[go: up one dir, main page]

US3720849A - Magnetic-kinematic precision stages - Google Patents

Magnetic-kinematic precision stages Download PDF

Info

Publication number
US3720849A
US3720849A US00150272A US3720849DA US3720849A US 3720849 A US3720849 A US 3720849A US 00150272 A US00150272 A US 00150272A US 3720849D A US3720849D A US 3720849DA US 3720849 A US3720849 A US 3720849A
Authority
US
United States
Prior art keywords
members
micromoving
magnetic
respect
slide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00150272A
Inventor
A Bardocz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3720849A publication Critical patent/US3720849A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor

Definitions

  • the magnetic-kinematic precision stages of this invention permit linear and angular motions with a precision hardly possible in previously-existing devices.
  • stages In addition to their application in microscopy, semiconductor technology, and other branches of industry, such stages have a special significance in the fields of modern optics, laser technology, holography, and inter ferometry, to name just a few examples.
  • These technologies require mechanical stages adjustable with a precision and reproducibility that has been previously seldom required.
  • the systems described here are based on completely new construction principles, and permit a greater precision of motion along or around the x, y, and z axes.
  • the basic system is comprised of two plates which rotate or move laterally with respect to each other on ball joints, and which are held together by retaining magnets.
  • piezoelectric ceramic materials have great significance in achieving motions of the highest fineness.
  • Piezoelectric transducers are by their nature not suitable for transmitting large forces.
  • the magnetic-kinematic devices of this invention are extremely well suited for operation with piezoelectric transducers.
  • FIG. la is a front elevation of one embodiment of the invention.
  • FIG. 1b is a plan view of FIG. 1a;
  • FIG. 2a is a front elevation of a second embodiment of the invention.
  • FIG. 2b is a plan view of FIG. 2a
  • FIG. 3a is a front elevation of another embodiment
  • FIG. 3b is a plan view of FIG. 3a
  • FIG. 4 is an exploded perspective view of elements shown in FIGS. 3a and 3b;
  • FIG. 5 is a schematic plan view showing one position of the micrometer screw for adjustment on the x-axis
  • FIG. 6 is a schematic plan view of another position of said micrometer screw
  • FIG. 7 is a schematic plan view of another position of said micrometer screw.
  • FIG. 8a is a front elevation of another embodiment of the invention.
  • FIG. 8b is a side elevation of FIG. 8a
  • FIG. 8c is a schematic view showing the various adjustments which can be made by the device of FIGS. 8a and 8b;
  • FIG. 9a is a front elevation of another embodiment of the invention.
  • FIG. 9b is a plan view of FIG. 9a.
  • FIG. (la) and (lb) show a linear translating stage.
  • the two opposing parts of this linear magnetic-kinematic translating stage roll on balls confined in linear grooves, the individual parts being held together by magnetic forces.
  • FIG. (la) and (lb) show the application of a magnetic-kinematic system in an optical device.
  • the two-piece linearly-translating member (V) and (Z) are mounted onto an optical bench rider (R).
  • the upper part of the translating member is a slide which rests upon balls and is movable in the plane of the FIG. (lb).
  • the two parts of the translating member are held together magnetically as shown by arrows m.a. indicating the magnetic attraction.
  • the fine motion is made with a micrometer screw (M).
  • the micrometer screw is attached to the lower part of the translating member (V) and holds the slide with a magnet (N).
  • a device translatable in two perpendicular directions (x and y direction) is possible by combining two of the translating devices shown in FIG. Ia and lb.
  • FIG. 2a and 2b show a device in which a precision adjustment around the z-axis (the vertical axis) is possible.
  • the example is taken from an optical device.
  • the rider column (S) is fastened to a disc (U) which rotates with respect to a lower part (R).
  • the disc rests upon balls confined in matching circular grooves milled into the two parts, and the parts are held together magnetically as indicated by arrows m.a.
  • the lower part rests upon an optical bench rider (R) and may be fastened to it with magnets.
  • the disc, and hence also the column may be rotated through a full 360.
  • the micrometer screw (M) acts against a protrusion (G) from the rotating disc and is fastened to it by a coupling magnet.
  • the protrusion may be set at any desired position along the edge of the disc.
  • the rotating disc may be set directly on the optical rider.
  • FIGS. 11: and lb, and 2a and 2b can be built together into a single unit, as shown in FIG. 3a and 3b.
  • this figure is shown in an exploded view in FIG. 4.
  • FIGS. 5, 6, and 7 show various possibilities for locating the adjustment device on the x-direction slide.
  • FIG. 5 shows a device in which the adjustment screw or micrometer head is located as an extension of the slide.
  • FIG. 6 shows a device in which the adjustment screw or micrometer head is located on top of the slide.
  • FIG. 7 shows a device in which the adjustment screw or micrometer head is located to the side of the slide.
  • Magnetic-kinematic adjustments are especially significant for precision vertical motions.
  • Vertical adjustments in precision translating devices present an especially difficult problem.
  • the difficulty lies in balancing out the weight of the object being supported.
  • the principle of this invention solves this problem also, in that it completely removes the effect of the weight.
  • FIG. 8a, 8b and 8c show the elegant and complete solution for the precision vertical translating stage.
  • the device is coupled with double linear translation motions in the vertical plane, and the entire device is mounted on an optical bench rider (R).
  • the component' to be moved in the vertical direction for example, a lens or mirror (0) hangs from a column (P1).
  • the column has straight guide grooves on both sides, corresponding on one side to guide grooves in the mirror holder (0) and on the other side to guide grooves in a counterweight (P3).
  • the mirror holder and counterweight are suspended from the ends of a metal band (Ml), which hangs over a ball-bearing roller (K) mounted at the top of the column.
  • Ml metal band
  • K ball-bearing roller
  • the mirror can be rotated a full 360 about either the y (horizontal) axis or the z (vertical) axis.
  • the rotational action about the y (horizontal) and z (vertical) axis is made with the help of magnetic-kinematic rotation stages (U P2) and (V) the magnetic attraction between these stages being indicated by arrows m.a.
  • U P2 magnetic-kinematic rotation stages
  • V magnetic attraction between these stages being indicated by arrows m.a.
  • the adjusting screws or micrometer heads are not shown in the figure.
  • the coarse vertical adjustment of the optical component is to be made by hand, and the fine adjustment by an ordinary screw or by a micrometer screw. Since the screw must be attached at various heights, it is attached magnetically.
  • FIG. 9a and 9b show how elegantly the magnetickinematic principle can be applied to a piezoelectrically-controlled translation.
  • an optical example is given. It should be mentioned that in all presently available piezoelectric optical mounts, the piezoelectric transducer is rigidly mounted at one of its ends and supports the optical component at the other end. If the transducer is arranged horizontally, this means a mechanical load on the transducer column, so that the column has a tendency to bend. Such a system becomes complicated when the beam must pass through the system. In this case the transducer is built as a largediameter ring.
  • the linear translation stage (T1, T2, M) of FIG. 1 is again shown in FIG. 9a and 9b.
  • One end of the piezoelectric transducer (P) is attached to the fixed part (T1) of the translation stage.
  • the upper slide (T2) carries a stub (Z1); against which the translating force of the piezoelectric transducer acts.
  • the end of the piezoelectric transducer which pushes against the stub is provided with a retaining magnet, in order to ensure a contact without mechanical backlash. It is seen from FIG. 9a and 9b that the only mechanical load on the piezoelectric column is a push or pull along its axis, and that the dimensions of this column are completely independent of the optical components.
  • the points labeled x and y are the electrical terminals for the voltage across the piezoelectric transducers.
  • an apparatus for precision adjustment comprising a first member, a second member juxtaposed to said first member, antifriction means separating said members, magnetic means urging said members towards each other and means acting between said members to move one member relative to another, said means being magnetically attached to at least one of said members.
  • An apparatus as claimed in claim 1 in which there is a base member and said first member is adjustable with respect to the base member by a coarse adjustment means.
  • An apparatus as claimed in claim 2 in which a third member is juxtaposed to said second member with anti-friction means separating said second and third members and magnetic means urging said second and third members together, said third member being rotatable with respect to said second member about a vertical axis, and second micromoving means acting between said second and third members, an end of said second micromoving means acting against a radially extending shoulder on said third member.
  • An apparatus as claimed in claim 5 in which a standard is supported on said third member, a fourth member is supported for vertical adjustment on said standard and a fifth member is juxtaposed to said fourth member for rotational movement with respect thereto, said fifth member being separated from said fourth member by antifriction means and being urged towards said fourth member by magnetic means, and micromoving means acting between said fourth and fifth members.
  • micromoving means is a piezoelectric device.
  • An apparatus as claimed in claim 9 in which there is a base member supporting said first and second members and a micrometer screw acts between said base member and said first member to cause relative movement between them.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Details Of Measuring And Other Instruments (AREA)

Abstract

The application deals with a magnetic-kinematic precision stage system. The essence is, that stages with linear or angular movement are composed of at least two plates, which move with respect to each others on ball joints. The two plates are held together with retaining magnets. This solution garanties the complete elimination of the backlash. The plates may move very freely, practically without force, with respect to each other. Because practically there is no force, as consequent there is very low friction, and thus adjustement with the greatest precision is possible.

Description

ilnited States Patent 1191 Eardocz M IMarch 13, 1973 15 1 MAGNETlC-KINEMATHC PRECISION 3,611,577 10/1911 $111111 ..310 111 x STAGES 3,608,409 9/1971 Schmidt ..310 s.7 x 3,941,331 4/1969 Kesling ..248/206 A X [76] lnventor: Arpad Bardocz, Rumannstrasse 57, 2,731,879 1/1956 conorerm 248/206AX 8 Munich 23, Germany [22] Filed: June 7, 1971 Primary Examiner-J. V. Truhe Assistant Examiner-B. A. Reynolds [211 App! 150372 Attorney-Edwin Greigg [30] Foreign Application Priority Data [57] ABSTRACT June 16, 1970 Germany ..P 20 29 715.8 The application deals with a magnetic-kinematic precision stage system. The essence is, that stages with [52] 11.8. C1 ..310/8, 248/206 A, 3 10/83 linear or angular movement are composed of at least [51] Int. Cl. ..H0lv 7/00 two plates, which move with respect to each others on 1 Field of Search ball joints. The two plates are held together with 335/29 243/206 retaining magnets. This solution garanties the 21 1 complete elimination of the backlash. The plates may move very freely, practically without force, with 1 References C'ted respect to each other. Because practically there is no UNITED STATES PATENTS force, as consequent there is very low f nctron, and
thus ad ustement with the greatest precision IS possi- 2,850,943 9/1958 Grineff ..248/206 A X ble. 2,568,575 9/1951 Wickman ..335/285 X 2,952,185 9/1960 Palmer et aL... ..248/206 A X 10 Claims, 15 Drawing Figures PATENIEDMARI 31915 sum 2 0F 3 Fig.3a
MAGNETIC-KINEMATIC PRECIISION STAGES The magnetic-kinematic precision stages of this invention permit linear and angular motions with a precision hardly possible in previously-existing devices. In addition to their application in microscopy, semiconductor technology, and other branches of industry, such stages have a special significance in the fields of modern optics, laser technology, holography, and inter ferometry, to name just a few examples. These technologies require mechanical stages adjustable with a precision and reproducibility that has been previously seldom required.
The systems described here are based on completely new construction principles, and permit a greater precision of motion along or around the x, y, and z axes. The basic system is comprised of two plates which rotate or move laterally with respect to each other on ball joints, and which are held together by retaining magnets.
This solution guaranties that all motions are without backlash. Since the magnetic force offers no resistance to a motion perpendicular to the force direction, the plates may move very freely with respect to each other, and thus may be adjusted with the greatest precision. The adjustments are made with either ordinary screws or micrometer screws, which are bound to a rigid base. The screw spindle works against a movable part which is held to the spindle by a retaining magnet. The screw or micrometer head can be replaced by a piezoelectric coupling.
The significance of this invention may be best appreciated by considering the requirements demanded of similar devices and the extent to which this invention satisfies these requirements.
In any precision adjustment which requires an exactness of 0.001 mm or better, there are three construction problems which affect the reproducibility of the adjustment. They are: l) backlash between the components; (2) backlash in the adjustment control; and (3) securing a uniform motion.
Freedom from backlash: With present-day technology, a device whose freedom from backlash makes possible a reproducibility on the order of 0.00l mm can be achieved only by using a spring action. The spring action can be achieved either by the use of springs or by a spring construction in the contact guides. Both solutions make the motion more difficult, since such slides can be moved only by applying a force.
Backlash: ln every mechanical stage, it is necessary to have a retaining force tending to hold the slide in its original position. In order to eliminate backlash, all present-day stages use springs to provide the retaining force. The use of springs, however, means the application of force, and indeed, the force changes over the pathlength of the slide.
Uniform motion: Experience shows that a uniform motion re, a jerk-free motion can be achieved only when the motion is force-free and without friction. Wherever a force is applied, there is also friction, and thus a non-uniform motion. It is clear that it is ad vantageous for the motion to result from the smallest possible forces. With present-day technology, this is the case for the magnetic-kinematic solution of this invention.
It should be explicitly stated that piezoelectric ceramic materials have great significance in achieving motions of the highest fineness. Piezoelectric transducers are by their nature not suitable for transmitting large forces. Thus the magnetic-kinematic devices of this invention are extremely well suited for operation with piezoelectric transducers.
The invention will be better understood, and further objects and advantages will become more apparent, from a reading of the following specification taken in conjunction with the drawing, wherein:
FIG. la is a front elevation of one embodiment of the invention;
FIG. 1b is a plan view of FIG. 1a;
FIG. 2a is a front elevation of a second embodiment of the invention;
FIG. 2b is a plan view of FIG. 2a;
FIG. 3a is a front elevation of another embodiment;
FIG. 3b is a plan view of FIG. 3a;
FIG. 4 is an exploded perspective view of elements shown in FIGS. 3a and 3b;
FIG. 5 is a schematic plan view showing one position of the micrometer screw for adjustment on the x-axis;
FIG. 6 is a schematic plan view of another position of said micrometer screw;
FIG. 7 is a schematic plan view of another position of said micrometer screw;
FIG. 8a is a front elevation of another embodiment of the invention;
FIG. 8b is a side elevation of FIG. 8a;
FIG. 8c is a schematic view showing the various adjustments which can be made by the device of FIGS. 8a and 8b;
FIG. 9a is a front elevation of another embodiment of the invention; and
FIG. 9b is a plan view of FIG. 9a.
FIG. (la) and (lb) show a linear translating stage. The two opposing parts of this linear magnetic-kinematic translating stage roll on balls confined in linear grooves, the individual parts being held together by magnetic forces. FIG. (la) and (lb) show the application of a magnetic-kinematic system in an optical device. As shown there, the two-piece linearly-translating member (V) and (Z) are mounted onto an optical bench rider (R). The upper part of the translating member is a slide which rests upon balls and is movable in the plane of the FIG. (lb). The two parts of the translating member are held together magnetically as shown by arrows m.a. indicating the magnetic attraction. A Knob (T), covered on the side with plastic, provides a coarse adjustment of the slide. The fine motion is made with a micrometer screw (M). The micrometer screw is attached to the lower part of the translating member (V) and holds the slide with a magnet (N). A device translatable in two perpendicular directions (x and y direction) is possible by combining two of the translating devices shown in FIG. Ia and lb.
Magnetic-kinematic movements are also very well suited for producing angular rotations. FIG. 2a and 2b show a device in which a precision adjustment around the z-axis (the vertical axis) is possible. The example is taken from an optical device. The rider column (S) is fastened to a disc (U) which rotates with respect to a lower part (R). The disc rests upon balls confined in matching circular grooves milled into the two parts, and the parts are held together magnetically as indicated by arrows m.a. The lower part rests upon an optical bench rider (R) and may be fastened to it with magnets. The disc, and hence also the column, may be rotated through a full 360. The micrometer screw (M) acts against a protrusion (G) from the rotating disc and is fastened to it by a coupling magnet. The protrusion may be set at any desired position along the edge of the disc.
If a circular groove is milled onto the optical rider (R), the rotating disc may be set directly on the optical rider.
The x and y translation and the rotation about the z axis, as shown in FIGS. 11: and lb, and 2a and 2b, can be built together into a single unit, as shown in FIG. 3a and 3b. For better understanding, this figure is shown in an exploded view in FIG. 4.
The placement of adjustment screws or micrometer heads in the magnetic-kinematic system represents a special problem. Basically, it is often necessary to restrict the dimension of the device along the direction of the motion (x-axis). The problem does not generally occur in the y-direction. When the problem occurs, the micrometer head should be placed either over or next to the slide. FIGS. 5, 6, and 7 show various possibilities for locating the adjustment device on the x-direction slide.
FIG. 5 shows a device in which the adjustment screw or micrometer head is located as an extension of the slide.
FIG. 6 shows a device in which the adjustment screw or micrometer head is located on top of the slide.
FIG. 7 shows a device in which the adjustment screw or micrometer head is located to the side of the slide.
Magnetic-kinematic adjustments are especially significant for precision vertical motions. Vertical adjustments in precision translating devices present an especially difficult problem. The difficulty lies in balancing out the weight of the object being supported. The principle of this invention solves this problem also, in that it completely removes the effect of the weight.
FIG. 8a, 8b and 8c show the elegant and complete solution for the precision vertical translating stage. The device is coupled with double linear translation motions in the vertical plane, and the entire device is mounted on an optical bench rider (R). The component' to be moved in the vertical direction for example, a lens or mirror (0) hangs from a column (P1). The column has straight guide grooves on both sides, corresponding on one side to guide grooves in the mirror holder (0) and on the other side to guide grooves in a counterweight (P3). The mirror holder and counterweight are suspended from the ends of a metal band (Ml), which hangs over a ball-bearing roller (K) mounted at the top of the column. The mirror can be rotated a full 360 about either the y (horizontal) axis or the z (vertical) axis. The rotational action about the y (horizontal) and z (vertical) axis is made with the help of magnetic-kinematic rotation stages (U P2) and (V) the magnetic attraction between these stages being indicated by arrows m.a. For clarity, the adjusting screws or micrometer heads are not shown in the figure. The coarse vertical adjustment of the optical component is to be made by hand, and the fine adjustment by an ordinary screw or by a micrometer screw. Since the screw must be attached at various heights, it is attached magnetically.
FIG. 9a and 9b show how elegantly the magnetickinematic principle can be applied to a piezoelectrically-controlled translation. Again, an optical example is given. It should be mentioned that in all presently available piezoelectric optical mounts, the piezoelectric transducer is rigidly mounted at one of its ends and supports the optical component at the other end. If the transducer is arranged horizontally, this means a mechanical load on the transducer column, so that the column has a tendency to bend. Such a system becomes complicated when the beam must pass through the system. In this case the transducer is built as a largediameter ring.
The linear translation stage (T1, T2, M) of FIG. 1 is again shown in FIG. 9a and 9b. One end of the piezoelectric transducer (P) is attached to the fixed part (T1) of the translation stage. The upper slide (T2) carries a stub (Z1); against which the translating force of the piezoelectric transducer acts. The end of the piezoelectric transducer which pushes against the stub is provided with a retaining magnet, in order to ensure a contact without mechanical backlash. It is seen from FIG. 9a and 9b that the only mechanical load on the piezoelectric column is a push or pull along its axis, and that the dimensions of this column are completely independent of the optical components. The points labeled x and y are the electrical terminals for the voltage across the piezoelectric transducers.
It is obvious that this principle can also be applied to rotating stages.
Iclaim:
1. In an apparatus for precision adjustment comprising a first member, a second member juxtaposed to said first member, antifriction means separating said members, magnetic means urging said members towards each other and means acting between said members to move one member relative to another, said means being magnetically attached to at least one of said members.
2. An apparatus as claimed in claim 1 in which the means acting between said members comprises a micro-moving means and an end of said micromoving means is magnetically attached to said one member.
3. An apparatus as claimed in claim 1 in which there is a base member and said first member is adjustable with respect to the base member by a coarse adjustment means.
4. An apparatus as claimed in claim 2 in which the second member is rotatable with respect to the first member about a vertical axis and said end of the micromoving means acts against a radially extending shoulder on said second member.
5. An apparatus as claimed in claim 2 in which a third member is juxtaposed to said second member with anti-friction means separating said second and third members and magnetic means urging said second and third members together, said third member being rotatable with respect to said second member about a vertical axis, and second micromoving means acting between said second and third members, an end of said second micromoving means acting against a radially extending shoulder on said third member.
6. An apparatus as claimed in claim 5 in which a standard is supported on said third member, a fourth member is supported for vertical adjustment on said standard and a fifth member is juxtaposed to said fourth member for rotational movement with respect thereto, said fifth member being separated from said fourth member by antifriction means and being urged towards said fourth member by magnetic means, and micromoving means acting between said fourth and fifth members.
7. An apparatus as claimed in claim 6 in which said fifth member supports an optical device for rotation about a vertical axis and said fourth member, fifth member and optical device are counterbalanced by a weight supported by flexible means.
8. An apparatus as claimed in claim 7 in which said first member is juxtaposed to a slide member, said first member and slide member being magnetically urged towards each other, micromoving means acting between said slide member and said first member to cause relativ'e movement between them, said slide member being adapted to be adjustably mounted on a track member, the first, second and third members being horizontally positioned plate members vertically stacked on top of said slide member, the first and second members being adjustable by said micromoving means in a direction at right angles to the direction in which the micromoving means adjusts the first member with respect to the slide member.
9. An apparatus as claimed in claim 2 in which said micromoving means is a piezoelectric device.
110. An apparatus as claimed in claim 9 in which there is a base member supporting said first and second members and a micrometer screw acts between said base member and said first member to cause relative movement between them.

Claims (10)

1. In an apparatus for precision adjustment comprising a first member, a second member juxtaposed to said first member, antifriction means separating said members, magnetic means urging said members towards each other and means acting between said members to move one member relative to another, said means being magnetically attached to at least one of said members.
1. In an apparatus for precision adjustment comprising a first member, a second member juxtaposed to said first member, antifriction means separating said members, magnetic means urging said members towards each other and means acting between said members to move one member relative to another, said means being magnetically attached to at least one of said members.
2. An apparatus as claimed in claim 1 in which the means acting between said members comprises a micro-moving means and an end of said micromoving means is magnetically attached to said one member.
3. An apparatus as claimed in claim 1 in which there is a base member and said first member is adjustable with respect to the base member by a coarse adjustment means.
4. An apparatus as claimed in claim 2 in which the second member is rotatable with respect to the first member about a vertical axis and said end of the micromoving means acts against a radially extending shoulder on said second member.
5. An apparatus as claimed in claim 2 in which a third member is juxtaposed to said second member with anti-friction means separating said second and third members and magnetic means urging said second and third members together, said third member being rotatable with respect to said second member about a vertical axis, and second micromoving means acting between said second and third members, an end of said second micromoving means acting against a radially extending shoulder on said third member.
6. An apparatus as claimed in claim 5 in which a standard is supported on said third member, a fourth member is supported for vertical adjustment on said standard and a fifth member is juxtaposed to said fourth member for rotational movement with respect thereto, said fifth member being separated from said fourth member by antifriction means and being urged towards said fourth member by magnetic means, and micromoving means acting between said fourth and fifth members.
7. An apparatus as claimed in claim 6 in which said fifth member supports an optical device for rotation about a vertical axis and said fourth member, fifth member and optical device are counterbalanced by a weight supported by flexible means.
8. An apparatus as claimed in claim 7 in which said first member is juxtaposed to a slide member, said first member and slide member being magnetically urged towards each other, micromoving means acting between said slide member and said first member to cause relative movement between them, said slide member being adapted to be adjustably mounted on a track member, the first, second and third members being horizontally positioned plate members vertically stacked on top of said slide member, the first and second members being adjustable by said micromoving means in a direction at right angles to the direction in which the micromoving means adjusts the first member with respect to the slide member.
9. An apparatus as claimed in claim 2 in which said micromoving means is a piezOelectric device.
US00150272A 1970-06-16 1971-06-07 Magnetic-kinematic precision stages Expired - Lifetime US3720849A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2029715A DE2029715C3 (en) 1970-06-16 1970-06-16 Adjusting device

Publications (1)

Publication Number Publication Date
US3720849A true US3720849A (en) 1973-03-13

Family

ID=5774144

Family Applications (1)

Application Number Title Priority Date Filing Date
US00150272A Expired - Lifetime US3720849A (en) 1970-06-16 1971-06-07 Magnetic-kinematic precision stages

Country Status (4)

Country Link
US (1) US3720849A (en)
DE (1) DE2029715C3 (en)
FR (1) FR2096161A5 (en)
GB (1) GB1354130A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126376A (en) * 1977-02-24 1978-11-21 Jenoptik Jena G.M.B.H Manipulation device for precision adjustments including a double microscope having adjustable optical axes
US4247162A (en) * 1978-09-29 1981-01-27 Abbott Laboratories Rectilinear drive apparatus
US4835434A (en) * 1986-09-27 1989-05-30 Physik Instrumente (Pi) Gmbh Produktions & Marketing Kg Piezoelectric positioning element
US4871938A (en) * 1988-06-13 1989-10-03 Digital Instruments, Inc. Positioning device for a scanning tunneling microscope
US4936655A (en) * 1988-07-07 1990-06-26 Grumman Aerospace Corporation Alignment fixture for an optical instrument
US4946329A (en) * 1988-04-01 1990-08-07 Albert Einstein College Of Medicine Of Yeshiva University Micromanipulator using hydraulic bellows
US4993809A (en) * 1988-10-07 1991-02-19 Grumman Aerospace Corporation Mounting fixture for an optical instrument
US5237238A (en) * 1990-07-21 1993-08-17 Omicron Vakuumphysik Gmbh Adjusting device for microscopic movements
US5380095A (en) * 1992-11-16 1995-01-10 Pryor; Paul L. Bearing arrangement having magnetic attraction between sliders and clearance mechanism
US5986372A (en) * 1990-06-04 1999-11-16 Joffe; Benjamin Advanced magnetically-stabilized couplings and bearings, for use in mechanical drives
US6093989A (en) * 1990-06-04 2000-07-25 Joffe; Benjamin Advanced magnetically-stabilized couplings and bearings, for use in mechanical drives
US6176616B1 (en) * 1990-06-04 2001-01-23 Benjamin Joffe Magnetically stabilized couplings and bearings for use in mechanical drives
US20050225852A1 (en) * 2004-04-12 2005-10-13 Rondeau Gary D Stage assembly and method for optical microscope including Z-axis stage and piezoelectric actuator for rectilinear translation of Z stage
US20120227523A1 (en) * 2011-03-09 2012-09-13 Coretronic Display Solution Corporation Shifting apparatus
WO2013140068A1 (en) * 2012-03-22 2013-09-26 Horiba Abx Sas Device for positioning an object in space
WO2016020514A1 (en) * 2014-08-07 2016-02-11 General Electric Company Ultra-compact microscope with autofocusing

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2726867C2 (en) * 1977-06-15 1987-04-02 Technischer Überwachungs-Verein Rheinland e.V., 5000 Köln Holder for a measuring and/or testing device
JPS5836725B2 (en) * 1978-07-27 1983-08-11 株式会社三豊製作所 Optical displacement measuring device
FR2600435B1 (en) * 1986-06-23 1988-09-23 Armines DEVICE FOR CONTROLLING A TRANSLATION MOVEMENT, FOLLOWING SEVERAL DIRECTIONS SITUATED IN THE SAME PLAN, OF A PART DRIVEN IN ROTATION AND / OR OSCILLATION
DE3789751T2 (en) * 1986-10-27 1994-12-22 The Furukawa Electric Co., Ltd., Tokio/Tokyo Device for axial centering when fusing optical fibers.
JP2003177330A (en) * 2001-12-07 2003-06-27 Olympus Optical Co Ltd Microscope stage

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2568575A (en) * 1949-10-24 1951-09-18 Lester F Wickman Magnetic t square and drafting board
US2731879A (en) * 1956-01-24 conover
US2850943A (en) * 1954-04-26 1958-09-09 George G Grineff Self-supporting lens holders
US2952185A (en) * 1956-09-21 1960-09-13 Charles L Palmer Easel and horizontal projector photographic apparatus
US3608409A (en) * 1969-09-24 1971-09-28 Nasa Caterpillar micro positioner
US3611577A (en) * 1970-01-29 1971-10-12 Tropel Electromicrometer
US3941331A (en) * 1973-03-29 1976-03-02 Croullebois Georges L Casing for apparatus provided with a flexible or articulated windable element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731879A (en) * 1956-01-24 conover
US2568575A (en) * 1949-10-24 1951-09-18 Lester F Wickman Magnetic t square and drafting board
US2850943A (en) * 1954-04-26 1958-09-09 George G Grineff Self-supporting lens holders
US2952185A (en) * 1956-09-21 1960-09-13 Charles L Palmer Easel and horizontal projector photographic apparatus
US3608409A (en) * 1969-09-24 1971-09-28 Nasa Caterpillar micro positioner
US3611577A (en) * 1970-01-29 1971-10-12 Tropel Electromicrometer
US3941331A (en) * 1973-03-29 1976-03-02 Croullebois Georges L Casing for apparatus provided with a flexible or articulated windable element

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126376A (en) * 1977-02-24 1978-11-21 Jenoptik Jena G.M.B.H Manipulation device for precision adjustments including a double microscope having adjustable optical axes
US4247162A (en) * 1978-09-29 1981-01-27 Abbott Laboratories Rectilinear drive apparatus
US4835434A (en) * 1986-09-27 1989-05-30 Physik Instrumente (Pi) Gmbh Produktions & Marketing Kg Piezoelectric positioning element
US4946329A (en) * 1988-04-01 1990-08-07 Albert Einstein College Of Medicine Of Yeshiva University Micromanipulator using hydraulic bellows
US4871938A (en) * 1988-06-13 1989-10-03 Digital Instruments, Inc. Positioning device for a scanning tunneling microscope
US4936655A (en) * 1988-07-07 1990-06-26 Grumman Aerospace Corporation Alignment fixture for an optical instrument
US4993809A (en) * 1988-10-07 1991-02-19 Grumman Aerospace Corporation Mounting fixture for an optical instrument
US6093989A (en) * 1990-06-04 2000-07-25 Joffe; Benjamin Advanced magnetically-stabilized couplings and bearings, for use in mechanical drives
US5986372A (en) * 1990-06-04 1999-11-16 Joffe; Benjamin Advanced magnetically-stabilized couplings and bearings, for use in mechanical drives
US6176616B1 (en) * 1990-06-04 2001-01-23 Benjamin Joffe Magnetically stabilized couplings and bearings for use in mechanical drives
US6682217B1 (en) 1990-06-04 2004-01-27 Benjamin Joffe Magnetically stabilized precision table and load-carrying bearings
US5237238A (en) * 1990-07-21 1993-08-17 Omicron Vakuumphysik Gmbh Adjusting device for microscopic movements
US5380095A (en) * 1992-11-16 1995-01-10 Pryor; Paul L. Bearing arrangement having magnetic attraction between sliders and clearance mechanism
US7180662B2 (en) 2004-04-12 2007-02-20 Applied Scientific Instrumentation Inc. Stage assembly and method for optical microscope including Z-axis stage and piezoelectric actuator for rectilinear translation of Z stage
US20050225852A1 (en) * 2004-04-12 2005-10-13 Rondeau Gary D Stage assembly and method for optical microscope including Z-axis stage and piezoelectric actuator for rectilinear translation of Z stage
US20120227523A1 (en) * 2011-03-09 2012-09-13 Coretronic Display Solution Corporation Shifting apparatus
WO2013140068A1 (en) * 2012-03-22 2013-09-26 Horiba Abx Sas Device for positioning an object in space
FR2988314A1 (en) * 2012-03-22 2013-09-27 Horiba Abx Sas DEVICE FOR POSITIONING AN OBJECT IN SPACE
CN104204718A (en) * 2012-03-22 2014-12-10 奥里巴Abx股份有限公司 Device for positioning an object in space
CN104204718B (en) * 2012-03-22 2018-03-30 奥里巴Abx股份有限公司 By the positioner of target positioning in space
US10302242B2 (en) 2012-03-22 2019-05-28 Horiba Abx Sas Device for positioning an object in space
WO2016020514A1 (en) * 2014-08-07 2016-02-11 General Electric Company Ultra-compact microscope with autofocusing
US20160041375A1 (en) * 2014-08-07 2016-02-11 General Electric Company Ultra-compact microscope with autofocusing

Also Published As

Publication number Publication date
FR2096161A5 (en) 1972-02-11
DE2029715C3 (en) 1980-07-10
DE2029715A1 (en) 1971-12-23
GB1354130A (en) 1974-06-05
DE2029715B2 (en) 1979-10-18

Similar Documents

Publication Publication Date Title
US3720849A (en) Magnetic-kinematic precision stages
CN108732709B (en) Manual adjusting mechanism with five degrees of freedom
US5760564A (en) Dual guide beam stage mechanism with yaw control
EP0503712B1 (en) Support device with a tiltable object table, and optical lithographic device provided with such a support device
US4635887A (en) Adjustable mountings
JPS61230836A (en) Positioning device
US4698798A (en) Device for translating a slide
US6888920B2 (en) Low-cost, high precision goniometric stage for x-ray diffractography
CN103528683A (en) Moving mirror scanning device for FT-IR (Fourier transform infrared spectrometer)
JPS60354A (en) Positioning device and manufacture thereof
US3508806A (en) Positioning apparatus
JPS62234858A (en) Goniometer table
US4925139A (en) Mechanical stage support for a scanning tunneling microscope
US3508835A (en) Measuring microscope
US3405991A (en) Mounting mechanism for zoom type of optical systems for stereomicroscope
EP0375033B1 (en) Object holder for positioning an object in a radiation beam
US3318593A (en) Micropositioning mechanism
TW201203440A (en) Supporting device and light exposure device
US3783707A (en) Crosstable for positioning articles
US2942345A (en) Graticule holding devices
CN209903051U (en) High-precision vision assembling device
US3892475A (en) Laser beam adjustment apparatus
US3878330A (en) Optical viewing system
JPH03221336A (en) Movable stage device
JP2017013210A (en) Biaxial positioning stage apparatus