US9468630B2 (en) | 2013-07-12 | 2016-10-18 | Knopp Biosciences Llc | Compositions and methods for treating conditions related to increased eosinophils |
US10980783B2 (en) | 2013-07-12 | 2021-04-20 | Knopp Biosciences Llc | Compositions and methods for treating conditions related to increased eosinophils |
US11026928B2 (en) | 2013-07-12 | 2021-06-08 | Knopp Biosciences Llc | Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils |
US10383857B2 (en) | 2013-07-12 | 2019-08-20 | Knopp Biosciences Llc | Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils |
US12138249B2 (en) | 2013-07-12 | 2024-11-12 | Areteia Therapeutics, Inc. | Compositions and methods for treating conditions related to elevated levels of eosinophils and/or basophils |
US10028940B2 (en) | 2013-08-13 | 2018-07-24 | Knopp Biosciences Llc | Compositions and methods for treating plasma cell disorders and B-cell prolymphocytic disorders |
US9763918B2 (en) | 2013-08-13 | 2017-09-19 | Knopp Biosciences Llc | Compositions and methods for treating chronic urticaria |
US10195183B2 (en) | 2013-08-13 | 2019-02-05 | Knopp Biosciences Llc | Compositions and methods for treating chronic urticaria |
US9642840B2 (en) | 2013-08-13 | 2017-05-09 | Knopp Biosciences, Llc | Compositions and methods for treating plasma cell disorders and B-cell prolymphocytic disorders |
US10456381B2 (en) | 2013-08-13 | 2019-10-29 | Knopp Biosciences Llc | Compositions and methods for treating plasma cell disorders and B-cell prolymphocytic disorders |
US9611263B2 (en) | 2013-10-08 | 2017-04-04 | Calcimedica, Inc. | Compounds that modulate intracellular calcium |
WO2015084998A1 (en) | 2013-12-05 | 2015-06-11 | Pharmacyclics, Inc. | Inhibitors of bruton's tyrosine kinase |
US10835512B2 (en) | 2014-02-10 | 2020-11-17 | Respivant Sciences Gmbh | Methods of treating respiratory syncytial virus infections |
US9265749B2 (en) | 2014-02-10 | 2016-02-23 | Patara Pharma, LLC | Methods for the treatment of systemic disorders treatable with mast cell stabilizers, including mast cell related disorders |
EP3653207A1 (en) | 2014-02-10 | 2020-05-20 | Respivant Sciences GmbH | Mast cell stabilizers treatment for systemic disorders |
US9707206B2 (en) | 2014-02-10 | 2017-07-18 | Patara Pharma, LLC | Mast cell stabilizers treatment for systemic disorders |
US10398673B2 (en) | 2014-02-10 | 2019-09-03 | Respivant Services GmbH | Mast cell stabilizers treatment for systemic disorders |
US10238628B2 (en) | 2014-02-10 | 2019-03-26 | Respivant Sciences Gmbh | Mast cell stabilizers treatment for systemic disorders |
US9962363B2 (en) | 2014-02-10 | 2018-05-08 | Patara Pharma, LLC | Mast cell stabilizers treatment for systemic disorders |
US9968586B2 (en) | 2014-02-10 | 2018-05-15 | Patara Pharma, LLC | Mast cell stabilizers treatment for systemic disorders |
WO2015138919A1 (en) | 2014-03-14 | 2015-09-17 | The University Of North Carolina At Chapel Hill | Small molecules for inhibiting male fertility |
US9758533B2 (en) | 2014-04-23 | 2017-09-12 | The Research Foundation For The State University Of New York | Rapid and efficient bioorthogonal ligation reaction and boron-containing heterocycles useful in conjunction therewith |
US10435418B2 (en) | 2014-04-23 | 2019-10-08 | The Research Foundation for the State University o | Rapid and efficient bioorthogonal ligation reaction and boron-containing heterocycles useful in conjunction therewith |
US9808491B2 (en) | 2014-06-03 | 2017-11-07 | Tissuetech, Inc. | Compositions of morselized umbilical cord and/or amniotic membrane and methods of use thereof |
US11116800B2 (en) | 2014-06-03 | 2021-09-14 | Tissuetech, Inc. | Compositions of morselized umbilical cord and/or amniotic membrane and methods of use thereof |
US11944709B2 (en) | 2014-08-15 | 2024-04-02 | Tepha, Inc. | Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof |
US11426484B2 (en) | 2014-08-15 | 2022-08-30 | Tepha, Inc. | Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof |
US10500303B2 (en) | 2014-08-15 | 2019-12-10 | Tepha, Inc. | Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof |
US9839644B2 (en) | 2014-09-09 | 2017-12-12 | ARKAY Therapeutics, LLC | Formulations and methods for treatment of metabolic syndrome |
USD824525S1 (en) | 2014-09-25 | 2018-07-31 | Ethicon Llc | Release paper for wound treament devices |
USD854171S1 (en) | 2014-09-25 | 2019-07-16 | Ethicon Llc | Release paper for wound treatment devices |
EP3872063A1 (en) | 2014-11-25 | 2021-09-01 | Concentric Analgesics, Inc. | Prodrugs of phenolic trpv1 agonists |
WO2016086063A1 (en) | 2014-11-25 | 2016-06-02 | Concentric Analgesics, Inc. | Prodrugs of phenolic trpv1 agonists |
US10626521B2 (en) | 2014-12-11 | 2020-04-21 | Tepha, Inc. | Methods of manufacturing mesh sutures from poly-4-hydroxybutyrate and copolymers thereof |
US9555155B2 (en) | 2014-12-11 | 2017-01-31 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
US11828006B2 (en) | 2014-12-11 | 2023-11-28 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
US10590566B2 (en) | 2014-12-11 | 2020-03-17 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
US10227713B2 (en) | 2014-12-11 | 2019-03-12 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
US10227333B2 (en) | 2015-02-11 | 2019-03-12 | Curtana Pharmaceuticals, Inc. | Inhibition of OLIG2 activity |
US11590265B2 (en) | 2015-02-23 | 2023-02-28 | Biotissue Holdings Inc. | Apparatuses and methods for treating ophthalmic diseases and disorders |
US11691951B2 (en) | 2015-02-27 | 2023-07-04 | Curtana Pharmaceuticals, Inc. | Inhibition of Olig2 activity |
WO2016138479A1 (en) | 2015-02-27 | 2016-09-01 | Curtana Pharmaceuticals, Inc. | Inhibition of olig2 activity |
US11318169B2 (en) | 2015-05-20 | 2022-05-03 | Tissuetech, Inc. | Compositions and methods for preventing the proliferation and epithelial-mesenchymal transition of epithelial cells |
US10342831B2 (en) | 2015-05-20 | 2019-07-09 | Tissuetech, Inc. | Composition and methods for preventing the proliferation and epithelial-mesenchymal transition of epithelial cells |
US10238625B2 (en) | 2015-08-07 | 2019-03-26 | Respivant Sciences Gmbh | Methods for the treatment of mast cell related disorders with mast cell stabilizers |
US10596146B2 (en) | 2015-08-07 | 2020-03-24 | Respivant Sciences Gmbh | Methods for the treatment of systemic disorders treatable with mast cell stabilizers, including mast cell related disorders |
US10391078B2 (en) | 2015-08-07 | 2019-08-27 | Respivant Sciences Gmbh | Methods for the treatment of mast cell related disorders with mast cell stabilizers |
WO2017027402A1 (en) | 2015-08-07 | 2017-02-16 | Patara Pharma, LLC | Methods for the treatment of systemic disorders treatable with mast cell stabilizers, including mast cell related disorders |
US10265296B2 (en) | 2015-08-07 | 2019-04-23 | Respivant Sciences Gmbh | Methods for the treatment of systemic disorders treatable with mast cell stabilizers, including mast cell related disorders |
WO2017040617A1 (en) | 2015-08-31 | 2017-03-09 | Pharmacyclics Llc | Btk inhibitor combinations for treating multiple myeloma |
US11707492B2 (en) | 2016-01-29 | 2023-07-25 | Biotissue Holdings Inc. | Fetal support tissue products and methods of use |
US10851123B2 (en) | 2016-02-23 | 2020-12-01 | Concentric Analgesics, Inc. | Prodrugs of phenolic TRPV1 agonists |
US12023309B2 (en) | 2016-05-05 | 2024-07-02 | Aquestive Therapeutics, Inc. | Enhanced delivery epinephrine compositions |
US11191737B2 (en) | 2016-05-05 | 2021-12-07 | Aquestive Therapeutics, Inc. | Enhanced delivery epinephrine compositions |
US11273131B2 (en) | 2016-05-05 | 2022-03-15 | Aquestive Therapeutics, Inc. | Pharmaceutical compositions with enhanced permeation |
US11883381B2 (en) | 2016-05-12 | 2024-01-30 | The Regents Of The University Of Michigan | ASH1L inhibitors and methods of treatment therewith |
WO2017197240A1 (en) | 2016-05-12 | 2017-11-16 | The Regents Of The University Of Michigan | Ash1l inhibitors and methods of treatment therewith |
US10821105B2 (en) | 2016-05-25 | 2020-11-03 | Concentric Analgesics, Inc. | Prodrugs of phenolic TRPV1 agonists in combination with local anesthetics and vasoconstrictors for improved local anesthesia |
US11464767B2 (en) | 2016-05-25 | 2022-10-11 | Concentric Analgesics, Inc. | Prodrugs of phenolic TRPV1 agonists in combination with local anesthetics and vasoconstrictors for improved local anesthesia |
WO2017205762A1 (en) | 2016-05-27 | 2017-11-30 | Pharmacyclics Llc | Inhibitors of interleukin-1 receptor-associated kinase |
WO2017205769A1 (en) | 2016-05-27 | 2017-11-30 | Pharmacyclics Llc | Inhibitors of interleukin-1 receptor-associated kinase |
WO2017205766A1 (en) | 2016-05-27 | 2017-11-30 | Pharmacyclics Llc | Inhibitors of interleukin-1 receptor-associated kinase |
US12145913B2 (en) | 2016-08-26 | 2024-11-19 | Curtana Pharmaceuticals, Inc. | Inhibition of Olig2 activity |
US11242323B2 (en) | 2016-08-26 | 2022-02-08 | Curtana Pharmaceuticals, Inc. | Inhibition of OLIG2 activity |
US10463613B2 (en) | 2016-08-31 | 2019-11-05 | Respivant Sciences Gmbh | Cromolyn compositions for treatment of chronic cough due to idiopathic pulmonary fibrosis |
US10265267B2 (en) | 2016-08-31 | 2019-04-23 | Respivant Sciences Gmbh | Cromolyn compositions for treatment of chronic cough due to idiopathic pulmonary fibrosis |
US10792024B2 (en) | 2016-09-28 | 2020-10-06 | Ethicon, Inc. | Scaffolds with channels for joining layers of tissue at discrete points |
US10470934B2 (en) | 2016-09-29 | 2019-11-12 | Ethicon, Inc. | Methods and devices for skin closure |
USD979768S1 (en) | 2016-09-29 | 2023-02-28 | Ethicon, Inc. | Release paper for wound treatment devices |
USD907217S1 (en) | 2016-09-29 | 2021-01-05 | Ethicon, Inc. | Release paper for wound treatment devices |
US10687986B2 (en) | 2016-09-29 | 2020-06-23 | Ethicon, Inc. | Methods and devices for skin closure |
US11679034B2 (en) | 2016-09-29 | 2023-06-20 | Ethicon, Inc. | Methods and devices for skin closure |
US10583113B2 (en) | 2016-10-07 | 2020-03-10 | Respivant Sciences Gmbh | Cromolyn compositions for treatment of pulmonary fibrosis |
US10561635B2 (en) | 2016-10-07 | 2020-02-18 | Respivant Sciences Gmbh | Cromolyn compositions for treatment of pulmonary fibrosis |
US11980354B2 (en) | 2017-03-23 | 2024-05-14 | Ethicon, Inc. | Scaffolds for joining layers of tissue at discrete points |
US11883264B2 (en) | 2017-03-23 | 2024-01-30 | Ethicon, Inc. | Skin closure systems and devices of improved flexibility and stretchability for bendable joints |
US10470935B2 (en) | 2017-03-23 | 2019-11-12 | Ethicon, Inc. | Skin closure systems and devices of improved flexibility and stretchability for bendable joints |
US11504446B2 (en) | 2017-04-25 | 2022-11-22 | Ethicon, Inc. | Skin closure devices with self-forming exudate drainage channels |
US11110177B2 (en) | 2017-11-10 | 2021-09-07 | The Regents Of The University Of Michigan | ASH1L degraders and methods of treatment therewith |
US11147885B2 (en) | 2017-11-10 | 2021-10-19 | The Regents Of The University Of Michigan | ASH1L inhibitors and methods of treatment therewith |
US11833210B2 (en) | 2017-11-10 | 2023-12-05 | The Regents Of The University Of Michigan | ASH1L inhibitors and methods of treatment therewith |
US10632209B2 (en) | 2017-11-10 | 2020-04-28 | The Regents Of The University Of Michigan | ASH1L inhibitors and methods of treatment therewith |
US11786602B2 (en) | 2017-11-10 | 2023-10-17 | The Regents Of The University Of Michigan | ASH1L degraders and methods of treatment therewith |
WO2019094773A1 (en) | 2017-11-10 | 2019-05-16 | The Regents Of The University Of Michigan | Ash1l inhibitors and methods of treatment therewith |
WO2019094772A1 (en) | 2017-11-10 | 2019-05-16 | The Regents Of The University Of Michigan | Ash1l degraders and methods of treatment therewith |
WO2019113469A1 (en) | 2017-12-07 | 2019-06-13 | The Regents Of The University Of Michigan | Nsd family inhibitors and methods of treatment therewith |
US11685722B2 (en) | 2018-02-28 | 2023-06-27 | Curtana Pharmaceuticals, Inc. | Inhibition of Olig2 activity |
US11965120B2 (en) | 2018-04-05 | 2024-04-23 | 3M Innovative Properties Company | Gel adhesive comprising crosslinked blend of polydiorganosiloxane and acrylic polymer |
US11319302B2 (en) | 2018-06-07 | 2022-05-03 | The Regents Of The University Of Michigan | PRC1 inhibitors and methods of treatment therewith |
EP4155293A1 (en) | 2018-06-07 | 2023-03-29 | The Regents of The University of Michigan | Prc1 inhibitors and methods of treatment therewith |
WO2019236957A1 (en) | 2018-06-07 | 2019-12-12 | The Regents Of The University Of Michigan | Prc1 inhibitors and methods of treatment therewith |
US11242325B2 (en) | 2018-07-27 | 2022-02-08 | Concentric Analgesics, Inc. | Pegylated prodrugs of phenolic TRPV1 agonists |
US10717712B2 (en) | 2018-07-27 | 2020-07-21 | Concentric Analgesics, Inc. | Pegylated prodrugs of phenolic TRPV1 agonists |
US10993708B2 (en) | 2018-07-31 | 2021-05-04 | Ethicon, Inc. | Skin closure devices with interrupted closure |
US11974734B2 (en) | 2018-07-31 | 2024-05-07 | Ethicon, Inc. | Skin closure devices with interrupted closure |
WO2020142557A1 (en) | 2018-12-31 | 2020-07-09 | Biomea Fusion, Llc | Irreversible inhibitors of menin-mll interaction |
WO2020190890A1 (en) | 2019-03-15 | 2020-09-24 | Unicycive Therapeutics Inc. | Nicorandil derivatives |
WO2021226412A1 (en) | 2020-05-08 | 2021-11-11 | Golden Biotechnology Corporation | Methods and compositions for treating an rna virus induced disease |
US11858925B2 (en) | 2020-07-10 | 2024-01-02 | The Regents Of The University Of Michigan | GAS41 inhibitors and methods of use thereof |
WO2022133064A1 (en) | 2020-12-16 | 2022-06-23 | Biomea Fusion, Inc. | Fused pyrimidine compounds as inhibitors of menin-mll interaction |
WO2023018825A1 (en) | 2021-08-11 | 2023-02-16 | Biomea Fusion, Inc. | Covalent inhibitors of menin-mll interaction for diabetes mellitus |
WO2023027966A1 (en) | 2021-08-24 | 2023-03-02 | Biomea Fusion, Inc. | Pyrazine compounds as irreversible inhibitors of flt3 |
WO2023039240A1 (en) | 2021-09-13 | 2023-03-16 | Biomea Fusion, Inc. | IRREVERSIBLE INHIBITORS OF KRas |
WO2023086341A1 (en) | 2021-11-09 | 2023-05-19 | Biomea Fusion, Inc. | Inhibitors of kras |
WO2023119230A1 (en) | 2021-12-22 | 2023-06-29 | L'oreal | Coagulation pathway and nicotinamide-adenine dinucleotide pathway modulating compositions and methods of their use |
WO2023129667A1 (en) | 2021-12-30 | 2023-07-06 | Biomea Fusion, Inc. | Pyrazine compounds as inhibitors of flt3 |
WO2023235618A1 (en) | 2022-06-03 | 2023-12-07 | Biomea Fusion, Inc. | Fused pyrimidine compounds as inhibitors of menin |
WO2024243402A2 (en) | 2023-05-24 | 2024-11-28 | Unicycive Therapeutics Inc. | Salt forms of nicorandil derivatives |
WO2024249950A1 (en) | 2023-06-02 | 2024-12-05 | Biomea Fusion, Inc. | Fused pyrimidine compounds as inhibitors of menin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3731683A (en) | Bandage for the controlled metering of topical drugs to the skin | |
US3734097A (en) | Therapeutic adhesive tape | |
US3699963A (en) | Therapeutic adhesive patch | |
US3797494A (en) | Bandage for the administration of drug by controlled metering through microporous materials | |
US4927687A (en) | Sustained release transdermal drug delivery composition | |
US4834978A (en) | Method of transdermal drug delivery | |
US3598123A (en) | Bandage for administering drugs | |
US4655768A (en) | Bandage for sustained delivery of drugs | |
US4810499A (en) | Transdermal drug delivery system and method | |
US4624665A (en) | Method of transdermal drug delivery | |
US4687481A (en) | Transdermal drug delivery system | |
US5980932A (en) | Solid matrix system for transdermal drug delivery | |
ES2237415T3 (en) | COMPOSITION FOR THE DERMIC APPLICATION OF MEDICATIONS, ITS PREPARATION PROCEDURE, AND ITS USE. | |
US4690683A (en) | Transdermal varapamil delivery device | |
US5314694A (en) | Transdermal formulations, methods and devices | |
US3598122A (en) | Bandage for administering drugs | |
US4073291A (en) | Topical device for administering tretinoin | |
GB2184019A (en) | Compartmentalized dermal and transdermal patches | |
IE903259A1 (en) | Solid matrix system for transdermal drug delivery | |
US4804541A (en) | Transdermal administration using benzyl alcohol | |
JPS6366805B2 (en) | ||
KR960005148B1 (en) | Transdermal system exhibiting graduated drug release | |
JPS6250447B2 (en) | ||
JPH0472805B2 (en) | ||
JP2688778B2 (en) | Patch for disease treatment |