US3724455A - Cardiac warning device - Google Patents
Cardiac warning device Download PDFInfo
- Publication number
- US3724455A US3724455A US00042850A US3724455DA US3724455A US 3724455 A US3724455 A US 3724455A US 00042850 A US00042850 A US 00042850A US 3724455D A US3724455D A US 3724455DA US 3724455 A US3724455 A US 3724455A
- Authority
- US
- United States
- Prior art keywords
- signal
- herald
- detecting
- individual
- receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000000747 cardiac effect Effects 0.000 title claims abstract description 35
- 230000009471 action Effects 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 8
- 238000012544 monitoring process Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 230000001862 defibrillatory effect Effects 0.000 claims description 2
- 238000001514 detection method Methods 0.000 abstract description 18
- 239000003814 drug Substances 0.000 abstract description 7
- 239000007787 solid Substances 0.000 abstract description 7
- 238000004891 communication Methods 0.000 abstract description 5
- 229940079593 drug Drugs 0.000 abstract description 5
- 230000005856 abnormality Effects 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000009474 immediate action Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000007391 self-medication Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 208000003663 ventricular fibrillation Diseases 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 206010015856 Extrasystoles Diseases 0.000 description 1
- 208000010496 Heart Arrest Diseases 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009429 distress Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000718 qrs complex Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001020 rhythmical effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 206010047302 ventricular tachycardia Diseases 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
- A61B5/0004—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
- A61B5/0006—ECG or EEG signals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S128/00—Surgery
- Y10S128/903—Radio telemetry
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S128/00—Surgery
- Y10S128/905—Feedback to patient of biological signal other than brain electric signal
Definitions
- ABSTRACT A method and apparatus for detecting and responding to herald signs in the cardiac wavefonn, such as a fast heartbeat rate, a low rate or a skipped heartbeat.
- the detection of a herald sign causes the ECG waveform to be transmitted to a remote location where it is analyzed and a signal retransmitted to the patient triggering an alarm or causing other appropriate action.
- the detection of a herald sign causes the ECG to be recorded on a loop of magnetic tape or a modular solid state memory device in the unit so that the tape can be replayed and acoustically coupled to the telephone line after the patient calls the central facility.
- the detection of different herald signs causes different alarm signals, e.g., colored lights, different alarm signals identifying the abnormality, to be operated to indicate to the patient what medication he should administer to himself or whatever other action he should take in the event that communication with central facility cannot be immediately achieved.
- the invention relates to a method and apparatus for detecting premonitory signs of cardiac attacks and transmitting the detecting signs to a central location.
- the present invention relates to a novel method and apparatus whereby a number of individuals known to be cardiacs or potential cardiacs are each equipped with a portable unit which they carry on or with their person and which constantly monitors the ECG wave for herald signs.
- the detection of a herald sign by the unit causes the ECG to be transmitted to a central facility where it triggers a programmed signal in a central computer in addition to that generated in the unit.
- the ECG wave received at the central facility is then analyzed, preferably by a digital, single purpose computer which then generates an output based on a programmed input which a human expert can then study, preferably after transmission by magnetic tape via dataphone or similar device onto a receiving screen or other ECG display. If the expert considers that the detected signs warrant precautionary measures, he after identifying by coded number the patient and physician, directs the activation of a transmitter which sends a signal to the unit transmitting the ECG waves, triggering an audio signal to the patient. He simultaneously communicates with the patients physician, advising him of the event of the identified patient. This maintains the patient-personal physician relationship without interposing the interpreter as a patient identifiable consultant, but retaining his identity as a physician consultant.
- This alarm within the patient unit indicates to the individual that he should contact his own physician immediately for instructions, or, if that proves impossible,
- the central facility At the same time that the expert directed activation of the alarm transmitter, he also alerted the personal physician to the situation. He can also transmit to the personal physician, via a telephone transmitter or similar device, the actual ECG which the computer has processed and presented to him.
- the alarm signal may also indicate to the patient what self medication should be administered, e.g., by the color of a light lit by the signal as a fail safe device in the event 0 of any breakdown in communication such as inability to reach computer monitor facility and/or his physician.
- the detection of a herald sign by the unit may also cause the alarm to be activated if desired.
- the logic in each personal unit need not make sophisticated decisions as to whether a detected sign warrants precautions; those decisions are made by the computer and ultimately evaluated by a human expert.
- the logic in each unit can be made fairly simple, responding only to a few simple conditions which always occur when a herald sign exists. This permits the unit to be made relatively inexpensively and small enough to be easily carried by the patient.
- Another advantage is that the patient is not bothered by periodic false alarms which breed anxiety and cause loss of sleep. The patients alarm operates only when a potentially serious consideration exists which warrants further study and which he has been taught is an early warning signal which may warrant preventive protective actions.
- each unit includes an endless loop of magnetic tape or a solid state memory device on which the ECG wave can be continuously recorded and when the logic network in the unit determines that a herald sign is occurring permits playback and prevents erasure.
- the ECG waveform is recorded on the tape where it is used only after the event has occurred.
- a solid state memory device permits continuous recording with modularity in choice of playback time with 10 seconds deemed adequate to meet the overwhelming majority of events and 30 seconds virtually all events. It has been found that the waveform after the event almost always indicates the herald sign which caused the alarm to be given.
- the logic also triggers an audio alarm in the unit which indicates to the individual that he should go to the nearest telephone and call the central facility.
- One or more visual signals can be also given by different colored signals to inform the individual as to which medicine should be self-administered where particular hazard exists and communication cannot be immediately established.
- the magnetic tape or solid state memory device is played back while linked to the telephone by a conventional or miniaturized acoustic coupler and the recorded ECG thus transmitted to the central facility.
- the received signals are then processed by a single purpose properly programmed computer simultaneously displayed on a screen and continuously recorded on tape and transmitted to a human expert who then studies the output and determines what actions should be taken. Instructions can then be immediately given to the individuals physician or in his absence, to the individual, over the telephone.
- the detection of a herald sign causes one of a plurality of colored lights or similar indicators to light, thus indicating to the patient what self-medication he should administer to himself or whatever other steps he should take in the inability to immediately communicate with the center and his physician, or whenever immediate danger exists.
- the detection of a heartbeat rate below a given value, detection of a heartbeat rate above a given value or detection of a skipped heartbeat are three herald signs which can cause different lights to be lit, in addition to the operation of an audio alarm.
- FIG. 1 shows a first embodiment of this invention, whereby the ECG waveform of an individual wearing the unit is transmitted to a central facility continuously, etc. when the unit detects a herald sign.
- FIG. 2 shows a second embodiment of this invention.
- FIG. 3 shows a normal ECG waveform
- FIG. 4 shows a third embodiment of this invention.
- FIG. 1 shows a first embodiment of this invention.
- a number of individuals with established cardiac difficulties or who are cardiac prone are each equipped with a portable, self contained and powered unit which monitors their ECG waveforms continuously and responds to conditions which appear to be herald signs.
- three such units 20, 22 and 24 are diagrammatically illustrated.
- unit 24 which is intended to be identical to units and 22, includes a power source 26 which may be a small nickel-cadmium or other battery and which supplies the energy requirements of unit 24. If desired, provision may be made for visually or audibly indicating to the wearer when the battery is marginally depleted or the electrical system is malfunctioning.
- a power source 26 which may be a small nickel-cadmium or other battery and which supplies the energy requirements of unit 24. If desired, provision may be made for visually or audibly indicating to the wearer when the battery is marginally depleted or the electrical system is malfunctioning.
- a conventional amplifier 28 of which many types are known detects the minute electrical signals produced by the electrodes connected to the body and amplifies them to produce the conventional ECG waveform.
- a normal ECG wave is shown in FIG. 3.
- the ECG waveform signal produced by amplifier 28 is passed to logic network 30 which then determines, by built-in programming, if a condition exists which might be a herald sign.
- logic 30 may include a timing circuit which checks the temporal separation between each R wave peak and the last R wave peak and produces an alarm signal if the separation is less than a first given time or greater than a second given time, thus detecting high and slow heartbeat rates as well as skipped beats.
- unit 24 preferably includes a recorder 31.
- logic 30 Whenever logic 30 detects a herald sign, it produces a trigger signal which is passed to transmitter 32 which causes transmitter 32 to transmit, at an assigned frequency, the ECG waveform signal being produced by amplifier 28.
- the ECG information may be modulated onto the transmission frequency or otherwise sent. While microwave or low RF signals may be satisfactory in regions where there are few large steel structures VHF signals are believed to be more satisfactory under all conditions based on present technology.
- Each of the units in the system will preferably be assigned a different frequency so that the source of received signals can be quickly and reliably ascertained.
- the use of six digits to each multihertz cycle with multiplexing permits the simultaneous transmission of large numbers of ECG signals from different individuals only at such times when a herald sign is detected.
- the central facility 34 receives the signals transmitted by unit 24 and, more particularly, a receiver 36 detects the transmitted signals and converts them to a frequency or form, such as AC current, suitable for use by the digital computer 38 which is properly programmed to analyze the ECG waveform and provide information as an output, including the ECG waveform, useful to the expert, who is continuously on alert when signalled.
- a receiver 36 detects the transmitted signals and converts them to a frequency or form, such as AC current, suitable for use by the digital computer 38 which is properly programmed to analyze the ECG waveform and provide information as an output, including the ECG waveform, useful to the expert, who is continuously on alert when signalled.
- Computer 38 analyzes the information received and, when warranted, triggers an output alarm 40 and provides an output on monitor or print-out 42 for the human expert to study.
- the monitor may be an oscilloscopic monitor and/or print-out and the information provided preferably includes the ECG waveforms received, the patients identification and the identification of the patients personal physician.
- the computer 38 also preferably permanently recordsthe received ECG waveform on tape storage 45 which may be destroyed from time to time..lf desired, computer 38 may at the same time transmit the ECG to another remote monitor 39 such as the office or bedside of the personal physician and/or cardiac consultant of the person transmitting the ECG waveforms.
- the human expert studies the ECG on monitor 42 and/or monitor 39 and if he considers that the situation warrants precautions, he directs manual activation of transmitter 44 after it is automatically set to the frequency of the unit to be contacted by computer 38.
- the signals transmitted for example by transmitter 44 are received by receiver 46 which includes a filter tuned to the frequency assigned to unit 24. If the signal as produced or passed by receiver 46 is at the assigned frequency, a signal is produced or passed by receiver 46 which triggers alarm 48 which includes an audio alarm and which tells the person wearing unit 24 that he should contact his personal physician or, if he is unavailable, center 34 immediately.
- the transmitted signal received by receiver 46 can also be used to trigger other devices in unit 24. For example, in FIG.
- a defibrillator which can be triggered by facility 34 upon detection of ventricular fibrillation.
- Different colored lights indicating varying causes and hence different courses of action can also be lit as discussed below.
- the human expert preferably alerts the personal physician before or just after transmitter 44 is activated.
- this problem is eliminated by providing a continuous tape loop 50 or a solid state memory device in the portable unit which is triggered by logic 52 when the logic determines that a condition which is a herald sign exists.
- a conventional power supply 54 and ECG detector 56 are provided.
- an erasable tape loop 50 or solid state memory device or other recorder When triggered, an erasable tape loop 50 or solid state memory device or other recorder, records the ECG waveform for some given time, e.g., until the entire loop has been filled. If desired, tape loop 50 can record continuously and stop erasing only when a herald sign is detected. However, it has been determined that the ECG signal after the event occurs almost always indicates the nature of the problem and the event. Accordingly, the greater simplicity in design and less power consumption of this approach suggests that recording will usually be desirable only upon detection of a herald sign. Logic 52 also responds to the detection of a condition which might be a herald sign by operating an audio alarm 55 which alerts the patient, who has been instructed to go immediately to a telephone and call the central facility which as in FIG.
- Alarm 55 can also include lights or other indicators which further tell the patient what actions should be taken. If desired, the patient can be continuously coupled to the phone and his ECG continuously monitored by the computer.
- the tape When the center has been reached, the tape is played and the information passed to the center via acoustic coupler 60 which is operated by manual control 62 and the telephone lines.
- the computer at the central facility then receives the information andproduces an output as in FIG. 1 for the human expert to study. After the ECG has been completely transmitted, the unit wearer receives detailed instructions from the human expert as to what he should do.
- FIG. 4 shows a further embodiment of the invention of this application.
- the ECG waveform is detected by properly placed electrodes and an amplified signal from amplifier 70 is applied to logic 72 which, like the other logic devices described above, detects one or more herald signs.
- logic 72 is designed to detect when the heartbeat rate is less than a given value, for example, about 54 beats per minute, greater than a second value, for example, 120-130 beats per minute, or when a heartbeat has been skipped.
- a conventional power supply 74 which may also be of the type described above, supplies the power to logic 72 as well as the other elements of the device.
- a herald condition Whenever a herald condition is detected an appropriate signal is produced on line 76 which triggers an audio alarm 78 which the patient can hear.
- a manual volume adjustment 80 is provided so that the volume can be increased during sleep, or when the patient is under conditions where the audio alarm 78 might not otherwise be heard.
- logic 72 is provided with three or more additional outputs each of which are connected to a separate indicator which is in this embodiment a colored light.
- a signal is produced on line 82 which causes line 84 to become illuminated and remain illuminated.
- the detection of a high heartbeat rate causes an appropriate signal to be produced on line 86 to cause illumination of colored light 88.
- the detection of a skipped heartbeat produces a signal on line 90 which causes light 92 to be lit.
- Each of the lights 84, 88 and 92 are preferably of different colors, for example, red, yellow and green.
- the patient is not only warned that a herald sign has occurred, he is specifically informed as to the condition which caused the audio alarm 78 to operate. This is important since there are many circumstances under which it is necessary for the patient to respond to the detected condition.
- a low heart rate is particularly critical since competing lower and mechanically inadequate rhythmic centers may escape with resultant cardiac arrest and/or shock.
- the detection of a skipped beat may also be important enough to justify some immediate action. High heartbeat rates except ventricular tachycardia do not normally require immediate action unles ventricular fibrillation results, in which case the patient will be unable to respond to the warning himself.
- the patient will be provided with appropriate drugs to use when the associated light goes on, when immediate communication with the physician is impossible.
- the drugs may be taken in any form. While the critical point for the low rate is fairly constant, the point at which logic 72 should trigger a warning for a high heartbeat rate may vary from individual to individual and according to the activities of that individual. Accordingly, it is desirable to be able to adjust the rate value which triggers logic 72 and a suitable mechanism for accomplishing that purpose is shown in FIG. 4. Normally, this adjustment will be unavailable to the patient but will be made by the physician at the time that the individual is given the unit or subsequently when indicated.
- An apparatus for detecting potentially dangerous herald signs in a cardiac waveform of an individual comprising:
- An apparatus as in claim 1 including means for manually adjusting the volume of said third warning signal.
- said transmitting means includes means for detachably coupling said transmitting means to a telephone line.
- receiving and first and second output signal means includes means for producing a third output signal when a heartbeat is skipped and including means for receiving said third output signal and producing a third warning signal indicating to the individual that the heartbeat has been skipped.
- An apparatus as in claim 1 including a housing containing all of said means and adapted to be carried by said individual.
- An apparatus for detecting and responding to herald signs in the cardiac waveform of an individual comprising:
- means for receiving said representing signal for detecting herald signs and for controlling said receiving and recording means so that said receiving and recording means preserves a portion of said representing signal whenever a herald sign is detected including means for translating said recorded representing signal into a radio signal and transmitting said radio signal to a remote facility,
- receiving and producing means includes defibrillating means operable in response to a given signal from sai remote receiver.
- a system for detecting and responding to herald signs in the cardiac waveforms of individuals comprising:
- a central monitoring facility including computer means for receiving and analyzing a received signal, means for displaying the output of said computer means, memory means for storing the output of the computer and means for transmitting the output of the computer to a remote location, and I a plurality of individual units each adapted to be carried with an individual and each including,
- means for detecting the cardiac waveform and producing a signal representing that waveform means for detecting a herald sign
- a method of detecting and responding to herald signs in the cardiac waveforms of individuals in a system with a central monitoring facility and a plurality of individual units each adapted to be carried with an individual comprising the steps of:
- a method of detecting and responding to herald signs in the cardiac waveforms of individuals in a system with a central monitoring facility and a plurality of individual units each adapted to be carried with an individual comprising the steps of:
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Physiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
A method and apparatus for detecting and responding to herald signs in the cardiac waveform, such as a fast heartbeat rate, a low rate or a skipped heartbeat. In one embodiment the detection of a herald sign causes the ECG waveform to be transmitted to a remote location where it is analyzed and a signal retransmitted to the patient triggering an alarm or causing other appropriate action. In another embodiment, the detection of a herald sign causes the ECG to be recorded on a loop of magnetic tape or a modular solid state memory device in the unit so that the tape can be replayed and acoustically coupled to the telephone line after the patient calls the central facility. In yet another embodiment, the detection of different herald signs causes different alarm signals, e.g., colored lights, different alarm signals identifying the abnormality, to be operated to indicate to the patient what medication he should administer to himself or whatever other action he should take in the event that communication with central facility cannot be immediately achieved.
Description
United States Patent [1 1 Unger [54] CARDIAC WARNING DEVICE [76] Inventor: Paul N. Unger, 945 Arthur Godfrey Road, Miami Beach, Fla. 33140 [22] Filed: June 2, 1970 [21] Appl. No.: 42,850
[52] US. Cl. ..l28/2.06 A, 128/419 D [51] Int. Cl. ..A6lb 5/04 [58] Field of Search ..128/2.05 R, 2.05 S, 2.05 T,
128/2.06 A, 2.06 F, 2.06 G, 2.06 R, 2.1 A,
[56] References Cited UNITED STATES PATENTS 3,650,263 3/1972 Kavalski et al. ..128/2.06 A 3,144,019 8/1964 Haber ....l28/2.06 A 2,848,992 8/1958 Pigeon ..l28/2.06 F 3,426,150 2/1969 Tygart ....128/2.06 R 3,221,334 11/1965 Jones, Jr ....l28/2.06 G 3,212,496 10/1965 Preston 1 28/2.06 R 3,513,833 5/1970 Finch et al........ ....128/2.06 R 3,318,303 5/1967 Hammacher..... .....l28/2.05 S 3,460,542 8/1969 Gemmer ....128/2.06 A 3,434,151 3/1969 Bader et al.... ....128/2.06 R 3,236,239 2/1966 Berkovits ....128/2.05 R 3,572,316 3/1971 Vogelman et al ..l28/2.05 R
[4 1 Apr. 3, 1973 Primary Examiner-William E. Kamm Attorney-Cushman, Darby & Cushman [57] ABSTRACT A method and apparatus for detecting and responding to herald signs in the cardiac wavefonn, such as a fast heartbeat rate, a low rate or a skipped heartbeat. In one embodiment the detection of a herald sign causes the ECG waveform to be transmitted to a remote location where it is analyzed and a signal retransmitted to the patient triggering an alarm or causing other appropriate action. In another embodiment, the detection of a herald sign causes the ECG to be recorded on a loop of magnetic tape or a modular solid state memory device in the unit so that the tape can be replayed and acoustically coupled to the telephone line after the patient calls the central facility. In yet another embodiment, the detection of different herald signs causes different alarm signals, e.g., colored lights, different alarm signals identifying the abnormality, to be operated to indicate to the patient what medication he should administer to himself or whatever other action he should take in the event that communication with central facility cannot be immediately achieved.
10 Claims, 4 Drawing Figures f T T l 24 u/v/r I l L h If I 25,4! .99 r -1-" 1 Ma/v/raz I f 1 1 i I? t I l I I J C 1 I l a m 5 1 /*z4A/JM/rr,6 i l Biff/V 8 5 l I T l E i l FE/FF/ae/um g R :45 l 1 I Wane-72' I JOV/Lkjf' I I E 1 l mw/vs/wrxzz I l A e E 44 A l L y L l l 2 4% I I Mflgi/efdfi g I 1 M 1 ,elxw'aur M I l 1 43 4 4 I CARDIAC WARNING DEVICE BRIEF DESCRIPTION OF THE PRIOR ART AND SUMMARY OF THE INVENTION This invention is described in Document Disclosure Number 001756 filed Apr. 11, 1970.
The invention relates to a method and apparatus for detecting premonitory signs of cardiac attacks and transmitting the detecting signs to a central location.
Almost all, if not all serious or potentially serious cardiac attacks are prefaced by warning or patient unrecognizable herald signs in the ECG wave which occur in many patients long before recognizable symptoms become manifest. A number of such signs have been discovered and these include reduction in the heart rate below a low selected rate limit, e.g., 54 and an increase above a high selected limited rate, e.g., 120-130, premature heart beats, failure to discharge an impulse, failure of an electrical impulse to be conducted from the upper to the lower chambers, widening of the QRS complex, base line shift depression or elevation, and abrupt ST deviation.
While all of these signs do not always indicate a cardiac attack is imminent, their occurrence, particularly in individuals with previous cardiac difficulties or established potential cardiacs, is serious enough to warrant careful study by an expert and, following recognition, institution of precautionary measures, such as indicated treatment with drugs. For some signs, for example, when the rate slows below about 50, action should be taken immediately. However, inasmuch as many of the signs do not normally cause distress or perceptible physical symptoms, they may pass unnoticed or even if noticed their import may not be fully appreciated or may be rationalized away.
The present invention relates to a novel method and apparatus whereby a number of individuals known to be cardiacs or potential cardiacs are each equipped with a portable unit which they carry on or with their person and which constantly monitors the ECG wave for herald signs.
In one embodiment of this invention, the detection of a herald sign by the unit causes the ECG to be transmitted to a central facility where it triggers a programmed signal in a central computer in addition to that generated in the unit. The ECG wave received at the central facility is then analyzed, preferably by a digital, single purpose computer which then generates an output based on a programmed input which a human expert can then study, preferably after transmission by magnetic tape via dataphone or similar device onto a receiving screen or other ECG display. If the expert considers that the detected signs warrant precautionary measures, he after identifying by coded number the patient and physician, directs the activation of a transmitter which sends a signal to the unit transmitting the ECG waves, triggering an audio signal to the patient. He simultaneously communicates with the patients physician, advising him of the event of the identified patient. This maintains the patient-personal physician relationship without interposing the interpreter as a patient identifiable consultant, but retaining his identity as a physician consultant.
This alarm within the patient unit indicates to the individual that he should contact his own physician immediately for instructions, or, if that proves impossible,
the central facility. At the same time that the expert directed activation of the alarm transmitter, he also alerted the personal physician to the situation. He can also transmit to the personal physician, via a telephone transmitter or similar device, the actual ECG which the computer has processed and presented to him. The alarm signal may also indicate to the patient what self medication should be administered, e.g., by the color of a light lit by the signal as a fail safe device in the event 0 of any breakdown in communication such as inability to reach computer monitor facility and/or his physician. The detection of a herald sign by the unit may also cause the alarm to be activated if desired.
One of the advantages of this arrangement is that the logic in each personal unit need not make sophisticated decisions as to whether a detected sign warrants precautions; those decisions are made by the computer and ultimately evaluated by a human expert. Ac-' cordingly, the logic in each unit can be made fairly simple, responding only to a few simple conditions which always occur when a herald sign exists. This permits the unit to be made relatively inexpensively and small enough to be easily carried by the patient. Another advantage is that the patient is not bothered by periodic false alarms which breed anxiety and cause loss of sleep. The patients alarm operates only when a potentially serious consideration exists which warrants further study and which he has been taught is an early warning signal which may warrant preventive protective actions.
In another embodiment of the invention each unit includes an endless loop of magnetic tape or a solid state memory device on which the ECG wave can be continuously recorded and when the logic network in the unit determines that a herald sign is occurring permits playback and prevents erasure. Alternately the ECG waveform is recorded on the tape where it is used only after the event has occurred. Alternately, a solid state memory device permits continuous recording with modularity in choice of playback time with 10 seconds deemed adequate to meet the overwhelming majority of events and 30 seconds virtually all events. It has been found that the waveform after the event almost always indicates the herald sign which caused the alarm to be given.
The logic also triggers an audio alarm in the unit which indicates to the individual that he should go to the nearest telephone and call the central facility. One or more visual signals can be also given by different colored signals to inform the individual as to which medicine should be self-administered where particular hazard exists and communication cannot be immediately established. When the telephone connection has been made, the magnetic tape or solid state memory device is played back while linked to the telephone by a conventional or miniaturized acoustic coupler and the recorded ECG thus transmitted to the central facility. The received signals are then processed by a single purpose properly programmed computer simultaneously displayed on a screen and continuously recorded on tape and transmitted to a human expert who then studies the output and determines what actions should be taken. Instructions can then be immediately given to the individuals physician or in his absence, to the individual, over the telephone.
In a third embodiment of the invention, the detection of a herald sign causes one of a plurality of colored lights or similar indicators to light, thus indicating to the patient what self-medication he should administer to himself or whatever other steps he should take in the inability to immediately communicate with the center and his physician, or whenever immediate danger exists. Particularly, the detection of a heartbeat rate below a given value, detection of a heartbeat rate above a given value or detection of a skipped heartbeat are three herald signs which can cause different lights to be lit, in addition to the operation of an audio alarm.
Many other objects and purposes of the invention will become clear from the following detailed description of the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows a first embodiment of this invention, whereby the ECG waveform of an individual wearing the unit is transmitted to a central facility continuously, etc. when the unit detects a herald sign.
FIG. 2 shows a second embodiment of this invention.
FIG. 3 shows a normal ECG waveform.
FIG. 4 shows a third embodiment of this invention.
DETAILED DESCRIPTION OF THE DRAWINGS Reference is now made to FIG. 1 which shows a first embodiment of this invention. In this embodiment,-a number of individuals with established cardiac difficulties or who are cardiac prone are each equipped with a portable, self contained and powered unit which monitors their ECG waveforms continuously and responds to conditions which appear to be herald signs. in FIG. 1, three such units 20, 22 and 24 are diagrammatically illustrated.
As shown, unit 24, which is intended to be identical to units and 22, includes a power source 26 which may be a small nickel-cadmium or other battery and which supplies the energy requirements of unit 24. If desired, provision may be made for visually or audibly indicating to the wearer when the battery is marginally depleted or the electrical system is malfunctioning.
A conventional amplifier 28 of which many types are known detects the minute electrical signals produced by the electrodes connected to the body and amplifies them to produce the conventional ECG waveform. A normal ECG wave is shown in FIG. 3. The ECG waveform signal produced by amplifier 28 is passed to logic network 30 which then determines, by built-in programming, if a condition exists which might be a herald sign. For example, logic 30 may include a timing circuit which checks the temporal separation between each R wave peak and the last R wave peak and produces an alarm signal if the separation is less than a first given time or greater than a second given time, thus detecting high and slow heartbeat rates as well as skipped beats. As discussed below, unit 24 preferably includes a recorder 31.
Whenever logic 30 detects a herald sign, it produces a trigger signal which is passed to transmitter 32 which causes transmitter 32 to transmit, at an assigned frequency, the ECG waveform signal being produced by amplifier 28. The ECG information may be modulated onto the transmission frequency or otherwise sent. While microwave or low RF signals may be satisfactory in regions where there are few large steel structures VHF signals are believed to be more satisfactory under all conditions based on present technology. Each of the units in the system will preferably be assigned a different frequency so that the source of received signals can be quickly and reliably ascertained. The use of six digits to each multihertz cycle with multiplexing permits the simultaneous transmission of large numbers of ECG signals from different individuals only at such times when a herald sign is detected.
The central facility 34 receives the signals transmitted by unit 24 and, more particularly, a receiver 36 detects the transmitted signals and converts them to a frequency or form, such as AC current, suitable for use by the digital computer 38 which is properly programmed to analyze the ECG waveform and provide information as an output, including the ECG waveform, useful to the expert, who is continuously on alert when signalled.
The computer 38 also preferably permanently recordsthe received ECG waveform on tape storage 45 which may be destroyed from time to time..lf desired, computer 38 may at the same time transmit the ECG to another remote monitor 39 such as the office or bedside of the personal physician and/or cardiac consultant of the person transmitting the ECG waveforms.
The human expert studies the ECG on monitor 42 and/or monitor 39 and if he considers that the situation warrants precautions, he directs manual activation of transmitter 44 after it is automatically set to the frequency of the unit to be contacted by computer 38. The signals transmitted for example by transmitter 44 are received by receiver 46 which includes a filter tuned to the frequency assigned to unit 24. If the signal as produced or passed by receiver 46 is at the assigned frequency, a signal is produced or passed by receiver 46 which triggers alarm 48 which includes an audio alarm and which tells the person wearing unit 24 that he should contact his personal physician or, if he is unavailable, center 34 immediately. The transmitted signal received by receiver 46 can also be used to trigger other devices in unit 24. For example, in FIG. 1 a defibrillator is provided which can be triggered by facility 34 upon detection of ventricular fibrillation. Different colored lights indicating varying causes and hence different courses of action can also be lit as discussed below. The human expert preferably alerts the personal physician before or just after transmitter 44 is activated.
One of the drawbacks of the above discussed embodiment is the difficulty in transmitting through all environments in which the wearer may find himself including large buildings of steel and concrete. Even at VHF frequencies transmission may be impaired or distorted with possible failure of the center to detect or receive herald signs, but at frequencies between roughly 2-50 MHz this problem is believed minimized.
In a second embodiment of the invention shown in FIG. 2 this problem is eliminated by providing a continuous tape loop 50 or a solid state memory device in the portable unit which is triggered by logic 52 when the logic determines that a condition which is a herald sign exists. As in the embodiment of FIG. 1, a conventional power supply 54 and ECG detector 56 are provided.
When triggered, an erasable tape loop 50 or solid state memory device or other recorder, records the ECG waveform for some given time, e.g., until the entire loop has been filled. If desired, tape loop 50 can record continuously and stop erasing only when a herald sign is detected. However, it has been determined that the ECG signal after the event occurs almost always indicates the nature of the problem and the event. Accordingly, the greater simplicity in design and less power consumption of this approach suggests that recording will usually be desirable only upon detection of a herald sign. Logic 52 also responds to the detection of a condition which might be a herald sign by operating an audio alarm 55 which alerts the patient, who has been instructed to go immediately to a telephone and call the central facility which as in FIG. 1 is equipped with a computer and accessibility to a human expert for analyzing the recorded ECG waveform. Alarm 55 can also include lights or other indicators which further tell the patient what actions should be taken. If desired, the patient can be continuously coupled to the phone and his ECG continuously monitored by the computer.
When the center has been reached, the tape is played and the information passed to the center via acoustic coupler 60 which is operated by manual control 62 and the telephone lines. The computer at the central facility then receives the information andproduces an output as in FIG. 1 for the human expert to study. After the ECG has been completely transmitted, the unit wearer receives detailed instructions from the human expert as to what he should do.
Reference is now made to FIG. 4 which shows a further embodiment of the invention of this application. In this embodiment, the ECG waveform is detected by properly placed electrodes and an amplified signal from amplifier 70 is applied to logic 72 which, like the other logic devices described above, detects one or more herald signs. In particular, logic 72 is designed to detect when the heartbeat rate is less than a given value, for example, about 54 beats per minute, greater than a second value, for example, 120-130 beats per minute, or when a heartbeat has been skipped. Many simple logic arrangements for detecting these conditions should be apparent and these include arrangements for determining the time between adjacent R-wave peaks and for triggering appropriate signals on different outputs when that spacing is greater than, or less than, preset values. A conventional power supply 74, which may also be of the type described above, supplies the power to logic 72 as well as the other elements of the device.
Whenever a herald condition is detected an appropriate signal is produced on line 76 which triggers an audio alarm 78 which the patient can hear. A manual volume adjustment 80 is provided so that the volume can be increased during sleep, or when the patient is under conditions where the audio alarm 78 might not otherwise be heard.
Further, logic 72 is provided with three or more additional outputs each of which are connected to a separate indicator which is in this embodiment a colored light. Thus when a low heartbeat rate is detected, a signal is produced on line 82 which causes line 84 to become illuminated and remain illuminated. Similarly, the detection of a high heartbeat rate causes an appropriate signal to be produced on line 86 to cause illumination of colored light 88. Further, the detection of a skipped heartbeat produces a signal on line 90 which causes light 92 to be lit. Each of the lights 84, 88 and 92 are preferably of different colors, for example, red, yellow and green.
Thus, the patient is not only warned that a herald sign has occurred, he is specifically informed as to the condition which caused the audio alarm 78 to operate. This is important since there are many circumstances under which it is necessary for the patient to respond to the detected condition. A low heart rate is particularly critical since competing lower and mechanically inadequate rhythmic centers may escape with resultant cardiac arrest and/or shock. The detection of a skipped beat may also be important enough to justify some immediate action. High heartbeat rates except ventricular tachycardia do not normally require immediate action unles ventricular fibrillation results, in which case the patient will be unable to respond to the warning himself.
Accordingly, it is contemplated that with this embodiment, the patient will be provided with appropriate drugs to use when the associated light goes on, when immediate communication with the physician is impossible. The drugs may be taken in any form. While the critical point for the low rate is fairly constant, the point at which logic 72 should trigger a warning for a high heartbeat rate may vary from individual to individual and according to the activities of that individual. Accordingly, it is desirable to be able to adjust the rate value which triggers logic 72 and a suitable mechanism for accomplishing that purpose is shown in FIG. 4. Normally, this adjustment will be unavailable to the patient but will be made by the physician at the time that the individual is given the unit or subsequently when indicated.
While the patient can administer medicine to himself in response to the various alarm signals, it is contemplated that he will be instructed to contact his physician or someone else whenever he receives an alarm. Further, it is contemplated that this type of unit can be used in combination with the transmitter unit or the recording device shown in FIGS. 1 and 2, and that logic 72 will be designed so as to be compatible with such other devices. The unit shown in FIG. 4 may then be used initially with those patients who are not thought to be extremely serious. If later the patient's condition warrants it, the appropriate recording mechanism and acoustical coupler or transmitter can be added.
Many changes and modifications in the above embodiment of the invention can, of course, be made without departing from the scope of the invention and that scope is intended to be limited only by the scope of the appended claims.
What is claimed is:
1. An apparatus for detecting potentially dangerous herald signs in a cardiac waveform of an individual comprising:
means for detecting the cardiac waveform and producing a signal representing that waveform,
means for receiving said representing signal, producing a first output signal when the heartbeat rate is less than a first given ratev and producing a second output signal when the heartbeat rate is greater than a second given rate,
means for receiving said first output signal and producing a light of a first color to the individual that the rate has been determined to be less than said first rate,
means for receiving said second output signal and producing a light of a second color different from said first warning signal and indicating to the individual that the rate has been determined to be greater than said second rate,
means for receiving said representing signal, said first output signal and said second output signal and for recording said representing waveform for a given time after receipt of either said first output or second output signal,
means for transmitting the recorded signal, to a remote facility after said herald sign is detected, and
means for receiving said first output signal and said second output signal and producing an audible noise whenever either said first color light or said second color light is produced.
2. An apparatus as in claim 1 including means for manually adjusting the volume of said third warning signal.
3. An apparatus as in claim 1 wherein said transmitting means includes means for detachably coupling said transmitting means to a telephone line.
4. An apparatus as in claim 1 wherein said receiving and first and second output signal means includes means for producing a third output signal when a heartbeat is skipped and including means for receiving said third output signal and producing a third warning signal indicating to the individual that the heartbeat has been skipped.
5. An apparatus as in claim 1 including a housing containing all of said means and adapted to be carried by said individual.
6. An apparatus for detecting and responding to herald signs in the cardiac waveform of an individual comprising:
means for detecting the cardiac waveform and producing a signal representing that waveform, means for receiving and recording said representing signal, and
means for receiving said representing signal for detecting herald signs and for controlling said receiving and recording means so that said receiving and recording means preserves a portion of said representing signal whenever a herald sign is detected, including means for translating said recorded representing signal into a radio signal and transmitting said radio signal to a remote facility,
means for receiving a radio signal from said remote facility and producing an alarm signal which is manifest to said individual.
7. An apparatus as in claim 6 wherein said receiving and producing means includes defibrillating means operable in response to a given signal from sai remote receiver.
8. A system for detecting and responding to herald signs in the cardiac waveforms of individuals comprising:
' a central monitoring facility including computer means for receiving and analyzing a received signal, means for displaying the output of said computer means, memory means for storing the output of the computer and means for transmitting the output of the computer to a remote location, and I a plurality of individual units each adapted to be carried with an individual and each including,
means for detecting the cardiac waveform and producing a signal representing that waveform, means for detecting a herald sign,
means for receiving and recording said representing signal for a given time after a herald sign is detected, and
means for transmitting said recording to said central facility.
9. A method of detecting and responding to herald signs in the cardiac waveforms of individuals in a system with a central monitoring facility and a plurality of individual units each adapted to be carried with an individual comprising the steps of:
detecting the cardiac waveform in each individual unit and producing a signal representing that waveform,
detecting a herald sign in each unit,
recording and retaining said representing signal in a unit for a given time after a herald sign is detected in that unit, and transmitting said recording to said central facility after a herald sign is detected, analyzing said transmitted recording in said central facility and transmitting information with respect to future actions to be taken from said central facility back to the individual having a unit which has transmitted said recording after detecting a herald sign.
10. A method of detecting and responding to herald signs in the cardiac waveforms of individuals in a system with a central monitoring facility and a plurality of individual units each adapted to be carried with an individual comprising the steps of:
detecting the cardiac waveform in each individual unit and producing a signal representing that waveform,-
detecting a herald sign in each unit,
recording and retaining said representing signal in a unit for a given time after a herald sign is detected in that unit, and I transmitting said recording to said central facility after a herald sign is detected, receiving and analyzing the transmitted signal in computer means at said central facility, displaying the output of said computer means, storing the computer output and transmitting the computer output to a remote location.
Claims (10)
1. An apparatus for detecting potentially dangerous herald signs in a cardiac waveform of an individual comprising: means for detecting the cardiac waveform and producing a signal representing that waveform, means for receiving said representing signal, producing a first output signal when the heartbeat rate is less than a first given rate and producing a second output signal when the heartbeat rate is greater than a second given rate, means for receiving said first output signal and producing a light of a first color to the individual that the rate has been determined to be less than said first rate, means for receiving said second output signal and producing a light of a second color different from said first warning signal and indicating to the individual that the rate has been determined to be greater than said second rate, means for receiving said representing signal, said first output signal and said second output signal and for recording said representing waveform for a given time after receipt of either said first output or second output signal, means for transmitting the recorded signal, to a remote facility after said herald sign is detected, and means for receiving said first output signal and said second output signal and producing an audible noise whenever either said first color light or said second color light is produced.
2. An apparatus as in claim 1 including means for manually adjusting the volume of said third warning signal.
3. An apparatus as in claim 1 wherein said transmitting means includes means for detachably coupling said transmitting means to a telephone line.
4. An apparatus as in claim 1 wherein said receiving and first and second output signal means includes means for producing a third output signal when a heartbeat is skipped and including means for receiving said third output signal and producing a third warning signal indicating to the individual that the heartbeat has been skippeD.
5. An apparatus as in claim 1 including a housing containing all of said means and adapted to be carried by said individual.
6. An apparatus for detecting and responding to herald signs in the cardiac waveform of an individual comprising: means for detecting the cardiac waveform and producing a signal representing that waveform, means for receiving and recording said representing signal, and means for receiving said representing signal for detecting herald signs and for controlling said receiving and recording means so that said receiving and recording means preserves a portion of said representing signal whenever a herald sign is detected, including means for translating said recorded representing signal into a radio signal and transmitting said radio signal to a remote facility, means for receiving a radio signal from said remote facility and producing an alarm signal which is manifest to said individual.
7. An apparatus as in claim 6 wherein said receiving and producing means includes defibrillating means operable in response to a given signal from said remote receiver.
8. A system for detecting and responding to herald signs in the cardiac waveforms of individuals comprising: a central monitoring facility including computer means for receiving and analyzing a received signal, means for displaying the output of said computer means, memory means for storing the output of the computer and means for transmitting the output of the computer to a remote location, and a plurality of individual units each adapted to be carried with an individual and each including, means for detecting the cardiac waveform and producing a signal representing that waveform, means for detecting a herald sign, means for receiving and recording said representing signal for a given time after a herald sign is detected, and means for transmitting said recording to said central facility.
9. A method of detecting and responding to herald signs in the cardiac waveforms of individuals in a system with a central monitoring facility and a plurality of individual units each adapted to be carried with an individual comprising the steps of: detecting the cardiac waveform in each individual unit and producing a signal representing that waveform, detecting a herald sign in each unit, recording and retaining said representing signal in a unit for a given time after a herald sign is detected in that unit, and transmitting said recording to said central facility after a herald sign is detected, analyzing said transmitted recording in said central facility and transmitting information with respect to future actions to be taken from said central facility back to the individual having a unit which has transmitted said recording after detecting a herald sign.
10. A method of detecting and responding to herald signs in the cardiac waveforms of individuals in a system with a central monitoring facility and a plurality of individual units each adapted to be carried with an individual comprising the steps of: detecting the cardiac waveform in each individual unit and producing a signal representing that waveform, detecting a herald sign in each unit, recording and retaining said representing signal in a unit for a given time after a herald sign is detected in that unit, and transmitting said recording to said central facility after a herald sign is detected, receiving and analyzing the transmitted signal in computer means at said central facility, displaying the output of said computer means, storing the computer output and transmitting the computer output to a remote location.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US4285070A | 1970-06-02 | 1970-06-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3724455A true US3724455A (en) | 1973-04-03 |
Family
ID=21924076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00042850A Expired - Lifetime US3724455A (en) | 1970-06-02 | 1970-06-02 | Cardiac warning device |
Country Status (1)
Country | Link |
---|---|
US (1) | US3724455A (en) |
Cited By (148)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3799148A (en) * | 1972-01-13 | 1974-03-26 | St Marys Hospital | Two recorder apparatus for monitoring heart action |
US3832994A (en) * | 1972-04-21 | 1974-09-03 | Mediscience Corp | Cardiac monitor |
US3841309A (en) * | 1970-12-21 | 1974-10-15 | A Salter | Method of analyzing cerebral electrical activity |
US3910260A (en) * | 1972-03-01 | 1975-10-07 | Survival Technology | Method and apparatus of treating heart attack patients prior to the establishment of qualified direct contact personal care |
US3946744A (en) * | 1972-05-30 | 1976-03-30 | Medalert Corporation | Electrocardiography signal transmission-reception method including method of measuring pacemaker signal frequency |
US4004577A (en) * | 1972-12-04 | 1977-01-25 | Survival Technology, Inc. | Method of treating heart attack patients prior to the establishment of qualified direct contact personal care |
US4102332A (en) * | 1977-05-17 | 1978-07-25 | Gessman Lawrence J | Remote, telephonic cardiac resuscitation device |
FR2401647A1 (en) * | 1977-08-29 | 1979-03-30 | Karz Allen | METHOD AND APPARATUS FOR CONTINUOUS MONITORING OF ELECTROCARDIOGRAMS OF HEART DISEASES |
US4223678A (en) * | 1978-05-03 | 1980-09-23 | Mieczyslaw Mirowski | Arrhythmia recorder for use with an implantable defibrillator |
NL8005268A (en) * | 1979-10-02 | 1981-04-06 | Medrad Inc | REGISTRATION DEVICE WITH ALARM AND SERVICE REQUESTS FOR A PATIENT, WHICH APPARATUS CAN BE USED WITH AN AUTOMATICALLY IMPLEMENTABLE DEFIBRILLATOR. |
US4316472A (en) * | 1974-04-25 | 1982-02-23 | Mieczyslaw Mirowski | Cardioverting device with stored energy selecting means and discharge initiating means, and related method |
WO1983003744A1 (en) * | 1982-04-23 | 1983-11-10 | Reinhold Herbert Edward Jr | Ambulatory monitoring system with real time analysis and telephone transmission |
US4566464A (en) * | 1981-07-27 | 1986-01-28 | Piccone Vincent A | Implantable epilepsy monitor apparatus |
WO1986002250A1 (en) * | 1984-10-15 | 1986-04-24 | Hastings Harold M | External fetal heart monitor |
EP0209804A2 (en) * | 1985-07-25 | 1987-01-28 | Paolo Rossi | Unit with a subcutaneous pick-up for continuously monitoring physiological cardiorespiratory variables |
EP0237588A1 (en) * | 1986-03-11 | 1987-09-23 | Healthline Systems, Inc. | Outpatient monitoring systems and methods |
US4706689A (en) * | 1985-10-30 | 1987-11-17 | Daniel Man | Implantable homing device |
US4712562A (en) * | 1985-01-08 | 1987-12-15 | Jacques J. Ohayon | Outpatient monitoring systems |
JPS63132630A (en) * | 1986-11-10 | 1988-06-04 | ヒューレット・パッカード・カンパニー | Arrhythmia monitor system |
US4770189A (en) * | 1986-09-02 | 1988-09-13 | Industrial Technology Research Institute | Real time multitask electronic stethoscopy system |
US4850356A (en) * | 1980-08-08 | 1989-07-25 | Darox Corporation | Defibrillator electrode system |
US5228449A (en) * | 1991-01-22 | 1993-07-20 | Athanasios G. Christ | System and method for detecting out-of-hospital cardiac emergencies and summoning emergency assistance |
US5335664A (en) * | 1991-09-17 | 1994-08-09 | Casio Computer Co., Ltd. | Monitor system and biological signal transmitter therefor |
EP0617914A1 (en) * | 1993-03-31 | 1994-10-05 | Siemens Medical Systems, Inc. | Apparatus and method for providing dual output signals in a telemetry transmitter |
US5394879A (en) * | 1993-03-19 | 1995-03-07 | Gorman; Peter G. | Biomedical response monitor-exercise equipment and technique using error correction |
US5400794A (en) * | 1993-03-19 | 1995-03-28 | Gorman; Peter G. | Biomedical response monitor and technique using error correction |
US5503158A (en) * | 1994-08-22 | 1996-04-02 | Cardiocare, Inc. | Ambulatory electrocardiogram monitor |
US5509425A (en) * | 1989-10-30 | 1996-04-23 | Feng; Genquan | Arrangement for and method of diagnosing and warning of a heart attack |
WO1996011722A1 (en) * | 1994-10-12 | 1996-04-25 | Ael Industries, Inc. | Telemetry system for an implanted device |
US5593426A (en) * | 1994-12-07 | 1997-01-14 | Heartstream, Inc. | Defibrillator system using multiple external defibrillators and a communications network |
US5626630A (en) * | 1994-10-13 | 1997-05-06 | Ael Industries, Inc. | Medical telemetry system using an implanted passive transponder |
US5720771A (en) * | 1995-08-02 | 1998-02-24 | Pacesetter, Inc. | Method and apparatus for monitoring physiological data from an implantable medical device |
US5730146A (en) * | 1991-08-01 | 1998-03-24 | Itil; Turan M. | Transmitting, analyzing and reporting EEG data |
US5966692A (en) * | 1992-05-12 | 1999-10-12 | Telemed Technologies International Corporation | Method and system for monitoring the heart of a patient |
WO1999055227A1 (en) * | 1998-04-27 | 1999-11-04 | Patel Bharat | Remote cardiac disorder response system |
US6259944B1 (en) * | 1997-12-14 | 2001-07-10 | Pylon, Inc | System and method for monitoring activity |
US6280461B1 (en) * | 1996-05-23 | 2001-08-28 | Lifecor, Inc. | Patient-worn energy delivery apparatus |
WO2001080732A2 (en) * | 2000-04-26 | 2001-11-01 | Medtronic, Inc. | Color coding of display data from medical devices |
US20010044731A1 (en) * | 2000-05-18 | 2001-11-22 | Coffman Damon J. | Distributed remote asset and medication management drug delivery system |
US20020087355A1 (en) * | 2000-12-29 | 2002-07-04 | Rowlandson G. Ian | Automated scheduling of emergency procedure based on identification of high-risk patient |
WO2003045241A1 (en) | 2001-11-27 | 2003-06-05 | Shl Telemedicine International Ltd. | Device for sampling blood droplets under vacuum conditions |
US20030139778A1 (en) * | 2002-01-22 | 2003-07-24 | Fischell Robert E. | Rapid response system for the detection and treatment of cardiac events |
US6697671B1 (en) * | 1998-11-20 | 2004-02-24 | Medtronic Physio-Control Manufacturing C{overscore (o)}rp. | Visual and aural user interface for an automated external defibrillator |
US6747556B2 (en) | 2001-07-31 | 2004-06-08 | Medtronic Physio-Control Corp. | Method and system for locating a portable medical device |
US20040172283A1 (en) * | 2003-02-09 | 2004-09-02 | Vanderveen Timothy W. | Medication management and event logger and analysis system |
US20040179664A1 (en) * | 2000-12-22 | 2004-09-16 | Platt Harry Louis | Processing apparatus for acquired signals |
US20050027317A1 (en) * | 2003-01-27 | 2005-02-03 | Langer Alois A. | Defibrillation system for non-medical environments |
US20050135306A1 (en) * | 2003-12-05 | 2005-06-23 | Mcallen Christopher M. | Discovery and connection management with mobile systems manager |
US20050137653A1 (en) * | 2003-12-05 | 2005-06-23 | Friedman Gregory S. | System and method for network monitoring of multiple medical devices |
US20050154324A1 (en) * | 2003-08-20 | 2005-07-14 | Kang-Ping Lin | Device for measuring electrocardiogram with tapeless format and its method |
US20050171815A1 (en) * | 2003-12-31 | 2005-08-04 | Vanderveen Timothy W. | Centralized medication management system |
US20060058848A1 (en) * | 1998-11-20 | 2006-03-16 | Medtronic Emergency Response Systems, Inc. | AED with user inputs in response to prompts |
US20060142808A1 (en) * | 2003-04-22 | 2006-06-29 | Christopher Pearce | Defibrillator/monitor system having a pod with leads capable of wirelessly communicating |
US20080077185A1 (en) * | 2003-12-17 | 2008-03-27 | Christopher Pearce | Defibrillator/Monitor System Having a Pod with Leads Capable of Wirelessly Communicating |
US20090240156A1 (en) * | 2002-09-20 | 2009-09-24 | Angel Medical Systems, Inc. | Hiearchical communication system for a chronically implanted medical device |
US7860583B2 (en) | 2004-08-25 | 2010-12-28 | Carefusion 303, Inc. | System and method for dynamically adjusting patient therapy |
US8600491B2 (en) | 2003-12-17 | 2013-12-03 | Physio-Control, Inc. | Defibrillator patient monitoring pod |
US8788038B2 (en) | 2003-12-17 | 2014-07-22 | Physio-Control, Inc. | External defibrillator with power and battery sharing capabilities with a pod |
US8965500B2 (en) | 2007-06-06 | 2015-02-24 | Zoll Medical Corporation | Wearable defibrillator with audio input/output |
US9069887B2 (en) | 2000-05-18 | 2015-06-30 | Carefusion 303, Inc. | Patient-specific medication management system |
US9204813B2 (en) | 2011-03-25 | 2015-12-08 | Zoll Medical Corporation | Method of detecting signal clipping in a wearable ambulatory medical device |
US9408548B2 (en) | 2011-03-25 | 2016-08-09 | Zoll Medical Corporation | Selection of optimal channel for rate determination |
US9427520B2 (en) | 2005-02-11 | 2016-08-30 | Carefusion 303, Inc. | Management of pending medication orders |
US9539436B2 (en) | 2014-03-19 | 2017-01-10 | West Affum Holdings Corp. | Wearable cardiac defibrillator system not delivering shock upon hearing preset delaying word from bystander |
US9592403B2 (en) | 2013-02-25 | 2017-03-14 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations from multiple patient parameters |
US9700733B2 (en) | 2013-01-23 | 2017-07-11 | West Affum Holdings Corp. | Wearable cardiac defibrillator system with impedance measurement circuit to control conductive fluid deployment |
US9700225B2 (en) | 2014-05-06 | 2017-07-11 | West Affum Holdings Corp. | Wearable medical system with stretch-cable assembly |
US9741001B2 (en) | 2000-05-18 | 2017-08-22 | Carefusion 303, Inc. | Predictive medication safety |
US9757576B2 (en) | 2014-03-18 | 2017-09-12 | West Affum Holdings Corp. | Reliable readiness indication for a wearable defibrillator |
US9757581B2 (en) | 2014-05-13 | 2017-09-12 | West Affum Holdings Corp. | Wearable cardioverter defibrillator components making aggregate shock/no shock determination from two or more ECG signals |
US9757579B2 (en) | 2013-02-25 | 2017-09-12 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system informing patient that it is validating just-detected cardiac arrhythmia |
US9872998B2 (en) | 2012-05-08 | 2018-01-23 | Physio-Control, Inc. | Defibrillator communication system |
US10029047B2 (en) | 2013-03-13 | 2018-07-24 | Carefusion 303, Inc. | Patient-specific medication management system |
USD825060S1 (en) | 2014-06-24 | 2018-08-07 | West Affum Holdings Corp. | Portable defibrillator carrier |
US10062457B2 (en) | 2012-07-26 | 2018-08-28 | Carefusion 303, Inc. | Predictive notifications for adverse patient events |
US10265535B2 (en) | 2014-04-02 | 2019-04-23 | West Affum Holding Corp. | Pressure resistant conductive fluid containment |
US10303852B2 (en) | 2012-07-02 | 2019-05-28 | Physio-Control, Inc. | Decision support tool for use with a medical monitor-defibrillator |
US10299668B2 (en) | 2005-10-21 | 2019-05-28 | Physio-Control, Inc. | Laryngoscope with handle-grip activated recording |
US10353856B2 (en) | 2011-03-17 | 2019-07-16 | Carefusion 303, Inc. | Scalable communication system |
US10413742B2 (en) | 2008-03-05 | 2019-09-17 | Physio-Control, Inc. | Defibrillator patient monitoring pod |
US10430554B2 (en) | 2013-05-23 | 2019-10-01 | Carefusion 303, Inc. | Medication preparation queue |
US10449370B2 (en) | 2014-05-13 | 2019-10-22 | West Affum Holdings Corp. | Network-accessible data about patient with wearable cardiac defibrillator system |
US10674911B2 (en) | 2016-03-30 | 2020-06-09 | Zoll Medical Corporation | Systems and methods of integrating ambulatory medical devices |
US10867265B2 (en) | 2013-03-13 | 2020-12-15 | Carefusion 303, Inc. | Predictive medication safety |
US10926080B2 (en) | 2017-01-07 | 2021-02-23 | West Affum Holdings Corp. | Wearable cardioverter defibrillator with breast support |
US20210093253A1 (en) * | 2019-09-27 | 2021-04-01 | Medtronic, Inc. | Determining heart condition statuses using subcutaneous impedance measurements |
US11058885B2 (en) | 2017-11-29 | 2021-07-13 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system detecting ventricular tachycardia and/or ventricular fibrillation using variable heart rate decision threshold |
US11065463B2 (en) | 2017-11-10 | 2021-07-20 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system having WCD mode and also AED mode |
US11065464B2 (en) | 2013-04-02 | 2021-07-20 | West Affum Holdings Corp. | Methods for wearable system |
US11077310B1 (en) | 2016-10-04 | 2021-08-03 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system detecting QRS complexes in ECG signal by matched difference filter |
US11083906B2 (en) | 2017-01-05 | 2021-08-10 | West Affum Holdings Corp. | Wearable cardioverter defibrillator having adjustable alarm time |
US11087873B2 (en) | 2000-05-18 | 2021-08-10 | Carefusion 303, Inc. | Context-aware healthcare notification system |
US11103717B2 (en) | 2017-07-28 | 2021-08-31 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system reacting to high-frequency ECG noise |
US11154230B2 (en) | 2017-01-05 | 2021-10-26 | West Affum Holdings Corp. | Wearable cardioverter defibrillator having reduced noise prompts |
US11160990B1 (en) | 2018-02-14 | 2021-11-02 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) alarms |
US11166628B2 (en) | 2016-02-02 | 2021-11-09 | Physio-Control, Inc. | Laryngoscope with handle-grip activated recording |
US11182728B2 (en) | 2013-01-30 | 2021-11-23 | Carefusion 303, Inc. | Medication workflow management |
US11207538B2 (en) | 2017-09-12 | 2021-12-28 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system warning ambulatory patient by weak alerting shock |
US11213691B2 (en) | 2017-02-27 | 2022-01-04 | Zoll Medical Corporation | Ambulatory medical device interaction |
US11247041B2 (en) | 2018-08-10 | 2022-02-15 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) with ECG preamp having active input capacitance balancing |
US11260237B1 (en) | 2017-11-09 | 2022-03-01 | West Affum Holdings Corp. | Wearable defibrillator with output stage having diverting resistance |
US11278730B2 (en) | 2017-12-04 | 2022-03-22 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations from patient's rotational motion |
US11351390B2 (en) | 2017-04-10 | 2022-06-07 | West Affum Holdings Corp. | Wearable monitor system computing patient heart rate by multiplying ECG signals from different channels |
US11351391B2 (en) | 2013-02-25 | 2022-06-07 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations from multiple patient parameters |
US11364388B2 (en) | 2013-02-25 | 2022-06-21 | West Affum Holdings Corp. | WCD system operable to not alarm when detected cardiac arrhythmias are not validated |
US11375936B2 (en) | 2013-04-02 | 2022-07-05 | West Affum Holdings Corp. | Wearable medical system to monitor a patient parameter |
US11376425B2 (en) | 2012-08-10 | 2022-07-05 | West Affum Holdings Corp. | Controlling functions of wearable cardiac defibrillation system |
US11400303B2 (en) | 2018-01-05 | 2022-08-02 | West Affum Holdings Corp. | Detecting walking in a wearable cardioverter defibrillator system |
US11419508B2 (en) | 2003-09-02 | 2022-08-23 | West Affum Holdings Dac | Pulse detection using patient physiological signals |
US11464991B2 (en) | 2013-01-23 | 2022-10-11 | West Affum Holdings Corp. | Wearable cardiac defibrillator (WCD) system controlling conductive fluid deployment |
US11471693B1 (en) | 2018-02-14 | 2022-10-18 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system choosing to consider ECG signals from different channels per QRS complex widths of the ECG signals |
US11534615B2 (en) | 2018-04-26 | 2022-12-27 | West Affum Holdings Dac | Wearable Cardioverter Defibrillator (WCD) system logging events and broadcasting state changes and system status information to external clients |
WO2023037359A1 (en) * | 2021-09-09 | 2023-03-16 | X-Trodes Ltd | Method and system for analyzing signals during exercise |
US11617538B2 (en) | 2016-03-14 | 2023-04-04 | Zoll Medical Corporation | Proximity based processing systems and methods |
US11648411B2 (en) | 2017-05-27 | 2023-05-16 | West Affum Holdings Dac | Defibrillation waveforms for a wearable cardiac defibrillator |
US11666769B2 (en) | 2018-04-24 | 2023-06-06 | West Affum Holdings Dac | Substantially-median-based determination of long-term heart rates from ECG data of wearable cardioverter defibrillator (WCD) system |
US11698385B2 (en) | 2020-11-11 | 2023-07-11 | West Affum Holdings Dac | Walking intensity detection and trending in a wearable cardioverter defibrillator |
US11707632B2 (en) | 2017-07-28 | 2023-07-25 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system reacting to high-amplitude ECG noise |
US11712573B2 (en) | 2020-12-16 | 2023-08-01 | West Affum Holdings Dac | Managing alerts in a WCD system |
US11717687B2 (en) | 2020-01-06 | 2023-08-08 | West Affum Holdings Dac | Asystole and complete heart block detection |
US11724118B2 (en) | 2017-05-03 | 2023-08-15 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system computing heart rate from noisy ECG signal |
US11730418B2 (en) | 2019-08-22 | 2023-08-22 | West Affum Holdings Dac | Cardiac monitoring system with supraventricular tachycardia (SVT) classifications |
US11730968B2 (en) | 2020-12-14 | 2023-08-22 | West Affum Holdings Dac | Wearable medical device with temperature managed electrodes |
US11771360B2 (en) | 2019-08-22 | 2023-10-03 | West Affum Holdings Dac | Cardiac monitoring system with normally conducted QRS complex identification |
US11794005B2 (en) | 2012-08-10 | 2023-10-24 | West Affum Holdings Dac | Controlling functions of wearable cardiac defibrillation system |
US11793469B2 (en) | 2020-11-17 | 2023-10-24 | West Affum Holdings Dac | Identifying reliable vectors |
US11819703B2 (en) | 2020-09-17 | 2023-11-21 | West Affum Holdings Dac | Electrocardiogram (ECG) electrode with deposited ink resistive element |
US11865354B1 (en) | 2018-02-14 | 2024-01-09 | West Affum Holdings Dac | Methods and systems for distinguishing VT from VF |
US11865351B2 (en) | 2017-03-16 | 2024-01-09 | Physio-Control, Inc. | Medical device with enhanced electrocardiogram channel selection |
US20240090833A1 (en) * | 2006-06-30 | 2024-03-21 | Bt Wearables Llc | Smart watch |
US11938333B2 (en) | 2017-01-05 | 2024-03-26 | West Affum Holdings Dac | Detecting walking in a wearable cardioverter defibrillator system |
US11950174B2 (en) | 2020-12-02 | 2024-04-02 | West Affum Holdings Dac | Detailed alarm messages and support |
US11974855B2 (en) | 2020-11-04 | 2024-05-07 | West Affum Holdings Dac | Method for detecting noise levels in ECG signals using a channel consistency threshold |
US11984677B2 (en) | 2019-03-07 | 2024-05-14 | West Affum Holdings Dac | Printed circuit board cable clip for signal sensitive applications |
US11998752B2 (en) | 2018-04-25 | 2024-06-04 | West Affum Holdings Dac | Wearable cardioverter defibrillator with a non-invasive blood pressure monitor |
US12011609B2 (en) | 2015-12-04 | 2024-06-18 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system using security NFC tag for requests of data from memory |
US12011607B2 (en) | 2020-08-24 | 2024-06-18 | West Affum Holdings Dac | Assistant for garment and wearable device fitting |
US12036416B2 (en) | 2020-11-09 | 2024-07-16 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system with wireless battery charging |
US12079742B2 (en) | 2013-05-22 | 2024-09-03 | Carefusion 303, Inc. | Medication workflow management |
US12097379B2 (en) | 2013-02-25 | 2024-09-24 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations from multiple patient parameters |
US12115379B2 (en) | 2017-07-28 | 2024-10-15 | West Affum Holdings Dac | Wearable cardioverter defibrillation (WCD) system with proximate programming device which stores ECG data that the WCD system normally discards |
US12121329B2 (en) | 2019-03-08 | 2024-10-22 | West Affum Holdings Dac | Wearable vital signs monitor with selective signal acquisition |
US12128244B2 (en) | 2019-03-07 | 2024-10-29 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system with active ECG cable shielding |
US12127860B2 (en) | 2021-01-21 | 2024-10-29 | West Affum Holdings Dac | Wearable device network system |
US12151117B2 (en) | 2020-11-04 | 2024-11-26 | West Affum Holdings Dac | Wearable cardioverter defibrillator system with electrode moisture sensing |
US12179032B2 (en) | 2018-02-14 | 2024-12-31 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) segment based episode opening and confirmation periods |
US12186574B2 (en) | 2017-11-09 | 2025-01-07 | West Affum Holdings Dac | WCD monitor supporting serviceability and reprocessing |
US12220584B2 (en) | 2023-07-24 | 2025-02-11 | West Affum Holdings Dac | Asystole and complete heart block detection |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2848992A (en) * | 1954-09-15 | 1958-08-26 | Pigeon Gerard | Apparatus for controlling the pulse |
US3144019A (en) * | 1960-08-08 | 1964-08-11 | Haber Edgar | Cardiac monitoring device |
US3212496A (en) * | 1962-08-21 | 1965-10-19 | United Aircraft Corp | Molecular physiological monitoring system |
US3221334A (en) * | 1961-03-23 | 1965-11-30 | Navigation Computer Corp | Recording system |
US3236239A (en) * | 1962-07-17 | 1966-02-22 | American Optical Corp | Defibrillator |
US3318303A (en) * | 1962-12-06 | 1967-05-09 | Hammacher Konrad | Method and apparatus for observing heartbeat activity |
US3426150A (en) * | 1965-09-27 | 1969-02-04 | Lockheed Aircraft Corp | System for fm transmission of cardiological data over telephone lines |
US3434151A (en) * | 1967-10-20 | 1969-03-18 | Minnesota Mining & Mfg | Electrocardiographic recording system |
US3460542A (en) * | 1966-02-09 | 1969-08-12 | Hellige & Co Gmbh F | Instrument for electrically stimulating the activity of the heart |
US3513833A (en) * | 1967-03-17 | 1970-05-26 | Birtcher Corp | Medical monitoring system |
US3572316A (en) * | 1968-02-23 | 1971-03-23 | Chromalloy American Corp | Physiological signal monitoring system |
US3650263A (en) * | 1969-11-03 | 1972-03-21 | Marquette Electronics Inc | Monitoring system |
-
1970
- 1970-06-02 US US00042850A patent/US3724455A/en not_active Expired - Lifetime
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2848992A (en) * | 1954-09-15 | 1958-08-26 | Pigeon Gerard | Apparatus for controlling the pulse |
US3144019A (en) * | 1960-08-08 | 1964-08-11 | Haber Edgar | Cardiac monitoring device |
US3221334A (en) * | 1961-03-23 | 1965-11-30 | Navigation Computer Corp | Recording system |
US3236239A (en) * | 1962-07-17 | 1966-02-22 | American Optical Corp | Defibrillator |
US3212496A (en) * | 1962-08-21 | 1965-10-19 | United Aircraft Corp | Molecular physiological monitoring system |
US3318303A (en) * | 1962-12-06 | 1967-05-09 | Hammacher Konrad | Method and apparatus for observing heartbeat activity |
US3426150A (en) * | 1965-09-27 | 1969-02-04 | Lockheed Aircraft Corp | System for fm transmission of cardiological data over telephone lines |
US3460542A (en) * | 1966-02-09 | 1969-08-12 | Hellige & Co Gmbh F | Instrument for electrically stimulating the activity of the heart |
US3513833A (en) * | 1967-03-17 | 1970-05-26 | Birtcher Corp | Medical monitoring system |
US3434151A (en) * | 1967-10-20 | 1969-03-18 | Minnesota Mining & Mfg | Electrocardiographic recording system |
US3572316A (en) * | 1968-02-23 | 1971-03-23 | Chromalloy American Corp | Physiological signal monitoring system |
US3650263A (en) * | 1969-11-03 | 1972-03-21 | Marquette Electronics Inc | Monitoring system |
Cited By (224)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3841309A (en) * | 1970-12-21 | 1974-10-15 | A Salter | Method of analyzing cerebral electrical activity |
US3799148A (en) * | 1972-01-13 | 1974-03-26 | St Marys Hospital | Two recorder apparatus for monitoring heart action |
US3910260A (en) * | 1972-03-01 | 1975-10-07 | Survival Technology | Method and apparatus of treating heart attack patients prior to the establishment of qualified direct contact personal care |
US3832994A (en) * | 1972-04-21 | 1974-09-03 | Mediscience Corp | Cardiac monitor |
US3946744A (en) * | 1972-05-30 | 1976-03-30 | Medalert Corporation | Electrocardiography signal transmission-reception method including method of measuring pacemaker signal frequency |
US4004577A (en) * | 1972-12-04 | 1977-01-25 | Survival Technology, Inc. | Method of treating heart attack patients prior to the establishment of qualified direct contact personal care |
US4316472A (en) * | 1974-04-25 | 1982-02-23 | Mieczyslaw Mirowski | Cardioverting device with stored energy selecting means and discharge initiating means, and related method |
US4102332A (en) * | 1977-05-17 | 1978-07-25 | Gessman Lawrence J | Remote, telephonic cardiac resuscitation device |
FR2401647A1 (en) * | 1977-08-29 | 1979-03-30 | Karz Allen | METHOD AND APPARATUS FOR CONTINUOUS MONITORING OF ELECTROCARDIOGRAMS OF HEART DISEASES |
US4223678A (en) * | 1978-05-03 | 1980-09-23 | Mieczyslaw Mirowski | Arrhythmia recorder for use with an implantable defibrillator |
NL8005268A (en) * | 1979-10-02 | 1981-04-06 | Medrad Inc | REGISTRATION DEVICE WITH ALARM AND SERVICE REQUESTS FOR A PATIENT, WHICH APPARATUS CAN BE USED WITH AN AUTOMATICALLY IMPLEMENTABLE DEFIBRILLATOR. |
US4850356A (en) * | 1980-08-08 | 1989-07-25 | Darox Corporation | Defibrillator electrode system |
US4566464A (en) * | 1981-07-27 | 1986-01-28 | Piccone Vincent A | Implantable epilepsy monitor apparatus |
WO1983003744A1 (en) * | 1982-04-23 | 1983-11-10 | Reinhold Herbert Edward Jr | Ambulatory monitoring system with real time analysis and telephone transmission |
WO1986002250A1 (en) * | 1984-10-15 | 1986-04-24 | Hastings Harold M | External fetal heart monitor |
US4712562A (en) * | 1985-01-08 | 1987-12-15 | Jacques J. Ohayon | Outpatient monitoring systems |
EP0209804A2 (en) * | 1985-07-25 | 1987-01-28 | Paolo Rossi | Unit with a subcutaneous pick-up for continuously monitoring physiological cardiorespiratory variables |
EP0209804A3 (en) * | 1985-07-25 | 1987-06-16 | Paolo Rossi | Unit with a subcutaneous pick-up for continuously monitoring physiological cardiorespiratory variables |
US4706689A (en) * | 1985-10-30 | 1987-11-17 | Daniel Man | Implantable homing device |
EP0237588A1 (en) * | 1986-03-11 | 1987-09-23 | Healthline Systems, Inc. | Outpatient monitoring systems and methods |
US4770189A (en) * | 1986-09-02 | 1988-09-13 | Industrial Technology Research Institute | Real time multitask electronic stethoscopy system |
JPS63132630A (en) * | 1986-11-10 | 1988-06-04 | ヒューレット・パッカード・カンパニー | Arrhythmia monitor system |
EP0269907A1 (en) * | 1986-11-10 | 1988-06-08 | Hewlett-Packard Company | Arrythmia detector |
US5509425A (en) * | 1989-10-30 | 1996-04-23 | Feng; Genquan | Arrangement for and method of diagnosing and warning of a heart attack |
US5228449A (en) * | 1991-01-22 | 1993-07-20 | Athanasios G. Christ | System and method for detecting out-of-hospital cardiac emergencies and summoning emergency assistance |
US5730146A (en) * | 1991-08-01 | 1998-03-24 | Itil; Turan M. | Transmitting, analyzing and reporting EEG data |
US5335664A (en) * | 1991-09-17 | 1994-08-09 | Casio Computer Co., Ltd. | Monitor system and biological signal transmitter therefor |
US5966692A (en) * | 1992-05-12 | 1999-10-12 | Telemed Technologies International Corporation | Method and system for monitoring the heart of a patient |
US5394879A (en) * | 1993-03-19 | 1995-03-07 | Gorman; Peter G. | Biomedical response monitor-exercise equipment and technique using error correction |
US5400794A (en) * | 1993-03-19 | 1995-03-28 | Gorman; Peter G. | Biomedical response monitor and technique using error correction |
US5871451A (en) * | 1993-03-31 | 1999-02-16 | Siemens Medical Systems, Inc. | Apparatus and method for providing dual output signals in a telemetry transmitter |
US5694940A (en) * | 1993-03-31 | 1997-12-09 | Siemens Medical Systems, Inc. | Apparatus and method for providing dual output signals in a telemetry transmitter |
EP0617914A1 (en) * | 1993-03-31 | 1994-10-05 | Siemens Medical Systems, Inc. | Apparatus and method for providing dual output signals in a telemetry transmitter |
US5503158A (en) * | 1994-08-22 | 1996-04-02 | Cardiocare, Inc. | Ambulatory electrocardiogram monitor |
WO1996011722A1 (en) * | 1994-10-12 | 1996-04-25 | Ael Industries, Inc. | Telemetry system for an implanted device |
US5626630A (en) * | 1994-10-13 | 1997-05-06 | Ael Industries, Inc. | Medical telemetry system using an implanted passive transponder |
US5782878A (en) * | 1994-12-07 | 1998-07-21 | Heartstream, Inc. | External defibrillator with communications network link |
US5593426A (en) * | 1994-12-07 | 1997-01-14 | Heartstream, Inc. | Defibrillator system using multiple external defibrillators and a communications network |
US5720771A (en) * | 1995-08-02 | 1998-02-24 | Pacesetter, Inc. | Method and apparatus for monitoring physiological data from an implantable medical device |
US6280461B1 (en) * | 1996-05-23 | 2001-08-28 | Lifecor, Inc. | Patient-worn energy delivery apparatus |
US6259944B1 (en) * | 1997-12-14 | 2001-07-10 | Pylon, Inc | System and method for monitoring activity |
WO1999055227A1 (en) * | 1998-04-27 | 1999-11-04 | Patel Bharat | Remote cardiac disorder response system |
US6073046A (en) * | 1998-04-27 | 2000-06-06 | Patel; Bharat | Heart monitor system |
US6697671B1 (en) * | 1998-11-20 | 2004-02-24 | Medtronic Physio-Control Manufacturing C{overscore (o)}rp. | Visual and aural user interface for an automated external defibrillator |
US20050261742A1 (en) * | 1998-11-20 | 2005-11-24 | Nova Richard C | Visual and aural user interface for an automated external defibrillator |
US20060058848A1 (en) * | 1998-11-20 | 2006-03-16 | Medtronic Emergency Response Systems, Inc. | AED with user inputs in response to prompts |
US10213612B2 (en) | 1998-11-20 | 2019-02-26 | Richard C. Nova | Visual and aural user interface for an automated external defibrillator |
WO2001080732A2 (en) * | 2000-04-26 | 2001-11-01 | Medtronic, Inc. | Color coding of display data from medical devices |
WO2001080732A3 (en) * | 2000-04-26 | 2002-08-08 | Medtronic Inc | Color coding of display data from medical devices |
US10275571B2 (en) | 2000-05-18 | 2019-04-30 | Carefusion 303, Inc. | Distributed remote asset and medication management drug delivery system |
US20010044731A1 (en) * | 2000-05-18 | 2001-11-22 | Coffman Damon J. | Distributed remote asset and medication management drug delivery system |
US9600633B2 (en) | 2000-05-18 | 2017-03-21 | Carefusion 303, Inc. | Distributed remote asset and medication management drug delivery system |
US11823791B2 (en) | 2000-05-18 | 2023-11-21 | Carefusion 303, Inc. | Context-aware healthcare notification system |
US9069887B2 (en) | 2000-05-18 | 2015-06-30 | Carefusion 303, Inc. | Patient-specific medication management system |
US9741001B2 (en) | 2000-05-18 | 2017-08-22 | Carefusion 303, Inc. | Predictive medication safety |
US11087873B2 (en) | 2000-05-18 | 2021-08-10 | Carefusion 303, Inc. | Context-aware healthcare notification system |
US20040179664A1 (en) * | 2000-12-22 | 2004-09-16 | Platt Harry Louis | Processing apparatus for acquired signals |
US7412395B2 (en) * | 2000-12-29 | 2008-08-12 | Ge Medical Systems Information Technologies, Inc. | Automated scheduling of emergency procedure based on identification of high-risk patient |
US20020087355A1 (en) * | 2000-12-29 | 2002-07-04 | Rowlandson G. Ian | Automated scheduling of emergency procedure based on identification of high-risk patient |
US6747556B2 (en) | 2001-07-31 | 2004-06-08 | Medtronic Physio-Control Corp. | Method and system for locating a portable medical device |
US6937150B2 (en) | 2001-07-31 | 2005-08-30 | Medtronic Physio-Control Manufacturing Corp. | Method and system for locating a portable medical device |
US20050033196A1 (en) * | 2001-11-27 | 2005-02-10 | Yoram Alroy | Device for sampling blood droplets under vacuum conditions |
US20110077553A1 (en) * | 2001-11-27 | 2011-03-31 | Shl Telemedicine International Ltd. | Device for sampling blood droplets under vacuum conditions |
US20080199949A1 (en) * | 2001-11-27 | 2008-08-21 | Shl Telemedicine International Ltd. | Device for sampling blood droplets under vacuum conditions |
WO2003045241A1 (en) | 2001-11-27 | 2003-06-05 | Shl Telemedicine International Ltd. | Device for sampling blood droplets under vacuum conditions |
US7374545B2 (en) | 2001-11-27 | 2008-05-20 | Shl Telemedicine International, Ltd. | Device for sampling blood droplets under vacuum conditions |
US6985771B2 (en) * | 2002-01-22 | 2006-01-10 | Angel Medical Systems, Inc. | Rapid response system for the detection and treatment of cardiac events |
US20030139778A1 (en) * | 2002-01-22 | 2003-07-24 | Fischell Robert E. | Rapid response system for the detection and treatment of cardiac events |
US20090240156A1 (en) * | 2002-09-20 | 2009-09-24 | Angel Medical Systems, Inc. | Hiearchical communication system for a chronically implanted medical device |
US20050027317A1 (en) * | 2003-01-27 | 2005-02-03 | Langer Alois A. | Defibrillation system for non-medical environments |
US20140152436A1 (en) * | 2003-01-27 | 2014-06-05 | Health Alert, Llc | Defibrillation system for non-medical environments |
US20040172283A1 (en) * | 2003-02-09 | 2004-09-02 | Vanderveen Timothy W. | Medication management and event logger and analysis system |
US20060142808A1 (en) * | 2003-04-22 | 2006-06-29 | Christopher Pearce | Defibrillator/monitor system having a pod with leads capable of wirelessly communicating |
US20050154324A1 (en) * | 2003-08-20 | 2005-07-14 | Kang-Ping Lin | Device for measuring electrocardiogram with tapeless format and its method |
US7471976B2 (en) * | 2003-08-20 | 2008-12-30 | Kang-Ping Lin | Device for measuring electrocardiogram with tapeless format and its method |
US11419508B2 (en) | 2003-09-02 | 2022-08-23 | West Affum Holdings Dac | Pulse detection using patient physiological signals |
US8038593B2 (en) | 2003-12-05 | 2011-10-18 | Carefusion 303, Inc. | System and method for network monitoring of multiple medical devices |
US20050135306A1 (en) * | 2003-12-05 | 2005-06-23 | Mcallen Christopher M. | Discovery and connection management with mobile systems manager |
US20050137653A1 (en) * | 2003-12-05 | 2005-06-23 | Friedman Gregory S. | System and method for network monitoring of multiple medical devices |
US7957798B2 (en) * | 2003-12-17 | 2011-06-07 | Physio-Control, Inc. | Defibrillator/monitor system having a pod with leads capable of wirelessly communicating |
US9439572B2 (en) | 2003-12-17 | 2016-09-13 | Physio-Control, Inc. | Defibrillator/monitor system having a pod with leads capable of wirelessly communicating |
US8788038B2 (en) | 2003-12-17 | 2014-07-22 | Physio-Control, Inc. | External defibrillator with power and battery sharing capabilities with a pod |
US10124184B2 (en) | 2003-12-17 | 2018-11-13 | Physio-Control, Inc. | Defibrillator/monitor system having a pod with leads capable of wirelessly communicating |
US8738128B2 (en) * | 2003-12-17 | 2014-05-27 | Physio-Control, Inc. | Defibrillator/monitor system having a pod with leads capable of wirelessly communicating |
US20110208259A1 (en) * | 2003-12-17 | 2011-08-25 | Physio-Control, Inc. | Defibrillator/monitor system having a pod with leads capable of wirelessly communicating |
US20080077185A1 (en) * | 2003-12-17 | 2008-03-27 | Christopher Pearce | Defibrillator/Monitor System Having a Pod with Leads Capable of Wirelessly Communicating |
US8600491B2 (en) | 2003-12-17 | 2013-12-03 | Physio-Control, Inc. | Defibrillator patient monitoring pod |
US20050171815A1 (en) * | 2003-12-31 | 2005-08-04 | Vanderveen Timothy W. | Centralized medication management system |
US9307907B2 (en) | 2004-08-25 | 2016-04-12 | CareFusion 303,Inc. | System and method for dynamically adjusting patient therapy |
US8340792B2 (en) | 2004-08-25 | 2012-12-25 | Carefusion 303, Inc. | System and method for dynamically adjusting patient therapy |
US8630722B2 (en) | 2004-08-25 | 2014-01-14 | Carefusion 303, Inc. | System and method for dynamically adjusting patient therapy |
US7860583B2 (en) | 2004-08-25 | 2010-12-28 | Carefusion 303, Inc. | System and method for dynamically adjusting patient therapy |
US10064579B2 (en) | 2004-08-25 | 2018-09-04 | Carefusion 303, Inc. | System and method for dynamically adjusting patient therapy |
US20110066260A1 (en) * | 2004-08-25 | 2011-03-17 | Carefusion 303, Inc. | System and method for dynamically adjusting patient therapy |
US9981085B2 (en) | 2005-02-11 | 2018-05-29 | Carefusion, 303, Inc. | Management of pending medication orders |
US9427520B2 (en) | 2005-02-11 | 2016-08-30 | Carefusion 303, Inc. | Management of pending medication orders |
US10668211B2 (en) | 2005-02-11 | 2020-06-02 | Carefusion 303, Inc. | Management of pending medication orders |
US11590281B2 (en) | 2005-02-11 | 2023-02-28 | Carefusion 303, Inc. | Management of pending medication orders |
US10299668B2 (en) | 2005-10-21 | 2019-05-28 | Physio-Control, Inc. | Laryngoscope with handle-grip activated recording |
US20240090833A1 (en) * | 2006-06-30 | 2024-03-21 | Bt Wearables Llc | Smart watch |
US8965500B2 (en) | 2007-06-06 | 2015-02-24 | Zoll Medical Corporation | Wearable defibrillator with audio input/output |
US12138444B2 (en) | 2007-06-06 | 2024-11-12 | Zoll Medical Corporation | Wearable defibrillator with audio input/output |
US10004893B2 (en) | 2007-06-06 | 2018-06-26 | Zoll Medical Corporation | Wearable defibrillator with audio input/output |
US10029110B2 (en) | 2007-06-06 | 2018-07-24 | Zoll Medical Corporation | Wearable defibrillator with audio input/output |
US9492676B2 (en) | 2007-06-06 | 2016-11-15 | Zoll Medical Corporation | Wearable defibrillator with audio input/output |
US11083886B2 (en) | 2007-06-06 | 2021-08-10 | Zoll Medical Corporation | Wearable defibrillator with audio input/output |
US10426946B2 (en) | 2007-06-06 | 2019-10-01 | Zoll Medical Corporation | Wearable defibrillator with audio input/output |
US10413742B2 (en) | 2008-03-05 | 2019-09-17 | Physio-Control, Inc. | Defibrillator patient monitoring pod |
US11734222B2 (en) | 2011-03-17 | 2023-08-22 | Carefusion 303, Inc. | Scalable communication system |
US10983946B2 (en) | 2011-03-17 | 2021-04-20 | Carefusion 303, Inc. | Scalable communication system |
US11366781B2 (en) | 2011-03-17 | 2022-06-21 | Carefusion 303, Inc. | Scalable communication system |
US10353856B2 (en) | 2011-03-17 | 2019-07-16 | Carefusion 303, Inc. | Scalable communication system |
US9204813B2 (en) | 2011-03-25 | 2015-12-08 | Zoll Medical Corporation | Method of detecting signal clipping in a wearable ambulatory medical device |
US10813566B2 (en) | 2011-03-25 | 2020-10-27 | Zoll Medical Corporation | Selection of optimal channel for rate determination |
US9408548B2 (en) | 2011-03-25 | 2016-08-09 | Zoll Medical Corporation | Selection of optimal channel for rate determination |
US9456778B2 (en) | 2011-03-25 | 2016-10-04 | Zoll Medical Corporation | Method of detecting signal clipping in a wearable ambulatory medical device |
US11291396B2 (en) | 2011-03-25 | 2022-04-05 | Zoll Medical Corporation | Selection of optimal channel for rate determination |
US10219717B2 (en) | 2011-03-25 | 2019-03-05 | Zoll Medical Corporation | Selection of optimal channel for rate determination |
US10124181B2 (en) | 2012-05-08 | 2018-11-13 | Physio-Control., Inc. | Defibrillator network system |
US9872998B2 (en) | 2012-05-08 | 2018-01-23 | Physio-Control, Inc. | Defibrillator communication system |
US10159846B2 (en) | 2012-05-08 | 2018-12-25 | Physio-Control, Inc. | Utility module interface |
US10118048B2 (en) | 2012-05-08 | 2018-11-06 | Physio-Control, Inc. | Utility module system |
US10105546B2 (en) | 2012-05-08 | 2018-10-23 | Physio-Control, Inc. | Utility module |
US10926099B2 (en) | 2012-05-08 | 2021-02-23 | Physio-Control, Inc. | Utility module interface |
US10303852B2 (en) | 2012-07-02 | 2019-05-28 | Physio-Control, Inc. | Decision support tool for use with a medical monitor-defibrillator |
US10062457B2 (en) | 2012-07-26 | 2018-08-28 | Carefusion 303, Inc. | Predictive notifications for adverse patient events |
US11376425B2 (en) | 2012-08-10 | 2022-07-05 | West Affum Holdings Corp. | Controlling functions of wearable cardiac defibrillation system |
US11794005B2 (en) | 2012-08-10 | 2023-10-24 | West Affum Holdings Dac | Controlling functions of wearable cardiac defibrillation system |
US11464991B2 (en) | 2013-01-23 | 2022-10-11 | West Affum Holdings Corp. | Wearable cardiac defibrillator (WCD) system controlling conductive fluid deployment |
US9700733B2 (en) | 2013-01-23 | 2017-07-11 | West Affum Holdings Corp. | Wearable cardiac defibrillator system with impedance measurement circuit to control conductive fluid deployment |
US11182728B2 (en) | 2013-01-30 | 2021-11-23 | Carefusion 303, Inc. | Medication workflow management |
US11351391B2 (en) | 2013-02-25 | 2022-06-07 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations from multiple patient parameters |
US9592403B2 (en) | 2013-02-25 | 2017-03-14 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations from multiple patient parameters |
US12097379B2 (en) | 2013-02-25 | 2024-09-24 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations from multiple patient parameters |
US11364388B2 (en) | 2013-02-25 | 2022-06-21 | West Affum Holdings Corp. | WCD system operable to not alarm when detected cardiac arrhythmias are not validated |
US9757579B2 (en) | 2013-02-25 | 2017-09-12 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system informing patient that it is validating just-detected cardiac arrhythmia |
US11278731B2 (en) | 2013-02-25 | 2022-03-22 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system informing patient that it will not shock responsive to just-self-terminated cardiac arrhythmia |
US10867265B2 (en) | 2013-03-13 | 2020-12-15 | Carefusion 303, Inc. | Predictive medication safety |
US10029047B2 (en) | 2013-03-13 | 2018-07-24 | Carefusion 303, Inc. | Patient-specific medication management system |
US12001981B2 (en) | 2013-03-13 | 2024-06-04 | Carefusion 303, Inc. | Predictive medication safety |
US10937530B2 (en) | 2013-03-13 | 2021-03-02 | Carefusion 303, Inc. | Patient-specific medication management system |
US11615871B2 (en) | 2013-03-13 | 2023-03-28 | Carefusion 303, Inc. | Patient-specific medication management system |
US11375936B2 (en) | 2013-04-02 | 2022-07-05 | West Affum Holdings Corp. | Wearable medical system to monitor a patient parameter |
US11065464B2 (en) | 2013-04-02 | 2021-07-20 | West Affum Holdings Corp. | Methods for wearable system |
US12079742B2 (en) | 2013-05-22 | 2024-09-03 | Carefusion 303, Inc. | Medication workflow management |
US10430554B2 (en) | 2013-05-23 | 2019-10-01 | Carefusion 303, Inc. | Medication preparation queue |
US9757576B2 (en) | 2014-03-18 | 2017-09-12 | West Affum Holdings Corp. | Reliable readiness indication for a wearable defibrillator |
US9539436B2 (en) | 2014-03-19 | 2017-01-10 | West Affum Holdings Corp. | Wearable cardiac defibrillator system not delivering shock upon hearing preset delaying word from bystander |
US10918878B2 (en) | 2014-04-02 | 2021-02-16 | West Affum Holdings Corp. | Pressure resistant conductive fluid containment |
US10265535B2 (en) | 2014-04-02 | 2019-04-23 | West Affum Holding Corp. | Pressure resistant conductive fluid containment |
US9700225B2 (en) | 2014-05-06 | 2017-07-11 | West Affum Holdings Corp. | Wearable medical system with stretch-cable assembly |
US9757581B2 (en) | 2014-05-13 | 2017-09-12 | West Affum Holdings Corp. | Wearable cardioverter defibrillator components making aggregate shock/no shock determination from two or more ECG signals |
US10449370B2 (en) | 2014-05-13 | 2019-10-22 | West Affum Holdings Corp. | Network-accessible data about patient with wearable cardiac defibrillator system |
USD825060S1 (en) | 2014-06-24 | 2018-08-07 | West Affum Holdings Corp. | Portable defibrillator carrier |
US12011609B2 (en) | 2015-12-04 | 2024-06-18 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system using security NFC tag for requests of data from memory |
US12102301B2 (en) | 2016-02-02 | 2024-10-01 | Physio-Control, Inc. | Laryngoscope with handle-grip activated recording |
US11166628B2 (en) | 2016-02-02 | 2021-11-09 | Physio-Control, Inc. | Laryngoscope with handle-grip activated recording |
US12144647B2 (en) | 2016-03-14 | 2024-11-19 | Zoll Medical Corporation | Proximity based processing systems and methods |
US11617538B2 (en) | 2016-03-14 | 2023-04-04 | Zoll Medical Corporation | Proximity based processing systems and methods |
US12070292B2 (en) | 2016-03-30 | 2024-08-27 | Zoll Medical Corporation | Systems and methods of integrating ambulatory medical devices |
US10674911B2 (en) | 2016-03-30 | 2020-06-09 | Zoll Medical Corporation | Systems and methods of integrating ambulatory medical devices |
US11432722B2 (en) | 2016-03-30 | 2022-09-06 | Zoll Medical Corporation | Systems and methods of integrating ambulatory medical devices |
US11077310B1 (en) | 2016-10-04 | 2021-08-03 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system detecting QRS complexes in ECG signal by matched difference filter |
US11850438B2 (en) | 2016-10-04 | 2023-12-26 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system detecting QRS complexes in ECG signal by matched difference filter |
US11154230B2 (en) | 2017-01-05 | 2021-10-26 | West Affum Holdings Corp. | Wearable cardioverter defibrillator having reduced noise prompts |
US12151119B2 (en) | 2017-01-05 | 2024-11-26 | West Affum Holdings Dac | Wearable cardioverter defibrillator having adjustable alarm time |
US11938333B2 (en) | 2017-01-05 | 2024-03-26 | West Affum Holdings Dac | Detecting walking in a wearable cardioverter defibrillator system |
US11890098B2 (en) | 2017-01-05 | 2024-02-06 | West Affum Holdings Dac | Wearable cardioverter defibrillator having reduced noise prompts |
US11083906B2 (en) | 2017-01-05 | 2021-08-10 | West Affum Holdings Corp. | Wearable cardioverter defibrillator having adjustable alarm time |
US10926080B2 (en) | 2017-01-07 | 2021-02-23 | West Affum Holdings Corp. | Wearable cardioverter defibrillator with breast support |
US11617880B2 (en) | 2017-01-07 | 2023-04-04 | West Affum Holdings Dac | Wearable cardioverter defibrillator with breast support |
US12115366B2 (en) | 2017-01-07 | 2024-10-15 | West Affum Holdings Designated Activity | Wearable cardioverter defibrillator with breast support |
US11213691B2 (en) | 2017-02-27 | 2022-01-04 | Zoll Medical Corporation | Ambulatory medical device interaction |
US11865351B2 (en) | 2017-03-16 | 2024-01-09 | Physio-Control, Inc. | Medical device with enhanced electrocardiogram channel selection |
US11351390B2 (en) | 2017-04-10 | 2022-06-07 | West Affum Holdings Corp. | Wearable monitor system computing patient heart rate by multiplying ECG signals from different channels |
US11724118B2 (en) | 2017-05-03 | 2023-08-15 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system computing heart rate from noisy ECG signal |
US11648411B2 (en) | 2017-05-27 | 2023-05-16 | West Affum Holdings Dac | Defibrillation waveforms for a wearable cardiac defibrillator |
US11103717B2 (en) | 2017-07-28 | 2021-08-31 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system reacting to high-frequency ECG noise |
US12115379B2 (en) | 2017-07-28 | 2024-10-15 | West Affum Holdings Dac | Wearable cardioverter defibrillation (WCD) system with proximate programming device which stores ECG data that the WCD system normally discards |
US11707632B2 (en) | 2017-07-28 | 2023-07-25 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system reacting to high-amplitude ECG noise |
US12023510B2 (en) | 2017-07-28 | 2024-07-02 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system reacting to high-frequency ECG noise |
US11207538B2 (en) | 2017-09-12 | 2021-12-28 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system warning ambulatory patient by weak alerting shock |
US12186574B2 (en) | 2017-11-09 | 2025-01-07 | West Affum Holdings Dac | WCD monitor supporting serviceability and reprocessing |
US11794024B2 (en) | 2017-11-09 | 2023-10-24 | West Affum Holdings Dac | Wearable defibrillator with output stage having diverting resistance |
US11260237B1 (en) | 2017-11-09 | 2022-03-01 | West Affum Holdings Corp. | Wearable defibrillator with output stage having diverting resistance |
US11944835B2 (en) | 2017-11-10 | 2024-04-02 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system having WCD mode and also AED mode |
US11065463B2 (en) | 2017-11-10 | 2021-07-20 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system having WCD mode and also AED mode |
US11058885B2 (en) | 2017-11-29 | 2021-07-13 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system detecting ventricular tachycardia and/or ventricular fibrillation using variable heart rate decision threshold |
US11278730B2 (en) | 2017-12-04 | 2022-03-22 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) system making shock/no shock determinations from patient's rotational motion |
US11400303B2 (en) | 2018-01-05 | 2022-08-02 | West Affum Holdings Corp. | Detecting walking in a wearable cardioverter defibrillator system |
US11938334B2 (en) | 2018-02-14 | 2024-03-26 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system choosing to consider ECG signals from different channels per QRS complex widths of the ECG signals |
US11865354B1 (en) | 2018-02-14 | 2024-01-09 | West Affum Holdings Dac | Methods and systems for distinguishing VT from VF |
US11844953B2 (en) | 2018-02-14 | 2023-12-19 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) |
US11471693B1 (en) | 2018-02-14 | 2022-10-18 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system choosing to consider ECG signals from different channels per QRS complex widths of the ECG signals |
US12179032B2 (en) | 2018-02-14 | 2024-12-31 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) segment based episode opening and confirmation periods |
US11160990B1 (en) | 2018-02-14 | 2021-11-02 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) alarms |
US11666769B2 (en) | 2018-04-24 | 2023-06-06 | West Affum Holdings Dac | Substantially-median-based determination of long-term heart rates from ECG data of wearable cardioverter defibrillator (WCD) system |
US11969606B2 (en) | 2018-04-24 | 2024-04-30 | West Affum Holdings Designated Activity Company | Substantially-median-based determination of long-term heart rates from ECG data of wearable cardioverter defibrillator (WCD) system |
US11998752B2 (en) | 2018-04-25 | 2024-06-04 | West Affum Holdings Dac | Wearable cardioverter defibrillator with a non-invasive blood pressure monitor |
US11534615B2 (en) | 2018-04-26 | 2022-12-27 | West Affum Holdings Dac | Wearable Cardioverter Defibrillator (WCD) system logging events and broadcasting state changes and system status information to external clients |
US11247041B2 (en) | 2018-08-10 | 2022-02-15 | West Affum Holdings Corp. | Wearable cardioverter defibrillator (WCD) with ECG preamp having active input capacitance balancing |
US12017063B2 (en) | 2018-08-10 | 2024-06-25 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) with ECG preamp having active input capacitance balancing |
US11984677B2 (en) | 2019-03-07 | 2024-05-14 | West Affum Holdings Dac | Printed circuit board cable clip for signal sensitive applications |
US12128244B2 (en) | 2019-03-07 | 2024-10-29 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system with active ECG cable shielding |
US12121329B2 (en) | 2019-03-08 | 2024-10-22 | West Affum Holdings Dac | Wearable vital signs monitor with selective signal acquisition |
US11730418B2 (en) | 2019-08-22 | 2023-08-22 | West Affum Holdings Dac | Cardiac monitoring system with supraventricular tachycardia (SVT) classifications |
US11771360B2 (en) | 2019-08-22 | 2023-10-03 | West Affum Holdings Dac | Cardiac monitoring system with normally conducted QRS complex identification |
US12161476B2 (en) | 2019-08-22 | 2024-12-10 | West Affum Holdings Dac | Cardiac monitoring system with supraventricular tachycardia (SVT) classifications |
US20210093253A1 (en) * | 2019-09-27 | 2021-04-01 | Medtronic, Inc. | Determining heart condition statuses using subcutaneous impedance measurements |
US11717687B2 (en) | 2020-01-06 | 2023-08-08 | West Affum Holdings Dac | Asystole and complete heart block detection |
US12011607B2 (en) | 2020-08-24 | 2024-06-18 | West Affum Holdings Dac | Assistant for garment and wearable device fitting |
US11819703B2 (en) | 2020-09-17 | 2023-11-21 | West Affum Holdings Dac | Electrocardiogram (ECG) electrode with deposited ink resistive element |
US12151117B2 (en) | 2020-11-04 | 2024-11-26 | West Affum Holdings Dac | Wearable cardioverter defibrillator system with electrode moisture sensing |
US11974855B2 (en) | 2020-11-04 | 2024-05-07 | West Affum Holdings Dac | Method for detecting noise levels in ECG signals using a channel consistency threshold |
US12036416B2 (en) | 2020-11-09 | 2024-07-16 | West Affum Holdings Dac | Wearable cardioverter defibrillator (WCD) system with wireless battery charging |
US11698385B2 (en) | 2020-11-11 | 2023-07-11 | West Affum Holdings Dac | Walking intensity detection and trending in a wearable cardioverter defibrillator |
US11793469B2 (en) | 2020-11-17 | 2023-10-24 | West Affum Holdings Dac | Identifying reliable vectors |
US11950174B2 (en) | 2020-12-02 | 2024-04-02 | West Affum Holdings Dac | Detailed alarm messages and support |
US11730968B2 (en) | 2020-12-14 | 2023-08-22 | West Affum Holdings Dac | Wearable medical device with temperature managed electrodes |
US11712573B2 (en) | 2020-12-16 | 2023-08-01 | West Affum Holdings Dac | Managing alerts in a WCD system |
US12127860B2 (en) | 2021-01-21 | 2024-10-29 | West Affum Holdings Dac | Wearable device network system |
US12220256B2 (en) | 2021-07-30 | 2025-02-11 | West Affum Holdings Dac | Autonomous event assistant device |
WO2023037359A1 (en) * | 2021-09-09 | 2023-03-16 | X-Trodes Ltd | Method and system for analyzing signals during exercise |
US12220584B2 (en) | 2023-07-24 | 2025-02-11 | West Affum Holdings Dac | Asystole and complete heart block detection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3724455A (en) | Cardiac warning device | |
US3978849A (en) | Pulse rate indicator | |
US5891044A (en) | Detection of abnormal and induction of normal heart rate variability | |
US5718235A (en) | Detection of abnormal and induction of normal heart rate variability | |
US4102332A (en) | Remote, telephonic cardiac resuscitation device | |
US5577510A (en) | Portable and programmable biofeedback system with switching circuit for voice-message recording and playback | |
US4004577A (en) | Method of treating heart attack patients prior to the establishment of qualified direct contact personal care | |
US6487442B1 (en) | Detection of abnormal and induction of normal heat rate variability | |
US3910260A (en) | Method and apparatus of treating heart attack patients prior to the establishment of qualified direct contact personal care | |
US6658290B1 (en) | Public access defibrillator | |
US5042497A (en) | Arrhythmia prediction and prevention for implanted devices | |
US6980112B2 (en) | Emergency call patient locating system for implanted automatic defibrillators | |
US5474574A (en) | Automatic external cardioverter/defibrillator | |
US20020103508A1 (en) | Remotely operated defibrillator | |
US6289243B1 (en) | Automatic external cardioverter/defibrillator with tachyarrhythmia detector using a modulation (amplitude and frequency) domain function | |
US4619265A (en) | Interactive portable defibrillator including ECG detection circuit | |
US4173971A (en) | Continuous electrocardiogram monitoring method and system for cardiac patients | |
US20080177341A1 (en) | Automated external defibrillator (AED) system with multiple patient wireless monitoring capability for use in mass casualty incidents | |
US20100016746A1 (en) | Personal alerting device for use with diagnostic device | |
US6208897B1 (en) | Method and apparatus for monitoring and treating sudden infant death syndrome | |
EP2198918A1 (en) | An automatic external cardioverter/defibrillator with cardiac rate detector and method of operating the same | |
US6553256B1 (en) | Method and apparatus for monitoring and treating sudden infant death syndrome | |
CN111543976B (en) | Defibrillator device | |
WO1996002185A1 (en) | Detection of abnormal and induction of normal heart rate variability | |
US20250010083A1 (en) | Managing alerts in a wcd system |